最新上海市中考数学试卷(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年上海市中考数学试卷

参考答案与试题解析

一、选择题(本大题共6小题,每小题4分,共24分)

1.下列实数中,无理数是()

A.0 B.C.﹣2 D.

【分析】根据无理数、有理数的定义即可判定选择项.

【解答】解:0,﹣2,是有理数,

数无理数,

故选:B.

【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.

2.下列方程中,没有实数根的是()

A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1=0 D.x2﹣2x+2=0

【分析】分别计算各方程的判别式的值,然后根据判别式的意义判定方程根的情况即可.

【解答】解:A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;

B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;

C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;

D、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确.

故选D.

【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.

3.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()

A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<0【分析】根据一次函数的性质得出即可.

【解答】解:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,

∴k<0,b>0,

故选B.

【点评】本题考查了一次函数的性质和图象,能熟记一次函数的性质是解此题的关键.

4.数据2、5、6、0、6、1、8的中位数和众数分别是()

A.0和6 B.0和8 C.5和6 D.5和8

【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.

【解答】解:将2、5、6、0、6、1、8按照从小到大排列是:

0,1,2,5,6,6,8,

位于中间位置的数为5,

故中位数为5,

数据6出现了2次,最多,

故这组数据的众数是6,中位数是5,

故选C.

【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.

5.下列图形中,既是轴对称又是中心对称图形的是()

A.菱形B.等边三角形C.平行四边形D.等腰梯形

【分析】根据轴对称图形和中心对称图形对各选项分析判断即可得解.

【解答】解:A、菱形既是轴对称又是中心对称图形,故本选项正确;

B、等边三角形是轴对称,不是中心对称图形,故本选项错误;

C、平行四边形不是轴对称,是中心对称图形,故本选项错误;

D、等腰梯形是轴对称,不是中心对称图形,故本选项错误.

故选A.

【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.

6.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()

A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 【分析】由矩形和菱形的判定方法即可得出答案.

【解答】解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;

B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;

C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;

D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;

故选:C.

【点评】本题考查了矩形的判定、平行四边形的性质、菱形的判定;熟练掌握矩形的判定是解决问题的关键.

二、填空题(本大题共12小题,每小题4分,共48分)

7.计算:2aa2=2a3.

【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.

【解答】解:2aa2=2×1aa2=2a3.

故答案为:2a3.

【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.8.不等式组的解集是x>3.

【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.

【解答】解:解不等式2x>6,得:x>3,

解不等式x﹣2>0,得:x>2,

则不等式组的解集为x>3,

故答案为:x>3.

【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.

9.方程=1的解是x=2.

【分析】根据无理方程的解法,首先,两边平方,解出x的值,然后,验根解答出即可.

【解答】解:,

两边平方得,2x﹣3=1,

解得,x=2;

经检验,x=2是方程的根;

故答案为x=2.

【点评】本题考查了无理方程的解法,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法,解无理方程,往往会产生增根,应注意验根.

10.如果反比例函数y=(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而减小.(填“增大”或“减小”)

【分析】先根据题意得出k的值,再由反比例函数的性质即可得出结论.

【解答】解:∵反比例函数y=(k是常数,k≠0)的图象经过点(2,3),

∴k=2×3=6>0,

∴这个函数图象所在的每个象限内,y的值随x的值增大而减小.

相关文档
最新文档