参数估计 作业答案
第二章参数估计(作业)
3 . 7 0 3 . 3 0
3 . 2 8 3 . 0 5
3 . 3 5 3 . 3 3
3 . 2 0 3 . 2 7
3 . 1 2 3 . 2 8
3 . 2 5 3 . 2 5
2 。构造两个总体方差比 1
2 的 95%的置信区间。 2
2 答案: 已知, x1 =3.33, =0.006, 根据自由度 n1=21-1=20 和 n2=21-1=20, x 2 =3.27, s12 =0.06, s2
z 2
s =3.31± 0.53,则该校大学生平均上网时间 n
的置信区间为(2.78,3.84) 。 当置信水平为 99%时,z/2=2.58 , x 的置信区间为(2.62,0.69,则该校大学生平均上网时间 n
3、在一项家电市场调查中,随机抽取了 200 个居民户,调查他们是否拥有某一品牌的电视 机。其中拥有该品牌电视机的家庭占 23%。求总体比例的置信区间,置信水平分别为 90% 和 95%。 答案:已知 n=200,P=23%,则
第二章参数估计
1、某快餐店想要估计每位顾客午餐的平均花费金额,在为期 3 周的时间里选取 49 名顾客
组成了一个简单随机样本。 (1) 假定总体标准差为 15 元,求样本均值的抽样标准误差; (2) 在 95%的置信水平下,求边际误差; (3) 如果样本均值为 120 元,求总体均值 的 95%的置信区间。
6、生产工序的方差是工序质量的一个重要度量。当方差较大时,需要对工序进行改进以减 小方差。两部机器生产的袋茶重量(单位:g)的数据如下:
机 3 3 器 . . 1 4 2 5 0 机 3 3 器 . . 2 2 3 2 8
3 . 2 2 3 . 3 0
参数估计习题答案
参数估计习题答案参数估计是指在统计学中,根据样本数据来估计总体参数的过程。
以下是一些参数估计习题的答案示例:1. 简单随机抽样的均值估计:假设我们有一个总体,其均值未知,我们从这个总体中随机抽取了一个样本,样本均值(\(\bar{x}\))可以用来估计总体均值(\(\mu\))。
如果样本量足够大,根据中心极限定理,样本均值的分布接近正态分布。
样本均值的估计值为:\[\hat{\mu} = \bar{x}\]2. 总体比例的点估计:如果我们要估计一个二项分布的总体比例(\(p\)),我们可以使用样本比例(\(\hat{p}\))作为点估计。
样本比例的计算公式为:\[\hat{p} = \frac{\text{样本中具有特定特征的个体数}}{\text{样本总数}}\]3. 总体方差的估计:总体方差(\(\sigma^2\))可以通过样本方差(\(s^2\))来估计。
样本方差的计算公式为:\[s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2\]其中,\(n\) 是样本大小,\(x_i\) 是第 \(i\) 个样本值。
4. 总体标准差的估计:总体标准差(\(\sigma\))可以通过样本标准差(\(s\))来估计。
样本标准差的计算公式为:\[s = \sqrt{s^2}\]5. 置信区间的计算:如果我们想要得到总体均值的95%置信区间,我们可以使用以下公式:\[\text{置信区间} = \bar{x} \pm z_{\alpha/2} \times\frac{s}{\sqrt{n}}\]其中,\(z_{\alpha/2}\) 是标准正态分布的临界值,对应于置信水平(例如,对于95%置信水平,\(z_{\alpha/2} = 1.96\))。
6. 假设检验:在假设检验中,我们通常使用样本统计量来检验关于总体参数的假设。
例如,如果我们想要检验总体均值是否等于某个特定值(\(\mu_0\)),我们可以使用以下检验统计量:\[t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}\]然后,我们可以根据自由度(\(df = n - 1\))和显著性水平(\(\alpha\))来确定拒绝域,并做出决策。
统计学期末大作业题目及答案
统计学实践作业参数估计练习题1. 某大学为了解学生每天上网的时间,在全校7500名学生中采取不重复抽样方法随机抽取36人,调查他们每天上网的时间(单位:小时),得到的数据见表。
求该校大学生平均上网时间的置信区间,置信水平分别为90%、95%和99%。
平均标准误差中位数众数标准差方差峰度偏度区域最小值最大值求和观测数36最大(1)最小(1)置信度%)置信区间平均标准误差中位数众数标准差方差峰度偏度区域最小值最大值求和观测数36最大(1)最小(1)置信度%)置信区间平均标准误差中位数众数标准差方差峰度偏度区域最小值最大值求和观测数36最大(1)最小(1)置信度%)置信区间 2.2.某机器生产的袋茶重量(g)的数据见。
构造其平均重量的置信水平为90%、95%和99%的置信区间。
平均 3.标准误差中位数众数标准差方差峰度偏度区域最小值最大值求和观测数21最大(1)最小(1)置信度%)置信区间平均 3.标准误差中位数众数标准差方差峰度偏度区域最小值最大值求和观测数21最大(1)最小(1)置信度%)置信区间 3.平均 3.标准误差中位数众数标准差方差峰度偏度区域最小值最大值求和观测数21最大(1)最小(1)置信度%)置信区间3. 某机器生产的袋茶重量(g)的数据见。
构造其平均重量的置信水平为90%、95%和99%的置信区间。
平均标准误差中位数众数标准差方差峰度偏度区域最小值最大值求和观测数35最大(1)最小(1)置信度%)置信区间平均标准误差中位数众数标准差方差峰度偏度区域最小值最大值求和观测数35最大(1)最小(1)置信度%)置信区间平均标准误差中位数众数标准差方差峰度偏度区域最小值最大值求和观测数35最大(1)最小(1)置信度%)置信区间资料整理练习题1. 为评价家电行业售后服务的质量,随机抽取了由100家庭构成的一个样本。
服务质量的等级分别表示为:A.好;B.较好;C.一般;D.差;E.较差。
调查结果见表。
参数估计考试试题及答案解析
模考吧网提供最优质的模拟试题,最全的历年真题,最精准的预测押题!参数估计考试试题及答案解析一、单选题(本大题6小题.每题1.0分,共6.0分。
请从以下每一道考题下面备选答案中选择一个最佳答案,并在答题卡上将相应题号的相应字母所属的方框涂黑。
)第1题从全部学生中抽样测定100名学生,戴眼镜者占50%,抽样平均误差为1%,用( )概率可确信全部学生中戴眼镜者在48%到52%之间。
A 68.27%B 95%C 95.45%D 99.73%【正确答案】:C 【本题分数】:1.0分【答案解析】[解析] 已知p=50%,μp =1%,则样本成数p 的区间估计是[p-t μp ,p+t μp ],由48%=50%-t ×1%或者52%=50%+t ×1%,得t=2,即概率保证程度为95.45%。
第2题设总体X ~N(μ,σ2),σ2已知,若样本容量和置信度均不变,则对于不同的样本观测值,总体均值μ的置信区间的长度( )。
A 变长B 变短C 不变D 不能确定【正确答案】:C【本题分数】:1.0分【答案解析】[解析] 对于σ2已知的总体正态分布,因为=1-α,所以模考吧网提供最优质的模拟试题,最全的历年真题,最精准的预测押题!总体均值μ的置信区间的长度为。
在样本容量和置信度均不变的条件下,与样本观测值无关。
所以对于不同的样本观测值,总体均值μ的置信区间的长度不变。
第3题一家调查公司进行一项调查,其目的是为了了解某市电信营业厅大客户对该电信服务的满意情况。
调查人员随机访问了30名去该电信营业厅办理业务的大客户,发现受访的大客户中有9名认为营业厅现在的服务质量较两年前好。
在95%的置信水平下,大客户中认为营业厅现在的服务质量较两年前好的比例的置信区间为( )。
A [13.60%,46.40%]B [13.40%,48.60%]C [14.62%,46.83%]D [14.75%,48.65%]【正确答案】:A【本题分数】:1.0分【答案解析】[解析] 已知α=1-95%=0.05,Z α/2=1.96,=30%,n=30,n =30×0.3=9>5,n(1-)=30×0.7=21>5,所以本题可以看作是大样本情形。
第七章参数估计参考答案
f ( xi ; )
.
定义: 设总体的分布类型已知,但含有未知参数θ. (1)设 ( x , x
1 2
, , x n )
为总体 X 的一个样本观察值,若似
1 2
然函数 L ( ) 在 ˆ ˆ ( x , x
, , xn )
处取到最大值,则称
ˆ ( x1 , x 2 , , x n ) 为θ的极大似然估计值.
f ( xi ; 1 , 2 , , k )
将其取对数,然后对 1 , 2 , , k 求偏导数,得
ln L ( 1 , 2 , , k ) 0 1 ln L ( 1 , 2 , , k ) 0 k
1 2 n i i 1
(2) 设连续型总体 X 的概率密度函数为 f ( x ; ) , 则样本
( X 1 , X 2 , , X n ) 的联合概率密度函数
f ( x1 ; ) f ( x 2 ; ) f ( x n ; )
n
i 1
f ( x i ; )
n
仍称为似然函数,并记之为 L ( ) L ( x , x , , x ; )
用上面的解来估计参数θi就是矩法估计.
例: 设总体 X 服从泊松分布 ( ) ,参数λ 未知,
( X 1 , X 2 , , X n ) 是来自总体的一个样本,求参数λ
的矩
估计量.
解 总体X的期望为 E ( X ) 从而得到方程
1
X n
i 1
n
i
所以λ的矩估计量为
ˆ
得到含有未知参数(θ1,…,θk)的k个方程.解这k 个联立方程组就可以得到(θ1,…,θk)的一组解:
生物统计学课后习题作业答案完善版
答:事件A在n次重复试验中发生了m次,则比值m/n称为事件A发生的频率,记为W(A);事件A在n次重复试验中发生了m次,当试验次数n不断增加时,事件A发生的频率W(A)就越来越接近某一确定值p,则p即为事件A发生的概率。二者的关系是:当试验次数n充分大时,频率转化为概率。
习题3.4
答:正态分布是一种连续型随机变量的概率分布,它的分布特征是大多数变量围绕在平均数左右,由平均数到分布的两侧,变量数减小,即中间多,两头少,两侧对称。
U=0,σ²=1的正态分布为标准正态分布。
正态分布具有以下特点:标准正态分布具有以下特点:①、正态分布曲线是以平均数μ为峰值的曲线,当x=μ时,f(x)取最大值 ;②、正态分布是以μ为中心向左右两侧对称的分布③、 的绝对值越大,f(x)值就越小,但f(x)永远不会等于0,所以正态分布以x轴为渐近线,x的取值区间为(-∞,+∞);④、正态分布曲线完全由参数μ和来决定⑤、正态分布曲线在x=μ±处各有一个拐点;⑥、正态分布曲线与x轴所围成的面积必定等于1。
习题3.2
答:事件A和事件B不能同时发生,即A·B=V,那么称事件A和事件B为互斥事件,如人的ABO血型中,某个人血型可能是A型、B型、O型、AB型4中血型之一,但不可能既是A型又是B型。事件A和事件B必有一个发生,但二者不能同时发生即A+B=U,A×B=V,则称事件A与事件B为对立事件,如抛硬币时向上的一面不是正面就是反面。事件A与事件B的发生毫无关系。反之事件B的发生与事件A的发生毫无关系,则称事件A与事件B为独立事件,如第二胎生男生女与第一台生男生女毫无关系。
习题6.1
答:(1)方差分析是对两个或多个样本平均数差异显著性检验的方法。
(2)方差分析的基本思想是将测量数据的总变异按照变异来源分为处理效应和误差效应,并作出数量估计,在一定显著水平下进行比较,从而检验处理效应是否显著。
参数估计习题及答案
P51 第7章 参数估计 ----点估计二、计算题1、设总体X 具有分布密度(;)(1),01f x x x ααα=+<<,其中1->α是未知参数,n X X X ,,21为一个样本,试求参数α的矩估计和极大似然估计.解:(1)因⎰⎰++=+=111α1α1αdx x dx x x X E a)()()(2α1α2α1α102++=++=+|a x 令2α1α++==ˆˆ)(X X EXX --=∴112αˆ为α的矩估计 (2)因似然函数1212(,,;)(1)()n n n L x x x x x x ααα=+1ln ln(1)ln ni i L n x αα=∴=++∑,由1ln ln 01ni i L nx αα=∂=+=∂+∑得,α的极大似量估计量为)ln (ˆ∑=+-=ni iXn11α2、设总体X 服从指数分布 ,0()0,x e x f x λλ-⎧>=⎨⎩其他 ,n X X X ,,21是来自X 的样本,(1)求未知参数λ的矩估计;(2)求λ的极大似然估计.解:(1)由于1()E X λ=,令11X Xλλ=⇒=,故λ的矩估计为1ˆX λ= (2)似然函数112(,,,)n ii x nn L x x x eλλ=-∑=111ln ln ln 0nii ni ni ii L n x d L n n x d xλλλλλ====-=-=⇒=∑∑∑故λ的极大似然估计仍为1X。
4、设总体X 服从泊松分布()P λ, 12,,,n X X X 为取自X 的一组简单随机样本,(1)求未知参数λ的矩估计;(2)求λ的极大似然估计.解:(1)令ˆ()E X X X λλ==⇒=,此为λ的矩估计。
(2){},0,1,2,!ixi i i P X x e x x λλ-===似然函数1121111(,,,){,,}{}!nii x n nn n n i i ni ii e L x x x P X x X x P X x x λλ=-==∑======∏∏11ln ln ln nni i i i L x n x λλ===--∑∑. 11ln 0nniii i x xd L n x d nλλλ===-=⇒==∑∑故λ的极大似然估计仍为X 。
参数估计-含答案
第七章参数估计一、单项选择题1.区间X x S的含义是()。
A. 99%的总体均数在此范围内B. 样本均数的99%可信区间C. 99%的样本均数在此范围内D. 总体均数的99%可信区间答案:D2.以下关于参数估计的说法正确的是()。
A. 区间估计优于点估计B. 样本含量越大,参数估计准确的可能性越大C. 样本含量越大,参数估计越精确D. 对于一个参数只能有一个估计值答案:B3.假定抽样单位数为400,抽样平均数为300和30,相应的变异系数为50%和20%,试以的概率来确定估计精度为()。
和%和2%%和98% 和1答案:C4.根据10%抽样调查资料,甲企业工人生产定额完成百分比方差为25,乙企业为49。
乙企业工人数四倍于甲企业,工人总体生产定额平均完成率的区间()。
A. 甲企业较大B. 乙企业较大C. 两企业一样D. 无法预期两者的差别答案:A5.对某轻工企业抽样调查的资料,优质品比重40%,抽样误差为4%,用多大的概率才能确信全及总体的这个指标不小于32%()。
答案:B6.根据抽样调查的资料,某城市人均日摄入热量2500千卡,抽样平均误差150千卡,该市人均摄入热量在2350千卡至2650千卡之间的置信度为()。
B.D.答案:B7.对进口的一批服装取25件作抽样检验,发现有一件不合格。
概率为时计算服装不合格率的抽样误差为%。
要使抽样误差减少一半,必须抽()件服装做检验。
答案:B8.根据以往调查的资料,某城市职工平均每户拥有国库券和国债的方差为1600,为使极限抽样误差在概率保证程度为时不超过4元,应抽取()户来进行调查。
答案:B9.一般情况下,总体平均数的无偏、有效、一致的估计量是()。
A. 样本平均数B. 样本中位数C. 样本众数D. 不存在答案:A10.参数估计的置信度为1-α的置信区间表示()。
A. 以1-α的可能性包含了未知总体参数真值的区间B. 以α的可能性包含了未知总体参数真值的区间C. 总体参数取值的变动范围D. 抽样误差的最大可能范围答案:A11.无偏性是指()。
七参数估计作业
第七章 参数估计(一) 习题1. 设是来自总体n X X ,,1 X 的一个样本,求下述各总体的概率密度或分布律中的未知参数的矩估计量(1) 其中⎩⎨⎧<<+=其它,010,)1()(x x x f θθ1−>θ是未知参数; (2) 其中 2,1,)1(}{1=−==−x p p x X P x 10<<p 是未知参数;(3) , 其中⎪⎩⎪⎨⎧<≥=−−θθθθx x e x f x ,0,,2),()(20>θ为未知参数; (4) ⎪⎩⎪⎨⎧≤≤=−其他,0,10,),(1x x x f θθθ, 其中0>θ为未知参数; (5) ⎪⎩⎪⎨⎧>−−=其它,0},exp{1),;(121221θθθθθθx x x f (6) σσσ||21),(x e x f −=, 其中0>σ为未知参数. 2. 求上题中各未知参数的极大似然估计量.3. 设总体X 服从参数为的二项分布:p m ,m x p p x m x X P x m x ,,2,1,0,)1(}{…=−⎟⎟⎠⎞⎜⎜⎝⎛==−, 10<<p ,是未知参数是来自该总体的一个样本,求的极大似然估计量.p n X X ,,1 p 4. (1)设总体X 服从参数为λ的泊松分布,是来自总体n X X ,,1 X 的一个样本,求的极大似然估计;}0{=X P (2)某铁路局证实一个扳道员在五年内所引起的严重事故的次数服从泊松分布.求一个扳道员在五年内未引起严重事故的概率的极大似然估计值.使用下面122个观察值.下表中,p r 表示一扳道员五年内引起严重事故的次数,表示观察到的扳道员人数.s r 0 1 2 3 4 5s 44 42 21 9 4 25.(1)设,即),(~ln 2σμN X Z =X 服从对数正态分布,验证}21exp{)(2σμ+=X E . (2)设从对数正态总体X 取容量为样本,求的极大似然估计值.此处n n x x x ,,,21 )(X E μ,均为未知.2σ (3)已知在文学家萧伯纳的《AN Intelligent Woman’s Guide To Socialism 》一书中,一个句子的单词数近似服从对数正态分布.μ,均为未知.今从该书中随机的取20个句子.这些句子的单词数分别为2σ54 24 15 67 15 22 63 26 16 327 33 28 14 7 29 10 6 59 30问这本书中,一个句子字数均值的极大似然估计值等于多少?6.设总体,是来自总体),(~2σμN X n X X ,,1 X 的一个样本,试确定常数c ,使统计量为的无偏估计.2111)(i n i i X X c −∑−=+2σ7.设和相互独立且均为参数1ˆθ2ˆθθ的无偏估计,并且的方差是的方差的2倍,试求出常数,使得是1ˆθ2ˆθb a ,21ˆˆθθb a +θ的无偏估计,并且在所有这样的无偏估计中方差最小. 8. 设总体X 服从参数为λ的泊松分布,是来自总体n X X ,,1 X 的一个样本,X ,分别为样本均值和样本方差,(1)试证对一切2S α(10≤≤α),统计量2)1(S X αα−+均为λ的无偏估计量;(2)试求的极大似然估计量,;(3)讨论的无偏性,并给出的一个无偏估计量.2,λλM λˆ2ˆM λ2ˆM λ2λ9.设总体X 服从区间)1,(+θθ上的均匀分布, 是来自总体n X X ,,1 X 的一个样本,证明估计量211ˆ11−=∑=n i i X n θ, 1ˆ)(2+−=n n X n θ 皆为参数θ的无偏估计,并且比有效. 2ˆθ1ˆθ10.从一台机床加工的轴承中,随机地抽取200件,测量其椭圆度,得样本均值mm x 081.0=,并由累积资料知道椭圆度服从,试求)025.0,(2μN μ的置信度为0.95的置信区间.11.设总体,是其样本值,如果为已知,问取多大值时,能保证),(~2σμN X n x x x ,,,21 2σn μ的置信度为α−1的置信区间的长度不大于给定的L ?12.在测量反应时间中,一心理学家估计的标准差为0.05秒,为了以95%的置信度使他对平均反应时间的估计误差不超过0,01秒,应取多大的样本容量.n 13.从自动机床加工的同类零件中抽取16件,测得长度为(单位mm):12.15 12.12 12.01 12.08 12.09 12.16 12.03 12.01 12.06 12.1312.07 12.11 12.08 12.01 12.03 12.06设零件长度近似服从正态分布,试求方差的置信度为0.95的置信区间.2σ14.为比较甲与乙两种型号同一产品的寿命,随机地抽取甲型产品5个,测得平均寿命h x 1000=,标准差,随机地抽取乙型产品7个,测得平均寿命h s 281=h y 980=, ,设总体服从正态分布,并且由生产过程知它们的方差相等,求两个总体均值差的置信度为0.99的置信区间.h s 322=15.为了在正常条件下检验一种杂交作物的两种新处理方案,在同一地区随机地挑选8块地,在每块试验地上按两种方案种植作物,这8块地的单位面积产量分别是:一号方案产量: 86 87 56 93 84 93 75 79二号方案产量: 80 79 58 91 77 82 74 66假设两种方案的产量都服从正态分布,试求这两个平均产量之差的置信度为0.95的置信区间.16.设两位化验员独立地对某种聚合物含氯量用相同的方法各做10次测定,其测定值的样本方差依次为,,设分别为所测定的测定值总体的方差,设总体均为正态的.求方差比B A ,5419.02=A s 6065.02=B s 22,B A σσB A ,22B A σσ的置信度为0.95的置信区间.。
参数估计习题解答
参数估计习题与习题解答6.11.从一批电子元件中抽取8个进行寿命测试,得到如下数据(单位:h ):1 050, 1 100, 1 130, 1 040, 1 250, 1 300, 1 200, 1 080试对这批元件的平均寿命以及分布的标准差给出矩估计。
解:样本均值 75.11438108011301101050=++++=x样本标准差 ∑=-=812)(71i i x x s []22)75.11431080()75.11431050(71-++-=0562.96= 因此,元件的平均寿命和寿命分布的标准差的矩估计分别为1143。
75和96.05622. 设总体),0(~θU X ,现从该总体中抽取容量为10的样本,样本值为0。
5,1.3,0。
6,1.7,2.2,1.2,0。
8,1。
5,2.0,1.6试对参数θ给出矩估计.解:由于E(X )=2θ,即θ=2E(X ),而样本均值106.13.15.0+++=x =1.34,故θ的矩估计为68.22ˆ==x θ3. 设总体分布列如下,n x x ,1是样本,试求未知参数的矩估计.10,,3,2,)1()1()()2(,1,,2,1,0,1)()1(22<<=--==-===-θθθ k k k X P N N k Nk X P k ;(正整数)是未知参数 解:(1) 总体均值E (X )=21110-=-+++N N N ,解之可得N =2E (X )+1故N 的矩估计量12ˆ+=x N,其中x 为样本均值,若x 2不是整数,可取大于x 2的最小整数代替.2x(2) 总体均值E (X )==---+∞=∑222)1()1(k k k k θθ∑+∞=---222)1)(1(k k k k θθ,由于3222)1)(1(θθ=--∑+∞=-k k k k ,故有E(X )θθθ2232=⨯=,即θ)(2X E =,从而参数的 θ 矩估计为.2ˆx=θ 4.设总体密度函数如下,n x x ,,1 是样本,试求未知参数的矩估计.0,,1),;()4(;0,10,);()3(;0,10,)1();()2(;0,0),(2);()1(12>>=><<=><<+=><<-=---θμθμθθθθθθθθθθθθθμθθx ex p x x x p x x x p x x x p x解:(1) 总体均值E (X )==-⎰dx x x )(22θθθθθθθ31)(222=-⎰dx x x ,即即)(3X E =θ,故参数θ的矩估计为.3ˆx =θ(2)总体均值E(X )=dx x x ⎰+1)1(θθ=21++θθ,所以1E(X)E(X)21--=θ,从而参数θ的矩估计.121ˆ--=x xθ (3)由E (X )=dx x x 11-⎰θθ=1+θθ可得2)(1)(⎪⎪⎭⎫ ⎝⎛-=X E X E θ,由此,参数θ的矩估计.1ˆ2⎪⎭⎫⎝⎛-=x x θ(4)先计算总体均值与方差E (X )=dx ex x θμμθ--∞+⎰1=dt e t tθθ-∞+⎰01+dt e tθμθ-∞+⎰1=μθ+)(2X E =dx ex x θμμθ--∞+⎰12=dt e t tθθμ-∞+⎰+1)(02=dt e ttθθ-∞+⎰12+dt e t tθθμ-∞+⎰012+dt e tθθμ-∞+⎰12=.2222μμθθ++V a r(X )=22))(()(X E X E -=2θ由此可以推出)()(,)(X Var X E X Var -==μθ,从而参数μθ,的矩估计为.ˆ,ˆs x s -==μθ 5.设总体为)1,(μN ,先对该总体观测n 次,发现有k 次观测为正,使用频率替换方法求μ的矩估计。
概率论与数理统计习题集及答案
《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ;2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= .(2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: .(3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: .(5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: .2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A ,(4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= .2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
参数估计习题及答案
参数估计习题及答案参数估计习题及答案在统计学中,参数估计是一种重要的技术,用于根据样本数据估计总体的未知参数。
参数估计的目标是通过样本数据推断总体参数的取值范围,并得到一个接近真实值的估计。
本文将通过几个习题来探讨参数估计的方法和应用。
习题一:某研究人员想要估计某种新药对病人的治疗效果。
他从一家医院中随机选取了100名患者,并将他们随机分为两组,一组接受新药治疗,另一组接受传统药物治疗。
研究人员希望通过样本数据估计新药的治疗效果是否显著优于传统药物。
解答:在这个问题中,我们需要估计两个总体的治疗效果,即新药组和传统药物组的平均治疗效果。
为了估计这两个总体的差异,我们可以使用两个独立样本的 t检验。
假设新药组的平均治疗效果为μ1,传统药物组的平均治疗效果为μ2。
我们的零假设是H0: μ1 = μ2,备择假设是H1: μ1 > μ2。
通过计算样本均值和标准差,我们可以得到 t 统计量的值,并进行假设检验。
习题二:某公司的销售部门想要估计他们的销售额与广告投入之间的关系。
他们收集了过去一年的数据,包括每个月的广告投入和销售额。
现在他们希望通过样本数据来估计广告投入对销售额的影响程度。
解答:在这个问题中,我们需要估计两个变量之间的关系,即广告投入和销售额之间的线性关系。
为了估计这个关系,我们可以使用简单线性回归模型。
假设广告投入为 x,销售额为 y。
我们的回归模型可以表示为y = β0 + β1x + ε,其中β0 和β1 是回归系数,ε 是误差项。
通过最小二乘法,我们可以估计回归系数的值,并进行假设检验来判断广告投入对销售额的影响是否显著。
习题三:某研究人员想要估计某个城市的人口数量。
他从该城市的不同地区随机选取了若干个样本点,并统计了每个样本点的人口数量。
现在他希望通过样本数据估计整个城市的人口数量。
解答:在这个问题中,我们需要估计一个总体的数量,即整个城市的人口数量。
为了估计这个数量,我们可以使用抽样调查的方法。
计量经济学第四章作业参考答案
4.3(1)由题知,对数回归模型为:123ln ln ln t t t i Y G D P C PI u βββ=+++ 用最小二乘法对参数进行估计得:ˆl n 3.6491.796l n 1.208l nt tt Y G D P C P I =-+- (0.322) (0.181) (0.354)t=-11.32129 9.931363 -3.41496120.990R = 20.988R = S.E.=0.112388 F=770.602(2)存在多重共线性。
居民消费价格指数的回归系数的符号不能进行合理的经济意义解释,且其简单相关系数为0.985811,说明lnGDP 和lnCPI 存在正相关的关系。
(3)根据题目要求进行如下回归: ○1模型为:121ln ln t t i Y A A G D P v =++ 用最小二乘法对参数进行估计得: l n 3.7451.187l nt t Y G D P =-+ (0.410) (0.039) t= -9.143326 30.65940 20.982R = 20.981R = S.E.=0.143363 F=939.999 ○2模型为:122ln ln t t i Y B B C PI v =++用最小二乘法对参数进行估计得: l n 3.392.254l n t t Y CPI =-+(0.834) (0.154) t= -4.064199 14.62649 20.926R = 20.922R = S.E.=0.291842 F=213.934○3模型为:122ln ln tt i Y B B C PI v =++用最小二乘法对参数进行估计得:l n 0.1441.927l n t t GDP CPI =+ (0.431) (0.080)t= 0.334092 24.2143920.972R = 20.970R = S.E.=0.150715 F=586.337单方程拟合效果都很好,回归系数显著,判定系数较高,GDP 和CPI 对进口的显著的单一影响,在这两个变量同时引入模型引起了多重共线性。
统计学第五章 参数估计作业
ˆq ˆ ˆq ˆ p p ˆ Z ,p ] 2 n n
0.2 0.8 0.2 0.8 [0.2- 1.96 ,0.2 1.96 ] 400 400 [0.2- 0.0392,0.2 0.0392] [0.16,0.24 ]
3、 解 : 1 0.95,
2
2 ( Z ) 1 0.025 0.975 Z 1.96
2
0.025
代入置信区间公式: S S [ x - Z , x Z ] 2 2 n n 5 5 [4.5 - 1.96 ,4.5 1.96 ] 100 100 [4.5 0.98,4.5 0.98] [3.52,5.48]
作业:
1、设x1,x2,x3为简单随机抽样的3个观测值.如果采用如下不等权的平均值:
2 2 1 x ' x1 x2 x3 5 5 5
作为总体均值的点估计值,试说明它将比采用等权的平均值:
1 1 1 x x1 x2 x3 3 3 3
作为总体均值的点估计值要差.(提示:用点估计值衡量标准来讨论) 2、某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成 的一个随机样本,他们到单位的距离(单位:km)分别是:10,3,14,8,6,9,12,11, 7,5,10,15,9,16,13,2.求职工上班 从家里到单位平均距离在95%的置信区间? 3、根据某大学100名学生的抽样调查,每月平均用于购买书籍的费用为4.5元, 标准差为5元,求大学生每月用于购买书籍费用的区间估计(置信度为95%)?
2 2 1 1、 解:D ( x ' ) D ( x1 x2 x3 ) 5 5 5 4 4 1 D( x1 ) D ( x2 ) D( x3 ) 25 25 25 9 D( x) 25 1 1 1 D ( x ) D ( x1 x2 x3 ) 3 3 3 1 1 1 D ( x1 ) D ( x2 ) D ( x3 ) 9 9 9 1 D( x) 3 D ( x ' ) D ( x ),即以等权的平均值作为 总体均值 的点估计值效果要好于 不等权的平均值 .
《应用多元统计分析》各章作业题及部分参考答案
60.6
16.5
2 76
58.1
12.5
3 92
63.2
14.5
4 81
59.0
14.0
5 81
60.8
15.5
6 84
59.5
14.0
解:作如下假设 H0 : μ = μ0 , H1 : μ ≠ μ0
经计算,求的样本均值向量 x = (82.0, 60.2,14.5) ' ,x − μ0 = (−8, 2.2, −1.5) ' ,样本协差阵
x2
+
1 2
x3
+
1 2
x4 。
(2)第一主成分的贡献率为
λ1
+
λ2
λ1 +
λ3
+ λ4
= 1+ 3ρ 4
≥ 95% ,得 ρ
≥ 0.933 。
第 7 章 因子分析
1、设 x = (x1, x2 , x3 )′ 的相关系数矩阵通过因子分析分解为
⎛ ⎜
1
⎜
R
=
⎜ ⎜
−1 3
⎜ ⎜⎜⎝
2 3
−1 3 1
54.58
11.67
产品净值率 10.7
6.2
21.41
11.67
7.90
2、 设 G1, G2 , G3 三个组,欲判别某样品 x0 属于何组,已知 p1 = 0.05, p2 = 0.65, p3 = 0.3,
应用多元统计分析
pofeel@
3
f1 (x0 ) = 0.10, f2 (x0 ) = 0.63, f3 (x0 ) = 2.4 ,假定误判代价矩阵为:
⎢⎣ 4.5 ⎥⎦
(完整word版)参数估计习题参考答案
参数估计习题参考答案班级:姓名:学号:得分一、单项选择题:1、关于样本平均数和总体平均数的说法,下列正确的是( B )(A)前者是一个确定值,后者是随机变量(B)前者是随机变量,后者是一个确定值(C)两者都是随机变量(D)两者都是确定值2、通常所说的大样本是指样本容量( A )(A)大于等于30 (B)小于30 (C)大于等于10 (D)小于103、从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,当样本容量增大时,样本均值的标准差将( B )(A)增加(B)减小(C)不变(D)无法确定4、某班级学生的年龄是右偏的,均值为20岁,标准差为4.45.如果采用重复抽样的方法从该班抽取容量为100的样本,那么样本均值的分布为(A )(A)均值为20,标准差为0.445的正态分布(B)均值为20,标准差为4.45的正态分布(C)均值为20,标准差为0.445的右偏分布(D)均值为20,标准差为4.45的右偏分布5. 区间估计表明的是一个( B )(A)绝对可靠的范围(B)可能的范围(C)绝对不可靠的范围(D)不可能的范围6. 在其他条件不变的情形下,未知参数的1-α置信区间,(A )A. α越大长度越小B. α越大长度越大C. α越小长度越小D. α与长度没有关系7. 甲乙是两个无偏估计量,如果甲估计量的方差小于乙估计量的方差,则称( D )(A)甲是充分估计量(B)甲乙一样有效(C)乙比甲有效(D)甲比乙有效8. 设总体服从正态分布,方差未知,在样本容量和置信度保持不变的情形下,根据不同的样本值得到总体均值的置信区间长度将( D )(A)增加(B)不变(C)减少(D)以上都对9.在其他条件不变的前提下,若要求误差范围缩小1/3,则样本容量( C )(A)增加9倍(B)增加8倍(C)为原来的2.25倍(D)增加2.25倍10设容量为16人的简单随机样本,平均完成工作时间13分钟,总体服从正态分布且标准差为3分钟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参数估计作业答案
一、单项选择题
1.当置信水平一定时,置信区间的宽度(A )
A.随着样本量的增大而减少
B.随着样本量的增大而增大
C.与样本量的大小无关
D.与样本量的平方根成正比
2.在其他条件不变的情况下,总体数据的方差越大,估计时所需的样本量(A )
A.越大
B.越小
C.可能大也可能小
D.不变
3.正态总体方差已知时,在小样本条件下,总体均值在1-α置信水平下的置信区间可以写为(C )A.2
2x z α±B.
2x t α±C.
x z α±D.2
2
x t α±4.指出下面的说法哪一个是正确的(A )
A.样本量越大,样本均值的抽样分布的标准差就越小
B.样本量越大,样本均值的抽样分布的标准差就越大
C.样本量越小,样本均值的抽样分布的标准差就越小
D.样本均值的抽样分布的标准差与样本量无关
二、简答题
简述:在参数估计时,评价估计量好坏的标准。
三、计算题
1.从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25。
求:
(1)样本均值的抽样标准差等于多少?
(2)在95%的置信水平下,边际误差是多少?
解:(1)已知:0.0255,40,25,0.05, 1.96
n x z σα=====样本均值的抽样标准差:0.79
x σ===(2)边际误差:
/2 1.96 1.55E z α===2.从一个正态总体中随机抽取容量为8的样本,各样本值分别为:
10,8,12,15,6,13,5,11
求总体均值95%的置信区间。
解:总体服从正态分布,但方差未知,n=8为小样本,0.05α=,()0.05/281 2.365t −=根据样本数据计算得:10, 3.46
x s ==总体均值的95%的置信区间为:
/210 2.36510 2.89x t α±=±=±即:(7.11,12.89)
3.在一项家电市场调查中,随机抽取了200个居民户,调查他们是否拥有某一品牌的电视机。
其中拥有该品牌电视机的家庭占23%。
求置信水平分别为90%和95%时的总体比例的置信区间。
解:已知:n=200,p=0.23,α为0.1和0.05时,0.1/20.05/21.645, 1.96
z z ==总体比例π的90%的置信区间为:
/0.230.230.05p z α±=±=±即(0.18,0.28)
总体比例π的95%的置信区间为:
/0.230.230.06p z α±=±=±即(0.17,0.29)
4.某居民小区共有居民500户,小区管理者准备采取一向新的供水设施,想了解居民是否赞成。
采取重复抽样方法随机抽取了50户,其中有32户赞成,18户反对。
求:
(1)总体中赞成该项改革的户数比例的置信区间,置信水平为95%。
(2)如果小区管理者预计赞成的比例能达到80%,应抽取多少户进行调查?(置信水平为90%,边际误差为5%)
解:(1)已知:n=50,p=0.64,α=0.05,0.05/2 1.96
z =总体中赞成改革的户数比例的95%
的置信区间为:
/0.640.640.13p z α±=±=±即:(0.51,0.77)
(2)已知:π=0.8,α=0.10,0.1/2 1.645z =应抽取的样本量为:()()()2
2/222
1 1.6450.810.8173.20.05z n E αππ−×−===应抽取的样本量为1745.从两个正态总体中分别抽取两个独立的随机样本,它们的均值和标准差如下表:来自总体1的样本
来自总体2的样本n 1=36n 2=41
S 1=10
S 2=11
求(1)µ1-µ290%的置信区间。
(2)µ1-µ295%的置信区间。
解:正态总体,大样本,则µ1-µ2服从正态分布2
.531=x 4.432=x
(1)90%的置信区间为:
(
)(
)
120.1/
53.243.49.8 3.94 x x z
−±=−±=±
即:(5.86,13.74)
(2)95%的置信区间为:
(
)(
)
120.05/
53.243.49.8 4.69 x x z
−±=−±=±
即:(5.11,14.49)。