信号与系统期中测验答案
信号与系统课后习题参考答案
1试分别指出以下波形是属于哪种信号?题图1-11-2 试写出题1-1 图中信号的函数表达式。
1-3 已知信号x1(t)与x2(t)波形如题图1-3 中所示,试作出下列各信号的波形图,并加以标注。
题图1-3⑴x1(t2)⑵ x1(1 t)⑶ x1(2t 2)⑷ x2(t 3)⑸ x2(t 2) ⑹x2(1 2t)2⑺x1(t) x2( t)⑻x1(1 t)x2(t 1)⑼x1(2 t) x2(t 4)21- 4 已知信号x1(n)与x2 (n)波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。
题图1-4⑴x1(2n 1) ⑵ x1(4 n)⑶ x1(n)2⑷ x2 (2 n)⑸ x2(n 2) ⑹ x2(n 2) x2( n 1)⑺x1(n 2) x2(1 2n)⑻x1(1 n) x2(n 4)⑼ x1(n 1) x2(n 3)1- 5 已知信号x(5 2t )的波形如题图1-5 所示,试作出信号x(t)的波形图,并加以标注。
题图1-51- 6 试画出下列信号的波形图:1⑴ x(t) sin( t) sin(8 t)⑵ x(t) [1 sin( t )] sin(8 t)21⑶x(t) [1 sin( t)] sin(8 t)⑷ x(t) sin( 2t )1-7 试画出下列信号的波形图:⑴ x(t)1 e t u(t) ⑵ x(t) e t cos10 t[u(t 1) u(t 2)]⑶ x(t)(2 e t)u(t)⑷ x(t) e (t 1)u(t)⑸ x(t)u(t22 9) ⑹ x(t)(t2 4)1-8 试求出以下复变函数的模与幅角,并画出模与幅角的波形图1j2 ⑴ X (j ) (1 e j2)⑵ X( j1 e j4⑶ X (j ) 11 ee j ⑷ X( j )试作出下列波形的奇分量、偶分量和非零区间上的平均分量与交流分量。
题图 1-10形图。
题图 1-141-15 已知系统的信号流图如下,试写出各自系统的输入输出方程。
信号与系统题库答案(完整版)
1 −2( s +1) 1 −2 s e (2) e s +1 s +1 e2 2cos 2 + s sin 2 − s (3) (4) ie s +1 s2 + 4 1 ⎛ 1 1⎞ ⎛ 1 2⎞ (5) 2 [1 − (1 + s )e − s ]e − s (6) ⎜ 2 + ⎟ e − s − ⎜ 2 + ⎟ e −2 s s s⎠ s⎠ ⎝s ⎝s (1)
[3]解 A 点: FA (ω ) =
1 [G1 (ω + ω0 ) + G1 (ω − ω0 )] 2 j B 点: FB (ω ) = [G1 (ω + ω0 ) − G2 (ω − ω0 )] 2 1 C 点: FC (ω ) = [ FA (ω ) + FB (ω )] ⋅ π [δ (ω + ω0 ) + δ (ω − ω0 )] 2π 1 1 1 j j = [ G1 (ω + 2ω0 ) + G1 (ω ) + G2 (ω + 2ω0 ) − G2 (ω )] 2 2 2 2 2 1 1 1 j j + [ G1 (ω ) + G1 (ω − 2ω0 ) + G2 (ω ) − G2 (ω − 2ω0 )] 2 2 2 2 2
1 1 1 j j = [ G1 (ω + 2ω0 ) + G1 (ω ) + G2 (ω + 2ω0 ) − G2 (ω )] 2 2 2 2 2 1 1 1 j j + [ G1 (ω ) + G1 (ω − 2ω0 ) + G2 (ω ) − G2 (ω − 2ω0 )] 2 2 2 2 2
信号与系统期中考试参考答案_326004751
《信号与系统》期中考试试题2011年11月 A 卷一、填空(25分)1、(3分)已知2()(e )()t f t t u t -=+,则()f t ''=(2e )()()()t u t t t δδ-'+-+。
解:2()(2e )()(e )()(2e )()()t t t f t t u t t t t u t t δδ---'=-++=-+()(2e )()(2e )()()(2e )()()()t t t f t u t t t t u t t t δδδδ---''''=++-+=+-+2、(3分)若()f t 的最高截止频率为m ω,则对(/2)(4)f t f t 抽样的最大时间间隔为2/(9)m πω。
解:{}{}{}11(/2)(4)(/2)*(2)(2)*(/4)24f t f t f t f t F F ωωππ==FF F , (2)F ω的截止频率为0.5m ω,(/4)F ω的截止频率为4m ω,根据卷积性质知(/2)(4)f t f t 的最高截止频率为4.5m ω,因此最低抽样频率为9s m ωω=,最大时间间隔2/(9)m m T πω=。
3、(3分)已知实信号()f t 的频谱可写成(2/2)()()e j F A ωπωω-+=,其中()A ω为实奇函数,试问该信号波形满足何种对称性(2)(2)f t f t -+=-+。
解:由题意知2()j ()j F e A ωωω=,而[][]*j ()j ()A A ωω=-,即*j 2j2()()F e F e ωωωω⎡⎤=-⎣⎦,从而(2)(2)f t f t -+=-+,即()f t 关于2t =反对称。
4、(3分)由Parseval 定理计算2sin d t t t π+∞-∞⎛⎫= ⎪⎝⎭⎰2π。
解:{}[]sin()()()()t Sa t u u t ππππωπωπ⎧⎫==+--⎨⎬⎩⎭F F ,因此2sin d t t t π+∞-∞⎛⎫= ⎪⎝⎭⎰21d 2πππωππ2-=⎰。
信号与系统期中考试答案,DOC
一、(15%)已知连续时间信号x t ()和离散时间信号x n []的波形图如下图所示。
画出下列各信号的波形图,并加以标注。
1.()()11xt x t =-,2.()()221x t x t =-,3.3()()x x t ττ=-第三个自变量不为t !! 4.{}1[][][]e x n x n Even x n ==,5.2[][][1]x n x n n δ=-答案二、(25%)简要回答下列问题。
1. 推导离散时间信号[]0j n xn e ω=成为周期信号的条件(3%);若是周期信号,给出基波周期的求法(3%)。
答案:若为周期信号,则00()j nj n N e e n ωω+=∀,。
推出01j N e ω=,再推出02,,0N k k z k ωπ=∈≠。
得出02k Nωπ=为有理分数。
2.指出离散时间信号[]j n x n e ω=频率取值的主值范围(2%),指出它的最低频率和最高频率(2%)。
答案2πωπωπ-≤<≤<或0。
min max 02,21),k k z k k z ωπωππ=∈=+∈或。
而或(。
3. 断下列两个系统是否具有记忆性。
①()()()()222y t x t x t =-,(1%)②[][][]0.51y n x n x n =--。
(1%)答案①无记忆性②有记忆性4.简述连续时间和离散时间线性时不变(LTI )系统的因果性、稳定性与单位冲激响应(Unitimpulseresponse )的关系(4%)。
答案因果性与()()()[][][]h t h t u t h n h n u n ==或互为充要条件。
稳定性与|()||[]|n h t dt h n +∞+∞=-∞-∞<+∞<+∞∑⎰或互为充要条件。
5. 很广泛一类因果系统可用常系数微分方程:()()00k k NM k k k k k k d y t d x t a b dt dt ===∑∑表征,画出该类系统的增量线性系统结构(2%),用该结构说明全响应的构成方法及每一部分的物理含义(4%),在什么条件下该类系统为LTI 系统(3%)? 答案()()()x i y t y t y t =+,()()*()x y t x t h t =是仅由输入信号引起响应:零状态响应,()i y t 是仅由初始状态引起的响应:零输入响应。
信号与系统期中考试答案3
信号与系统期中考试答案一、共八小题 1、⎰-=++232)2()(dt t t t δ 2⎰∞-=-+td ττδτ)2()1( 3u(t-2)3、判别下列系统是否线性。
其中x (t 0)为初始状态,f (t )为输入。
)(7)(d )(d 3)(t f t ty tt y a =+线性系统)(6)(5)( )(0t tf t x t y b +=线性系统4、求下列信号的奈奎斯特抽样频率和抽样间隔 (1))70100cos(︒-t π最大的角频率ωm=100π rad/s奈奎斯特抽样频率fs=2fm=100Hz 奈奎斯特抽样间隔Ts=1/fs=0.01s; (2) )20()100(2t sa t sa ππ-最大的角频率ωm=100π rad/s奈奎斯特抽样频率fs=2fm=100Hz 奈奎斯特抽样间隔Ts=1/fs=0.01s; 5、一个系统的系统频域函数ωωω3sin 23cos 2)(j j H -=,该系统是否为无失真传输系统?ωωωω323s i n 23c o s 2)(j ej j H -=-=,是无失真传输系统 6、已知一线性系统的输入)1(3)(-=t t f δ,系统的单位冲激响应)(2)(3t u e t h t -=, 求系统的零状态响应。
零状态响应)1(3)(2*)1(3)(*)()()1(33-=-==---t u e t u e t t h t f t y t t f δ7、已知一线性系统当输入)(2)(t u t f =时,系统的零状态响应)(2)(3t u e t y t f -=,当输入)1()(2)(--=t u t t f δ时, 求系统的零状态响应。
系统的零状态响应是: )1()(6)(22)]1(2[)](2[)()1(33)1(33---=--=------t u et u et t u et u edt d t y t tt tf δ8、已知某一理想低通滤波器系统函数⎩⎨⎧><=- 50|| 050|| 5.0)(2πωπωωωj e j H ,系统的输入)30100cos(4)1020cos(2)(︒-+︒+=t t t f ππ,求系统的零状态响应。
信号与系统答案1
∫
∞
e jω0t [δ (t +T) δ (t T)]dt = e jω0 (T ) e jω0 (T )
= 2 j sin(ω0T)
2-5: (4)
x(t)
2 0 2 3 5
t
2 -1 0
x(t+1)
1 2 4
t
2 -3 0
x(t/3+1)
3 6 12
t
2-9:
x(t) = et [u(t 1) u(t 2)] + tδ (t 3), 求 (1) (t), x '(t) x ∵x(t) = et [u(t 1) u(t 2)] + 3δ (t 3)
3-31:
5 1 y[k ] y[k 1] + y[k 2] = x[k ], y(1) = 0, y(2) = 1, 6 6 x[k ] = u[k ]
根据单位脉冲响应的定义,应满足方程 解: (1) 根据单位脉冲响应的定义 应满足方程: 应满足方程 5 1 h[k ] h[k 1] + h[k 2] = δ [k ] 6 6 第一步:求等效初始条件 第一步 求等效初始条件 :
t
3-4 已知离散时间 系统,输入 x1[k ] = δ [k 1] 时,输出 已知离散时间LTI系统 输入 输出; 系统 输出
1 k 1 y1[k ] = ( ) u[k 1], 求当输入x2 [k ] = 2δ [k ] + u[k ]时系统响应y2 [k ]. 2
x2 [k ] = 2 x1[k + 1] +
2-13:(3)
x[3k ]
2 1 1
2
k
-1 0 1 2
2-13:(4)
信号与系统考试试题及答案
长沙理工大学拟题纸课程编号 1 拟题教研室(或老师)签名教研室主任签名符号说明:为符号函数,为单位冲击信号,为单位脉冲序列,为单位阶跃信号,为单位阶跃序列。
一、填空(共30分,每小题3分)1. 已知,求。
2. 已知,求。
3. 信号通过系统不失真的条件为系统函数。
4. 若最高角频率为,则对取样的最大间隔是。
5. 信号的平均功率为。
6. 已知一系统的输入输出关系为,试判断该系统是否为线性时不变系统。
故系统为线性时变系统。
7. 已知信号的拉式变换为,求该信号的傅立叶变换=。
故傅立叶变换不存在。
8. 已知一离散时间系统的系统函数,判断该系统是否稳定。
故系统不稳定。
9. 。
310. 已知一信号频谱可写为是一实偶函数,试问有何种对称性。
关于t=3的偶对称的实信号。
二、计算题(共50分,每小题10分)1. 已知连续时间系统的单位冲激响应与激励信号的波形如图A-1所示,试由时域求解该系统的零状态响应,画出的波形。
图 A-11. 系统的零状态响应,其波形如图A-7所示。
图 A-72. 在图A-2所示的系统中,已知,求该系统的单位脉冲响应。
图 A-22.3. 周期信号的双边频谱如图A-3所示,写出的三阶函数表示式。
图 A-33. 写出周期信号指数形式的傅立叶级数,利用欧拉公式即可求出其三阶函数表示式为4. 已知信号通过一线性时不变系统的响应如图A-4所示,试求单位阶跃信号通过该系统的响应并画出其波形。
图 A-44. 因为故利用线性时不变特性可求出通过该系统的响应为波形如图A-8所示。
图 A-85.已知的频谱函数,试求。
5. ,因为,由对称性可得:,因此,有三、综合计算题(共20分,每小题10分)1. 一线性时不变因果连续时间系统的微分方程描述为已知由s域求解:(1)零输入响应,零状态响应,完全响应;(2)系统函数,单位冲激响应并判断系统是否稳定;(3)画出系统的直接型模拟框图。
解:1. (1)对微分方程两边做单边拉斯变换得整理后可得零输入响应的s域表达式为进行拉斯反变换可得零状态响应的s域表达式为进行拉斯反变换可得完全响应为(2)根据系统函数的定义,可得进行拉斯反变换即得由于系统函数的极点为-2、-5,在左半s平面,故系统稳定。
东南大学信号与系统期中考试试卷及答案
F { f (t )} = 2 Sa (ω ) − 2 e
'
− jω
= jω F ( jω )
2 − jω F ( jω ) = [ Sa (ω ) − e ] jω
4。 计算卷积: 2 * t[ε(t+2)-ε(t-2)] 。 (5分)
2
f1 (t )
0
−2 2
t
f 2 (t )
0 2
t
= ∫ τ [ε (τ + 2) − ε (τ − 2)]2dτ
解: 引入辅助函数q(t), 得
d 3 q (t ) d 2 q (t ) dq ( t ) 4 5 + + + 6 q (t ) = e (t ) 3 2 dt dt dt dq ( t ) r (t ) = 7 + 8 q (t ) dt
7
e (t )
Σ
q ′′′
∫
-4 -5 -6
q ′′
∫
q′
(t ) = (t ) =
e
− 2 t
− 2 c
e
− 2 t
, t ≥
在输入为零时 r(0+)= r(0-)= 0,r´(0+)= r´(0-)= 2, 代入上列二式
c1 + c 2 = 0 , → − 2 c 2 = 2 ∴ r zi ( t ) = ( 1 − e
(2)系统转移算子为:
解法2:因 e(t)=5,(-∞<t<∞),故由直流稳态解,可设 r(t)=A (常数),代入系统方程,得 5A=3x5, ∴ r(t)= A =3
3. 利用傅里叶变换的性质求下列波形信号的傅里叶 变换。 (8分)
信号与系统期中考试题(答案201X.5)
.武夷学院期末考试试卷( 2010 级 电子信息技术 专业2012~2013学年度 第 2 学期) 课程名称 信号与系统 期中 卷 考试形式 开 卷 考核类型 考 试 本试卷共三 大题,卷面满分100分,答题时间120分钟。
一、选择题:(本大题共15小题,每小题2分,共30分每题给出四个答案,其中只有一个正确的)1、下列关于冲激函数性质的表达式不正确的是( B )。
A 、)()0()()(t f t t f δδ= B 、()t aat δδ1)(=C 、)(d )(t tεττδ=⎰∞- D 、)()-(t t δδ=2、积分dt t t ⎰∞∞---)21()2(δ等于( D )。
A 1.25B 2.5C -1.5D 53、周期信号的频谱和非周期信号的频谱分别为( A )A 离散频谱和连续频谱B 连续频谱和离散频谱C 均为离散频谱D 均为连续频谱4、将信号f (t )变换为( A )称为对信号f (t )的尺度变换。
A f (at )B f (t –k 0)C f (t –t 0)D f (-t ) 5、下列关于冲激函数性质的表达式不正确的是( D )。
A 、⎰∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =⎰+∞∞-δC 、)(d )(t tεττδ=⎰∞- D 、⎰∞∞-=')(d )(t t t δδ6、某系统的系统函数为 H ( s ),若同时存在频响函数 H ( j ω),则该系统必须满足条件( C )A 时不变系统B 因果系统C 稳定系统D 线性系统 7、设定某系统的系统函数为)2)(1()2(2)(-++=s s s s s H ,则其极点为( D )A 0、-2B -2C 1、-2D -1、28、对因果系统,只要判断H(s)的极点,即A(s)=0的根(称为系统特征根)在平面上的位置,即可判定系统是否稳定。
下列式中对应的系统可能稳定的是( D ) A s 3+4s 2-3s+2 B s 3+4s 2+3s C s 3-4s 2-3s-2 D s 3+4s 2+3s+29、有两个系统分别为(1)y (t)= cost·f(t),(2)y (t )= 4f 2(t) +3f(t)则这两个系统分别为( B )A 都是时变系统B (1)是时变系统 (2)是时不变系统C 都是时不变系统D (1)是时不变系统 (2)是时变系统 10、下列说法不正确的是( D )。
信号与系统考试题及答案(共8套)
信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
信号与系统期中考试答案
一、(15%)已知连续时间信号x t ()和离散时间信号x n []的波形图如下图所示。
画出下列各信号的波形图,并加以标注。
1. ()()11x t x t =-, 2. ()()221x t x t =-, 3. 3()()x x t ττ=-第三个自变量不为t !! 4. {}1[][][]e x n x n Even x n ==, 5. 2[][][1]x n x n n δ=-答案二、(25%)简要回答下列问题。
1. 推导离散时间信号[]0j n x n e ω=成为周期信号的条件(3%);若是周期信号,给出基波周期的求法(3%)。
答案:若为周期信号,则00()j nj n N e e n ωω+=∀,。
推出01j N e ω=,再推出02,,0N k k z k ωπ=∈≠。
得出02kNωπ=为有理分数。
0002min ,1k N N z k z k πω⎧⎫⎪⎪=∈∈≥⎨⎬⎪⎪⎩⎭,且2.指出离散时间信号[]j n x n e ω=频率取值的主值范围(2%),指出它的最低频率和最高频率(2%)。
答案2πωπωπ-≤<≤<或0。
min max 02,21),k k z k k z ωπωππ=∈=+∈或。
而或(。
3.断下列两个系统是否具有记忆性。
① ()()()()222y t x t x t =-,(1%)② [][][]0.51y n x n x n =--。
(1%)答案 ① 无记忆性 ② 有记忆性4. 简述连续时间和离散时间线性时不变(LTI )系统的因果性、稳定性与单位冲激响应(Unit impulse response )的关系(4%)。
答案因果性与()()()[][][]h t h t u t h n h n u n ==或互为充要条件。
稳定性与|()||[]|n h t dt h n +∞+∞=-∞-∞<+∞<+∞∑⎰或互为充要条件。
5. 很广泛一类因果系统可用常系数微分方程:()()00k k NM k kk k k k d y t d x t a b dt dt ===∑∑表征,画出该类系统的增量线性系统结构(2%),用该结构说明全响应的构成方法及每一部分的物理含义(4%),在什么条件下该类系统为LTI 系统(3%)? 答案()()()x i y t y t y t =+, ()()*()x y t x t h t =是仅由输入信号引起响应:零状态响应,()i y t 是仅由初始状态引起的响应:零输入响应。
信号与系统期中考试试卷(答案)
衢州学院 2015- 2016 学年 第 2 学期《信号与系统》期中试卷1.填空(每小题5分,共4题)(1)⎰+∞∞-=tdt t 0cos )(ωδ 1(2)⎰∞-=td ττωτδ0sin )( 0(3)已知系统函数)2)(1(1)(++=s s s H , 起始条件为:2)0(,1)0(='=--y y ,则系统的零输入响应y zi (t )= t t e e 2-34--(4)()()()t h t f t y *=,则()=t y 2 )2(*)2(2t h t f2. 绘出时间函数的波形图u (t )-2u (t -1)+ u (t -2)的波形图(10分)1t123f (t )-13.电容C 1与C 2串联,以阶跃电压源v (t ) =Eu (t )串联接入,试写出回路电流的表达式。
(10分)题号 一 二 三 四 五 六 七 八 九 十 总分 分数班级 姓名 学号dtt dv c c c c t i d i c c c c d i c d i c t v ttt )()()()(1)(1)(2121212121+=⇒+=+=⎰⎰⎰∞-∞-∞-ττττττ4.如下图所示,t<0时,开关位于“1”且已达到稳态,t=0时刻,开关由“1”转到“2”,写出t ≥0时间内描述系统的微分方程,求v (t )的完全响应。
(10分)解:设回路电流为)(t i ,则)()(t Ri t v =,由KVL 方程由:)()()()(1t V t Ri dtt di L dt t i C in t =++⎰∞- 整理后得到: dt t dV t v RC dt t dv dt t v d R L in )()(1)()(22=++ 代入参数得到: )t t v dtt dv dt t v d (10)(10)(10)(68522δ=++ 特征根: 423110*9.9,102-≈⨯-≈αα 初始值: 610)0()0(')0(',0)0(==⨯==++++L v LRi R v v 得到: t t e e t v 2131.10-31.10)(αα=5.信号f (t )如图1所示,求=)(ωj F F )]([t f ,并画出幅度谱)(ωj F 。
信号与系统试卷及参考答案
试卷及答案信号与系统试卷(1)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间120分钟,试卷题共2页一一线性非时变离散系统,具有一初始状态x(0),当激励为时f(k),响应为y(k)=((1/2)k+1)u(k);若初始状态不变,当激励为-f(k)时,响应y(k)=((-1/2)k-1)u(k)为;试求当初始状态2x(0)为,激励为4f(k)时,系统的响应?(10分)二绘出下列函数的图形(1).已知一连续时间信号x(t)如图所示,试概略画出信号y(t)=x(2-t/3)的波形图。
(8分)t-1 0 1 2 3(2). 试概略画出信号y(t)=u(t 2-4) 的波形图。
(8分)三 计算下列函数(1). y(t)=⎰-44(t 2+3t+2)(δ(t)+2δ(t-2))dt (4分) (2). f(t)=e -2t u(t), h(t)= e -2t u(t), y(t)=f(t)*h (t) (8分)(3). f(k)=1, k=0,1,2,3, h(k)=1, k=0,1,2,3, y(k)=f(k)*h (k) (8分) (4) 已知f(t)=e -2t u(t), 求y(t)=[t f(2t)] 的富立叶变换 (8分) (5)y’(t)+2y(t)=δ(t)+u(t), y(0)=0, 试求y(t)=? (8分) (6). y(k)-y(k-1)-2y(k-2)=u(k)+2u(k-2), y(-1)= 2,y(-2)= -1/2, 试求零输入响应y x (k)=? 零状态响应y f (k)=? (8分)四 一线性非时变因果系统,当激励为u(t)时,响应为)]2()([cos )(cos )(ππ---+=-t u t u t t tu e t g t ,求当激励f(t)=δ(t)时的响应)(t h 。
(10分)五 某一子系统,当输入f(t)=e -t u(t)时,零状态响应y f (t) = (1/2 e -t - e -2t +1/2e -3t )u(t), 试求将两个这样的子系统串联时,总系统的冲激响应。
电子科大信号与系统期中考试试卷及答案11-12学年
………密………封………线………以………内………答………题………无………效……电子科技大学二零 一 一 至二零 一 二 学年第 一 学期期 中 考试SIGNALS AND SYSTEMS 课程考试题 卷 ( 120 分钟) 考试形式: 闭卷 考试日期 20 11 年 月 日课程成绩构成:平时 10 分, 期中 20 分, 实验 10 分, 期末 60 分1(56points).Each of the following questions may have one or two right answers, justify your answers and write it in the blank. (1)()cos 221πδ+∞-∞-=⎰t t dt ( d ).(a) 1 (b) -1 (c) 0.5 (d) -0.5(2) The fundamental period of the signal []23cos sin 32ππ⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦x n n n is ( a ). (a) 12N = (b) 6N = (c) 8N = (d) 24N = (3) Let ()1tx t e -= and ()()()14k x t x t t k δ+∞=-∞=*-∑. The Fourier series coefficients of ()x t may be ( a ).(a) {} and Im 0-==k k k a a a (b) {} and Im 0-=-=k k k a a a (c) {} and Re 0-==k k k a a a (d) {} and Re 0k k k a a a -=-=(4) Consider an LTI system with unit impulse response ()h t illustrated in Figure 1, if the input is ()()d t x t dtδ=, the output () 0.5t y t =- is( b ).(a) -1 (b) 1 (c) -0.5 (d) 0.5(5) The convolution integral ()222t te e u t -*=( c ).(a) 2 (b)214te (c)212te (d)()212te u t(6) Which of the following systems is an linear system ( a ). In each example, []y n denotes the system output and []x n is the systeminput.(a) [][][]cos y n n x n = (b) [][]{}cos 3y n x n = (c) [][]()ln y n x n = (d) [][]2y n x n =(7) Which of the following systems are causal and stable system ( ad ). In each example, ()h t denotes the impulse response of thefollowing systems.(a) ()()()13h t t t δδ=-+- (b) ()()()0.5cos 2t h t t e u t =- (c) ()()()13h t t t δδ=+++ (d) ()()()cos 2t h t t e u t -=-(8) Determine the following signals which have finite total energy ( bc ). (a) []()[]1x n n u n =+ (b) ()()23tx t eu t -=+(c) []()[]1cos /32nx n n u n π⎛⎫= ⎪⎝⎭(d) () , tx t e t =-∞<<+∞tFigure 1………密………封………线………以………内………答………题………无………效……(9) Consider a continuous-time LTI system whose frequency response is ()()sin /2Hj ωωω=. If we know the output ()y t to some periodicinput signals are ()0y t =. The fundamental period of the input signal may be ( ac ). (a) 1T = (b) 2T = (c) 0.5T = (d) 3T =2(12points). A continuous-time signal ()32-+x t is illustrated in Figure 2.(a) Determine the signal ()x t . (b) Sketch and label carefully ()x t .3(10 points).Consider an LTI system whose response to the signal ()t x 1 in Figure 3 is the signal ()t y 1 illustrated in Figure 4. Determine the response of the system to the input ()t x 2 depicted in Figure 5 .4(12 points). Consider a continuous-time LTI system whose frequency response ()H j ω is illustrated in Figure 6. If the input signal()1cos 3sin 6ππ=++x t t t , determine the output of the system.12Figure 3ωFigure 6tFigure 2………密………封………线………以………内………答………题………无………效……14(10points). Consider an LTI system whose input []x n and unit impulse response []h n are given by []{}1,0,1,1,0,1x n n =-=-,[]{}2,1,3,2,2,3,4,5h n n ==. Determine the output [][][]n h n x n y *= of this system.《信号与系统》半期考试评分标准说明1.填空题(56分)⑴. (d) ⑵ (a) ⑶ (a) ⑷ (b) ⑸ (c) ⑹ (a) ⑺ (ad) ⑻ (bc) ⑼ (ac) ⑽ (ab) 本部分评分规则:1) 选择题共14个正确答案,1-6题为单选,7-10题为双选; 2) 若只填写了1个答案,正确得4分,错误得0分;3) 若填写了2个答案,2个正确得8分,1个正确、1个错误得4分,2个错误得0分;4) 若填写了3个答案,2个正确、1个错误得4分,1个正确、2个错误得2分,3个错误得0分; 5) 若填写了4个答案,得0分。
08信号与系统期中答案
一、填空题:(每小题3分,共30分) 1、试画出)2(2)1()()(-+--=t u t u t u t f 的波形图:2、连续LTI 系统完全响应根据齐次解和特解可分解为(强迫响应和自由响应)。
3、一函数)(t f 波形为tf(t)0-211,试画出)23(--t f 的波形:4、dt t t et)2()(++⎰∞∞--δ 的结果为:( 22-e )。
5、若FE )()]([w F t f =,则FE )]([0t at f +-为:(a j w t e a wF a/0)(1-- )。
)()]([),()]([2211s F t f L s F t f L ==,6.若])()([222211dt t f d K dt t df K L -为:则( )]0(')0()([)]0()([22222111f sf s F s K f s sF K ---- )。
7、若)(t f 的波形图为:则FE )]()([t f t f *为:( 2)]2(2[wb EbSa )8、一频率为1000Hz 的正弦波信号,用一个频率( 2000Hz )以上的窄脉冲理想抽样,抽样信号经理想低通滤波可以恢复原始正弦波。
9、已知)]3(2/[)25()]([++=s s s t f L ,则)(t f 的初值)0(+f 为( 2.5 )。
-11t(A)121tf(t)(B)120-11tf(t)(C)1221tf(t)(D)12tf(t)0-12132bE/2tf(t)图 3-2b10、已知at e t f -=)(,则该函数进行拉斯变换后的收敛域为( a ->σ )。
二、计算题:(共7题,共52分)11、求右图所示信号的傅里叶级数。
(10分)解:21)(12000EEdt T dt t f T a TT ⎰⎰===002)sin(2)cos(2)cos()(2200====⎰⎰T nw nwt T E dt nwt E T dt nwt t f T a TT n )cos 1(02)cos(2)sin(2)sin()(2200ππn n E T nw nwt T E dt nwt E T dt nwt t f T b TT n -=-⋅===⎰⎰ ⎪⎩⎪⎨⎧=02πn E ,...6,4,2,...5,3,1==n n)sin(22)(1nwt n EE t f n ∑∞=+=π,7,5,3,1=n12、试求右图所示信号的傅里叶变换。
信号与系统期中考试标准答案
《信号与系统》课程期中试卷参考答案及评分标准 第 1 页 共 5 页中国计量学院20 13 ~ 20 14 学年第 二 学期《 信号与系统 》课程 期中考试试卷参考答案及评分标准开课: 信息_ ,学生班级:12通信12 教师:一.(共20分)解: (1)4)(422sin )(42sin )(2)(====⎰⎰⎰∞+∞-∞+∞-∞+∞-dt t dt ttt dt t t t t f δδδ (4分)(2)方程不符合线性性质,故是非线性系统;(2分)响应与激励施加于系统的时刻无关,故是时不变系统。
(2分)(3)T 时刻的响应与T 时刻之前的激励有关,是非因果系统。
(4分)(4)KHz sT f s rad T 1010011)/(102021311===⨯==μππω(2分)KHz sB f 502011===μτ(2分) (5)因为|()|1/ω=常数H j ,所以不满足无失真传输条件。
(4分)二、1、解:(1))2(2)(2)(1--=t t t f εε (2分)(2))3()()(2--=t t t f εε (2分)(3) (4分)1《信号与系统》课程期中试卷参考答案及评分标准 第 2 页 共 5 页2、(8分)解:f(t)为周期信号,T=2,其基波角频率Ω=π。
在间隔(-1,1)内,f(t)表示为δ(t),f(t)的傅里叶级数展开式为 21)(1,)(11===⎰∑-ΩΩ-∞-∞=dt e t Tc ec t f tin n tjn n n δ其中, 所以,∑-∑=-=∑=∑=∞-∞=∞-∞=-∞-∞=-∞-∞=n n tjn n ntjn n nn n eF c ec F t f F )()(221][][)]([πωδπΩωπδΩΩ3、(8分)解:211)(j ωω+=Hωωϕa r c t a n )(-=)4sin(21sin π-⇒t t ,)sin(sin 632512-⇒t t ,)sin(sin 7231013-⇒t t所以,)723sin(101)632sin(51)4sin(21)( -+-+-=t t t t y π三.(12分) 解:⎪⎫⎛==⎰--)(21ωττωττωSa A dt Ae j F t j (4分)(4分)(2) 2 (4分)四、(10分)将f(t)展开成三角函数形式的傅立叶级数,考虑到f(t)偶对称性质,故正弦分量bn 全为零,其中:12/2/21T ωπππ===,τπ=,E A = !!!!第 3 页共 5 页故:01/2a = ,1sin(/2)2*/2A A a πππππ== 3sin(3/2)2*3/23A A a πππππ==等,如下,其它偶次项0n a =)7cos 715cos 513cos 31(cos 22)( +-+-+=t t t t A A t f π (5分) 考虑到该系统是一个带通滤波器,只将2到7 rad/s 的频率成分保留,故除3,5,7三个频率分量保留外,其它分量全部滤除!!又因为该系统的通带内的增益为1,所以输出信号的直接就是f(t)的三个频率分量!!如下所示:)7c o s 715c o s 513c o s 31(2)(t t t A t f +--=π (5分)五、解:1《信号与系统》课程期中试卷参考答案及评分标准 第 4 页 共 5 页(8分)2、将y(t)与2cos30000πt 相乘,得到信号的频谱为:将2y(t) cos30000πt 经过截止频率为15kHz 的低通滤波器,则可以恢复到m(t)的频谱,即恢复为m(t).所以解密器与加密器的结构完全相同。
信号与系统期中考试题(答案201X.5)
.武夷学院期末考试试卷( 2010 级 电子信息技术 专业2012~2013学年度 第 2 学期) 课程名称 信号与系统 期中 卷 考试形式 开 卷 考核类型 考 试 本试卷共三 大题,卷面满分100分,答题时间120分钟。
一、选择题:(本大题共15小题,每小题2分,共30分每题给出四个答案,其中只有一个正确的)1、下列关于冲激函数性质的表达式不正确的是( B )。
A 、)()0()()(t f t t f δδ= B 、()t aat δδ1)(=C 、)(d )(t tεττδ=⎰∞- D 、)()-(t t δδ=2、积分dt t t ⎰∞∞---)21()2(δ等于( D )。
A 1.25B 2.5C -1.5D 53、周期信号的频谱和非周期信号的频谱分别为( A )A 离散频谱和连续频谱B 连续频谱和离散频谱C 均为离散频谱D 均为连续频谱4、将信号f (t )变换为( A )称为对信号f (t )的尺度变换。
A f (at )B f (t –k 0)C f (t –t 0)D f (-t ) 5、下列关于冲激函数性质的表达式不正确的是( D )。
A 、⎰∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =⎰+∞∞-δC 、)(d )(t tεττδ=⎰∞- D 、⎰∞∞-=')(d )(t t t δδ6、某系统的系统函数为 H ( s ),若同时存在频响函数 H ( j ω),则该系统必须满足条件( C )A 时不变系统B 因果系统C 稳定系统D 线性系统 7、设定某系统的系统函数为)2)(1()2(2)(-++=s s s s s H ,则其极点为( D )A 0、-2B -2C 1、-2D -1、28、对因果系统,只要判断H(s)的极点,即A(s)=0的根(称为系统特征根)在平面上的位置,即可判定系统是否稳定。
下列式中对应的系统可能稳定的是( D ) A s 3+4s 2-3s+2 B s 3+4s 2+3s C s 3-4s 2-3s-2 D s 3+4s 2+3s+29、有两个系统分别为(1)y (t)= cost·f(t),(2)y (t )= 4f 2(t) +3f(t)则这两个系统分别为( B )A 都是时变系统B (1)是时变系统 (2)是时不变系统C 都是时不变系统D (1)是时不变系统 (2)是时变系统 10、下列说法不正确的是( D )。
信号与系统考试题及答案(2021试题)
信号与系统考试题及答案(2021试题)一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。
200 rad /s C 。
100 rad /s D 。
50 rad /sf如下图(a)所示,其反转右移的信号f1(t) 是()15、已知信号)(tf如下图所示,其表达式是()16、已知信号)(1tA、ε(t)+2ε(t-2)-ε(t-3)B、ε(t-1)+ε(t-2)-2ε(t-3)C、ε(t)+ε(t-2)-ε(t-3)D、ε(t-1)+ε(t-2)-ε(t-3)17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是()A、f(-t+1)B、f(t+1)C、f(-2t+1)D、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( )19。
信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差 2A 、1-eB 、3eC 、3-e D 、1 27.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为( )A 。
《信号与系统》试题及答案
信号与系统》试题及答案2012 年度教学质量综合评估测验卷《信号与系统》试题 题组::1、开课学院:信息工程学院学院 题组2、:题纸上。
电子3、类适专用业班级:信息工程学院通信工程专业及 电子4、类在专答业写所要求填 卷面题型及分值:)题 答 不 内 线 封 密名姓研12组0 分钟,所有答案均写在答 发两张答题纸上认真填 。
总总分二 三 四 五 六 七 八 九 十100 20 20 60一、选择题(每小题 2 分,共 10小题。
每一小题仅有一个选项是正确的。
共计 20 分)列说法不正确的是( 一般周期信号为功率信号。
时限信号 (仅在有限时间区间不为零的非周期信号 )为能量信号。
ε(t)是功率信号; 1、 A 、 B 、 C 、)。
D 、 e t 为能量信号 列关于冲激函数性质的表达式不正确的是( 2、 A 、 C 、 3、 A 、 4、 f (t) (t) f (0) (t)H(s)B、(at))d (t)D 、 1ta(-t)(t)(s2s 1()s (s 2)2),属于其极点的是(B 、2C 、 )。
1 If f1(t) ←→ F1(j ω), f2(t) ←→ F2(j ω) A 、[a f1(t) + b f2(t) ] ←→ [a F1(j ω) *b F2(j ω) ] B 、[a f1(t) + b f2(t) ] ←→ [aF1(j ω) - b F2(j ω) ] C 、[a f1(t) + b f2(t) ] ←→ [a F1(j ω) + b F2(j ω) ] D 、[a f1(t) + b f2(t) ] ←→ [a F1(j ω) /b F2(j ω) ] 5、下列说法不正确的是( )。
A 、H(z)在单位圆内的极点所对应的响应序列为衰减的。
即当趋于 0。
Then[ D 、-2k →∞时,响应均B 、H(z)在单位圆上的一阶极点所对应的响应函数为稳态响应。
C 、H(z) 在单位圆上的高阶极点或单位圆外的极点, 其所对应的响应序列都是递 增的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统期中测验答案————————————————————————————————作者:————————————————————————————————日期:一、(15%)已知连续时间信号x t ()和离散时间信号x n []的波形图如下图所示。
画出下列各信号的波形图,并加以标注。
1. ()()11x t x t =-, 2. ()()221x t x t =-, 3. 3()()x x t ττ=-第三个自变量不为t !!4.{}1[][][]e x n x n Even x n ==, 5. 2[][][1]x n x n n δ=-答案二、(25%)简要回答下列问题。
1. 推导离散时间信号[]0j n xn e ω=成为周期信号的条件(3%);若是周期信号,给出基波周期的求法(3%)。
答案:若为周期信号,则00()j nj n N e e n ωω+=∀,。
推出01j N e ω=,再推出02,,0N k k z k ωπ=∈≠。
得出02kNωπ=为有理分数。
0002min ,1k N N z k z k πω⎧⎫⎪⎪=∈∈≥⎨⎬⎪⎪⎩⎭,且2.指出离散时间信号[]j n x n e ω=频率取值的主值范围(2%),指出它的最低频率和最高频率(2%)。
答案2πωπωπ-≤<≤<或0。
m i n m a x 02,21),k k z k k zωπωππ=∈=+∈或。
而或(。
3.断下列两个系统是否具有记忆性。
① ()()()()222y t x t x t=-,(1%)② [][][]0.51y n x n x n =--。
(1%)答案 ① 无记忆性 ② 有记忆性4. 简述连续时间和离散时间线性时不变(LTI )系统的因果性、稳定性与单位冲激响应(Unit impulse response )的关系(4%)。
答案 因果性与()()()[][][]h t h t u t h n h n u n ==或互为充要条件。
稳定性与|()||[]|n h t dt h n +∞+∞=-∞-∞<+∞<+∞∑⎰或互为充要条件。
5. 很广泛一类因果系统可用常系数微分方程:()()00k k NM k kk k k k d y t d x t a b dt dt ===∑∑表征,画出该类系统的增量线性系统结构(2%),用该结构说明全响应的构成方法及每一部分的物理含义(4%),在什么条件下该类系统为LTI 系统(3%)? 答案()()()x i y t y t y t =+, ()()*()x y t x t h t =是仅由输入信号引起响应:零状态响应,()i y t 是仅由初始状态引起的响应:零输入响应。
当全部的初始状态都为零,即(1)(0)0,(0)0,,(0)0LTI N y y y ----'===为系统三、(20%)离散时间LTI 系统的单位冲激响应用[]hn 表示,系统对任意输入信号x n []的响应用[]y n 表示。
1. 写出离散时间信号x n []冲激分解的卷积和(Convolution sum )表达式(2%)。
2. 利用系统的线性时不变性质,推导给出[]y n 的卷积和表达式(6%)。
3. 当系统的单位冲激响应[][][]3hn u n u n =--,输入信号[][][]5x n u n u n =--时,用分段法计算[]y n ,并图示计算结果(8%)。
4. 输入信号x n []的序列长度用x L 表示(0,1,,1x nL =-),单位冲激响应[]h n 的序列长度用h L 表示(0,1,,1h n L =-),推导给出输出信号[]y n 的序列长度y L 与x L 和h L 的关系式(4%)。
答案 1.[][][]k x n x k n k δ+∞=-∞=-∑。
2.已知[][]n h n δ→,根据时不变性,得[][],n k h n k k z δ-→-∈。
根据线性特性的比例性,[][][][x k n k x k h n kδ-→-。
根据线性特性的可加性,[][][][k k x k n k x k h n kδ+∞+∞=-∞=-∞-→-∑∑。
[][][][]k x n y n x k h n k +∞=-∞→-∑即=。
3.1) 当n <0,y[n ]=0。
2) 当0020,02,[]1*11nk nn n y n n =≥-≤≤≤==+∑且即3) 当-24and 20,24,[]1*13nk n nn n y n =≤-≥≤≤==∑()即 4)当4-24and 2446,[]1*17k n n n n y n n =≥-≤≤≤==-∑(),即5)当n >4时y [n ]=04.1[][][],0101021x L h k x x h y x h y n x k h n k n k L k L n L L L L L -==-≤-≤-≤≤-∴≤≤+-=+-∑故四、(10%)简要回答下列问题。
1.写出卷积算法分配律表达式,并得出并联系统单位冲激响应与各子系统单位冲激响应的关系式(4%)。
答案121212[]*([][])[]*[][]*[][][][]x n h n h n x n h n x n h n h n h n h n +=+=+所以2. 写出卷积算法结合律表达式,并得出串联系统单位冲激响应与各子系统单位冲激响应的关系式(4%)。
答案121212([]*[])*[][]*([]*[])[][]*[]x n h n h n x n h n h n h n h n h n ==所以3. 利用卷积算法的性质,证明串联系统的单位冲激响应与各子系统的串联次序无关(2%)。
答案12122121([]*[])*[][]*([]*[])[]*([]*[])([]*[])*[]x n h n h n x n h n h n x n h n h n x n h n h n ===五、(20%) 周期信号x t ()的波形图如下图所示。
1. 求此信号的频谱系数(5%)及傅里叶级数展开表示式(3%)。
2. 求此信号的直流幅度及前四次谐波(含四次谐波)的幅度和相位值(5%)。
3. 用时域方法求此信号的平均功率(3%)。
4. 求直流及前四次谐波(含四次谐波)的平均功率之和占总平均功率的百分比(4%)。
-11657-5-6-7t1......x(t)答案1.00011001001111sin()2()1*d 6633jk t jk t jk tk Te k a x t e dt e t T jk k T ωωωωππωωω+-----======-⎰⎰其中当010,3ka ==000101sin()()2cos()33jk tkk k k x t a ek t k ωωωω+∞+∞-=-∞===+∑∑ 2. 直流013a =,一次谐波3j t e π±的复振幅1133220a a ππ-⎧⎪===⎨⎪⎩幅度相位 二次谐波23j t eπ±的复振幅2233440a a ππ-⎧⎪===⎨⎪⎩幅度相位三次谐波j teπ±的复振幅3300a a -⎧==⎨⎩幅度0=相位四次谐波43jt eπ±的复振幅443388a a ππππ-⎧⎪===⎨⎪⎩幅度-相位或-3.1221111()163T P x t dt dt T -===⎰⎰4.422222401333||()2*()2*()2()0.31063248k k P a πππ===+++=∑故493.2%P P=六、(10%)连续时间周期信号()x t 的频谱系数用k a 表示。
1. 若()xt 为实信号,证明:*k ka a -=。
(4%) 2. 证明实信号()x t 偶对称部分()e x t 的频谱系数{}Re k k e a =(3%),奇对称部分()o x t 的频谱系数{}Im k k o j a =。
(3%) 答案 1.*()()x t x t =0000****1111()()(())(())jk t jk t jk t jk t k k T T T Ta x t e dt x t e dt x t e dt x t e dt a T T T T ωωωω---=====⎰⎰⎰⎰ 2.11()()()22e x t x t x t =+- *1111Re{}2222k k k k k k e a a a a a -=+=+=0*11()()()221111Im{}2222k k k k k k x t x t x t o a a a a j a -=--=-=-=。