万有引力与天体运动

合集下载

高中物理课件万有引力定律与天体运动

高中物理课件万有引力定律与天体运动

栏 目 开 关
相同,它们做匀速圆周运动的向心力由它们之间的万有引力提
供,所以两天体与它们的圆心总是在一条直线上.
设两者的圆心为 O 点,轨道半径分别为 R1 和 R2,如图所示.对两天体, 由万有引力定律可分别列出
GmL1m2 2=m1ω2R1

GmL1m2 2=m2ω2R2

所以R1=m2,所以v1=R1ω=R1=m2,
发现的第2 752号小行星命名为吴健雄星,该小行
星的半径为16 km.若将此小行星和地球均看成质量
本 分布均匀的球体,小行星密度与地球相同.已知地
课 栏 目
球半径R=6 400 km,地球表面重力加速度为g.这
个小行星表面的重力加速度为
B
开 关

(
)
A.400g
1 B.400g
C.20g
1 D.20g
关 3.适用条件
公式适用于_质__点__间的相互作用.当两物体间的距离远大于
物体本身的大小时,物体可视为质点;均匀的球体可视为
质点,r是_两__球__心__间的距离;对一个均匀球体与球外一个质
点的万有引力的求解也适用,其中r为球心到___质__点间的距
离.
课堂探究·突破考点
第5课时
考点一 天体产生的重力加速度问题
【例1 】某星球可视为球体,其自转周期为T,在它的两极
处,用弹簧秤测得某物体重为P,在它的赤道上,用弹簧秤
本 测得同一物体重为0.9P,则星球的平均密度是多少?
课 栏 目
在两极
P
GMm R2
开 关
在赤道上
P
0.9P
mR
4 2
T2
密度
M

万有引力与天体运动的关系

万有引力与天体运动的关系

万有引力与天体运动的关系引力是自然界中一种基本的物理现象。

而万有引力则是描述天体之间相互作用的重要力量。

它是由于质量而产生的,是一种吸引力,使得天体之间相互靠拢。

万有引力的发现和研究对于理解天体运动以及宇宙演化有着重要的意义。

牛顿在17世纪提出了万有引力定律,他认为两个物体之间的引力与它们的质量成正比,与它们的距离的平方成反比。

这个定律可以简洁地表示为F=G*(m1*m2)/r^2,其中F是两个物体之间的引力,m1和m2是两个物体的质量,r是它们之间的距离,G是一个常数。

根据万有引力定律,天体之间的引力与它们的质量和距离有关。

质量越大,引力越大;距离越近,引力越大。

这就解释了为什么地球可以吸引住我们,而月球也可以吸引住地球。

地球质量大,所以对我们的引力很大;而月球离我们近,所以对我们的引力也很大。

万有引力还解释了为什么行星会围绕太阳运动。

太阳质量非常大,它的引力对行星的影响非常大,使得行星绕太阳运动。

行星离太阳越近,其运动速度越快;离太阳越远,其运动速度越慢。

这样,行星在太阳的引力和其自身的惯性作用下,形成了稳定的椭圆轨道。

除了行星绕太阳运动,万有引力还可以解释其他天体运动的现象。

例如,卫星绕地球运动、月球绕地球运动等。

所有这些运动都可以用万有引力定律来描述,而且都符合定律的预测。

除了描述天体运动,万有引力还可以解释天体之间的相互影响。

例如,当两个星系靠近时,它们之间的引力会使它们相互靠拢,甚至发生碰撞。

这样的引力交互作用对于理解星系演化和宇宙结构的形成有着重要的意义。

万有引力还可以解释为什么在宇宙中有星系、星云、恒星等天体的存在。

宇宙中的物质在引力的作用下逐渐聚集形成了这些天体。

而恒星的形成和演化也与引力密切相关,它们的质量和结构都受到引力的影响。

万有引力的研究不仅有助于我们理解宇宙的起源和演化,还对人类的生活产生了重要影响。

例如,卫星的轨道设计和导航系统的建立都依赖于对引力的准确理解和计算。

2025年物理万有引力与天体运动详解

2025年物理万有引力与天体运动详解

2025年物理万有引力与天体运动详解在我们生活的这个广袤宇宙中,万有引力和天体运动是极其重要的概念。

它们不仅帮助我们理解星球的运行轨迹,还能解释许多看似神秘的天文现象。

到了 2025 年,随着科学技术的不断进步,我们对万有引力与天体运动的理解也更加深入和全面。

首先,让我们来聊聊万有引力。

万有引力定律是由牛顿在 17 世纪发现的,它指出任何两个物体之间都存在着相互吸引的力,这个力的大小与两个物体的质量成正比,与它们之间距离的平方成反比。

用公式来表示就是 F = G×(m₁×m₂)/r²,其中 F 是两个物体之间的引力,G 是万有引力常量,m₁和 m₂分别是两个物体的质量,r 是它们之间的距离。

这个定律看似简单,但其影响却极其深远。

比如,它解释了为什么地球会绕着太阳转。

地球和太阳之间存在着巨大的万有引力,正是这个引力使得地球沿着特定的轨道围绕太阳运动,而不是随意地在宇宙中飘荡。

再来说说天体运动。

天体的运动轨迹可以是多种多样的,有圆形、椭圆形、抛物线形甚至双曲线形。

其中,圆形和椭圆形轨道是最为常见的。

以太阳系中的行星为例,大多数行星的轨道都是椭圆形的。

在一个椭圆形轨道中,行星距离太阳的距离是不断变化的。

当行星靠近太阳时,速度会加快;而当它远离太阳时,速度会减慢。

这种速度的变化是由万有引力的作用引起的。

在 2025 年,科学家们对于天体运动的研究更加精确。

通过先进的观测设备和计算方法,我们能够更加准确地预测天体的位置和运动轨迹。

这对于航天任务的规划和执行具有重要意义。

比如,当我们要发射探测器去探索其他行星时,就需要精确地知道天体的位置和运动情况,以确保探测器能够准确地到达目标。

万有引力和天体运动还与一些其他的物理现象密切相关。

比如黑洞,黑洞是一种引力极其强大的天体,甚至连光都无法逃脱它的引力。

黑洞的存在也是基于万有引力定律的。

科学家们通过研究黑洞对周围天体的影响,来进一步验证和完善万有引力理论。

高中物理万有引力与天体运动

高中物理万有引力与天体运动

高中物理万有引力与天体运动关键信息项:1、万有引力定律的表达式及相关常量2、天体运动的基本模型3、卫星轨道类型及特点4、天体质量和密度的计算方法5、宇宙速度的概念及数值6、开普勒定律的内容11 万有引力定律万有引力定律是描述物体间相互作用的重要定律。

其表达式为:F = G (m1 m2) / r^2 ,其中 F 表示两个物体之间的引力,G 为万有引力常量,其数值约为 667×10^(-11) N·m^2/kg^2 ,m1 和 m2 分别表示两个物体的质量,r 为两个物体质心之间的距离。

111 万有引力常量的测定卡文迪许通过扭秤实验较为精确地测定了万有引力常量,为万有引力定律的应用奠定了基础。

12 天体运动的基本模型天体运动通常可以简化为以下几种基本模型:121 匀速圆周运动模型天体围绕中心天体做匀速圆周运动,其向心力由万有引力提供。

即:G (M m) / r^2 = m v^2 / r ,其中 M 为中心天体质量,m 为环绕天体质量,v 为环绕天体的线速度,r 为轨道半径。

122 椭圆运动模型在实际情况中,天体的运动轨道大多为椭圆,但在研究时可以近似为匀速圆周运动进行分析。

13 卫星轨道类型及特点卫星轨道主要分为以下几种类型:131 地球同步轨道卫星绕地球运行的周期与地球自转周期相同,从地面上看,卫星在天空中静止不动。

其轨道高度约为 36000 千米。

132 近地轨道轨道高度相对较低,一般在几百千米到几千千米之间。

卫星在此轨道上运行速度较大,周期较短。

133 太阳同步轨道卫星的轨道平面与太阳始终保持相对固定的取向,有利于对地球进行观测。

14 天体质量和密度的计算方法141 通过环绕天体的运动计算中心天体质量已知环绕天体的轨道半径 r 和线速度 v ,则中心天体质量 M = v^2 r / G ;已知轨道半径 r 和周期 T ,则 M =4π^2 r^3 /(G T^2) 。

142 天体密度的计算若天体为球体,且已知其半径 R ,则密度ρ = M /(4/3 π R^3) 。

专题四_万有引力与天体运动_(共48张PPT)

专题四_万有引力与天体运动_(共48张PPT)

专题四 │ 要点热点探究
要点热点探究 ► 探究点三 人造卫星问题
1.求解天体运动问题的思路 (1) 在涉及星球做匀速圆周运动的问题时,先确定轨道平面、轨道
Mm v2 2 半径,再应用万有引力提供向心力列方程:G 2 = ma= m = mω r= r r m(

T
) r(向心力的表达形式视条件和所求而定 );
可见,卫星运行轨道半径r与该轨道上的线速度v、角速度ω 、 周期T、向心加速度a存在着一一对应的关系,若r、v、ω 、T、a中 有一个确定,则其余皆确定,与卫星的质量无关,如所有同步卫星 的r、v、ω 、T、a大小均相等。
专题四 │ 主干知识整合
3.宇宙速度 (1)第一宇宙速度:又叫环绕速度,是发射地球卫星的最 小速度,也是近地卫星的速度,还是卫星围绕地球圆周运动的 最大运行速度,大小为7.9 km/s。 (2)第二宇宙速度:又叫逃逸速度,是人造卫星挣脱地球 束缚而成为一颗太阳的人造小行星的最小发射速度,大小为 11.2 km/s。 (3)第三宇宙速度:是人造卫星挣脱太阳的束缚、而成为 一颗绕银河系中心运行的小恒星的最小发射速度,大小为16.7 km/s。
专题四 │ 要点热点探究
要点热点探究 ► 探究一 天体质量和密度的估算问题
1.已知环绕天体的周期 T 和半径 r,求中心天体的质量等
2 Mm 4π 由 G 2 =m 2 r 可知:只要知道环绕天体的周期 T 和半径 r,就 r T
可求出中心天体的质量 M=
3
4π r
2
3
GT2
4 。设中心天体半径为 R,则 V= π 3来自专题四 │ 要点热点探究
要点热点探究 ► 探究点二 航天器的变轨问题
提供天体做圆周运动的向心力是该天体受到的万有引

万有引力定律解释了天体运动规律

万有引力定律解释了天体运动规律

万有引力定律解释了天体运动规律天体运动是天文学中非常重要的研究内容之一。

在古代,人们对于天空中星体的运动规律产生了浓厚的兴趣,但缺乏科学知识,无法准确解释天体的运动规律。

直到 Isaac Newton 在17世纪提出了万有引力定律,才给天体运动规律的解释提供了关键的理论基础。

万有引力定律不仅解释了太阳系内行星的运动规律,而且对于更远的恒星、星团和星系的运动规律也有着重要的作用。

万有引力定律是 Isaac Newton 在1687年提出的,它是他著作《自然哲学的数学原理》中的一个重要内容。

该定律描述了任意两个物体之间存在的引力的大小和方向。

具体而言,万有引力定律表明,两个物体之间的引力与它们的质量成正比,与它们的距离的平方成反比。

换句话说,两个物体的质量越大,它们之间的引力就越强;两个物体之间的距离越近,它们之间的引力也越强。

根据万有引力定律,我们可以解释天体运动的规律。

首先,让我们来看看太阳系内行星的运动。

太阳位于太阳系的中心,并以巨大的质量成为整个太阳系的重心。

行星在太阳的引力作用下沿着椭圆轨道围绕太阳运动。

根据万有引力定律,太阳对行星的引力与它们的质量和距离有关。

行星的质量越大,它们受到的引力就越大;行星距离太阳越近,它们受到的引力也越大。

因此,太阳对行星的引力会不断改变行星的运动轨道,使其保持相对稳定的轨道。

除了解释行星的运动外,万有引力定律还可以帮助我们理解更远的天体的运动规律。

事实上,根据万有引力定律,恒星、星团和星系之间的引力相互作用也可以解释它们的运动。

恒星间的引力会影响它们相对的位置和运动轨迹。

有时候,恒星之间的引力甚至可以造成它们的相互碰撞,形成新的恒星或星系。

在星系中,数以亿计的星体也受到相互引力的影响,导致星系整体的形态和结构发生变化。

除了解释天体的运动规律外,万有引力定律还对宇宙的演化起着重要的作用。

根据该定律,宇宙中的物体不断相互吸引,使得宇宙的结构在漫长的时间尺度上逐渐形成。

万有引力天体运动公式

万有引力天体运动公式

万有引力天体运动公式在我们学习物理的旅程中,万有引力和天体运动的公式就像是打开宇宙奥秘的神奇钥匙。

一提到这,我就想起了曾经给学生们讲这部分知识的有趣经历。

那是一个阳光正好的上午,教室里的同学们有的精神抖擞,有的还带着点儿没睡醒的迷糊劲儿。

我走进教室,在黑板上写下了万有引力和天体运动的相关公式,“F = G×(m₁×m₂)/r²” ,还有“v = √(GM/r)” 等等。

我看着一张张好奇的脸,开始给他们讲解。

“同学们,你们想啊,这宇宙中的天体,就像一个个巨大的舞者,它们遵循着这些公式的节奏,跳着神秘而有序的舞蹈。

” 我一边说,一边手舞足蹈地比划着。

“比如说,地球绕着太阳转,月球绕着地球转,这背后可都是万有引力在起作用呢。

” 我拿起一个地球仪,还有一个小球当作月球,给大家演示起来。

有个同学举手问道:“老师,那如果地球突然变得特别重,会怎么样?” 这问题一下把大家的兴趣都勾起来了,大家开始七嘴八舌地讨论。

我笑着说:“如果地球突然变重,那它和太阳之间的引力就会变大,轨道可能就会发生变化,说不定会离太阳更近,那咱们可就热得受不了啦!” 同学们都哈哈大笑起来。

咱们先来说说这个万有引力公式“F = G×(m₁×m₂)/r²” 。

这里的“F”表示两个物体之间的万有引力,“G”呢,是个引力常量,是个固定的值,就像一把不会变的尺子。

“m₁”和“m₂”是两个物体的质量,质量越大,引力就越大。

而“r”是两个物体之间的距离,距离越远,引力就越小。

想象一下,两个大胖子站在一起,他们的质量大,相互之间的引力就会比两个瘦子大一些。

但要是他们离得很远,那引力的影响也就小了。

再看看天体运动的公式“v = √(GM/r)” 。

这里的“v”是天体运动的速度。

“M”是中心天体的质量,“r”是天体到中心天体的距离。

这个公式能告诉我们天体运动的速度和距离、中心天体质量的关系。

比如说,人造卫星绕地球运动,离地球越近,速度就得越快,不然就会掉下来。

高中物理天体运动公式大全

高中物理天体运动公式大全

高中物理天体运动公式大全1. 万有引力定律公式。

- F = G(Mm)/(r^2)- 其中F是两个物体间的万有引力,G = 6.67×10^-11N· m^2/kg^2(引力常量),M和m分别是两个物体的质量,r是两个物体质心之间的距离。

2. 天体做圆周运动的基本公式(以中心天体质量为M,环绕天体质量为m,轨道半径为r)- 向心力公式。

- 根据万有引力提供向心力F = F_向- G(Mm)/(r^2)=mfrac{v^2}{r}(可用于求线速度v=√(frac{GM){r}})- G(Mm)/(r^2) = mω^2r(可用于求角速度ω=√(frac{GM){r^3}})- G(Mm)/(r^2)=m((2π)/(T))^2r(可用于求周期T = 2π√((r^3))/(GM))- G(Mm)/(r^2)=ma(a=(GM)/(r^2),这里的a是向心加速度)3. 黄金代换公式。

- 在地球表面附近(r = R,R为地球半径),mg = G(Mm)/(R^2),可得GM = gR^2。

这个公式可以将GM用gR^2替换,方便计算。

4. 第一宇宙速度公式(近地卫星速度)- 方法一:根据G(Mm)/(R^2) = mfrac{v^2}{R},且mg = G(Mm)/(R^2),可得v=√(frac{GM){R}}=√(gR)(R为地球半径,g为地球表面重力加速度),v≈7.9km/s。

- 第一宇宙速度是卫星绕地球做匀速圆周运动的最大环绕速度,也是卫星发射的最小速度。

5. 第二宇宙速度公式(脱离速度)- v_2=√(frac{2GM){R}},v_2≈11.2km/s,当卫星的发射速度大于等于v_2时,卫星将脱离地球的引力束缚,成为绕太阳运动的人造行星。

6. 第三宇宙速度公式(逃逸速度)- v_3=√((2GM_日))/(r_{地日) + v_地^2}(其中M_日是太阳质量,r_地日是日地距离,v_地是地球绕太阳的公转速度),v_3≈16.7km/s,当卫星的发射速度大于等于v_3时,卫星将脱离太阳的引力束缚,飞出太阳系。

万有引力定律在天体运动中的应用

万有引力定律在天体运动中的应用

万有引力定律在天体运动中的应用天体之间的作用力,主要是万有引力。

行星和卫星的运动,可近似看作是匀速圆周运动,而万有引力是行星、卫星作匀速圆周运动的向心力。

万有引力定律主要有以下几种应用:一、测中心天体的质量如果已知绕中心天体M 作匀速圆周运动的星体,圆周运动的半径R 的运行周期T ,则: r T4πm r Mm G 222⋅⋅= 所以232G T r 4πM = 其中M 为中心天体质量。

二、测中心天体的密度测出绕中心天体M 作匀速圆周运动的星体的半径R ,周期T 和中心天体半径R ,则由上可知M=232G T r 4π ① ρ=VM ② V=334R π ③ 由①②③得ρ=3233R GT r π 若卫星绕中心天体作近地轨道运动时,由于r ≈R ,则ρ=23GTπ。

三、测重力加速度在地球表面上的物体受到的重力和随地球自转的向心力,是物体所受万有引力的两个分力。

由于F 向跟重力相比很小,可忽略,所以F 引≈mg ,即 mg=2RMm G∴g=2R M G 在环绕地球运行的卫星所需的向心力是由于地球对其引力(即重力)提供,即 mg ′=2)(h R Mm G + ∴g ′=2)(h R M G+ 其中h 为卫星离地高度,g ′为卫星所在处重力加速度。

四、求周期确定的卫星的高度例如地球同步卫星的周期T=24h则)(4)(222h R Tm h R Mm G +=+π 而地球表面2RMm G =mg ∴卫星高度h=km R T gR 43222106.34⨯=-π五、比较卫星环绕运动的一些物理量:v 、ω、T由于卫星环绕运动所需的向心力是由万有引力提供的。

① 由2)(h R Mm G +=h R v m +2得 v=hR GM + 所以h 越高(或者说环绕半径越大),卫星的环绕速度v 越小。

当h=0时,s km RGM v /9.7== 也可由mg=Rv m 2得s km gR v /9.7==这就是第一宇宙速度。

万有引力与天体运动

万有引力与天体运动

万有引力与天体运动引言:在自然界中,存在着一种无所不在的力量,即万有引力。

万有引力是负责使得天体之间相互吸引的力量,它是牛顿力学的基本法则之一。

本文将探讨万有引力的定义、原理及其与天体运动的关系。

一、万有引力的定义与原理万有引力是指任意两个物体之间存在相互吸引的力量,这种力量与物体的质量和距离有关。

根据牛顿第三定律,相互作用的两个物体之间的引力大小相等,方向相反。

万有引力的存在与质量有关,质量越大的物体,其引力也越大。

而且,两个物体之间的引力与它们之间的距离的平方成反比,即距离越近,引力越强。

二、天体运动的基本规律根据万有引力的原理,天体运动遵循以下基本规律:1. 开普勒定律约翰内斯·开普勒是天体运动领域的重要科学家之一,他总结出三个著名的运动定律。

第一定律表明天体绕太阳运动的轨道是椭圆形,而不是圆形。

这就意味着天体在其轨道上的位置不是固定的,而是变化的。

2. 第二定律开普勒的第二定律,也称为面积定律,表明天体在相同时间内扫过的面积相等。

换句话说,当天体离太阳较远时,它的速度较慢;当它距离太阳较近时,速度较快。

这个定律说明了天体在椭圆轨道上的运动速度是不均匀的。

3. 第三定律开普勒的第三定律,也称为调和定律,阐述了天体轨道周期与半长轴的关系。

具体来说,天体运动的周期的平方与它的椭圆轨道的半长轴的立方成正比。

这个定律揭示了天体运动的规律性,使得科学家们可以通过研究地球运动来推导出其他天体的运动规律。

三、天体运动和万有引力的关系天体运动与万有引力有着密不可分的关系,万有引力是驱动天体运动的根本力量。

在太阳系中,太阳是最重要的引力中心,其他行星、卫星以及小行星等都围绕太阳进行运动。

1. 行星运动行星绕太阳运动的轨道是椭圆形,行星距离太阳越近,它们的速度越快;相反,距离越远,速度越慢。

这符合开普勒定律中的第二定律。

行星的运动速度与距离有关,而这种变化正是受到万有引力的影响。

2. 月球运动月球是地球的卫星,它也受到地球的引力影响,围绕地球进行运动。

天体运动和万有引力的公式

天体运动和万有引力的公式

天体运动和万有引力的公式一.比值题型条件:两个天体围绕同一个中心天体运动。

例如火星和地球之间,土星的几个卫星之间等。

公式:r 3=kT 2 比例式:(r 1:r 2)3=(T 1:T 2)2这个公式反应的是轨道半径r 与周期T 的关系,已知r 可以求T ,或已知T 可以求r(1)如果已知r 求线速度V ,就要用线速度V 替换周期Tr 3=kT 2V =2πr T ,T =2πr V (2)如果已知r 求角速度ω,就要用ω替换周期Tr 3=kT 2ω=2πT ,T =2πω(3)如果已知周期T 求线速度V ,就要用线速度V 代替轨道半径rr 3=kT 2 V =2πr T ,r =VT 2π同步练习1.已知土星的两颗卫星,土卫十和土卫八,它们都围绕土星做匀速圆周运动。

土卫十和土卫八轨道半径比为4:1。

求它们周期之比。

2.地球和火星都围绕太阳做匀速圆周运动,火星的公转周期为2年,所以火星上每个季节有6个月。

求火星和地球的线速度比。

3.地球和水星都围绕太阳做匀速圆周运动,地球到太阳的距离是水星到太阳的距离的3倍。

求地球和水星线速度比。

r 3=k______ 化简得______r 3=k______ ______=kT 2 化简得______二.计算题(需要算出具体数值或具体表达式)1.求线速度V ,角速度ω,周期T(1)由 引力等于向心力GMm r 2=mv 2r ,得 v =√GM r(1)如果求的是角速度ω,用公式V=ωr 带入上面式子(1),得_____________,ω=___________。

如果求的是周期T ,用公式 带入上面式子(1),得____________,T=_____________。

用这种方法求线速度V ,角速度ω,周期T 。

题目必须已知引力常量G ,和中心天体的质量M 。

如果G,M 都不知道怎么办?(2)黄金代换式2.同步练习:V =2πr T GM =gR 2用gR 2代替上面式子中的GM 也可以得出答案。

如何运用万有引力公式解决天体运动问题

如何运用万有引力公式解决天体运动问题

如何运用万有引力公式解决天体运动问题万有引力公式是一项非常重要的物理公式,由英国科学家牛顿于17世纪提出。

它描述了天体之间的相互作用力,并被广泛应用于解决天体运动问题。

运用万有引力公式能够揭示宇宙的奥秘,预测行星轨道,解释彗星轨迹以及研究星系的结构和演化。

本文将介绍如何运用万有引力公式解决天体运动问题,并探讨其在天体物理学研究中的重要意义。

首先,让我们回顾一下万有引力公式的表达形式:F = G * (m1 * m2) / r²。

其中,F表示两个天体之间的引力,G是一个常数,m1和m2分别表示两个天体的质量,r则表示它们之间的距离。

在运用万有引力公式解决天体运动问题时,首先需要了解天体的质量和初始条件。

比如,我们可以确定两个行星的质量,它们的初始位置和速度等参数。

然后,根据万有引力公式,计算出它们之间的引力,再根据牛顿第二定律,即F=ma,推导出行星的加速度。

使用此加速度和初始速度,我们可以通过数值模拟或解析方法,预测行星在未来某个时间点的位置和速度。

万有引力公式不仅适用于行星运动问题,还可以解决其他天体运动的情况。

例如,通过运用此公式,我们可以推导出彗星在太阳系中的轨迹。

彗星通常具有长尾状的形态,它们的轨迹是椭圆形的,且具有很高的离心率。

使用万有引力公式,我们可以预测彗星在不同时间点的位置和速度,并揭示彗星的轨道和尾巴现象是如何形成的。

在研究星系的结构和演化过程时,万有引力公式也发挥着重要作用。

天文学家利用这一公式,分析星系内恒星之间的相互引力,研究恒星的运动规律。

随着科技的进步,我们可以通过观测恒星的运动和位置,来推测星系的质量分布和结构。

这对于理解星系的形成和演化过程,以及研究暗物质等宇宙现象都具有重要意义。

除了上述的天体运动问题外,万有引力公式还有广泛的应用领域。

例如,在航天工程中,我们需要计算行星和卫星之间的引力,以便合理规划飞行轨道和发射速度。

在地球上,万有引力公式也可以解释地球各个地区之间的物体重量差异,促进地质勘探和地球物理学研究。

万有引力定律-天体运动概述

万有引力定律-天体运动概述

02
CATALOGUE
天体运动的基本规律
开普勒行星运动三定律
01
02
03
定律一
行星绕太阳运动的轨道是 椭圆,太阳位于椭圆的一 个焦点上。
定律二
行星绕太阳运动时,其向 心加速度与太阳和行星之 间的距离成反比。
定律三
行星绕太阳运动时,其公 转周期的平方与其椭圆轨 道长轴的立方成正比。
牛顿第一定律(惯性定律)
抛物线轨道
当天体的速度达到逃逸速度时,未达到逃逸速度但足够大时,将 沿着双曲线轨道运动。
圆形轨道
当天体速度与中心天体的引力相当时,将沿 着圆形轨道运动。
天体运动的速度与能量
逃逸速度
指能使天体脱离中心天体引力的最小速度。
环绕速度
指天体在圆形轨道上绕中心天体匀速圆周运动的 速度。
万有引力定律的意义
科学革命的推动力
万有引力定律是科学革命的关键理论之一,它为天文学、宇宙学和其他自然科学领域的研究奠定了基 础。
对其他科学的贡献
万有引力定律不仅解释了天体运动,还为物理学、数学和工程学等领域的发展提供了重要支持。例如 ,它被用于预测行星和卫星的运动,以及设计更有效的航天器和导航系统。
能量守恒
天体运动过程中,动能和势能相互转化,总能量 保持守恒。
天体运动的稳定性与周期性
稳定性分析
天体在轨道运动过程中,受到万有引力 的作用,其运动状态可能会发生变化。
VS
周期性运动
天体在轨道上绕中心天体做周期性运动, 周期与天体的质量、距离和速度等因素有 关。
04
CATALOGUE
万有引力在天体运动中的应用
恒星演化过程与万有引力
恒星演化过程中,由于万有引力的作用,恒星内部的物质会逐渐收缩,同时释放出能量,维持恒星的发光发热。

万有引力定律与天体运动

万有引力定律与天体运动

万有引力定律与天体运动万有引力定律是物理学中最基础、最重要的定律之一,它描述了物体之间存在的万有引力以及天体的运动规律。

该定律由英国科学家牛顿在17世纪形成,并为后来的物理学发展奠定了坚实的基础。

本文将通过介绍万有引力定律的基本概念、公式推导、应用实例等方面,深入探讨万有引力定律与天体运动之间的关系。

一、万有引力定律的基本概念万有引力定律是牛顿力学的重要组成部分,它表明任何两个物体之间都存在引力的相互作用。

根据该定律,两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。

其中,引力的大小用F表示,质量分别为m1和m2的两个物体之间的距离用r表示。

万有引力定律的表达式如下:F =G * m1 * m2 / r^2其中,G为万有引力常量,其值约为6.67 × 10^-11 N·m^2/kg^2。

万有引力定律是一个矢量关系,方向与两物体之间直线连接的方向相同,即引力是沿着物体之间连线的方向。

二、万有引力定律的公式推导万有引力定律的公式推导是基于牛顿第二定律和牛顿运动定律,其过程相对复杂,涉及到引力场、势能、力的合成等知识。

在这里,为了保持文章的连贯性和简洁性,略去具体的数学推导过程。

三、万有引力定律与天体运动的关系万有引力定律对于解释天体运动和宇宙中一系列现象具有重要的作用。

首先,根据牛顿的第一定律,物体将保持匀速直线运动,直到外力作用改变其状态。

在此基础上,万有引力定律解释了太阳系行星的椭圆轨道运动。

行星围绕太阳运行,其轨道可近似看作椭圆,太阳位于椭圆的一个焦点上。

同时,根据牛顿的第三定律,行星与太阳之间的引力大小相等,方向相反。

这样,行星在引力作用下沿椭圆轨道运动。

其次,万有引力定律还解释了地球上的重力现象。

地球表面的物体受到地球吸引力的作用,不断地向地心方向运动,形成了地球上的重力。

地球的引力是万有引力定律在地球尺度上的应用,它对地球上的物体产生的作用力与物体的质量成正比。

牛顿万有引力定律与天体运动

牛顿万有引力定律与天体运动

牛顿万有引力定律与天体运动在我们的日常生活中,我们常常能够感受到地球的引力。

当我们举起一颗苹果,它会落回地面;当我们行走在地面上时,我们能够感受到地球对我们的吸引力。

这就是一个简单的例子,说明了引力的存在和作用。

引力是一个广泛存在于整个宇宙中的力量,而牛顿的万有引力定律正是揭示了这一力量背后的科学原理。

牛顿的万有引力定律是物理学中最基本的定律之一,它被广泛应用于解释天体运动。

根据这个定律,任何两个物体之间都会存在引力,而这个引力的大小与这两个物体的质量和它们之间的距离有关。

简单来说,万有引力定律可以表示为F = G * (m1 * m2) / (r^2),其中F表示两个物体之间的引力,G是一个常数,m1和m2分别是这两个物体的质量,而r代表它们之间的距离。

应用牛顿的万有引力定律,我们可以解释许多天体运动的现象。

首先,我们可以解释为什么地球和其他行星围绕太阳运行。

根据万有引力定律,太阳对地球和其他行星产生了引力,而这个引力使它们保持在太阳的引力场中,并围绕着太阳运动。

这就是我们所熟知的行星公转。

除了行星的公转,牛顿的万有引力定律还可以解释其他许多天体运动。

例如,根据这个定律,我们可以解释为什么天体之间会产生潮汐现象。

地球和月球之间的引力使得海洋发生周期性的涨潮和退潮。

这种现象在我们的生活中非常常见,而万有引力定律能够很好地解释其中的原因。

除了潮汐现象,万有引力定律还可以解释彗星的轨道。

彗星是一种由冰、尘埃和岩石组成的天体,在它们的运动过程中,受到太阳的引力作用,使得它们围绕太阳形成椭圆轨道。

这一现象同样可以用牛顿的万有引力定律来解释。

然而,尽管牛顿的万有引力定律在解释天体运动中获得巨大成功,它在特殊的情况下并不完全准确。

例如,在极端的高速运动或强引力场下,爱因斯坦的广义相对论更准确地描述了物体的运动和引力场的性质。

但是,在大多数情况下,牛顿的万有引力定律仍然是我们理解和解释天体运动的重要工具。

牛顿的万有引力定律不仅揭示了天体运动背后的科学原理,还赋予了人类对宇宙的更深入认识。

如何利用万有引力定律分析天体运动

如何利用万有引力定律分析天体运动

如何利用万有引力定律分析天体运动在我们探索宇宙的奥秘时,万有引力定律无疑是一把关键的钥匙。

它为我们理解天体的运动提供了坚实的理论基础。

那么,究竟如何运用这一定律来分析天体运动呢?首先,让我们来了解一下万有引力定律的核心内容。

万有引力定律指出,任何两个质点都存在通过其连心线方向上的相互吸引的力。

该引力大小与它们质量的乘积成正比、与它们距离的平方成反比,与两物体的化学组成和其间介质种类无关。

用公式表达就是:F = G (m1 m2) / r²,其中 F 是两个物体之间的引力,G 是万有引力常量,m1 和m2 分别是两个物体的质量,r 是两个物体质心的距离。

有了这个定律,我们就可以开始分析天体的运动了。

比如说,我们来考虑地球绕太阳的公转。

太阳的质量远远大于地球,在这种情况下,我们可以近似地认为地球是在太阳对它的引力作用下做圆周运动。

根据向心力的公式 F = m v²/ r ,其中 m 是地球的质量,v 是地球公转的线速度,r 是地球到太阳的距离。

由于太阳对地球的引力提供了地球公转所需的向心力,所以我们可以得到:G (M m) / r²= mv²/ r ,这里 M 是太阳的质量。

通过这个等式,我们可以计算出地球公转的线速度 v 。

而且,如果我们知道了地球公转的周期 T ,还可以进一步计算出地球公转的角速度ω =2π / T 。

再来看卫星绕行星的运动。

以人造卫星绕地球为例,同样是地球对卫星的引力提供了卫星做圆周运动的向心力。

通过测量卫星的轨道高度和运行周期等参数,我们可以利用万有引力定律和向心力公式来计算地球的质量。

假设一颗卫星在距离地球表面高度为 h 的轨道上运行,其轨道半径就是地球半径 R 加上高度 h 。

已知卫星的运行周期 T ,我们可以列出等式:G (M m) /(R + h)²= m (2π / T)²(R + h) ,从而计算出地球的质量 M 。

万有引力和天体运动

万有引力和天体运动

二、人造卫星
• 2. 近地卫星 (r≈R).
• 周期 T 4 2 R3 ≈84 mi,n 为全部地球卫星
GM
旳最小周期。
• 线速度 v gR≈7.9km / s ,为全部地球卫星
旳最大绕行速度。 第一宇宙速度
二、人造卫星
• 3. 同步卫星(通讯卫星)
• (1)周期T=24h • (2)离地球表面高度
表D.接面1近沿. 地圆 34球轨M表道R3 面运沿营圆旳轨航道天运器营旳旳周航期天之器比线约速8:度9与接近月球 表面2沿.G圆MR轨m2 道m运g 营旳航天器线速度之比约为81:4
3.F
G
Mm r2
ma
m v2 r
m 2r
m
4 2
T2
r
需要了解旳常识
• 地球自转周期二十四小时 • 月球地球转动周期27.3天 • 月球质量为地球质量旳1/81 • 月球间距为地球半径旳60倍 • 月球表面重力加速度为地球表面重力加速度旳1/6 • 日地间距r=8min×c
GT 2
总结求星球质量 旳其他措施
中心天体密度: M M 3r3
V 4 R3 GT 2R3
3
当r=R时
3
GT 2
估算天体旳质量和密度
例、已知地球旳半径R,自转周期T,地球表面 旳重力加速度g, 围绕地球表面做圆周运动旳 卫星旳速度v,求地球旳质量和密度.
G
Mm R2
mg
M
Mm v2
G
R2
m M R
G
Mm R2
m
4 2
T2
R
M
(错)
扩展:赤道处物体旳向心加速度。围绕卫星旳向心 加速度。围绕卫星旳周期。

万有引力决定了天体运动规律

万有引力决定了天体运动规律

万有引力决定了天体运动规律在物理学中,万有引力是一个基本而重要的概念,它决定了天体之间的运动规律。

在我们的日常生活中,我们可以观察到地球绕着太阳运动,月亮绕着地球运动,而这些运动正是由万有引力决定的。

万有引力是由英国科学家牛顿在17世纪提出的,他在《自然哲学的数学原理》一书中详细地阐述了万有引力的原理。

根据牛顿的法则,任何两个物体之间都会有一个相互之间的引力作用,这个引力的大小与两个物体的质量有关,并且随着两个物体之间的距离减小而增大。

根据这个定律,我们可以解释为什么地球绕着太阳运动。

太阳的质量非常大,因此它对地球施加了一个巨大的引力。

而地球相对于太阳的运动速度也很大,这就导致了地球围绕太阳做椭圆形轨道运动。

地球与太阳之间的引力决定了这一运动规律。

同样地,我们可以解释为什么月亮绕着地球运动。

地球对月亮也施加了引力,使得月亮沿着一个近似于圆形的轨道绕地球运动。

月亮和地球之间的引力决定了月亮的运动规律。

除了解释地球和月亮的运动,万有引力还可以解释其他天体的运动规律。

例如,行星绕着太阳运动,彗星经过太阳系的椭圆轨道等等。

所有这些天体运动的规律都可以用万有引力来描述。

除了决定天体运动的规律,万有引力还有一些重要的特性。

首先,万有引力是一个吸引力,意味着任何两个物体之间的引力都是吸引力,而不是推开力。

其次,万有引力是一个作用在整个物体上的力,而不仅仅是作用在物体的一个点上。

这意味着引力是一个相对于质量来说很弱的力,只有当两个物体的质量非常大的时候,引力才会显得明显。

值得注意的是,虽然万有引力是一个非常重要的概念,但它只是一个近似的描述。

在更高级的物理理论中,如相对论和量子力学中,关于引力的描述会更加精确和全面。

例如,爱因斯坦的相对论揭示了引力是由于物体扭曲了时空的几何结构而产生的。

总之,万有引力决定了天体之间的运动规律。

地球绕着太阳运动,月亮绕着地球运动,这些都是由万有引力决定的。

万有引力是牛顿在17世纪提出的一个基本概念,它的原理是任何两个物体之间都会有一个相互之间的引力作用。

万有引力定律与天体运动知识总结

万有引力定律与天体运动知识总结

万有引力定律与天体运动知识总结一、开普勒行星运动定律1) 轨道定律:近圆,太阳处在圆心(焦点)上 2) 面积定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等。

K= k 取决于中心天体3) 周期定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值相等。

k= ,[r 为轨道半径]二、万有引力定律F 引=2rMm G G=6.67×10-11Nm 2/kg 2 卡文迪许扭秤 测量出来 三、重力加速度1. 星体表面:F 引≈G =mg 所以:g = GM/ R 2(R 星体体积半径)2. 距离星体某高度处:F ’引 ≈G’ =mg ’3. 其它星体与地球重力加速度的比值四、星体(行星 卫星等)匀速圆周运动 状态描述1. 假设星体轨道近似为圆.2. 万有引力F 引提供星体圆周运动的向心力FnF n =r mv 2F n=22T mr 4π F n = m ω²r Fn=F 引 r mv 2=2r Mm G =22Tmr 4π = m ω²rr GM v =,r 越大,ν越小; 3r GM =ω,r 越大,ω越小 23T a 23T rGM r T 324π=,r 越大,T 越大。

3. 计算中心星体质量M1) 根据 g 求天体质量 mg= M= M 为地球质量,R 为物体到地心的距离2)根据环绕星体的圆周运动状态量,F 引=Fn 2r MmG =22T mr 4π M= (M 为中心天体质量,m 为行星(绕行天体)质量4. 根据环绕星体的圆周运动状态量(已知绕行天体周期T ,环绕半径≈星体半径), 计算中心星体密度ρρ=v m =323R G T r 3π [v=3r 34π] 若r≈R ,则ρ=2GT3π 5. 计算卫星最低发射速度 (第一宇宙速度VI = (近地)= (r 为地球半径 黄金代换公式)第一宇宙速度(环绕速度):s km v /9.7=;第二宇宙速度(脱离速度,飞出地月系):s km v /2.11=;第三宇宙速度(逃逸速度,飞出太阳系):s km v /7.16=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

万有引力与天体运动知识点归纳一、万有引力定律1、定律内容:任何两个物体都是相互吸引的,引力的大小跟两个物体的质量的乘积成正比,跟它们的距离的平方成反比。

2、表达式:,其中G=6.67×10-11N·m2/kg23、几点理解和注意(1) 万有引力定律适用于一切物体,而公式在中学阶段只能直接用于定律适用于可视为质点的两个物体间的相互引力的计算,r指两个质点间的距离。

若两物体是质量均匀分布的球体,r就是两个球心间的距离。

(2)天体的质量是巨大的,所以天体之间的万有引力很大,因而万有引力定律是研究天体运动的基本定律,一般物体质量较小,尤其微观粒子其质量更小,因而一般情况下万有引力都是忽略不计。

4、万有引力常数的测定在牛顿发现万有引力定律一百多年以后,英国的卡文迪许巧妙地利用扭秤装置,第一次在实验室里比较准确地测出了万有引力常数的数值。

5、万有引力与重力:万有引力可以分为两个分力:重力和跟随地球自转所需的向心力。

重力的方向在赤道和两极处指向地心,在其它方向并不指向地心。

6、地球上物体重力变化的原因(1)自转的影响(2)地面到地心的距离R和地球密度ρ的影响7、万有引力定律的应用(1)计算地面上空h处的重力加速度(2)计算中心天体的质量M和密度ρ由,可得:当r=R ,即近地卫星绕中心天体运行时,。

二、人造卫星、宇宙航行1、人造地球卫星的有关规律人造地球卫星和星体作环绕运动(视为圆周运动)时,万有引力提供向心力,即:。

2、宇宙速度第一宇宙速度——环绕速度7.9km/s 。

由。

这个速度是人造地球卫星发射的最小速度,也是人造地球卫星环绕地球运转的最大速度。

第二宇宙速度——脱离速度11.2 km/s 。

第三宇宙速度——逃逸速度16.7 km/s 。

5、同步地球卫星的特点同步地球卫星的主要特征是与地面相对静止,卫星这个特征就决定了: 所有同步卫星必须在赤道上空,其轨道平面必然和赤道平面重合; 所有同步卫星运转周期与地球自转周期相同; 所有同步卫星高度必为定值(大约3.59×107米); 所有同步卫星以相同的速率绕地球运行,即v 一定。

解题指导:有关万有引力的题目,通常有两个思路:(1)地球表面处物体的重力与万有引力近似相等由上式推出是常用的一个结论(2)天体运动的向心力由万有引力提供,即:应用万有引力定律的一些解题技巧应用万有引力定律解决有关天体运动问题时,往往要涉及到牛顿运动定律和圆周运动的知识,是较为典型的力学综合,解决问题过程较为繁琐,且易出错。

如果我们能掌握一些推论并能灵活运用,将会化繁为简,变难为易,解决问题的思路和方法清晰明了,方便快捷题型一:g r ——关系在质量为M 的某天体上空,有一质量为m 的物体,距该天体中心的距离为r ,所受重力为万有引力:由上式可得:r g GM 2==常量或r g K 2=推论一:在某天体上空物体的重力加速度g 与r 2成反比。

即g Kr=2或g g r r 122212=………………①例1. 设地球表面重力加速度为g 0,物体在距离地心4R (R 是地球的半径)处,由于地球的作用而产生的重力加速度为g ,则gg 0为( ) A. 1B.19C.14D.116解析:由①式得:()g g R R 0224116== 答案应选D 。

题型二:r r ——关系有一质量为m 的物体(卫星或行星等)绕质量为M 的天体做匀速圆周运动,其轨道半径为r ,线速度为v ,万有引力提供向心力:G M m rm v r 22= 由上式可得:vr G M 2==常量或v r K 2= 推论二:绕某天体运动物体的速度v 与轨道半径r 的平方根成反比。

即v Kr =或v v r r 1221=………………② 例2. 已知人造地球卫星靠近地面运行时的环绕速度约为8km/s ,则在离地面的高度等于地球半径处运行的速度为( )A. 22k m s /B. 4km s /C. 42k m s / D.8km s /解析:由②式得:v v r r k m s 211242==/ 答案应选C 。

题型三:ω——r 关系 有一质量为m 的物体(卫星或行星等)绕质量为M 的天体做匀速圆周运动,其轨道半径为r ,角速度为ω,万有引力提供向心力:G M mrm r 22=ω 由上式可得:r G M 32ω==常量或r K 32ω=推论三:绕某天体运动的物体的角速度ω的二次方与轨道半径的三次方成反比。

即ω23=Kr或ωω122313=r r ………………③ 例3. 两颗人造地球卫星,它们的轨道半径之比为r r 1213∶∶=,它们角速度之比ωω12∶=__________。

解析:由③式可得:ωω122313331∶∶==r r 题型四:T r ——关系有一质量为m 的物体(卫星或行星等)绕质量为M 的天体做匀速圆周运动,其轨道半径为r ,周期为T ,万有引力提供向心力:G M m rm r T 222==ωωπ, 由上式可得:r T GM3224=π=常量或r T K 32=推论四:绕某天体运动的物体的周期T 的二次方与其轨道半径r 的三次方成正比。

即T r K23=或T T r r 121323=………………④ 这就是开普勒第三定律。

例4. 两颗卫星在同一轨道平面绕地球做匀速圆周运动,地球半径为R ,a 卫星距地面的高度等于R ,b卫星距地面的高度等于3R ,则a 、b 两卫星周期之比T T a b ∶=_______。

解析:由④式得:T T R R a b ∶==()()2412233已知太阳光射到地球需时t=500s ,地球同步卫星的高度km h 4106.3⨯=。

试估算太阳和地球的质量。

解析:设太阳质量为M 1,地球质量为M 2,地球同步卫星质量为m 。

由地球绕太阳做圆周运动知:222221/4/T r M r M GM π=,求得23214GT r M π=。

①①式中r=v ·t ,v 为光速再根据地球同步卫星绕地球做圆周运动得:22224)()(T h R m h R m GM '+=+π地地。

得2322)(4T G h R M '+=地π ②AO①、②代入数据即可求得M 1、M 2,注意T 、T ’'分别是地球的公转周期和自转周期。

高考模拟1.【2012•湖北联考】经长期观测发现,A 行星运行的轨道半径为R0,周期为T0但其实际运行的轨道与圆轨道总存在一些偏离,且周期性地每隔t0时间发生一次最大的偏离.如图所示,天文学家认为形成这种现象的原因可能是A 行星外侧还存在着一颗未知行星B ,则行星B 运动轨道半径为( )A .030002()2t R R t T =- B .T t t R R -=00C .320000)(T t t R R -= D .30200T t t R R -=2.【2012•北京朝阳期末】2011年12月美国宇航局发布声明宣布,通过开普勒太空望远镜项目证实了太阳系外第一颗类似地球的、可适合居住的行星。

该行星被命名为开普勒一22b (Kepler 一22b ),距离地球约600光年之遥,体积是地球的2.4倍。

这是目前被证实的从大小和运行轨道来说最接近地球形态的行星,它每290天环绕着一颗类似于太阳的恒星运转一圈。

若行星开普勒一22b 绕恒星做圆运动的轨道半径可测量,万有引力常量G 已知。

根据以上数据可以估算的物理量有( ) A.行星的质量 B .行星的密度 C .恒星的质量 D .恒星的密度 3.【2012•江西联考】如右图,三个质点a 、b 、c 质量分别为m1、m2、M (M>> m1,M>> m2)。

在c 的万有引力作用下,a 、b 在同一平面内绕c 沿逆时针方向做匀速圆周运动,它们的周期之比Ta ∶Tb=1∶k ;从图示位置开始,在b 运动一周的过程中,则 ( ) A .a 、b 距离最近的次数为k 次 B .a 、b 距离最近的次数为k+1次 C .a 、b 、c 共线的次数为2k D .a 、b 、c 共线的次数为2k-2 4.【2012•安徽期末】2011年8月26日消息,英国曼彻斯特大学的天文学家认为,他们已经在银河系里发现一颗由曾经的庞大恒星转变而成的体积较小的行星,这颗行星完全由钻石构成。

若已知万有引力常量,还需知道哪些信息可以计算该行星的质量 ( ) A .该行星表面的重力加速度及绕行星运行的卫星的轨道半径 B .该行星的自转周期与星体的半径C .围绕该行星做圆周运动的卫星的公转周期及运行半径D .围绕该行星做圆周运动的卫星的公转周期及公转线速度 5.【2012•黄冈期末】质量为m 的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动。

已知月球质量为M ,月球半径为R ,月球表面重力加速度为g ,引力常量为G ,不考虑月球自转的影响,则航天器的( )A .线速度GMv R =B .角速度ω=gRC .运行周期2R T gπ= D .向心加速度2Gm a R =6.【2012•广东潮州期末】错误!未指定书签。

.关于卫星绕地球做匀速圆周运动的有关说法正确的是( ) A .卫星受到的地球引力对其做正功B .卫星的轨道半径越大,其线速度越大C .卫星的轨道半径越大,其周期越小D .卫星受到的地球引力提供为圆周运动所需之向心力 7.【2012•云南期末】未发射的卫星放在地球赤道上随地球自转时的线速度为v1、加速度为a1;发射升空后在近地轨道上做匀速圆周运动时的线速度为v2、加速度为a2;实施变轨后,使其在同步卫星轨道上做匀速圆周运动,运动的线速度为v3、加速度为a3。

则v1、v2、v3和a1、a2、a3的大小关系是( ) A .v2>v3>vl a2>a3>al B .v3>v2>v1 a2>a3>al C .v2>v3=v1 a2=a1>a3 D .v2>v3>vl a3>a2>a1 8.【2012•江苏水平监测】2011年9月29日晚21时16分,我国将首个目标飞行器天宫一号发射升空.2011年11月3日凌晨神八天宫对接成功,完美完成一次天空之吻.若对接前两者在同一轨道上运动,下列说法正确的是( )A .对接前 “天宫一号”的运行速率大于“神舟八号”的运行速率B .对接前“神舟八号”的向心加速度小于“天宫一号”的向心加速度C .“神舟八号” 先加速可实现与“天宫一号”在原轨道上对接D .“神舟八号” 先减速后加速可实现与“天宫一号”在原轨道上对接 10.【2012•四川联考】嫦娥一号奔月旅程的最关键时刻是实施首次“刹车”减速.如图所示,在接近月球时,嫦娥一号将要利用自身的火箭发动机点火减速,以被月球引力俘获进入绕月轨道.这次减速只有一次机会,如果不能减速到一定程度,嫦娥一号将一去不回头离开月球和地球,漫游在更加遥远的深空;如果过分减速,嫦娥一号则可能直接撞击月球表面.该报道的图示如下.则下列说法正确的是( )A .实施首次“刹车”的过程,将使得嫦娥一号损失的动能转化为势能,转化时机械能守恒.B .嫦娥一号被月球引力俘获后进入绕月轨道,并逐步由椭圆轨道变轨到圆轨道.C .嫦娥一号如果不能减速到一定程度,月球对它的引力将会做负功.D .嫦娥一号如果过分减速,月球对它的引力将做正功,撞击月球表面时的速度将很大. 11.【2012•广西模拟】设地球同步卫星离地面的距离为 R ,运行速率为 v ,加速度为 a ,地球赤道上的物体随地球自转的向心加速度为 a 0,第一宇宙速度为 v 0,地球半径为 R0.则以下关系式正确的是( )A .a 0=R R 0B .a 0=R 0RC .v 0=R 0R +R 0D .12.【2012•重庆模拟】来自中国航天科技集团公司的消息称,中国自主研发的北斗二号卫星系统今年起进入组网高峰期,预计在2015年形成覆盖全球的卫星导航定位系统。

相关文档
最新文档