裂纹扩展能量释放率及断裂韧度
断裂韧性

断裂韧性(fracture toughness)带裂纹的金属材料及其构件抵抗裂纹开裂和扩展的能力。
从20世纪50年代开始在欧文(G.R.Irwin)等的努力下,形成了线弹性断裂力学,随后又发展成弹塑性断裂力学。
在用它们对断裂过程进行分析和不断完善实验技术的基础上,逐步形成了平面应变断裂韧性KIC 、临界裂纹扩展能量释放率GIC、临界裂纹顶端张开位移δIC 、临界J积分JIC等断裂韧性参数。
其中下标I表示I型即张开型裂纹,下标c表示临界值。
这些参数可通过实验测定,其值越高,材料的断裂韧性越好,裂纹越不易扩展。
断裂韧性参数(1)平面应变断裂韧性KIC。
欧文分析平面问题的I型裂纹尖端区域的各个应力分量中都有一个共同的因子KI,其值决定着各应力分量的大小,故称为应力强度因子。
KIC=yσ(πa)1/2,式中σ为外加拉应力;a为裂纹长度,y为与裂纹形状、加载方式和试件几何因素有关的无量纲系数。
KI 增大到临界值KIC,KI≥KIC时,裂纹失稳扩展,迅速脆断。
(2)临界裂纹扩展能量释放率GIC 。
裂纹扩展能量释放率GI=-(aμ/aA),式中μ为弹性能,A为裂纹面积。
平面应力条件下,GI =kI2/E;平面应变条件下,G I =(kI2/E)(1-v2),式中E为弹性模量,v为泊松比。
GI是裂纹扩展的动力,GIC增大到临界值G。
即GI ≥GIC时,裂纹将失稳扩展。
(3)临界裂纹顶端张开位移δC。
裂纹上、下表面在拉应力作用下,裂纹顶端出现张开型的相对位移叫裂纹顶端张开位移δ,δ增大到临界值δC,裂纹开始扩展。
(4)临界J积分JIC。
弹塑性断裂力学中,一个与路径无关的能量线积分叫做J积分。
式中r为积分回路,由裂纹下边缘到上边缘,以逆时针方向为正,ds为弧元,ω为单位体积应变能,u为位移矢量,T是边界条件决定的应力矢量。
线弹性和弹塑性小应变条件下,I型裂纹的J积分JI=-B-1(aμ/aA),式中B为试样厚度,a为裂纹长度。
混凝土断裂韧度及实例分析1

二、应力场强度因子KⅠ及断裂韧度KⅠc
当σ/σs<0.7时
当σ/σs≥0.7时
三、裂纹扩展能量释放率GⅠ及断裂韧度GⅠc
(一)裂纹扩展能量释放率GⅠ (二)断裂韧度GⅠc和断裂G判据
补充
一、能量方法(Energy Methods ) :
利用功能原理 U = W 来求解可变形固体的位移、变形和内力
对拉杆进行逐步加载(认为无动能变化) 利用能量守恒原理: U(弹性应变能)=W(外力所做的功)
W 1 2 P L U E
UE P L 2 EA
2
L
PL EA
P
单位体积内的应变能----比能u(单位:J/m3)
P
u 1 U V 2 AL P L 1 2
2
P
前 言
缺口的第一个效应: 缺口造成应力应变集中。 缺口的第二个效应: 应力改为两向或三向拉伸。
缺口的第三个效应: 缺口使塑性材料得到“强化”。
前 言
1、传统的力学强度理论(1920s前): 材料连续、均匀和各向同性的; 断裂是瞬时发生的。 断裂:σ>σs 脆性、韧性断裂
2、现代的力学强度理论(1920s后): 材料存在裂纹(裂纹体); σ<σs时就断裂 ;
断裂力学的基本原理;
线弹性下断裂韧度的意义、测试原理和影响因素。
前
言
6、裂纹类型(摘自P80附表)
工 艺 裂 纹 及 使 用 裂 纹
第四章
金属的断裂韧度
§4.1 线弹性条件下的金属断裂韧度
§4.2 断裂韧度KⅠc的测试
§4.3 影响断裂韧度KⅠc的因素
§4.4 断裂K判据应用案例 §4.5 弹塑性条件下金属断裂韧度的基本概念
断裂力学与断裂韧度优质内容

高级培训
1
高级培训
2
高级培训
3
3.1材料的断裂理论
英国科学家葛里菲斯(A.A.Griffith)对玻璃等材料进行了一系
列试验后,于1920年提出脆性材料的断裂理论。他指出:
脆性材料的断裂破坏是由于已经存在的裂纹扩展的结果,
断裂强度取决于施加载荷前就存在于材料中的裂纹的大小,
或者说断裂强度取决于使其中的裂纹失稳扩展的应力。当
U Ue W
通常把裂纹扩展单位面积时系统释放势能的数值称为 裂纹扩展能量释放率,简称能量释放率或能量率,用G 表示。
高级培训
26
由于裂纹扩展的动力为GI,而GI为系统势能U的
释放率,所以确定GI时必须知道U的表达式。
由于裂纹可以在恒定载荷F或恒位移 条件下扩 展,在弹性条件下上述两种条件的GI表达式为:
美国在二战期间有5000艘全焊接的“自由 轮”,其中有238艘完全破坏,有的甚至 断成两截。
20世纪50年代,美国发射北极星导弹,其Байду номын сангаас固体燃料发动机壳体采用了高强度钢 D6AC,屈服强度为1400MPa,按照传统的 强度设计与验收时,其各项性能指标包 括强度与韧性都符合要求,设计时的工 作应力远低于材料的屈服强度,但发射 点火不久,就发生了爆炸。
高级培训
4
由于许多表观脆性材料在断裂前裂纹顶端均已产
生了显著的塑性变形,而为此所消耗的功远大于
裂纹产生新表面需要的表面能,于是欧文和奥万
对葛氏公式进行了修正,各自独立提出:
1
c
2E
( s a
p
)
2
式中:rp——裂纹扩展单位面积所需的塑性变形
功。这个理论称为欧文-奥罗万理论。某些材料
1-4裂纹扩展准则

根据假设2),开裂条件为
s (θ c ) = sc
对纯I型裂纹
K I2 (1 − 2v) θ c = 0, s(θ c ) = = sc 4πµ
对纯II型裂纹
2 K II s (θ ) = [4(1 − v)(1 − cos θ ) + (1 + cos θ )(3 cos θ − 1)] 16 µ
开 裂 角
tan β = K I / K II
开裂条件
也叫断裂混合度 (mode mixity )
最大环向应力准则的不足
• 没有区分广义的平面应力 平面应变 平面应力和平面应变 平面应力 平面应变问题; • 没有考虑其它应力分量 其它应力分量的作用; 其它应力分量 • 没有考虑裂尖塑性区 裂尖塑性区的影响 裂尖塑性区 由于该准则形式简单,应用比较方便,误差 不大,因而得到广泛的应用。
cos θ (3 cos θ − 1) 2
由
∂σ θθ ( K I , K II , θ ) = 0 ,得 ∂θ
K I sin θ + K II (3 cos θ − 1) = 0
θ c = arccos
2 2 3K II ± K I4 + 8 K I2 K II 2 K I2 + 9 K II
σ
θθ
临界状态
这意味着裂纹失稳扩展的条件为
G = GC
平面断裂韧度
由(I型)
GI = K I2 / E *
裂纹扩展条件也可表示为 K I = K IC 平面断裂韧度,为材料常数
1)该准则仅适用于脆性材料,对塑性变形较大的金属材料不适用 2)实验表明,该准则对I型裂纹沿其初始方向扩展是适用的
4-2金属的断裂韧性1

反映材料阻止裂失稳扩展的能力 。
KⅠC 是真正的材料常数,反映阻止裂纹扩展的能力。
断裂判据
当应力强度因子增大到一临界值,这一临界值在数值上 等于材料的平面应变断裂韧性时,裂纹就立即失稳扩展, 构件就发生脆断。于是断裂判据便可表示为
椭圆上任一点P的位置由角β 而定,椭圆的长半轴为c,短半轴为a
K=σ(π a)1/2(sin2β +a2cos2β /c2)1/4/Φ
Φ=
/2
0
(sin a cos / c ) d
2 2 2 2
1/ 2
P263附录C
(三)断裂韧度KⅠC和断裂判据
K1 K1crim K1C
σ 1=(σ x+σ y)/2+[(σ x-σ y)2/4+τ σ 2=(σ x+σ y)/2-[(σ x-σ y)2/4+τ σ 3=υ (σ 1+σ 2)
2]1/2
xy
xy
2]1/2
σ 1= KⅠcos(θ /2)[1+sin(θ /2 )]/(2π r)1/2
σ 2= KⅠcos(θ /2)[1-sin(θ /2)]/(2π r)1/2 σ 3= 0(平面应力) σ 3= 2υ KⅠcos(θ /2)/(2π r)1/2 (平面应变)
2
2
/E(平面应变)
/E
=0
在裂纹延长线上θ =0 σ
τ
x
=σ y=KⅠ/(2π r)1/2
XY=0
在X轴上裂纹尖端的切应力分量为零 正应力最大 裂纹最易沿X轴方向扩展
断裂韧性基础

第六章 断裂韧性基础第一节Griffith 断裂理论第二节裂纹扩展的能量判据能量释放率G 裂纹扩展单位面积时,系统所提供的弹性能量U A∂∂是裂纹扩展的动力,此力叫裂纹扩展力或称为裂纹扩展时的能量释放率。
以1G 表示(1表示Ⅰ型裂纹扩展)。
G 与外加应力,试样尺寸和裂纹有关,而裂纹扩展的阻力为2()s p γγ+,随1,a G σ↑→↑→增大到某一临界值时,1G 能克服裂纹失稳扩展阻力,则裂纹使失稳扩展而断裂,这个1G 的临界值它为1c G ,称为断裂韧性。
表示材料组织裂纹试稳扩展时单位面积所消耗的能量。
平面应力下: 2211,C cC a aG G E E σπσπ==平面应变下: 222211(1)(1),C c C a v v a G G E Eσπσπ--== G 的单位12MPa m -⋅。
第三节 裂纹顶端的应力场可看成线弹性体12005001000s s MPa MPa σσ⎧⎪=⎪⎨=-⎪⎪⎩玻璃,陶瓷高强钢的横截面中强钢低温下的中低强度钢6.3.1三种断裂类型⎧⎪⎨⎪⎩张开型断裂滑开型断裂撕开型断裂最危险Ⅰ型6.3.2Ⅰ型裂纹顶端的应力场无限大平板中心含有一个长为2a 的穿透裂纹,受力如图欧文(G 。
R 。
Irwin )等人对Ⅰ型裂纹尖端附近的应力应变进行了分析,提出应力应变场的数字解析式,由此引出了应变场强度因子1K的概念。
并建立了裂纹失稳扩展的K判据和断裂韧性1CK。
若用极坐标表达式表达,则有近似数字表达式:当裂尖某点不确定,即,rθ一定后,应力大小均由1K决定———盈利强度因子1K故1K大小反映了裂纹尖端应力场的强弱,取决于应力大小,裂纹尺寸。
6.3.3 应力场强度因子及判据将上面应力场方程写成:()ij ijfσθ=其中1K Y=Y:形状系数。
对无限大板Y=1。
1K:12MPa m-⋅111,,a KK aa Kσσσ⎧↑→↑⎪⇒⎨↑→↑⎪⎩不变是一个决定于和的复合物理量不变当此参量达到临界时,在裂纹尖端足够大的范围内,应力便会达到断裂强度,裂纹便沿着X轴失稳扩展,从而使材料断裂。
断裂力学

K I K IC
KIC:断裂韧性,为材料常数
KI和KIC的关系就如同与s的关系。 KI的量刚[力][长度]-3/2,常用单位kg.mm-3/2
应力强度因子
应力强度因子
应力强度因子一般写为:
K I Y a
σ 为名义应力(裂纹位臵上按照无裂纹计算的应 力); a 为裂纹度因子的计算方法:查手册法、应力 集中系数法、复变函数法、积分变换法、应力集 中系数法、有限元和边界元法。
裂纹扩展的能量分析
一、裂纹扩展的能量率
在裂纹扩展过程中,要消耗能量主要的有: 裂纹表面能:裂纹扩展,裂纹的表面积增加,而产生新表面就需要消耗 能量。如增加单侧表面单位面积所需的能量为g,在扩展过程中要形成上下两 个表面,故单位裂纹面积所需的能量共为2g 。 对非纯弹性材料来说,裂纹扩展前还要产生塑性变形,这也需要消耗能 量,如裂纹扩展单位面积为克服塑性变形所消耗的能量为Up(塑性变形能Up 往往要比裂纹表面能大3—6个数量级)。 总的来说,裂纹扩展单位面积所消耗的能量为:R 2g U P R 就表明裂纹要扩展的阻力,而裂纹要扩展,就必须有动力去克服这种阻 力,如设裂纹扩展单位面积,系统供给的动力为 G,则显然,只有在G≥R时, 裂纹才能扩展。 裂纹扩展所需要的动力,应由和外力有关系的系统提供。如整个系统的 能量用U表示(势能),裂纹扩展面积为dA,则裂纹扩展所需要的能量由整个 系统的势能下降来提供。 G dA dU
裂纹扩展的能量分析
一、裂纹扩展的能量释放率
据:
G dA dU
关于裂纹的扩展速度
按照裂纹扩展速度来分,断裂力学可依静止的裂纹、亚临界 裂纹扩展以及失稳扩展和止裂这三个领域来研究。 亚临界裂纹扩展和断裂后失稳扩展的主要区别,在于前者不 但扩展速度较慢,而且如果除去使裂纹扩展的因素 ( 例如卸 载),则裂纹扩展可以立即停止,因而零构件仍然是安全的; 失稳扩展则不同,扩展速度往往高达每秒数百米以上,就是 立即卸载也不一定来得及防止最后的破坏。 在静止的裂纹方面,我们主要对裂纹问题作应力分析,即计 算表征裂端应力场强度的参量,例如计算象应力强度因子、 能量释放率这一类的力学参量。
金属的断裂韧度

第四章金属的断裂韧度断裂是工程上最危险的换效形式。
特点:〔a〕突然性或不可预见性;〔b〕低于屈服力,发生断裂;〔c〕由宏观裂扩展引起。
∴工程上,常采用加大安全系数;浪费材料。
但过于加大材料的体积,不一定能防止断裂。
∴发展出断裂力学断裂力学的研究范畴:把材料看成是裂纹体,利用弹塑性理论,研究裂纹尖端的应力、应变,以及应变能力分布;确定裂纹的扩展规律;建立裂纹扩展的新的力学参数〔断裂韧度〕。
主要内容:含裂纹体的断裂判据。
固有性能的指标—断裂韧性:用来比较材料拉断能力,K IC ,G IC , J IC,δC。
用于设计中:K IC已知,σ,求a maxK IC已知 , a c已知,求σ构件承受最大承载能力。
K IC已知,a已知,求σ。
讨论:K IC的意义,测试原理,影响因素及应用。
§4-1线弹性条件下的断裂韧度一、裂纹扩展的基本形式1、张开型〔I型〕2、滑开型〔II型〕3〕撕开型〔III型〕裂纹的扩展常常是组合型,I型的危险性最大二、应力场强度因子KI和断裂韧度K IC。
1、裂纹尖端应力场,应力分析①应力场离裂纹尖端为(,)的一点的应力:〔应力分量,极座标〕平面应力 σx =0平面应变 σx =υ〔σx +σy 〕对于某点的位移则有平面应力情况下位移平面应变情况时,上式为平面应变状态,位移分量。
越接近裂纹尖端〔即r 越小〕精度越高;最适合于r<<a 情况。
②应力分析在裂纹延长线上,〔即v 的方向〕θ=0⎪⎩⎪⎨⎧===021xy x y rk τπσσ拉应力分量最大;切应力分量为0;∴裂纹最易沿X 轴方向扩展。
2、应力场强度因子K I r K I πσ2=K I 可以反映应力场的强弱。
∴称之为应力强度因子。
通式:a Y K Ⅰσ= a —裂纹长度/2;Y —裂纹形状系数 一般Y=1~2宽板中心贯穿裂纹 π=Y长板中心穿透裂纹 〔见表4-1,P84-85〕Y 是无量纲的量而K I 有量纲 MPa ·m 1/2或MN ·m -3/2a Y K aY K III II ττ==3、断裂韧度K IC 和断裂判据①断裂韧度 当应力到达断裂强度,裂纹失稳,并开始扩展。
ⅰ型断裂韧度

ⅰ型断裂韧度
ⅰ型断裂韧度是材料力学中的一个重要参数,用来描述材料在受到外力作用下
发生裂纹扩展的能力。
在材料断裂过程中,ⅰ型断裂韧度是指在应力-应变曲线上,裂纹扩展开始时的能量释放率。
它通常用K_IC表示,单位为MPa·m^0.5。
ⅰ型断裂韧度是衡量材料抗裂纹扩展能力的重要指标,特别是在脆性材料中更
为关键。
在材料受到外力作用下,当裂纹达到一定长度时,裂纹将不可避免地继续扩展,导致材料的破坏。
ⅰ型断裂韧度能够帮助我们评估材料的抗裂纹扩展能力,从而预测材料在实际应用中的性能和寿命。
材料的ⅰ型断裂韧度与材料的力学性能、微观结构、应力状态等因素密切相关。
一般来说,材料的断裂韧度越高,其抗裂纹扩展能力越强,材料的抗拉伸、抗压缩等性能也会更好。
因此,在材料设计和选择中,ⅰ型断裂韧度是一个非常重要的考虑因素。
为了提高材料的ⅰ型断裂韧度,可以采取一些措施,如改变材料的组织结构、
控制材料的合金元素含量、提高材料的强度和韧性等。
通过这些方法,可以有效地提高材料的抗裂纹扩展能力,延长材料的使用寿命,提高材料的安全性和可靠性。
总的来说,ⅰ型断裂韧度是材料力学中的一个重要参数,它能够反映材料的抗
裂纹扩展能力,对材料的设计、选择和性能预测起着至关重要的作用。
在材料研究和工程应用中,我们应该重视材料的ⅰ型断裂韧度,不断提高材料的抗裂纹扩展能力,以满足不同领域的需求。
工程材料力学基础第四章

金属的断裂韧度
断裂力学的定义:在承认物件存在宏 观裂纹的前提下,利用弹塑性力学理论, 研究裂纹尖端的应力、应变及应变能的 分布情况,建立了裂纹扩展的各种新的 力学参量、断裂判据及材料断裂韧度。 断裂韧度—材料阻止裂纹扩展的韧 性指标。
第一节 线弹性条件下的金属断裂韧度
线弹性断裂力学分析方法: 应力应变分析方法――K判据 能量分析方法――G判据 一、裂纹扩展的基本型式 1、张开型(I型)裂纹扩展 2、滑开型(II型)裂纹扩展 3、撕开型(III型)裂纹扩展 实际裂纹的扩展往往是上述三种型式的组合,上 述中,I型裂纹最危险
3
裂纹尖端塑性区及修正
在单向拉伸情况下,当外加应力≥σs时,材料就会屈服,但对于含裂 纹构件,由于裂纹前端出现三向应力,此时的屈服条件就必须采用最大 剪应力判据(屈雷斯加判据)或形状改变比能判据(米赛斯判据),通 常采用较多的是米赛斯判据,其表达式为:
(σ1 −σ2 )2 + (σ2 −σ3)2 + (σ3 −σ1)2 = 2σs2
1
F
1
δ
格里菲斯裂纹体的G 格里菲斯裂纹体的GI
在格里菲斯裂纹体中(模型:无限宽板,存在长为2a的 中心穿透裂纹,B=1,拉应力):
GI =
πaσ
2
E (1 − ν 2 )π a σ GI = E
平面应力
2
平面应变
可见,GI和KI相似,也是应力σ和裂纹尺寸a的复合参量, 只是它们的表示方式和单位不同而已。
KIC和GIC的关系
对于具有长为2a中心穿透裂纹的无限大板:
K
I
= σ
πa
1 −ν 2 G I = σ 2π a E 由此可得平面应变条件 1 −ν 2 G I = K I E 1 −ν 2 G IC = K E 平面应力条件下 G G
材料力学性能-第四章-金属的断裂韧度(3)

2021年10月21日 星期四
第四章 金属的断裂韧度
由于材料性能及试样尺寸不同,F-V曲线有三
种类型,如图4-9所示。
F Fmax
Fmax
Fmax
Ⅰ-材料韧性较好或 试样尺寸较小;
Ⅱ-材料韧性或试样 尺寸居中;
2021年10月21日 星期四
第四章 金属的断裂韧度
若材料韧性居中或试样厚度中等时,可能出现
Ⅱ型曲线。此类曲线有明显的迸发平台,这时由于
在加载过程中,处于平面应变状态的中心层先行扩
展,而处于平面应力状态的表面层还未扩展,因此
中心层裂纹迸发式的扩展被表面层阻碍。迸发时常
伴有清脆的爆裂声,这时的迸发载荷就可以作为FQ, 由于材料显微组织可能不均匀,有时在F-V曲线上会
之减小。
2021年10月21日 星期四
第四章 金属的断裂韧度
实测的临界应力场强度因子KC与试样 厚度的关系如图4-11所示。
由图可见,当试样 厚度增加到某一个值Bc 后,KC也趋向一个恒定 值,此值即为材料的平 面应变断裂韧性KIC。
KC/MPa·m1/2
KIC
B/mm
图4-11 临界应力场强度因子 与试样厚度的关系
2021年10月21日 星期四
第四章 金属的断裂韧度
大量试验表明,Bc值也大致等于2.5(KIC/ys)2,
因此,试样厚度的要求也是:
B
2.5
KIC
ys
2
但在实际检验中,KIC值未知,须用KQ代替,
并利用试验标准中的某些规定,使最后的判断条
件被简化为:
B
第四章 材料的断裂韧性

3. KI的修正 裂纹尖端的弹性应力超过 材料屈服强度之后, 便产生应 力松驰,使塑性区增长 ,改变 了裂纹前的应力分布,不适用 于线弹性条件。 裂纹虚拟向前扩展ry,此时 虚拟裂纹尖端0’前端弹性区的 应力分布GEF,基本上与线弹性 条件下的σ y相重合,对应的裂纹长度为a+ry,称为等效裂 纹 长度.根据线弹性理论: KⅠ=Yσ √(a+ry) KⅠ’= Yζ √a/[1-0.16(KⅠ/ζ s)2]1/2(平面应力)
ac= 40-1000mm
五、材料开发
KIC=(2Eγf)1/2 γf: 断裂能,可见,增大断裂能,即增大裂 纹扩展的阻力,手提高KIC。常在基体中 添加韧性相,如碳纤维增韧非晶玻璃材 料等。
第四章 材料的断裂韧性
传统机件强度设计: 塑性材料 σ ≤[σ ]= σ s/n 脆性材料: σ ≤[σ ]= σ b/n 实际上有时σ <<[σ ]时,机件仍断裂—低应力脆断,其原 因是传统设计把机件看成均匀、无缺陷、没有裂纹的理 想体.但实际工程材料在制造加工中会产生宏观缺陷乃 至裂纹,成为材料脆断的裂纹源, 从而引起低应力断裂. §4.1线弹性条件下的断裂韧性 线弹性体:裂纹体各部分的应力和应变符合虎克定律。 但裂纹尖端极小区存在塑性变形,也适用于线弹性条件。
将裂纹前端P (r,θ )的点应力表达式σ x、σ y、τ xy代 入上式,得P点的主应力表达式: σ 1= KⅠ/(2π r)1/2×cosθ /2(1+sinθ /2) σ 2= KⅠ/(2π r)1/2×cosθ /2(1-sinθ /2) σ 3=0 (平面应力,薄板) σ 3=2γ ×KⅠ/(2π r)1/2 cosθ /2 (厚板:平面应变) 由第四强度理论(Mises)屈服临界条件: 将上式代入 (σ 1-σ 2)2+(σ 2-σ 3)2+(σ 3-σ 1)2=2σ s2 ( σ 1>σ 2>σ 3 主应力)得屈服区大小: r=1/2π ×(KⅠ/ζ s)2[cos2θ /2(1+3sin2θ /2)] (平面应力) r=1/2π ×(KⅠ/ζ s)2[cos2θ /2(1-2γ )2+3sin2θ /2] (平面应变)
固体力学英语词汇翻译(2)

固体力学英语词汇翻译(2)裂纹面 crack surface裂纹尖端 crack tip裂尖张角 crack tip opening angle, ctoa裂尖张开位移 crack tip opening displacement, ctod 裂尖奇异场 crack tip singularity field裂纹扩展速率 crack growth rate稳定裂纹扩展 stable crack growth定常裂纹扩展 steady crack growth亚临界裂纹扩展 subcritical crack growth裂纹[扩展]减速 crack retardation止裂 crack arrest止裂韧度 arrest toughness断裂类型 fracture mode滑开型 sliding mode张开型 opening mode撕开型 tearing mode复合型 mixed mode撕裂 tearing撕裂模量 tearing modulus断裂准则 fracture criterionj积分 j-integralj阻力曲线 j-resistance curve断裂韧度 fracture toughness应力强度因子 stress intensity factorhrr场 hutchinson-rice-rosengren field守恒积分 conservation integral有效应力张量 effective stress tensor应变能密度 strain energy density能量释放率 energy release rate内聚区 cohesive zone塑性区 plastic zone张拉区 stretched zone热影响区 heat affected zone, haz延脆转变温度 brittle-ductile transition temperature剪切带 shear band剪切唇 shear lip无损检测 non-destructive inspection双边缺口试件 double edge notched specimen, den specimen 单边缺口试件 single edge notched specimen, sen specimen 三点弯曲试件 three point bending specimen, tpb specimen 中心裂纹拉伸试件center cracked tension specimen, cct specimen中心裂纹板试件 center cracked panel specimen, ccp specimen 紧凑拉伸试件 compact tension specimen, ct specimen大范围屈服 large scale yielding小范围攻屈服 small scale yielding韦布尔分布 weibull distribution帕里斯公式 paris formula空穴化 cavitation应力腐蚀 stress corrosion概率风险判定 probabilistic risk assessment, pra损伤力学 damage mechanics损伤 damage连续介质损伤力学 continuum damage mechanics细观损伤力学 microscopic damage mechanics累积损伤 accumulated damage脆性损伤 brittle damage延性损伤 ductile damage宏观损伤 macroscopic damage细观损伤 microscopic damage微观损伤 microscopic damage损伤准则 damage criterion损伤演化方程 damage evolution equation 损伤软化 damage softening损伤强化 damage strengthening损伤张量 damage tensor损伤阈值 damage threshold损伤变量 damage variable损伤矢量 damage vector损伤区 damage zone疲劳 fatigue低周疲劳 low cycle fatigue应力疲劳 stress fatigue随机疲劳 random fatigue蠕变疲劳 creep fatigue腐蚀疲劳 corrosion fatigue疲劳损伤 fatigue damage疲劳失效 fatigue failure疲劳断裂 fatigue fracture疲劳裂纹 fatigue crack疲劳寿命 fatigue life疲劳破坏 fatigue rupture疲劳强度 fatigue strength疲劳辉纹 fatigue striations疲劳阈值 fatigue threshold交变载荷 alternating load交变应力 alternating stress应力幅值 stress amplitude应变疲劳 strain fatigue应力循环 stress cycle应力比 stress ratio安全寿命 safe life过载效应 overloading effect循环硬化 cyclic hardening循环软化 cyclic softening环境效应 environmental effect裂纹片 crack gage裂纹扩展 crack growth, crack propagation 裂纹萌生 crack initiation循环比 cycle ratio实验应力分析 experimental stress analysis 工作[应变]片 active[strain] gage基底材料 backing material应力计 stress gage零[点]飘移 zero shift, zero drift应变测量 strain measurement应变计 strain gage应变指示器 strain indicator应变花 strain rosette应变灵敏度 strain sensitivity机械式应变仪 mechanical strain gage直角应变花 rectangular rosette引伸仪 extensometer应变遥测 telemetering of strain横向灵敏系数 transverse gage factor横向灵敏度 transverse sensitivity焊接式应变计 weldable strain gage平衡电桥 balanced bridge粘贴式应变计 bonded strain gage粘贴箔式应变计 bonded foiled gage粘贴丝式应变计 bonded wire gage桥路平衡 bridge balancing电容应变计 capacitance strain gage补偿片 compensation technique补偿技术 compensation technique基准电桥 reference bridge电阻应变计 resistance strain gage温度自补偿应变计 self-temperature compensating gage 半导体应变计 semiconductor strain gage集流器 slip ring应变放大镜 strain amplifier疲劳寿命计 fatigue life gage电感应变计 inductance [strain] gage光[测]力学 photomechanics光弹性 photoelasticity光塑性 photoplasticity杨氏条纹 young fringe双折射效应 birefrigent effect等位移线 contour of equal displacement暗条纹 dark fringe条纹倍增 fringe multiplication干涉条纹 interference fringe等差线 isochromatic等倾线 isoclinic等和线 isopachic应力光学定律 stress- optic law主应力迹线 isostatic亮条纹 light fringe光程差 optical path difference热光弹性 photo-thermo -elasticity光弹性贴片法 photoelastic coating method光弹性夹片法 photoelastic sandwich method动态光弹性 dynamic photo-elasticity空间滤波 spatial filtering空间频率 spatial frequency起偏镜 polarizer反射式光弹性仪 reflection polariscope残余双折射效应 residual birefringent effect应变条纹值 strain fringe value应变光学灵敏度 strain-optic sensitivity应力冻结效应 stress freezing effect应力条纹值 stress fringe value应力光图 stress-optic pattern暂时双折射效应 temporary birefringent effect脉冲全息法 pulsed holography透射式光弹性仪 transmission polariscope实时全息干涉法 real-time holographic interferometry网格法 grid method全息光弹性法 holo-photoelasticity全息图 hologram全息照相 holograph全息干涉法 holographic interferometry全息云纹法 holographic moire technique全息术 holography全场分析法 whole-field analysis散斑干涉法 speckle interferometry散斑 speckle错位散斑干涉法speckle-shearing interferometry,shearography散斑图 specklegram白光散斑法 white-light speckle method云纹干涉法 moire interferometry[叠栅]云纹 moire fringe[叠栅]云纹法 moire method云纹图 moire pattern离面云纹法 off-plane moire method参考栅 reference grating试件栅 specimen grating分析栅 analyzer grating面内云纹法 in-plane moire method脆性涂层法 brittle-coating method条带法 strip coating method坐标变换 transformation of coordinates计算结构力学 computational structural mechanics 加权残量法 weighted residual method有限差分法 finite difference method有限[单]元法 finite element method配点法 point collocation里茨法 ritz method广义变分原理 generalized variational principle最小二乘法 least square method胡[海昌]一鹫津原理 hu-washizu principle赫林格-赖斯纳原理 hellinger-reissner principle修正变分原理 modified variational principle约束变分原理 constrained variational principle混合法 mixed method杂交法 hybrid method边界解法 boundary solution method有限条法 finite strip method半解析法 semi-analytical method协调元 conforming element非协调元 non-conforming element混合元 mixed element杂交元 hybrid element边界元 boundary element强迫边界条件 forced boundary condition 自然边界条件 natural boundary condition 离散化 discretization离散系统 discrete system连续问题 continuous problem广义位移 generalized displacement广义载荷 generalized load广义应变 generalized strain广义应力 generalized stress界面变量 interface variable节点 node, nodal point[单]元 element角节点 corner node边节点 mid-side node内节点 internal node无节点变量 nodeless variable杆元 bar element桁架杆元 truss element梁元 beam element二维元 two-dimensional element一维元 one-dimensional element三维元 three-dimensional element轴对称元 axisymmetric element板元 plate element壳元 shell element厚板元 thick plate element三角形元 triangular element四边形元 quadrilateral element四面体元 tetrahedral element曲线元 curved element二次元 quadratic element线性元 linear element三次元 cubic element四次元 quartic element等参[数]元 isoparametric element超参数元 super-parametric element亚参数元 sub-parametric element节点数可变元 variable-number-node element 拉格朗日元 lagrange element拉格朗日族 lagrange family巧凑边点元 serendipity element巧凑边点族 serendipity family无限元 infinite element单元分析 element analysis单元特性 element characteristics刚度矩阵 stiffness matrix几何矩阵 geometric matrix等效节点力 equivalent nodal force节点位移 nodal displacement节点载荷 nodal load位移矢量 displacement vector载荷矢量 load vector质量矩阵 mass matrix集总质量矩阵 lumped mass matrix相容质量矩阵 consistent mass matrix阻尼矩阵 damping matrix瑞利阻尼 rayleigh damping刚度矩阵的组集 assembly of stiffness matrices 载荷矢量的组集 consistent mass matrix质量矩阵的组集 assembly of mass matrices单元的组集 assembly of elements局部坐标系 local coordinate system局部坐标 local coordinate面积坐标 area coordinates体积坐标 volume coordinates曲线坐标 curvilinear coordinates静凝聚 static condensation合同变换 contragradient transformation形状函数 shape function试探函数 trial function检验函数 test function权函数 weight function样条函数 spline function代用函数 substitute function降阶积分 reduced integration零能模式 zero-energy modep收敛 p-convergenceh收敛 h-convergence掺混插值 blended interpolation等参数映射 isoparametric mapping双线性插值 bilinear interpolation小块检验 patch test非协调模式 incompatible mode节点号 node number单元号 element number带宽 band width带状矩阵 banded matrix变带状矩阵 profile matrix带宽最小化 minimization of band width 波前法 frontal method子空间迭代法 subspace iteration method 行列式搜索法 determinant search method 逐步法 step-by-step method纽马克法 newmark威尔逊法 wilson拟牛顿法 quasi-newton method牛顿-拉弗森法 newton-raphson method 增量法 incremental method初应变 initial strain初应力 initial stress切线刚度矩阵 tangent stiffness matrix割线刚度矩阵 secant stiffness matrix模态叠加法 mode superposition method 平衡迭代 equilibrium iteration子结构 substructure子结构法 substructure technique超单元 super-element网格生成 mesh generation结构分析程序 structural analysis program 前处理 pre-processing后处理 post-processing网格细化 mesh refinement应力光顺 stress smoothing组合结构 composite structure。
岩石断裂韧度理论及测试方法研究综述

岩石断裂韧度理论及测试方法研究综述摘要:实际工程中常涉及到岩体的断裂问题,岩石断裂韧度则是表征岩石抵抗裂纹扩展能力的物理量,断裂韧度的测试仍然是岩石断裂力学中极其重要的一部分。
目前测试岩石断裂韧度的方法有很多,本文首先介绍了岩石断裂力学基本原理,主要包括断裂力学基本参数以及断裂准则两部分;然后分别对岩石Ⅰ型和Ⅱ型断裂韧度不同的测试方法和试样进行了介绍,并且对比分析了每种试样的优缺点,为今后的试验研究提供参考。
关键词:岩石力学;断裂韧度;Ⅰ型断裂;Ⅱ型断裂;测试方法中图分类号:TU458文献标识码:A0引言岩石是一种由很多矿物颗粒通过胶结物的胶结作用连接在一起的复杂的集合体,因此岩石内部通常具有孔隙、裂纹等缺陷[1]。
这些缺陷为岩体破坏提供了初始条件,在外界荷载作用下,裂纹会逐渐扩展、汇集和贯穿,最终导致岩体宏观上的破坏。
岩石边坡的稳定、深部岩体的岩爆和分区破裂、隧道的掘进以及巷道开挖都涉及到对岩体断裂性状的研究。
要想对这些工程问题进行深入了解,必须对岩石的断裂机制进行研究。
因此岩石断裂力学作为岩石力学和断裂力学的交叉学科被逐渐建立起来。
岩石断裂力学主要以断裂韧度作为基本参数,并通过试验观察岩石断裂过程来建立断裂准则。
岩石断裂韧度是岩石断裂力学中最为基本的参数和指标,是岩石的固有属性,表征岩体本身克服裂纹产生或已有裂纹扩展的能力[2]。
岩石的断裂韧度由于受到温度、加载速率、试样尺寸效应、岩石材料性质等多种因素的影响,准确获取岩石的断裂韧度变为众多学者研究的一个课题。
对于岩石断裂韧度的测试方法目前尚无统一标准,主要是由于岩石本身各向异性所决定的。
传统的断裂力学按照裂纹力学特征将裂纹扩展分为三种:Ⅰ型(张开型),Ⅱ型(滑移型),Ⅲ型(撕开型)[3]。
本文首先对断裂韧度理论研究进展进行介绍,其次分别对岩石Ⅰ型断裂韧度和Ⅱ型断裂韧度测试方法进行归纳总结,并对比分析其优缺点。
1岩石断裂力学基本理论1.1断裂力学基本参数断裂韧度和断裂强度因子是研究岩石断裂特性的两个基本参数。
钢的裂纹扩展参数

钢的裂纹扩展参数钢的裂纹扩展参数指的是在钢材中发生裂纹并且裂纹不断扩展的过程中的一系列物理和力学参数。
这些参数对于工程领域的材料选择、设计和安全评估都具有重要的意义。
从微观层面来看,裂纹扩展的参数能够反映材料的断裂韧性、韧性指数和裂纹扩展速率等重要性质。
在对钢材的裂纹扩展参数进行研究的过程中,通常会关注以下几个方面:1. 极限拉伸强度和断裂韧性:钢材的极限拉伸强度是指在拉伸试验中材料发生突然断裂的最大应力值。
这个参数可以用来评估钢材的强度和抗拉性能。
而断裂韧性则是指在材料中引入缺陷(如裂纹)后,材料对其继续扩展所需的能量。
通过测定钢材的断裂韧性参数,可以评估材料对裂纹扩展的抵抗能力。
2. 裂纹扩展速率:钢材中裂纹扩展的速率能够直接反映材料的脆性和韧性。
通常使用裂纹扩展速率参数来描述材料在不同应力条件下裂纹扩展的情况,从而评估材料的稳定性和可靠性。
3. K值和J值:K值和J值是评价裂纹扩展能力的两个重要参数。
K值即应力强度因子,描述了裂纹尖端的应力场分布情况,对材料的裂纹扩展性能进行定量分析。
而J值则是裂纹扩展过程中塑性应变能的释放率,用以评估材料在裂纹扩展过程中的能量消耗情况。
4. 裂纹尖端位移和应变场:裂纹尖端位移和应变场也是影响裂纹扩展参数的重要因素,可以通过精密的测试和模拟来获取材料中裂纹扩展过程中的位移和应变场信息,为材料性能的评估提供重要数据。
在工程实践中,通过对钢材的裂纹扩展参数进行研究和评估,可以为设计合理的材料选用和结构设计提供依据。
也可以帮助预测材料在实际工作条件下的性能表现,为工程安全性评估提供支持。
围绕着钢材的裂纹扩展参数进行的研究,可以不断完善材料力学性能的理论基础,推动材料科学和工程技术的发展。
金属的断裂韧度

第四章金属的断裂韧度断裂是工程上最危险的换效形式。
特点:(a)突然性或不可预见性;(b)低于屈服力,发生断裂;(c)由宏观裂扩展引起。
∴工程上,常采用加大安全系数;浪费材料。
但过于加大材料的体积,不一定能防止断裂。
∴发展出断裂力学断裂力学的研究范畴:把材料看成是裂纹体,利用弹塑性理论,研究裂纹尖端的应力、应变,以及应变能力分布;确定裂纹的扩展规律;建立裂纹扩展的新的力学参数(断裂韧度)。
主要内容:含裂纹体的断裂判据。
固有性能的指标—断裂韧性:用来比较材料拉断能力,K IC ,G IC , J IC,δC。
用于设计中:K IC已知,σ,求a maxK IC已知 , a c已知,求σ构件承受最大承载能力。
K IC已知,a已知,求σ。
讨论:K IC的意义,测试原理,影响因素及应用。
§4-1线弹性条件下的断裂韧度一、裂纹扩展的基本形式1、张开型(I型)2、滑开型(II型)3)撕开型(III型)裂纹的扩展常常是组合型,I型的危险性最大二、应力场强度因子KI和断裂韧度K IC。
1、裂纹尖端应力场,应力分析①应力场离裂纹尖端为(,)的一点的应力:(应力分量,极座标)平面应力σx=0平面应变σx=υ(σx+σy)对于某点的位移则有平面应力情况下位移平面应变情况时,上式为平面应变状态,位移分量。
越接近裂纹尖端(即r 越小)精度越高;最适合于r<<a 情况。
②应力分析在裂纹延长线上,(即v 的方向)θ=0⎪⎩⎪⎨⎧===021xyx y rk τπσσ拉应力分量最大;切应力分量为0; ∴裂纹最易沿X 轴方向扩展。
2、应力场强度因子K I r K I πσ2=K I 可以反映应力场的强弱。
∴称之为应力强度因子。
通式:a Y K Ⅰσ= a —裂纹长度/2;Y —裂纹形状系数 一般Y=1~2 宽板中心贯穿裂纹 π=Y长板中心穿透裂纹 (见表4-1,P84-85)Y 是无量纲的量而K I 有量纲 MPa ·m 1/2或MN ·m -3/2a Y K a Y K III II ττ==3、断裂韧度K IC 和断裂判据①断裂韧度 当应力达到断裂强度,裂纹失稳,并开始扩展。
金属的断裂韧度

平面应力:只在平面内有应力,与该面垂直方向的应 力可以忽略,例如薄板拉压问题。具体说来,平面应 力是指所有的应力都在一个平面内,如果平面是OXY 平面,那么只有正应力σx,σy和切应力τxy(它们都在一 个平面内),没有σz,τyz,τzx 。
平面应力问题讨论的弹性体为薄板
因此,在研究低应力脆断的裂纹扩展问题 时,可以应用弹性力学理论,从而构成了 线弹性断裂力学。
线弹性断裂力学分析裂纹体断裂问题有两 种方法:
(1) 应力应变分析方法:考虑裂纹尖端附近的 应力场强度,得到相应的断裂K判据。
(2) 能量分析方法:考虑裂纹扩展时系统能量 的变化,建立能量转化平衡方程,得到相 应的断裂G判据。
这个临界或失稳状态的KI值就记作KIC或KC,称为 断裂韧度。
KIC:平面应变下的断裂韧度,表示在平面应变条件下 材料抵抗裂纹失稳扩展的能力。
KC:平面应力下的断裂韧度,表示在平面应力条件下 材料抵抗裂纹失稳扩展的能力。
KIC和KC都是I型裂纹的材料断裂韧性指标。 在临界状态下所对应的平均应力,称为断裂应力或裂
三、低应力脆性断裂-在屈服强度以下产生的脆性断裂
高强度钢和超高强度钢的机件(或构件)以及中低强度 钢的大型件。
1、脆性断裂特征 脆断时承受的工作应力很低,一般低于材料的屈服强
度。
脆断的裂纹源总是从内部的宏观缺陷处开始。
温度低,脆断倾向增加。
脆断断口平齐而光亮,且与正应力垂直,断口中常呈 人字纹或放射花样。
实际裂纹的扩展并不局限于这三种形式,往往是它们的组 合。在这些不同的裂纹扩展形式中,以I型裂纹扩展最危 险,容易引起脆性断裂。
xy
二、应力场强度因子KI及断裂韧度KIC 对于张开型(I型)裂纹试样,在拉伸或弯曲时,其裂纹