有理数分类易错题

合集下载

第二章。《有理数及其运算》易错题及难题

第二章。《有理数及其运算》易错题及难题

第二章。

《有理数及其运算》易错题及难题第二章《有理数及其运算》易错题、难题考点一:有理数的分类及应用1.下列说法正确的是().A.数是最小的整数。

B.若│a│=│b│,则a=b。

C.互为相反数的两数之和为零。

D.两个有理数,大的离原点远。

2.若两个有理数的和是正数,那么一定有结论()A.两个加数都是正数。

B.两个加数有一个是正数。

C.一个加数正数,另一个加数为零。

D.两个加数不能同为负数。

3.求1-2+3-4+5-6+……+2015-2018的结果不可能是()A.奇数。

B.偶数。

C.负数。

D.整数。

4.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.•2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A、0.8kg。

B、0.6kg。

C、0.5kg。

D、0.4kg。

考点二:数轴5.a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是()A.a+b<0.B.a+c<0.C.a-b>0.D.b-c<0.6.在数轴上表示下列各数:﹣5,-|-3.5|,2,接起来。

7.-11/22,|-53/64|,+4.并用“<”号把这些数连接起来。

11/22<|-53/64|<4.考点三:相反数8.倒数是它本身的数是;相反数是它本身的数是;绝对值是它本身的数是,绝对值最小的数是0.9.-m的相反数是m;-m+1的相反数是-m-1;m+1的相反数是-m-1.10.已知-a=9,那么-a的相反数是-9;已知a=-9,则a的相反数是9.11.两个非零有理数的和是0,则它们的商为(。

)A.0.B.-1.C.+1.D.不能确定。

考点四:绝对值12.已知数轴上的三点A、B、C分别表示有理数a,1,-1,那么|a+1|表示(。

)A.A、B两点的距离B.A、C两点的距离。

C.A、B两点到原点的距离之和。

D.A、C两点到原点的距离之和。

(易错题精选)初中数学有理数分类汇编附答案解析

(易错题精选)初中数学有理数分类汇编附答案解析

(易错题精选)初中数学有理数分类汇编附答案解析一、选择题1.如图,数轴上每相邻两点距离表示1个单位,点A ,B 互为相反数,则点C 表示的数可能是( )A .0B .1C .3D .5 【答案】C【解析】【分析】根据相反数的几何意义:在数轴上,一组相反数所表示的点到原点的距离相等,即可确定原点的位置,进而得出点C 表示的数.【详解】∵点A ,B 互为相反数,∴AB 的中点就是这条数轴的原点,∵数轴上每相邻两点距离表示1个单位,且点C 在正半轴距原点3个单位长度, ∴点C 表示的数为3.故选C.【点睛】本题考查了相反数和数轴的知识.利用相反数的几何意义找出这条数轴的原点是解题的关键.2.如果实数a ,b 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .a b <B .a b >-C .2a >-D .b a >【答案】D【解析】【分析】根据数轴可以发现a <b ,且-3<a <-2,1<b <2,由此即可判断以上选项正确与否.【详解】∵-3<a <-2,1<b <2,∴|a|>|b|,∴答案A 错误;∵a <0<b ,且|a|>|b|,∴a+b <0,∴a <-b ,∴答案B 错误;∵-3<a <-2,∴答案C 错误;∵a <0<b ,∴b >a ,∴答案D 正确.故选:D .【点睛】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.3.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .n m ->C .m n ->D .m n <【答案】C【解析】【分析】从数轴上可以看出m 、n 都是负数,且m <n ,由此逐项分析得出结论即可.【详解】解:因为m 、n 都是负数,且m <n ,|m|<|n|,A 、m >n 是错误的;B 、-n >|m|是错误的;C 、-m >|n|是正确的;D 、|m|<|n|是错误的.故选:C .【点睛】此题考查有理数的大小比较,关键是根据绝对值的意义等知识解答.4.下列说法错误的是( )A .2 a 与()2a -相等B ()2a -2a -C .3 a 3a -D .a 与a -互为相反数【答案】D【解析】【分析】根据乘方、算术平方根、立方根、绝对值,以及相反数的定义,分别对每个选项进行判断,即可得到答案.【详解】解:A 、()2a -=2 a ,故A 正确;B ()22a a -=()2a -2a -B 正确;C 、3 a 3a -C 正确;D 、a a -=,故D 说法错误;故选:D.【点睛】本题考查了乘方、算术平方根、立方根、绝对值,以及相反数的定义,解题的关键是熟练掌握所学的定义进行解题.5.已知整数1a ,2a ,3a ,4a ⋯满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+⋯依此类推,则2017a 的值为( )A .1007-B .1008-C .1009-D .2016- 【答案】B【解析】【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -;然后把n 的值代入进行计算即可得解. 【详解】解:10a =,21|1|011a a =-+=-+=-,32|2|121a a =-+=--+=-,43|3|132=-+=--+=-a a ,54|4|242=-+=--+=-a a ,……∴n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -; ∴20172017110082a -=-=-; 故选:B .【点睛】此题考查数字的变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.6.如图是张小亮的答卷,他的得分应是( )A .40分B .60分C .80分D .100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.7.在数轴上,点A,B在原点O的两侧,分别表示数a和3,将点A向左平移1个单位=,则a的值为().长度,得到点C.若OC OBA.3-B.2-C.1-D.2【答案】B【解析】【分析】先用含a的式子表示出点C,根据CO=BO列出方程,求解即可.【详解】解:由题意知:A点表示的数为a,B点表示的数为3, C点表示的数为a-1.因为CO=BO,所以|a-1| =3, 解得a=-2或4,∵a<0,∴a=-2.故选B.【点睛】本题主要考查了数轴和绝对值方程的解法,用含a的式子表示出点C,是解决本题的关键.8.下面说法正确的是()A.1是最小的自然数;B.正分数、0、负分数统称分数C.绝对值最小的数是0;D.任何有理数都有倒数【答案】C【解析】【分析】0是最小的自然数,属于整数,没有倒数,在解题过程中,需要关注【详解】最小的自然是为0,A错误;0是整数,B错误;任何一个数的绝对值都是非负的,故绝对值最小为0,C正确;0无倒数,D错误【点睛】本题是有理数概念的考查,主要需要注意0的特殊存在9.2019-的倒数是()A.2019 B.-2019 C.12019D.12019-【答案】C【解析】【分析】先利用绝对值的定义求出2019-,再利用倒数的定义即可得出结果.【详解】2019-=2019,2019的倒数为1 2019故选C【点睛】本题考查了绝对值和倒数的定义,熟练掌握相关知识点是解题关键.10.下列说法中不正确的是()A.-3 表示的点到原点的距离是|-3|B.一个有理数的绝对值一定是正数C.一个有理数的绝对值一定不是负数D.互为相反数的两个数的绝对值一定相等【答案】B【解析】【分析】根据绝对值的意义以及相反数的意义逐项进行分析即可得答案.【详解】A、根据绝对值的意义|-3|表示在数轴上表示-3的点到原点的距离,故A选项正确,不符合题意;B、若这个有理数为0,则0的绝对值还是0,故B选项错误,符合题意;C、根据绝对值的意义,|a|的绝对值表示在数轴上表示a的点到原点的距离,故任意有理数的绝对值都为非负数,所以不可能为负数,故C选项正确,不符合题意;D、根据相反数的定义可知:只有符号不同的两数互为相反数,可知互为相反数的两数到原点的距离相等,即互为相反数的两个数的绝对值相等,故D选项正确,不符合题意,故选B.【点睛】本题考查了绝对值的意义,绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0;绝对值的几何意义为:|a|表示在数轴上表示a 的这个点到原点的距离,熟练掌握绝对值的意义是解本题的关键.11.不论a 取什么值,下列代数式的值总是正数的是( )A .1a +B .1a +C .2aD .2(1)a + 【答案】B【解析】【分析】直接利用绝对值的性质以及偶次方的性质分别分析得出答案.【详解】A 、|a+1|≥0,故此选项错误;B 、|a|+1>0,故此选项正确;C 、a 2≥0,故此选项错误;D 、(a+1)2≥0,故此选项错误;故选B .【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确把握相关定义是解题关键.12.2019的倒数的相反数是( )A .-2019B .12019-C .12019D .2019 【答案】B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是12019, 12019的相反数为12019-, 所以2019的倒数的相反数是12019-, 故选B .【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.13.数轴上A ,B ,C 三点所表示的数分别是a ,b ,c ,且满足||||||c b a b a c ---=-,则A ,B ,C 三点的位置可能是( )A .B .C .D .【答案】C【解析】【分析】由A 、B 、C 在数轴上的位置判断出a 、b 、c 的大小关系,根据绝对值性质去绝对值符号,判断左右两边是否相等即可.【详解】当a c b <<时,||||c b a b b c a b a c ---=-+-=-,180°-66?38=113?22′′,此选项错误;B 、当a <b <c 时,||||2c b a b c b a b c a b ---=-+-=+-,44A-mB=,此项错误;C 、当c <a <b 时,||||c b a b b c a b a c ---=-+-=-,||a c a c -=-,此项正确D 、当c <b <a 时,||||2c b a b b c a b c a b ---=--+=--+,||a c a c -=-,此选项错误;故选C.【点睛】本题主要考查绝对值性质:正数绝对值等于本身,0的绝对值是0,负数绝对值等于其相反数.14.若320,a b -+=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B . 考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.15.实数a,b,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a b >B .0a b +>C .0ac >D .a c > 【答案】D【解析】【分析】根据数轴的特点:判断a 、b 、c 正负性,然后比较大小即可.【详解】根据数轴的性质可知:a <b <0<c ,且|c|<|b|<|a|;所以a >b ,0a b +>,ac >0错误;|a|>|c|正确;故选D . 【点睛】本题考查实数与数轴的关系,关键是根据实数在数轴上的位置判断字母的正负性,根据实数在数轴上离原点的距离判断绝对值的大小.16.实数,a b 在数轴上对应的点位置如图所示,则化简22||a a b b +++的结果是( )A .2a -B .2b -C .2a b +D .2a b -【答案】A【解析】【分析】2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】解:0,,a b a b Q <<> 0,a b ∴+<22||a a b b a a b b ∴++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.17.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣c|+7b-=0,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】b-=0,∵且|a-c|++7∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.18.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“6cm”分别对应数轴上表示﹣2和实数x的两点,那么x的值为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x之间的距离为6,∴x表示的数为:﹣2+6=4,故选:B.【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.19.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <-5B .b +d <0C .||||a c <D .c d <【答案】D【解析】【分析】根据数轴得到-5<a<b<0<c<d ,且a d b c >>>,再依次判断各选项即可得到答案.【详解】由数轴得-5<a<b<0<c<d ,且a d b c >>>,∴A 错误;∵b+d>0,故B 错误; ∵a c >,∴C 错误; ∵d c >,c>0, ∴c d <D 正确,故选:D.【点睛】此题考查数轴上数的大小关系,绝对值的性质,有理数的加法法则.20.下列语句正确的是( )A .近似数0.010精确到百分位B .|x-y |=|y-x |C .如果两个角互补,那么一个是锐角,一个是钝角D .若线段AP=BP ,则P 一定是AB 中点【答案】B【解析】【分析】A 中,近似数精确位数是看小数点后最后一位;B 中,相反数的绝对值相等;C 中,互补性质的考查;D 中,点P 若不在直线AB 上则不成立【详解】A 中,小数点最后一位是千分位,故精确到千分位,错误;B 中,x -y 与y -x 互为相反数,相反数的绝对值相等,正确;C 中,若两个角都是直角,也互补,错误;D 中,若点P 不在AB 这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的。

有理数概念十大易错题-解析

有理数概念十大易错题-解析

1、绝对值等于本身的数是,绝对值是相反数的数是。

答案:非负数;非正数解析:绝对值等于本身的数是非负数,绝对值是相反数的数是非正数。

2、下列说法中正确的是()A.平方是它本身的数是正数 B.绝对值是它本身的数是零C.立方是它本身的数是±1D.倒数是它本身的数是±1答案:选 D解析:∵平方是它本身的数是 1 和 0;绝对值是它本身的数是零和正数;立方是它本身的数是±1 和 0;倒数是它本身的数是±1,∴正确的答案为 D.3、下列说法中正确的是①正整数、负整数、零统称为整数;②正分数,负分数统称为分数;③整数、分数和零统称为有理数;④ 0 是偶数,也是自然数。

答案:①②④解析:第③项错误,整数和分数统称为有理数。

4、下列判断中,错误的是().①.一个有理数的相反数一定是负数;②.一个非正数的绝对值一定是正数;③.任何有理数的绝对值都是正数;④. 任何有理数的绝对值都不是负数。

答案:①②③解析:①:0 的相反数是0,故本选项错误;②:一个非正数的绝对值还可能为0,故本选项错误;③:有理数的绝对值还可能为0,故本选项错误;④:任何有理数的绝对值都不是负数,故本选项正确.5、下列说法正确的有①.整数包括正整数、负整数;②.0 是整数,也是自然数;③.分数包括正分数、负分数和 0;④.有理数中,不是负数就是正数答案:②解析:整数包括正、负整数和 0;分数包括正分数和负分数;有理数中,除了负数和正数还有 0.6、下列各组量中,具有相反意义的量是①节约汽油 10 升和浪费粮食 10 千克;② 向东走 10 公里和向北走 8 公里;③盈利 100 元和支出 200 元;④增加 10%与减少 20%。

答案:④7、在−22,3.1415926,0,−1.234 ⋯,˙,π,有理数的个数是().7 0. 3 2A . 2B . 3C . 4D . 5答案: C解析:−22,3.1415926,0,˙是有理数.7 0. 38、下列说法正确的是① 带有正号的数是正数,带有负号的数是负数;② 有理数是正数和小数的统称;③ 有最小的正整数,但没有最小的正有理数;④非负数一定是正数。

7年级数学易错题

7年级数学易错题

7年级数学易错题一、有理数运算类。

1. 计算:(-2)^3 - (-3)^2 ÷ (-1)^2023。

- 解析:- 先计算乘方运算。

(-2)^3=-8,(-3)^2 = 9,(-1)^2023=-1。

- 然后进行除法运算,9÷(-1)= - 9。

- 最后进行减法运算,-8-(-9)=-8 + 9 = 1。

2. 计算:(1)/(2)-<=ft(1)/(3)right+<=ft(-(1)/(4))。

- 解析:- 先计算绝对值,<=ft(1)/(3)right=(1)/(3)。

- 然后进行通分计算,(1)/(2)-(1)/(3)-(1)/(4)=(6 - 4 - 3)/(12)=-(1)/(12)。

二、整式加减类。

3. 化简:3a + 2b - 5a - b。

- 解析:- 合并同类项,将含有相同字母的项合并。

- 对于a的项,3a-5a=-2a;对于b的项,2b - b = b。

- 所以化简结果为-2a + b。

4. 先化简,再求值:(2x^2 - 3xy + 4y^2)-3(x^2 - xy+(5)/(3)y^2),其中x = - 2,y = 1。

- 解析:- 先去括号,2x^2-3xy + 4y^2-3x^2 + 3xy-5y^2。

- 再合并同类项,(2x^2-3x^2)+(-3xy + 3xy)+(4y^2 - 5y^2)=-x^2 - y^2。

- 当x = - 2,y = 1时,代入得-(-2)^2-1^2=-4 - 1=-5。

三、一元一次方程类。

5. 解方程:3x+5 = 2x - 1。

- 解析:- 移项,将含有x的项移到等号一边,常数项移到等号另一边。

- 得到3x - 2x=-1 - 5。

- 合并同类项得x=-6。

6. 解方程:(x + 1)/(2)-(2x - 1)/(3)=1。

- 解析:- 先去分母,方程两边同时乘以6,得到3(x + 1)-2(2x - 1)=6。

七年级上册第一章有理数易错题(含答案)

七年级上册第一章有理数易错题(含答案)

有理数易错题(1)一.选择题(共5小题)1.下列说法正确的是()A.|x|<xB.若|x﹣1|+2取最小值,则x=0C.若x>1>y>﹣1,则|x|<|y|D.若|x+1|≤0,则x=﹣12.如图,一个不完整的数轴(单位长度为1)上有A,B,C三个点,若点A,B表示的数互为相反数,则图中点C表示的数是()A.﹣2B.0 C.1 D.43.如图所示,则|a﹣b|=()A.a+b B.﹣a﹣bC.a﹣b D.b﹣a4.有理数a,b在数轴上的对应点的位置如图所示.把﹣a,b,0按照从小到大的顺序排列,正确的是()A.0<﹣a<b B.﹣a<0<bC.b<0<﹣a D.b<﹣a<05.已知a、b是不为0的有理数,且|a|=﹣a,|b|=b,|a|>|b|,那么用数轴上的点来表示a、b,正确的是()A.B.C.D.二.填空题(共8小题)6.一个数的相反数等于它本身,这个数是;比其相反数大的数是.7.数轴上A点表示﹣3,B、C两点表示的数互为相反数,且点B到点A的距离是2,则点C表示的数应该是.8.已知m与n互为相反数,且m与n之间的距离为6,且m<n,则m=,n=.9.若m,n互为相反数,m<n,且m与n在数轴上所对应的点之间的距离是5.8,则m=.10.一个数a在数轴上的对应点在原点左边,且|a|=9,则a的值为.11.相反数等于它本身的数是,倒数等于它本身的数是,绝对值等于它本身的数是,绝对值最小的有理数是,平方等于它本身的数是,立方等于它本身的数是.12.有理数a,b,c对应的点在数轴上的位置如下图:那么1a−b,1c−b,1a−c中,其中最大的是,最小的是.13.点A在数轴上距离原点3个单位长度,将A向右移动4个单位长度,再向左移动7个单位长度,此时点A表示的数是.三.解答题(共2小题)14.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.请用上面的知识解答下面的问题:(1)数轴上表示1和5的两点之间的距离是,数轴上表示﹣2和﹣4的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;(3)|x+1|+|x﹣2|取最小值是.15.化简下列各式的符号,并回答问题:①﹣(﹣2);②+(−15);③﹣[﹣(﹣4)];④﹣[﹣(+3.5)];⑤﹣{﹣[﹣(﹣5)]};⑥﹣{﹣[﹣(+5)]}.(1)当+5前面有1000个负号,化简后结果是多少?(2)当﹣5前面有999个负号,化简后结果是多少?(3)你能总结出什么规律?有理数易错题(1)参考答案与试题解析一.选择题(共5小题)1.下列说法正确的是()A.|x|<xB.若|x﹣1|+2取最小值,则x=0C.若x>1>y>﹣1,则|x|<|y|D.若|x+1|≤0,则x=﹣1【解答】解:A、当x=0时,|x|=x,故此选项错误,不符合题意;B、∵|x﹣1|≥0,∴当x=1时,|x﹣1|+2取最小值,故此选项错误,不符合题意;C、∵x>1>y>﹣1,∴|x|>1,|y|<1,∴|x|>|y|,故此选项错误,不符合题意;D、∵|x+1|≤0,|x+1|≥0,∴x+1=0,∴x=﹣1,故此选项正确,符合题意.故选:D.2.如图,一个不完整的数轴(单位长度为1)上有A,B,C三个点,若点A,B表示的数互为相反数,则图中点C表示的数是()A.﹣2B.0C.1D.4【解答】解:∵点A,B表示的数互为相反数,∴原点在图中所示位置:∴点C表示的数1.故选:C.3.如图所示,则|a﹣b|=()A.a+b B.﹣a﹣b C.a﹣b D.b﹣a【解答】解:通过数轴可判断a<0,b>0,所以﹣b<0,所以a﹣b<0,所以|a﹣b|=b﹣a,故选:D.4.有理数a,b在数轴上的对应点的位置如图所示.把﹣a,b,0按照从小到大的顺序排列,正确的是()A.0<﹣a<b B.﹣a<0<b C.b<0<﹣a D.b<﹣a<0【解答】解:由数轴可知,a<0<b,|a|<|b|,∴0<﹣a<b,故选:A.5.已知a、b是不为0的有理数,且|a|=﹣a,|b|=b,|a|>|b|,那么用数轴上的点来表示a、b,正确的是()A.B.C.D.【解答】解:∵|a|=﹣a,|b|=b,∴a≤0,b≥0,∵|a|>|b|,∴表示数a的点到原点的距离比b到原点的距离大,故选:C.二.填空题(共8小题)6.一个数的相反数等于它本身,这个数是0;比其相反数大的数是正数.【解答】解:0的相反数是0;正数大于它的相反数.故答案为:0;正数.7.数轴上A点表示﹣3,B、C两点表示的数互为相反数,且点B到点A的距离是2,则点C表示的数应该是1或5.【解答】解:∵点B到点A的距离是2,∴点B表示的数为﹣1或﹣5,∵B、C两点表示的数互为相反数,∴点C表示的数应该是1或5.故答案为1或5.8.已知m与n互为相反数,且m与n之间的距离为6,且m<n,则m=﹣3,n=3.【解答】解:∵m与n互为相反数,∴n=﹣m,∵m<n,且m与n之间的距离为6,∴n﹣m=6,∴﹣m﹣m=6,∴﹣2m=6,解得m=﹣3,∴n=3.故答案为:﹣3,3.9.若m,n互为相反数,m<n,且m与n在数轴上所对应的点之间的距离是5.8,则m=﹣2.9.【解答】解:∵m,n互为相反数,∴n=﹣m,∵m<n,且m与n在数轴上所对应的点之间的距离是5.8,∴n﹣m=5.8,∴﹣m﹣m=5.8,∴﹣2m=5.8,解得m=﹣2.9.故答案为:﹣2.9.10.一个数a在数轴上的对应点在原点左边,且|a|=9,则a的值为﹣9.【解答】解:∵|a|=9,∴a=±9,∵数a在数轴上的对应点在原点左边,∴a=﹣9.故答案为:﹣9.11.相反数等于它本身的数是0,倒数等于它本身的数是±1,绝对值等于它本身的数是非负数,绝对值最小的有理数是0,平方等于它本身的数是0、1,立方等于它本身的数是±1、0.【解答】解:相反数等于它本身的数是0,倒数等于它本身的数是±1,绝对值等于它本身的数是0、1,绝对值最小的有理数是0,平方等于它本身的数是非负数,立方等于它本身的数是±1、0.故:答案是:0;±1,非负数;0;0、1;±1、0.12.有理数a,b,c对应的点在数轴上的位置如下图:那么1a−b,1c−b,1a−c中,其中最大的是1c−b,最小的是1a−b.【解答】解:∵a<b<c,∴a﹣b<0,c﹣b>0,a﹣c<0,∴a﹣b<a﹣c<0,∴1a−b<1a−c<1c−b,故答案为1c−b,1a−b.13.点A在数轴上距离原点3个单位长度,将A向右移动4个单位长度,再向左移动7个单位长度,此时点A表示的数是﹣6或0.【解答】解:点A在数轴上距离原点3个单位长度,当点A在原点左边时,点A表示的数是﹣3,将A向右移动4个单位长度,再向左移动7个单位长度,此时点A表示的数是﹣3+4﹣7=﹣6;当点A在原点右边时,点A表示的数是3,将A向右移动4个单位,再向左移动7个单位长度得3+4﹣7=0.故答案为:﹣6 或0.三.解答题(共2小题)14.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.请用上面的知识解答下面的问题:(1)数轴上表示1和5的两点之间的距离是4,数轴上表示﹣2和﹣4的两点之间的距离是2,数轴上表示1和﹣3的两点之间的距离是4;(2)数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,那么x为1或﹣3;(3)|x+1|+|x﹣2|取最小值是3.【解答】解:(1)数轴上表示1和5的两点之间的距离是=|5﹣1|=4;数轴上表示﹣2和﹣4的两点之间的距离=|﹣2﹣(﹣4)|=2;数轴上表示1和﹣3的两点之间的距离是=|﹣3﹣1|=4;故答案为:4;2;4;(2)数轴上表示x和﹣1的两点A和B之间的距离=|x﹣(﹣1)|=|x+1|;∵|AB|=2,∴x+1=±2.解得:x=1或x=﹣3.故答案为:|x+1|;1或﹣3;(3)|x+1|+|x﹣2|表示数轴上某点到﹣1和2的距离之和.∴当﹣1≤x≤2时,|x+1|+|x﹣2|有最小值,最小值为3.故答案为:3.15.化简下列各式的符号,并回答问题:①﹣(﹣2);②+(−15);③﹣[﹣(﹣4)];④﹣[﹣(+3.5)];⑤﹣{﹣[﹣(﹣5)]};⑥﹣{﹣[﹣(+5)]}.(1)当+5前面有1000个负号,化简后结果是多少?(2)当﹣5前面有999个负号,化简后结果是多少?(3)你能总结出什么规律?【解答】解:①﹣(﹣2)=2;②+(−15)=−15;③﹣[﹣(﹣4)]=﹣4;④﹣[﹣(+3.5)]=+3.5;⑤﹣{﹣[﹣(﹣5)]}=5;⑥﹣{﹣[﹣(+5)]}=﹣5.(1)当+5前面有1000个负号,化简后结果是+5;(2)当﹣5前面有999个负号,化简后结果是+5,规律:在一个数的前面有偶数个负号,化简结果是本身;在一个数的前面有奇数个负号,化简结果是这个数的相反数.。

有理数的易错题

有理数的易错题

有理数的易错题
有理数是整数和分数的统称,包括正整数、负整数、零和正分数、负分数。


学习有理数的过程中,有一些易错题是经常出现的,以下是一些常见的易错题及解析:
1. 问题:计算-5+3时的结果是多少?
解析:-5+3=-2,减法运算要注意符号的变化,减去一个正数相当于加上这个
数的相反数。

2. 问题:-6与6之间的数有几个?
解析:-6与6之间的数有11个,包括-5、-4、-3、-2、-1、0、1、2、3、4、5。

3. 问题:计算-3×(-4)的结果是多少?
解析:-3×(-4)=12,两个负数相乘得正数。

4. 问题:-3-(-5)的运算结果是多少?
解析:-3-(-5)=2,减法运算转化为加法运算,-3+5=2。

5. 问题:-2/3+1/2的结果是多少?
解析:-2/3+1/2=-1/3,先通分再进行加法运算,-4/6+3/6=-1/3。

6. 问题:-2的绝对值是多少?
解析:-2的绝对值是2,绝对值是数与0的距离,所以-2的绝对值是2。

7. 问题:-4与-1的和的相反数是多少?
解析:-4与-1的和是-5,-5的相反数是5,数的相反数是在数轴上对称的数。

以上是有理数的一些易错题及解析,希望能帮助你更好地理解有理数的相关知识。

在学习过程中,多做练习,加强对有理数的理解,提高解题能力。

如果有更多问题,欢迎继续提问,我会尽力帮助你解答。

人教版七年级数学第一章《有理数》易错题训练 (4)含答案解析

人教版七年级数学第一章《有理数》易错题训练 (4)含答案解析

第一章《有理数》易错题训练 (4)一、选择题(本大题共14小题,共42.0分)1.有理数a,b在数轴上的位置如图所示,则下列各式成立的是()A. b−a>0B. −b>0C. a>−bD. −ab<02.一个数的相反数是−2020,则这个数是()A. 2020B. −2020C. 12020D. −120203.下列说法正确的是()A. 互为相反数的两个数一定不相等B. 绝对值等于它相反数的数是负数C. 一个有理数不是整数就是分数D. π3是分数4.下列各组数中,互为相反数的是()A. −(+3)与+(−3)B. −(−4)与|−4|C. −32与(−3)2D. −23与(−2)35.若两个数的和为正数,则这两个数()A. 至少有一个为正数B. 只有一个是正数C. 有一个必为零D. 都是正数6.在1:50000000的地图上量得两地间的距离是1.3cm,这两地间的实际距离(单位:m)用科学记数法表示是()A. 6.5×108B. 1.3×108C. 6.5×105D. 1.3×1057.下面一组数+7,−3.1,+15,−317,0.33,+5.8,其中非负分数共有()A. 3个B. 4个C. 5个D. 6个8.已知a、b互为相反数,则下列结论:①a、b在数轴上对应的点关于原点对称;②a+b=0;③|a|=|b|;④ab≤0.一定正确的有()个.A. 1B. 2C. 3D. 49.下列各组量中,互为相反意义的量是()A. 上升与减少B. 增产10吨与减产−10吨C. 篮球比赛胜5场与负3场D. 向东走3米与向南走3米10.下列叙述正确的个数是()①−5是5的相反数;②最小的负有理数是−1;③绝对值小于3的有理数有5个;④数轴上每一个点都对应一个有理数.A. 1个B. 2个C. 3个D. 4个 11. 在−2,0,3.14,102,π3,−|−13| ,100%中,非负整数的个数是( )A. 2个B. 3个C. 4个D. 5个12. 如图所示,点A 、B 、C 在数轴上的位置如图所示,O 为原点,C 表示的数为m ,BC =3,AO =3OB ,则A 表示的数为A. 3m −9B. 9−3mC. 2m −6D. m −3 13. 计算(−12)2012+(−12)2013的结果是 ( ) A. (1+12)2013 B. −(12)2013 C. −(12)2012 D. (12)201314. 每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为1.5亿千米,将1.5亿千米用科学计数法表示为( )A. 15×107千米B. 1.5×1011米C. 1.5×107千米D. 1.5×1012米二、填空题(本大题共9小题,共27.0分)15. 一个数的倒数就是它本身,这个数是_____________.16. 平方得1625的数是________ ;17. 计算:(+1)+(−2)+(+3)+(−4)+⋯⋯+(−2018)+(+2019)=_______.18. 用“>”“<”或“=”填空:−56___________−67.19. 立方等于它本身的数是______;平方等于它本身的数是_____。

有理数易错题汇编及答案解析

有理数易错题汇编及答案解析

有理数易错题汇编及答案解析一、选择题1.已知有理数a 、b 在数轴上的位置如图所示,则下列代数式的值最大的是( )A .a +bB .a ﹣bC .|a +b |D .|a ﹣b | 【答案】D【解析】【分析】根据数轴确定出a 是负数,b 是正数,并且b 的绝对值大于a 的绝对值,然后对各选项分析判断,再根据有理数的大小比较,正数大于一切负数,然后利用作差法求出两个正数的大小,再选择答案即可.【详解】由图可知,a<0,b>0,且|b|>|a|,∴−a<b ,A. a+b>0,B. a−b<0,C. |a+b|>0,D. |a−b|>0,因为|a−b|>|a+b|=a+b ,所以,代数式的值最大的是|a−b|.故选:D.【点睛】此题考查有理数的大小比较,数轴,解题关键在于利用绝对值的非负性进行解答.2.已知a b >,下列结论正确的是( )A .22a b -<-B .a b >C .22a b -<-D .22a b >【答案】C【解析】【分析】直接利用不等式的性质分别判断得出答案.【详解】A. ∵a>b ,∴a −2>b −2,故此选项错误;B. ∵a>b ,∴|a|与|b|无法确定大小关系,故此选项错误;C.∵a>b ,∴−2a<−2b ,故此选项正确;D. ∵a>b,∴a 2与b 2无法确定大小关系,故此选项错误;故选:C.【点睛】此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.3.实数在数轴上的对应点的位置如图所示,若,则下列结论中错误的是()A.B.C.D.【答案】A【解析】【分析】根据,确定原点的位置,根据实数与数轴即可解答.【详解】解:,原点在a,b的中间,如图,由图可得:,,,,,故选项A错误,故选:A.【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.4.四个有理数﹣2,1,0,﹣1,其中最小的数是()A.1 B.0 C.﹣1 D.﹣2【答案】D【解析】【分析】根据正数大于零,零大于负数,可得答案.【详解】∵-2<-1<0<1,最小的是-2.故选D.【点睛】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.5.下列各数中,比-4小的数是()-B.5-C.0 D.2A. 2.5【答案】B【解析】【分析】根据有理数的大小比较法则比较即可.【详解】∵0>−4,2>−4,−5<−4,−2.5>−4,∴比−4小的数是−5,故答案选B.【点睛】本题考查了有理数大小比较,解题的关键是熟练的掌握有理数的大小比较法则.6.在数轴上,点A ,B 在原点O 的两侧,分别表示数a 和3,将点A 向左平移1个单位长度,得到点C .若OC OB =,则a 的值为( ).A .3-B .2-C .1-D .2 【答案】B【解析】【分析】先用含a 的式子表示出点C ,根据CO =BO 列出方程,求解即可.【详解】解:由题意知:A 点表示的数为a ,B 点表示的数为3, C 点表示的数为a -1.因为CO =BO ,所以|a -1| =3, 解得a =-2或4,∵a <0,∴a =-2.故选B .【点睛】本题主要考查了数轴和绝对值方程的解法,用含a 的式子表示出点C ,是解决本题的关键.7.实数a b c d 、、、在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .3a >-B .0bd >C .0b c +<D .a b < 【答案】C【解析】【分析】根据数轴上点的位置,可以看出a b c d <<<,43a -<<-,21b -<<-,01c <<,3d =,即可逐一对各个选项进行判断.【详解】解:A 、∵43a -<<-,故本选项错误;B 、∵0b <,0d >,∴0bd <,故本选项错误;C 、∵21b -<<-,01c <<,∴0b c +<,故本选项正确;D 、∵43a -<<-,21b -<<-,则34a <<,12<<b ,∴a b >,故本选项错误;故选:C .【点睛】本题考查了数轴和绝对值,利用数轴上的点表示的数右边的总比左边的大、有理数的运算、绝对值的意义是解题的关键.8.已知一个数的绝对值等于2,那么这个数与2的和为( )A .4B .0C .4或—4D .0或4 【答案】D【解析】【分析】先根据绝对值的定义,求出这个数,再与2相加【详解】∵这个数的绝对值为2∴这个数为2或-22+2=4,-2+2=0故选:D【点睛】本题考查求绝对值的逆定理,需要注意,一个数的绝对值为正数a ,则这个为±a9.若x <2+|3-x|的正确结果是( ) A .-1B .1C .2x -5D .5-2x 【答案】C【解析】a = 的化简得出即可.解析:∵x <2+|3﹣x|=2352x x x -+-=- .故选D.10.12a =-,则a 的取值范围是( )A .12a ≥ B .12a > C .12a ≤ D .无解【答案】C【解析】【分析】根据二次根式的性质得2(21)a -=|2a-1|,则|2a-1|=1-2a ,根据绝对值的意义得到2a-1≤0,然后解不等式即可.【详解】解:∵2(21)a -=|2a-1|,∴|2a-1|=1-2a ,∴2a-1≤0,∴12a ≤. 故选:C .【点睛】 此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.11.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;12.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】 此题主要考查了二次根式的性质和绝对值的性质,关键是掌握2a =|a|.13.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【解析】【分析】利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立; 若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.14.2-的相反数是( )A .2-B .2C .12D .12- 【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .15.67-的绝对值是( ) A .67 B .76- C .67- D .76【答案】A 【解析】【分析】非负数的绝对值还是它本身,负数的绝对值是其相反数,据此进行解答即可.【详解】解:|﹣67|=67,故选择A. 【点睛】本题考查了绝对值的定义.16.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a 、b 的正负性,a 、b 的绝对值的大小,即可解答. 【详解】根据数轴可知:-2<a <-1,0<b <1,∴a+b <0,|a|>|b|,ab <0,a-b <0.所以只有选项D 成立.故选:D .【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.17.已知a ,b ,c 是有理数,当0a b c ++=,0abc <时,求a b c b c a c a b+-+++的值为( )A .1或-3B .1,-1或-3C .-1或3D .1,-1,3或-3 【答案】A【解析】根据0a b c ++=,0abc <,可知这三个数中只能有一个负数,另两个为正数,把0a b c ++=变形代入代数式求值即可.【详解】解:∵0a b c ++=,∴b c a +=-、a c b +=-、a b c +=-,∵0abc <,∴a 、b 、c 三数中有2个正数、1个负数, 则a b c a b c b c a c a b a b c+-=+-+++---, 若a 为负数,则原式=1-1+1=1,若b 为负数,则原式=-1+1+1=1,若c 为负数,则原式=-1-1-1=-3,所以答案为1或-3.故选:A .【点睛】 本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数.18.下列各组数中互为相反数的一组是( )A .3与13B .2与|-2|C .(-1) 2与1D .-4与(-2) 2【答案】D【解析】 考点:实数的性质.专题:计算题. 分析:首先化简,然后根据互为相反数的定义即可判定选择项.解答:解:A 、两数数值不同,不能互为相反数,故选项错误;B 、2=|-2|,两数相等,不能互为相反数,故选项错误.C 、(-1)2=1,两数相等;不能互为相反数,故选项错误;D 、(-2)2=4,-4与4互为相反数,故选项正确;故选D .点评:此题主要考查相反数定义:互为相反数的两个数相加等于0.19.小麦做这样一道题“计算()3-+”、其中“□”是被墨水污染看不清的一个数,他翻开后面的答案,得知该题计算结果是8,那么”□”表示的数是( )A .5B .-5C .11D .-5或11【答案】D【分析】根据绝对值的性质求得结果,采用排除法判定正确选项.【详解】解:设”□”表示的数是x ,则|(-3)+x|=8,∴-3+x=-8或-3+x=8,∴x=-5或11.故选:D .【点睛】本题考查了绝对值的运算,掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.20.下列各组数中,互为相反数的组是( )A .2-B .2-C .12-与2D . 【答案】A【解析】【分析】根据相反数的概念及性质逐项分析得出答案即可.【详解】A 、-2=2,符合相反数的定义,故选项正确;B 、-2不互为相反数,故选项错误;C 、12-与2不互为相反数,故选项错误; D 、|-2|=2,2与2不互为相反数,故选项错误.故选:A .【点睛】此题考查相反数的定义,解题关键在于掌握只有符号不同的两个数互为相反数,在本题中要注意理解求|-2|的相反数就是求2的相反数,不要受绝对值中的符号的影响.。

有理数易错题

有理数易错题

第一章有理数易错题一.填空题(共10小题)1.在,0,﹣(﹣1.5),﹣|﹣5|,2,,﹣24中,是负数有,是整数有.2.﹣2.5的相反数是,倒数是.3.﹣(﹣4)的相反数是.4.﹣a的相反数是.﹣a的相反数是﹣5,则a=.5.一个数的绝对值是4,则这个数是.6.如果|m﹣1|=5,则m=.7.﹣52的底数是,指数是.8.计算:23×()2=.9.据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为人次.10.用四舍五入法得到的近似值0.380精确到位,48.68万精确到位.二.解答题(共4小题)11.计算:(1)、﹣14﹣[2﹣(﹣3)2]÷()3.(2)、﹣14﹣(1﹣0.5)××[4﹣(﹣2)3].(3)、(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)](4)、.12.历城区交警大队一辆警车沿着一条南北方向的公路巡视,某天早晨从A地出发,约定向北为正方向,当天行驶记录如下(单位:千米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10问:(1)警车最后是否回到出发点?为什么?(2)若该警车每千米耗油3升,那么该天共耗油多少升?(3)若油箱中有150升油,中途是否需要加油?若需要,至少加多少升?参考答案与试题解析一.填空题(共10小题)1.(2016秋?唐河县期中)在,0,﹣(﹣1.5),﹣|﹣5|,2,,﹣24中,是负数有﹣5,﹣|﹣5|,﹣24,是整数有0,﹣|﹣5|,2,﹣24.【分析】首先把数进行化简,再根据负数,整数的意义区分是负数还是整数.【解答】解:∵﹣(﹣1.5)=1.5,﹣=﹣5,﹣24=﹣16.故答案为:负数有﹣5,﹣|﹣5|,﹣24,整数有0,﹣|﹣5|,2,﹣24.【点评】解此题的关键是利用学过的法则进行化简.难点是理解负数和整数的含义,并进行划分.题型较好,难度不大.2.(2016秋?扬中市期中)﹣2.5的相反数是 2.5,倒数是﹣.【分析】根据只有符号不同的两个数是相反数,可得﹣2.5的相反数,根据乘积是1的两个数互为倒数,可得﹣2.5的倒数.【解答】解:﹣2.5的相反数是2.5,﹣2.5的倒数是,故答案为:2.5,﹣.【点评】本题考查了有理数的倒数,理解乘积是1的两个数互为倒数是解题关键.3.(2013秋?广陵区校级期中)﹣(﹣4)的相反数是﹣4.【分析】根据只有符号不同的两个数是相反数,可得﹣(﹣4)的相反数.【解答】解:∵﹣(﹣4)=4,4的相反数是﹣4,∴﹣(﹣4)的相反数是﹣4,故答案为:﹣4.【点评】本题考查了相反数,对﹣(﹣4)的化简是解题关键.4.(2015秋?德州校级月考)﹣a的相反数是a.﹣a的相反数是﹣5,则a=﹣5.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣a的相反数是a,﹣a的相反数是﹣5,则﹣(﹣a)=﹣5,所以,a=﹣5.故答案为:a;﹣5.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.5.(2016秋?姜堰区期中)一个数的绝对值是4,则这个数是4,﹣4.【分析】题中已知一个数的绝对值,求这个数,根据绝对值的意义求解即可,注意结果有两个.【解答】解:一个数的绝对值是4,根据绝对值的意义,这个数是:4和﹣4故答案为:4和﹣4.【点评】此题主要考察绝对值的意义,在解题时注意结果有两个且互为相反数.6.(2015春?营山县校级期末)如果|m﹣1|=5,则m=6或﹣4.【分析】根据绝对值的定义可知m﹣1=5或m﹣1=﹣5,然后可求得m的值.【解答】解:∵|m﹣1|=5,∴m﹣1=5或m﹣1=﹣5.解得:m=6或m=﹣4.故答案为:6或﹣4.【点评】本题主要考查的是绝对值的定义,明确5和﹣5的绝对值都等于5是解题的关键.7.(2013秋?揭西县校级期中)﹣52的底数是5,指数是2.【分析】根据有理数乘方的定义解答.【解答】解:根据乘方的定义,﹣52的底数是5,指数是2.故答案为:5,2.【点评】本题考查了有理数的乘方,是基础概念题,比较简单,要注意﹣52与(﹣5)2的区别.8.(2015?湖州)计算:23×()2=2.【分析】根据有理数的乘方,即可解答.【解答】解:23×()2=8×=2,故答案为:2.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数乘方的定义.9.(2016?昆山市一模)据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为8.03×106人次.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于803万有7位,所以可以确定n=7﹣1=6.【解答】解:803万=8030000=8.03×106.故答案为:8.03×106.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.10.(2016秋?如皋市校级月考)用四舍五入法得到的近似值0.380精确到千分位,48.68万精确到百位.【分析】一个数要确定精确到哪位,首先要把这个数还原成一般的数,然后看最后一个数字在还原的数中是什么位.【解答】解:0.380的0实际在千分位上,即精确到了千分位;3.56万的6实际在百位上,即精确到了百位.故答案为:千分;百.【点评】本题主要考查了近似数的精确.近似数的精确度理解要深刻,能熟练运用四舍五入法取近似数.二.解答题(共4小题)11.(2015秋?淮北期末)计算:﹣14﹣[2﹣(﹣3)2]÷()3.【分析】先算14=1,(﹣3)2=9,=,再算减法,最后算除法和加法即可.【解答】解:原式=﹣1﹣[2﹣9]÷,=﹣1﹣(﹣7)×8,=﹣1+56,=55.【点评】本题主要运用了有理数的加法法则,除法法则,乘方法则等知识点,注意运算顺序:先算乘方,再算乘除,最后算加减,有括号先算括号里面的.12.(2014秋?太仓市期末)计算(1)(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)](2)﹣14﹣(1﹣0.5)××[4﹣(﹣2)3].【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=(﹣1)×(﹣5)÷[9+(﹣10)]=5÷(﹣1)=﹣5;(2)原式=﹣1﹣()××[4﹣(﹣8)]=﹣1﹣×12=﹣1﹣2=﹣3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.13.(2013秋?历城区期中)历城区交警大队一辆警车沿着一条南北方向的公路巡视,某天早晨从A地出发,约定向北为正方向,当天行驶记录如下(单位:千米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10问:(1)警车最后是否回到出发点?为什么?(2)若该警车每千米耗油3升,那么该天共耗油多少升?(3)若油箱中有150升油,中途是否需要加油?若需要,至少加多少升?【分析】(1)把所有行驶记录相加,可判断最终位置;(2)根据行车就好有可算出耗油量;(3)耗油量与油箱中的油比较,可判断是否需要加油.【解答】解:(1)5﹣3+10﹣8﹣6+12﹣10=0(千米),因为结果为0,警车既不在出发点北,也不在出发点南,答:警车最后回到出发点;(2)|5|+|﹣3|+|10|+|﹣8|+|﹣6|+|12|+|﹣10|=54(千米),54×3=162(升),答:该天警车共耗油162升;(3)∵162升>150升,∴162﹣150=12(升),答:中途需要加油,至少加12升.【点评】本题考查了正数与负数,注意正负数的分界是0,即0既不是正数也不是负数,不论向那行驶都要耗油.14.(2012秋?岳池县校级月考).【分析】把括号内分数通分并计算,然后根据有理数的除法运算法则进行计算即可得解.【解答】解:﹣÷(+﹣),=﹣÷(+﹣),=﹣÷,=﹣×10,=﹣.【点评】本题考查了有理数的乘法,容易效仿乘法分配律计算而导致出错.。

七年级数学有理数易错题专项练习

七年级数学有理数易错题专项练习

七年级数学有理数易错题专项练习1.填空:(1)当a________时,a与-a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是________;(3)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是_______.错解(1)a为任何有理数;(2)+5;(3)+3;(4)-6.2.用“有”、“没有”填空:在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.错解有,有,没有.3.用“都是”、“都不是”、“不都是”填空:(1)所有的整数________负整数;(2)小学里学过的数________正数;(3)带有“+”号的数________正数;(4)有理数的绝对值________正数;(5)若|a|+|b|=0,则a,b________零;(6)比负数大的数________正数.错解(1)都不是;(2)都是;(3)都是;(4)都是;(5)不都是;(6)都是.4.用“一定”、“不一定”、“一定不”填空:(1)-a________是负数;(2)当a>b时,________有|a|>|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;(4)|x|+|y|________是正数;(5)一个数________大于它的相反数;(6)一个数________小于或等于它的绝对值;错解(1)一定;(2)一定;(3)一定不;(4)一定;(5)一定;(6)不一定.5.把下列各数从小到大,用“<”号连接:并用“>”连接起来.8.填空:(1)如果-x=-(-11),那么x=________;(2)绝对值不大于4的负整数是________;(3)绝对值小于4.5而大于3的整数是________.错解(1)11;(2)-1,-2,-3;(3)4.9.根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和;(2)a与b的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分母是x,分子比分母的相反数大6;(4)x,y两数和的相反数乘以x,y两数和的绝对值.10.代数式-|x|的意义是什么?错解代数式-|x|的意义是:x的相反数的绝对值.11.用适当的符号(>、<、≥、≤)填空:(1)若a是负数,则a________-a;(2)若a是负数,则-a_______0;(3)如果a>0,且|a|>|b|,那么a________ b.错解(1)>;(2)<;(3)<.12.写出绝对值不大于2的整数.错解绝对值不大2的整数有-1,1.13.由|x|=a能推出x=±a吗?错解由|x|=a能推出x=±a.如由|x|=3得到x=±3,由|x|=5得到x=±5.14.由|a|=|b|一定能得出a=b吗?错解一定能得出a=b.如由|6|=|6|得出6=6,由|-4|=|-4|得-4=-4.15.绝对值小于5的偶数是几?错解绝对值小于5的偶数是2,4.16.用代数式表示:比a的相反数大11的数.错解-a-11.17.用语言叙述代数式:-a-3.错解代数式-a-3用语言叙述为:a与3的差的相反数.18.算式-3+5-7+2-9如何读?错解算式-3+5-7+2-9读作:负三、正五、减七、正二、减九.19.把下列各式先改写成省略括号的和的形式,再求出各式的值.(1)(-7)-(-4)-(+9)+(+2)-(-5);(2)(-5)-(+7)-(-6)+4.解(1)(-7)-(-4)-(+9)+(+2)-(-5)=-7-4+9+2-5=-5;(2)(-5)-(+7)-(-6)+4=5-7+6-4=8.20.计算下列各题:(2)5-|-5|=10;21.用适当的符号(>、<、≥、≤)填空:(1)若b为负数,则a+b________a;(2)若a>0,b<0,则a-b________0;(3)若a为负数,则3-a________3.错解(1)>;(2)≥;(3)≥.22.若a为有理数,求a的相反数与a的绝对值的和.错解-a+|a|=-a+a=0.23.若|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.错解由|a|=4,得a=±4;由|b|=2,得b=±2.当a=4,b=2时,a-b=2;当a=4,b=-2时,a-b=6;当a=-4,b=2时,a-b=-6;当a=-4,b=-2时,a-b=-2.24.列式并计算:-7与-15的绝对值的和.错解|-7|+|-15|=7+15=22.25.用简便方法计算:26.用“都”、“不都”、“都不”填空:(1)如果a b≠0,那么a,b________为零;(2)如果ab>0,且a+b>0,那么a,b________为正数;(3)如果ab<0,且a+b<0,那么a,b________为负数;(4)如果ab=0,且a+b=0,那么a,b________为零.错解(1)不都;(2)不都;(3)都;(4)不都.27.填空:(3)a,b为有理数,则-ab是_________;(4)a,b互为相反数,则(a+b)a是________.错解(1)负数;(2)正数;(3)负数;(4)正数.28.填空:(1)如果四个有理数相乘,积为负数,那么负因数个数是________;错解(1)3;(2)b>0.29.用简便方法计算:解30.比较4a和-4a的大小:错解因为4a是正数,-4a是负数.而正数大于负数,所以4a>-4a.31.计算下列各题:(5)-15×12÷6×5.解=-48÷(-4)=12;(5)-15×12÷6×5错解因为|a|=|b|,所以a=b.=1+1+1=3.34.下列叙述是否正确?若不正确,改正过来.(1)平方等于16的数是(±4)2;(2)(-2)3的相反数是-23;错解(1)正确;(2)正确;(3)正确.35.计算下列各题;(1)-0.752;(2)2×32.解36.已知n为自然数,用“一定”、“不一定”或“一定不”填空:(1)(-1)n+2________是负数;(2)(-1)2n+1________是负数;(3)(-1)n+(-1)n+1________是零.错解(1)一定不;(2)不一定;(3)一定不.37.下列各题中的横线处所填写的内容是否正确?若不正确,改正过来.(1)有理数a的四次幂是正数,那么a的奇数次幂是负数;(2)有理数a与它的立方相等,那么a=1;(3)有理数a的平方与它的立方相等,那么a=0;(4)若|a|=3,那么a3=9;(5)若x2=9,且x<0,那么x3=27.38.用“一定”、“不一定”或“一定不”填空:(1)有理数的平方________是正数;(2)一个负数的偶次幂________大于这个数的相反数;(3)小于1的数的平方________小于原数;(4)一个数的立方________小于它的平方.错解(1)一定;(2)一定;(3)一定;(4)一定不.39.计算下列各题:(1)(-3×2)3+3×23;(2)-24-(-2)4;(3)-2÷(-4)2;解(1)(-3×2)3+3×23=-3×23+3×23=0;(2)-24-(-2)4=0;40.用科学记数法记出下列各数:(1)314000000;(2)0.000034.错解(1)314000000=3.14×106;(2)0.000034=3.4×10-4. 41.判断并改错(只改动横线上的部分):(1)用四舍五入得到的近似数 0.0130 有 4 个有效数字. (2)用四舍五入法,把 0.63048 精确到千分位的近似数是 0.63. (3 )由四舍五入得到的近似数 3.70 和 3.7 是一样的. (4)由四舍五入得到的近似数 4.7 万,它精确到十分位. 42.改错(只改动横线上的部分): (1)已知 5.0362=25.36,那么 50.362=253.6,0.050362=0.02536; (2)已知 7.4273=409.7,那么 74.273=4097,0.074273=0.04097; (3)已知 3.412=11.63,那么(34.1 )2=116300; (4)近似数 2.40×104 精确 到百分位,它的有效数字 是 2,4; (5)已知 5.4953=165.9,x3=0.0001659,则 x=0.5495.正确答案1.(1)不等于 0 的有理数;(2)+5,-5;(3)-2,+4;(4)6. 2.(1)没有;(2)没有;(3)有. 3.(1)不都是;(2)不都是;(3)不都是;(4)不都是;(5)都是;(6)不都是. 原解错在没有注意“0”这个特殊数(除(1)、(5)两小题外). 4.(1)不一定;(2)不一定;(3)不一定;(4)不一定;(5)不一定;(6)一定.学习目标:1、复习整理有理数有关概念和有理数运算法则,运算律以及近似计算等有关知识。

《有理数》易错题

《有理数》易错题

初学有理数的常见错误剖析 对于初学有理数者,在解题中出现错误是难免的,也是正常的,但必须弄清产生错误的原因,掌握正确的解答方法,只有这样才能逐步形成数学基本技能和能力,本文就有理数这一部分中的解题易犯错误归纳剖析如下.一、答案不完整例1.若一个有理数的:①倒数②绝对值③平方④立方,等于它本身,则这个数分别是⑴ ;(2) ;(3) ;(4) .错误答案:⑴ 1 ⑵ 正数 ⑶ 1 ⑷±1 .分析:给出的答案不完整,漏掉了一些符合条件的数,产生错误的原因主要是把数的认识局限在正数范围之内,忽视0和才引进的负数,对数的范围的拓宽不适应,另外由于对负数、倒数、绝对值等概念没有完全正确理解而造成的错误. 正确答案是:⑴ ±1 ⑵ 正数和0 ⑶ 1和0 ⑷ ±1和0.二、分类不明确例2.有理数中,⑴最小的正整数是 ;⑵最小的整数是 ;⑶绝对值最小的数是 ;⑷最小的正数是 .错误答案:⑴ 0 ⑵ 1 ⑶ 1 ⑷ 1 .分析:产生错误的原因,一是对有理数的分类没有弄清楚,二是“任意两个有理数之间总至少存在一个有理数”的性质不理解,当然也有一部分同学因“正数”和“整数”的概念混淆而导致错误.正确答案:⑴ 1 ⑵ 不存在 ⑶ 0 ⑷ 不存在 .三、概念不清晰例3.判断正误:(1)任何一个有理数的相反数和它的绝对值都不可能相等( )(2)任何一个有理数的相反数都不会等于它的倒数( ) 错误答案:⑴ ∨ ⑵ × .分析:第(1)小题失误原因,一是误认为一个有理数a 的相反数-a 总是负数; 二是误认为a 能够等于a ,而得到a ≠-a ,究其根源是对“相反数”和“绝对值”的概念还没弄明白.第(2)小题失误原因是对一个有理数和它的倒数,以及相反数的符号之间的关系不清晰所致.正确答案:⑴ × ⑵∨.四、运算不准确1.运算符号错误例4.计算)15(120)4()25.6(-÷--⨯-错解:原式=25-8=17.剖析:此解将120前面的“-”号既视为运算符号,又视为性质符号,以致出错.应当注意“-”号在运算中只能当作二者中的一种.正解:原式=25-(-8)=33.例5.计算5)6(42-----错解:原式=16+6-5=17.剖析:此解忽略了24-与2)4(-的区别,24-表示4的平方的相反数,其结果为-16,2)4(-表示两个-4相乘,其结果为16。

语法知识—有理数的易错题汇编含答案解析

语法知识—有理数的易错题汇编含答案解析

一、填空题1.根据数轴简化:a c c b a b ++-++=______.2.若有理数a ,b 满足|a+12|+b 2=0,则a b =______. 3.已知:﹣a =2,|b |=6,且a >b ,则a +b =_____. 4.数轴上到原点距离为22的点表示的实数是__________. 5.有理数a ,b ,c ,d 满足1,abcd abcd=-则a b c d abcd+++=______.6.已知整数a 1、a 2、a 3、a 4、……满足下列条件:a 1=-1,a 2=-|a 1+2|,a 3=-|a 2+3|,a 4=-|a 3+4|,……,a n +1=-|a n +n +1|(n 为正整数)依此类推,则a 2019的值为____________.二、解答题7.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):5+,4-,3+,7-,4+,8-,2+,1-.(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每千米耗油0.5升,已知摩托车出发时油箱里有20升汽油,问中午收工前是否需要中途加油?若加,应加多少升?若不加,还剩多少升汽油? 8.先化简,再求值:()()222223532x xy yxyx y +--+-,其中2|1|(2)0x y ++-=.9.在班级元旦联欢会上,主持人邀李强、张华两位向学参加一个游戏.游戏规则是每人每次抽取四张卡片.如果抽到白色卡片,那么加上卡片上的数字;如果抽到黑色卡片,那么减去卡片上的数字,比较两人所抽4张卡片的计算结果,结果较小的为同学们唱歌,李强同学抽到如图(1)所示的四张卡片,张华同学抽到如图(2)所示的四张卡片.李强、张华谁会为同学们唱歌?10.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产计为正、减产计为负): 星期一二三四五六七增减(单位:个)5+ 2- 5- 15+ 10- 16+ 9-()1本周产量中最多的一天比最少的一天多生产多少个工艺品? ()2请求出该工艺厂在本周实际生产工艺品的数量;()3已知该厂实行每周计件工资制,每生产一个工艺品可得50元,若超额完成任务,则超过部分每个另奖20元.少生产一个扣60元.试求该工艺厂在这一周应付出的工资总额. 11.把()()()325,2,0,2,25,1--------表示在数轴上,并经它们按从小到大的顺序排列.12.已知a ,b 互为相反数,m ,n 互为倒数,c 的绝对值为2,求代数式a b mn c ++-的值.13.点A B ,在数轴上所对应的数分别是a b ,,其中a b ,满足()2460a b -++=. (1)求a b ,的值;(2)数轴上有一点C ,使得32AC BC AB +=,求点C 所对应的数; (3)点D 为A B ,中点,O 为原点,数轴上有一动点P ,求PA PB PD PO ++-的最小值及点P 所对应的数的取值范围.14.已知数轴上两点A B 、对应的数分别是6,8-,M N P 、、为数轴上三个动点,点M 从A 点出发速度为每秒2个单位,点N 从点B 出发速度为M 点的3倍,点P 从原点出发速度为每秒1个单位.()1若点M 向右运动,同时点N 向左运动,求多长时间点M 与点N 相距54个单位? ()2若点M N P 、、同时都向右运动,求多长时间点P 到点,M N 的距离相等?15.已知:b 是最小的正整数,且a 、b 满足|6|||0c a b -++=,请回答问题: (1)请直接写出a 、b 、c 的值.a = ,b = ,c = .(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在A 、B 之间运动时,请化简式子:|1||1|2|5|x x x +---+(请写出化简过程)(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒(0)n n >个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2n 个单位长度和5n 个单位长度的速度向右运动,假设经过t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC AB -的值是否随着时间的变化而改变?若变化,请说明理由:若不变,请求其值.16.如图,在数轴上点A表示的有理数为6-,点B表示的有理数为6,点P从点A出发以每秒4个单位长度的速度在数轴上由A向B运动,设运动时间为t(单位:秒).(1)在点P沿数轴由点A到点B运动过程中,则点P与点A的距离_______;(用含t的代数式表示);(2)当点P表示的有理数与原点的距离是3个单位长度时,请求出所有满足条件的t值.(3)若点Q从点B以每秒2单位的速度与点P同时出发,是否存在某一时刻t,使9PQ=,如果存在,直接写出t的值;不存在,请说明理由!17.在数轴上,我们把表示数2的点定为核点,记作点C,对于两个不同的点A和B,若点A,B到点C的距离相等,则称点A与点B互为核等距点.如图,点A表示数-1,点B 表示数5,它们与核点C的距离都是3个单位长度,我们称点A与点B互为核等距点.(1)已知点M表示数3,如果点M与点N互为核等距点,那么点N表示的数是______;(2)已知点M表示数m,点M与点N互为核等距点,①如果点N表示数8m+,求m的值;②对点M进行如下操作:先把点M表示的数乘以2,再把所得数表示的点沿着数轴向左移动5个单位长度得到点N,求m的值.18.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.问题(1):点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C的距离之和可表示为(用含绝对值的式子表示).问题(2):利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是;②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的值取在的范围时,|x|+|x﹣2|的最小值是.问题(3):求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值.三、1319.下列说法:①分数包括正分数、负分数;②345表示3个45相乘:③互为相反数的两数相乘,积为负数;④零除以任何数都得零;⑤几个有理数相乘,当负因数的个数为奇数个时,积为负.正确的有()A .1个B .2C .3个D .4个20.已知四个式子:(1)3457--;(2)3457---;(3)3457---;(4)34()57---,它们的值从小到大的顺序是( ) A .(4)(3)(2)(1)<<< B .(3)(4)(2)(1)<<<C .(2)(4)(3)(1)<<<D .(3)(2)(4)(1)<<<21.下列各组数中,相等的一组是( ) A .()22-和22-B .()43-和43- C .()34-和34-D .()34-和4322.的相反数是( )A .B .2C .D23.已知蚂蚁沿数轴从点A 向左爬行10个单位长度到达点B ,点B 表示的数为﹣2,则A 表示的数是( ) A .8B .12C .﹣4D .﹣12 24.已知实数,x y 满足2|3|(4)0x y -++=,则代数式2020()x y +的值为( ) A .1B .-1C .2020D .-202025.在12,,4,523---,在这四个数中,绝对值最小为( ) A .4B .12-C .23-D .-5【参考答案】***试卷处理标记,请不要删除一、填空题 1.-2a-2b 【分析】由数轴可知:c >0a <b <0根据去绝对值法则化简即可得答案【详解】由数轴可知:c >0a <b <0∴a+c <0c-b >0a+b <0∴-(a+c )+(c-b )-(a+b )=-2a-2b 解析:-2a-2b 【分析】由数轴可知:c >0,a <b <0,a c >,根据去绝对值法则化简即可得答案. 【详解】由数轴可知:c >0,a <b <0,a c >, ∴a+c <0,c-b >0,a+b <0,∴a c c b a b ++-++=-(a+c )+(c-b )-(a+b )=-2a-2b ,故答案为:-2a-2b【点睛】本题考查数轴的基本知识结合绝对值的综合运用,能够正确判断出各式子的正负是解题关键.2.1【分析】首先依据非负数的性质求得ab的值然后利用有理数的乘方求解即可【详解】∵|a+|+b2=0∴a=-b=0∴ab=(-)0=1故答案为:1【点睛】本题主要考查的是非负数的性质熟练掌握非负数的性解析:1【分析】首先依据非负数的性质求得a、b的值,然后利用有理数的乘方求解即可.【详解】∵|a+12|+b2=0,∴a=-12,b=0.∴a b=(-12)0=1.故答案为:1.【点睛】本题主要考查的是非负数的性质,熟练掌握非负数的性质是解题的关键.3.-8【分析】根据相反数的定义绝对值的性质可得ab的值根据有理数的加法可得答案【详解】∵﹣a=2|b|=6且a>b∴a=﹣2b=-6∴a+b=﹣2+(-6)=-8故答案为:-8【点睛】本题考查了相反数解析:-8.【分析】根据相反数的定义,绝对值的性质,可得a、b的值,根据有理数的加法,可得答案.【详解】∵﹣a=2,|b|=6,且a>b,∴a=﹣2,b=-6,∴a+b=﹣2+(-6)=-8,故答案为:-8.【点睛】本题考查了相反数的定义,绝对值的性质,有理数的加法运算法则,注意一个正数的绝对值有2个数.4.【分析】数轴上表示数a与原点的距离叫做数a的绝对值据此即可得答案【详解】设这个实数是x∵这个实数到原点距离为∴=∴x=故答案为:【点睛】本题考查绝对值的定义熟练掌握定义是解题关键解析:【分析】数轴上,表示数a 与原点的距离叫做数a 的绝对值,据此即可得答案. 【详解】 设这个实数是x ,∵这个实数到原点距离为∴x =∴x=±,故答案为:± 【点睛】本题考查绝对值的定义,熟练掌握定义是解题关键.5.±2【分析】根据有理数的除法法则可得abcd 四个数中有1个负数或3个负数然后分情况计算出abcd 四个数中有1个负数时:的值再计算出abcd 四个数中有3个负数时:的值即可求解【详解】∵四个有理数abc解析:±2 【分析】根据有理数的除法法则可得a 、b 、c 、d 四个数中有1个负数或3个负数,然后分情况计算出a 、b 、c 、d 四个数中有1个负数时:a b c d abcd+++的值,再计算出a 、b 、c 、d 四个数中有3个负数时:a b c d abcd+++的值,即可求解.【详解】∵四个有理数a 、b 、c 、d 满足1,abcd abcd=-,∴a 、b 、c 、d 四个数中有1个负数或3个负数, ①a 、b 、c 、d 四个数中有1个负数时:a b c d a b c d +++=1+1+1−1=2,②a 、b 、c 、d 四个数中有3个负数时:a b c d abcd+++=−1−1+1−1=−2,故答案为:±2. 【点睛】此题主要考查了有理数的除法和绝对值,关键是根据两数相除,同号得正,异号得负,并把绝对值相除确定a 、b 、c 、d 四个数中负数的个数.6.-1010【分析】本题需先求出的值然后根据值的情况区分奇数和偶数的情况最后总结规律得出结论【详解】…所以n 是奇数时结果等于;n 是偶数时结果等于;【点睛】本题主要考查学生对探索规律等考点的理解解析:-1010 【分析】本题需先求出12345,,,,a a a a a 的值,然后根据值的情况,区分奇数和偶数的情况,最后总结规律,得出结论. 【详解】11a =-,2121a a =-+=-,3232a a =-+=-, 4342a a =-+=- 5453a a =-+=-,…,所以n 是奇数时,结果等于12n ;n 是偶数时,结果等于2n-; 20192019110102a +=-=-. 【点睛】 本题主要考查学生对探索规律等考点的理解.二、解答题7.(1)A 处在岗亭南方,距离岗亭6千米;(2)不需要加油,还剩3升汽油. 【分析】(1)根据有理数的加法以及正负数表示的实际意义即可;(2)取题目中的各个数据的绝对值,将它们相加再乘以0.5即可解答本题. 【详解】解:(1)由题意可得,5+(−4)+3+(−7)+4+(−8)+2+(−1)=−6, ∵规定向北方向为正, ∴负数表示向南方,∴A 处在岗亭南方,距离岗亭6千米; (2)由题意可得,这一天上午共耗油:0.5×(|5|+|−4|+|3|+|−7|+|4|+|−8|+|2|+|−1|) =0.5×(5+4+3+7+4+8+2+1) =0.5×34 =17(升), ∵17<20,∴不需要加油,还剩20-17=3(升) 答:不需要加油,还剩3升汽油.【点睛】本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义. 8.3 【分析】先去括号和合并同类项化简()()222223532x xy yxyx y +--+-,再根据绝对值和平方的非负性求出x ,y 的值,再代入求解即可. 【详解】()()222223532x xy y x yx y +--+- 2222235336x xy y x yx y =+---+ 22x y =-+∵2|1|(2)0x y ++-= ∴10,20x y +=-= 解得1,2x y =-= 将1,2x y =-=代入原式中 原式()22231+=-=-. 【点睛】本题考查了整式的运算问题,掌握整式的运算法则、绝对值和平方的非负性是解题的关键.9.张华为同学们唱歌. 【分析】首先根据游戏规则,分别求出李强、张华同学抽到的四张卡片的计算结果各是多少;然后比较大小,判断出结果较小的是哪个即可. 【详解】解:李强同学抽到的四张卡片的计算结果为:13(5)422⎛⎫-+---+ ⎪⎝⎭135422=--++7=张华同学抽到的四张卡片的计算结果为:7110563⎛⎫----+ ⎪⎝⎭78566=-++156=∵1756>,∴张华为同学们唱歌. 答:张华为同学们唱歌. 【点睛】本题以游戏为载体考查了有理数的加减运算以及有理数的比较大小,还是那个知识点但出题的形式变了,题目较为新颖.10.(1)26个;(2)2110个;(3)105700元. 【分析】(1)本周产量中最多的一天的产量减去最少的一天的产量即可求解; (2)把该工艺厂在本周实际每天生产工艺品的数量相加即可; (3)根据题意判断该工厂任务完成情况,根据情况列出算式求解即可. 【详解】(1)解:本周产量中最多的一天产量:30016316+=(个) 本周产量中最少的一天产量:30010290-=(个)本周产量中最多的一天比最少的一天多生产:31629026-=(个) 答:本周产量中最多的一天比最少的一天多生产26个. (2)解:300752515101692110⨯+--+-+-=(个) 答:该工艺厂在本周实际生产工艺品的数量是2110个. (3)解:∵21102100> ∴超额完成了任务工资总额()2110502110210020105700=⨯+-⨯=(元) 答:该工艺厂在这一周应付出的工资总额为105700元. 【点睛】被偷了考查了正负数的实际应用,掌握正负数的定义以及性质是解题的关键. 11.数轴表示见解析,从小到大的顺序为:32(2)|5|20(1)(25)-<--<-<<--<-- 【分析】先在数轴上表示各个数,再根据数轴上点的特征比较即可. 【详解】解:因为()3255,28,00,24--=--=-=-=-,(25)3,(1)1--=--=所以在数轴上表示为:从小到大的顺序为:32(2)|5|20(1)(25)-<--<-<<--<--. 【点睛】本题主要考查了数轴和有理数的大小比较法则,能熟记有理数的大小比较法则是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大. 12.-1或3 【分析】根据互为相反数的两数之和为0,互为倒数的两数之积为1,绝对值为2的数为2或﹣2,得到关系式,代入所求式子中计算即可求出值. 【详解】根据题意得:a +b =0,mn =1,c =2或﹣2. ①当c =2时,原式=0+1﹣2=-1; ②当c =﹣2时,原式=0+1+2=3.综上所述:a b mn c ++-的值为-1或3. 【点睛】本题考查了代数式求值,相反数,绝对值,以及倒数,熟练掌握各自的定义是解答本题的关键.13.(1),46a b ==-;(2)点C 所对应的数为172或132;(3)设点P 所表示的数为p ,当-6≤p ≤-1时,PA PB PD PO ++-最小,且最小值为9 【分析】(1)根据平方和绝对值的非负性即可求出a 、b 的值;(2)先求出AB 的值,设点C 表示的数为c ,然后根据点C 的位置分类讨论,分别画出图形,利用含c 的式子表示出AC 和BC ,列出对应的方程即可求出;(3)根据中点公式求出点D 所表示的数,设点P 所表示的数为p ,根据点P 与点O 的相对位置分类讨论,画出相关的图形,分析每种情况下PA PB PD PO ++-取最小值时,点P 的位置即可. 【详解】解:(1)∵()2460a b -++=,()20,460a b -+≥≥ ∴0,460a b -=+= 解得:,46a b ==-;(2)由(1)可得:AB=4-(-6)=10 设点C 表示的数为c①当点C 在点B 左侧时,如下图所示∴AC=4-c ,BC=-6-c ∵32AC BC AB +=∴()346102c c -+--=⨯解得:c=172; ②当点C 在线段AB 上时,如下图所示:此时AC +BC=AB故不成立;③当点C 在点A 右侧时,如下图所示∴AC=c -4,BC= c -(-6)=c +6∵32AC BC AB += ∴()346102c c -++=⨯ 解得:c=132; 综上所述:点C 所对应的数为172或132; (3)∵点D 为AB 的中点所以点D 表示的数为6412-+=- 设点P 所表示的数为p ①当点P 在点O 左侧时,如以下三个图所示,此时PA -PO=AO=4∴4PA PB PD PO PB PD ++-=++即当PA PB PD PO ++-取最小值时,PB PD +也最小由以下三个图可知:当点P 在线段BD 上时,PB PD +最小,此时5PB PD BD +==∴此时549PA PB PD PO ++-=+=即当-6≤p ≤-1时,PA PB PD PO ++-最小,且最小值为9;②当点P 在点O 右侧时,如以下两个图所示,此时PB -PO=OB=6∴6PA PB PD PO PA PD ++-=++即当PA PB PD PO ++-取最小值时,PA PD +也最小由以下两个图可知:当点P 在线段OA 上时,PA PD +最小,此时5PA PD AD +==∴此时5611PA PB PD PO ++-=+=即当0≤p ≤4时,PA PB PD PO ++-最小,且最小值为11;综上所述:当-6≤p ≤-1时,PA PB PD PO ++-最小,且最小值为9.【点睛】此题考查的是数轴与动点问题、非负性的应用和数轴的中点公式,掌握数轴上两点的距离公式、绝对值和平方的非负性、数轴的中点公式和分类讨论的数学思想是解决此题的关键.14.(1)5秒;(2)72秒或13秒 【分析】(1)设经过x 秒点M 与点N 相距54个单位,由点M 从A 点出发速度为每秒2个单位,点N 从点B 出发速度为M 点的3倍,得出2x+6x+14=54求出即可;(2)首先设经过t 秒点P 到点M ,N 的距离相等,得出(2t+6)-t=(6t-8)-t 或(2t+6)-t=t-(6t-8),进而求出即可.【详解】解:(1)设经过x 秒点M 与点N 相距54个单位.依题意可列方程为:2x+6x+14=54,解方程,得x=5.∴经过5秒点M 与点N 相距54个单位.(2)设经过t 秒点P 到点M ,N 的距离相等.(2t+6)-t=(6t-8)-t 或(2t+6)-t=t-(6t-8),t+6=5t-8或t+6=8-5t72t =或13t = ∴经过72秒或13秒点P 到点,M N 的距离相等 【点睛】 此题主要考查了数轴、一元一次方程的应用,根据已知点运动速度得出以及距离之间的关系得出等式是解题关键.15.(1)-1,1,6;(2)-10;(3)不变,值为3.【分析】(1)根据最小的正整数是1,推出b=1,再利用非负数的性质求出a 、c 即可.(2)首先确定x的范围,再化简绝对值即可.(3)BC−AB的值不变.根据题意用n,t表示出BC、AB即可解决问题.【详解】解:∵b是最小的正整数,∴b=1,∵(c−6)2+|a+b|=0,(c−6)2⩾0,|a+b|⩾0,∴c=6,a=−1,b=1,故答案为−1,1,6;(2).由题意−1<x<1,∴|x+1|−|x−1|−2|x+5|=x+1+x−1−2x−10=−10.(3)不变,由题意BC=5+5nt−2nt=5+3nt,AB=nt+2+2nt=2+3nt,∴BC−AB=(5+3nt)−(2+3nt)=3,∴BC−AB的值不变,BC−AB=3.【点睛】本题考查非负数的性质、绝对值、数轴等知识,解题的关键是熟练掌握非负数的性质,绝对值的化简,学会用参数表示线段的长.16.(1)4t;(2)t的值为94或34;(3)t的值为0.5或1.5或3.5或10.5【分析】(1)根据点P从点A出发以每秒4个单位长度的速度在数轴上由A向B运动,运动时间为t,即可得出结论;(2)先用t表示t秒后点P表示的数,即OP=|﹣6+4t|,再根据P表示的有理数与原点的距离是3个单位长度列方程求解即可;(3)分两种情况当点Q在点B的左侧时,当点Q在点B的右侧时,分别列方程求解即可.【详解】解:(1)∵点P从点A出发以每秒4个单位长度的速度在数轴上由A向B运动,运动时间为t,∴则点P与点A的距离为4t,故答案为4t;(2)t秒后,点P表示的数为(﹣6+4t),∴OP=|﹣6+4t|∵OP=3∴|﹣6+4t|=3,解得t=94或t=34.∴t的值为94或34(3)存在,t的值为0.5或1.5或3.5或10.5.点Q 在点B 的左侧时,t 秒后,点P 表示的数为(﹣6+4t ),点Q 表示的数为(6-2t ),∴PQ=|﹣6+4t-(6-2t)|= |6t-12|∵9PQ =,∴|6t-12|=9,解得t=3.5或t=0.5,∴t 的值为3.5或0.5,当点Q 在点B 的右侧时,t 秒后,点P 表示的数为(﹣6+4t ),点Q 表示的数为(6+2t ),∴PQ=|﹣6+4t-(6+2t)|= |2t-12|∵9PQ =,∴|2t-12|=9,解得t=1.5或t=10.5,∴t 的值为1.5或10.5,综上所述,t 的值为0.5或1.5或3.5或10.5.【点睛】本题考查了两点间的距离,一元一次方程的应用,也考查了数轴的应用,属于中档题.17.(1)1;(2)①2m =-;②3m =.【分析】(1)设点N 表示的数是:n ,由点M 与点N 互为核等距点的定义可知3+22n =,进行解答即可;(2)①设点N 表示的数是:n ,由点M 与点N 互为核等距点的定义可知 :m+22n =,则点N 表示数4m -,依题意列出方程即可;②由点N 表示数4m -依题意列出方程即可.【详解】解:(1)设点N 表示的数是:n ,由点M 与点N 互为核等距点的定义可知 3+22n = ∴n=1∴点N 表示的数是:1故答案为:1(2)①∵点M 表示数m ,点M 与点N 互为核等距点,设点N 表示的数是:n ,由点M 与点N 互为核等距点的定义可知 :m+22n = ∴n=4-m∴点N 表示数为:4m -,∴84m m +=-∴2m =-. ②∵点M 表示数m ,点M 与点N 互为核等距点,设点N 表示的数是:n ,由点M 与点N 互为核等距点的定义可知 :m+22n = ∴n=4-m∴点N 表示数为:4m -,根据题意得254m m -=-,解得3m =.【点睛】 本题考查新定义,数轴上数的特点,能够理解点M 与点N 互为核等距点定义是解决问题的基础,从定义中探究出点M 与点N 的两个点是关于2对称的是解题的关键.18.(1)21x x ++-;(2)①2-和4;②4;当x 的取值在不小于0且不大于2的范围时,2x x +-的最小值是2;(3)321x x x -+-++的最小值为4,此时x 的值为2.【分析】(1)根据材料中两点间距离的表示方法,分别表示出A 到B 的距离、A 到C 的距离,然后求和即可;(2)①316x x -++=表示的是在数轴上的一点到1,3-的距离之和为6,因此分三种情况分析,去绝对值计算即可;②先根据x 的取值范围去绝对值,再求解即可得出答案;利用同样的方法,分析2x x +-即可;(3)根据数轴的定义,划分x 的取值范围,去绝对值进行计算即可.【详解】(1)由题意得:A 到B 的距离为2x +,A 到C 的距离为1x - 则所求的式子为:21x x ++-;(2)①316x x -++=表示的是在数轴上的一点到1,3-的距离之和为6分以下三种情况:当1x <-时,316x x -++=可化为316x x ---=,解得2x =-当13x -≤<时,316x x -++=可化为316x x -++=,无解,不满足题意 当3x ≥时,316x x -++=可化为316x x -++=,解得4x = 综上,满足316x x -++=的x 的所有值是2-和4;②由题意得,当13x -≤≤时,p 取得最小值31314x x x x -++=-++=则p 的最小值是42x x +-表示的是在数轴上的一点到02,的距离之和当0x <时,22222x x x x x +-=-+-=->当02x ≤≤时,222x x x x +-=+-=当2x >时,22222222x x x x x +-=+-=->⨯-=综上,当x 的取值在不小于0且不大于2的范围时,2x x +-的最小值是2; (3)321x x x -+-++表示的是在数轴上的一点到1,2,3-的距离之和当1x <-时,321321437x x x x x x x -+-++=-+---=->当12x -≤<时,3213216x x x x x x x -+-++=-+-++=-此时,21x -<-≤,则467x <-≤当23x ≤<时,3213212x x x x x x x -+-++=-+-++=+此时,425x ≤+<当3x ≥时,321321345x x x x x x x -+-++=-+-++=-≥ 综上,321x x x -+-++的最小值为4,此时24x +=,解得2x =.【点睛】本题考查了利用数轴的意义化简绝对值,理解数轴意义是解题关键.三、1319.A解析:A【分析】根据有理数的分类可判断①,根据有理数的乘方可判断②,根据相反数的定义可判断③,根据零除以任何非零数都得零可判断④,根据有理数的乘法即可判断⑤.【详解】解:①分数包括正分数、负分数,正确; ②345表示3个4相乘与5的商,故②错误; ③0的相反数是0,乘积为0,故③错误;④零除以任何非零数都得零,故④错误;⑤几个非零的有理数相乘,当负因数的个数为奇数个时,积为负数,故⑤错误; ∴正确的有:①故选:A .【点睛】此题考查了有理数的分类、相反数、绝对值的定义、有理数的乘法的法则等知识点的运用,属于基础题,注意概念的掌握,及特殊例子的记忆.20.B解析:B【分析】先分别计算各个式子的值,再进行比较大小即可.【详解】解:(1)3421204141=--=-=5735353535--; (2)34212021201==-=573535353535------; (3)342120212041=---=--=-573535353535---; (4)3421201()=-+=-57353535--- ∵411141-35353535<-<< ∴(3)(4)(2)(1)<<<故选:B【点睛】本题考查了有理数的加减及有理数的比较大小,掌握有理数的加减及比较大小是解题的关键.21.A解析:A【分析】根据幂的运算法则以及绝对值的性质对各项进行运算即可.【详解】A.2(2)4-=,2|2|4-=,A 正确;B.4(3)81-=,4381-=-,B 错误;C.3(4)64-=-,3|4|64-=,C 错误;D.3(4)64-=-,4(3)81--=-,D 错误.故答案为:A .本题考查了实数大小比较的问题,掌握幂的运算法则以及绝对值的性质是解题的关键.22.D解析:D【解析】【分析】求一个数的相反数就是在这个数前面添上“-”号.【详解】的相反数是故选:D【点睛】考查相反数的定义,只有符号不同的两个数互为相反数.23.A解析:A【分析】设出点A 所表示的数,根据向左减,向右加列出方程,解方程得到答案.【详解】解:设点A 所表示的数为x ,102x -=-,解得:8x =,故选:A .【点睛】本题考查的是数轴的知识,掌握数轴的概念和性质是解题的关键,点在数轴上的运动规律是向左减,向右加.24.A解析:A【分析】根据绝对值与偶次方的非负性求出x ,y 的值,再代入求解即可.【详解】解:∵实数,x y 满足2|3|(4)0x y -++= ∴x-3=0,y+4=0∴x=3,y=-4∴20202020()(1)1x y +=-= 故选:A .【点睛】本题考查的知识点是非负数的性质以及代数式求值,利用绝对值与偶次方的非负性求出x ,y 的值是解此题的关键. 25.B【分析】分别计算各数的绝对值,再比较大小即可得答案.【详解】1122-=,2233-=,44=,55-=, ∵124523<<<, ∴在这四个数中,绝对值最小为12-, 故选:B .【点睛】 本题考查了有理数的大小比较和绝对值,掌握绝对值的定义是本题的关键.。

人教版七年级数学上册《有理数》易错题练习-有答案

人教版七年级数学上册《有理数》易错题练习-有答案

人教版七年级数学上册《有理数》易错题练习-有答案【易错1例题】正数和负数1.(2021·四川中考真题)如果规定收入为正那么支出为负收入2元记作2+支出5元记作().A.5元B.5-元C.3-元D.7元【答案】B【分析】结合题意根据正负数的性质分析即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B.【点睛】本题考查了正数和负数的知识解题的关键是熟练掌握正负数的性质从而完成求解.【易错2例题】有理数2.(2021·广西三美学校)已知下列各数:5-1340 1.5-513312-.把上述各数填在相应的集合里:正有理数集合:{}负有理数集合:{}分数集合:{}【答案】正有理数集合:11,4,5,333⎧⎫⎨⎬⎩⎭负有理数集合:15, 1.5,2⎧⎫---⎨⎬⎩⎭分数集合:111, 1.5,3,332⎧⎫--⎨⎬⎩⎭【分析】正有理数指的是除了负数0无理数的数字负有理数指小于0的有理数正分数负分数小数统称为分数.【详解】解:正有理数集合:11,4,5,3 33⎧⎫⎨⎬⎩⎭负有理数集合:15, 1.5,2⎧⎫---⎨⎬⎩⎭分数集合:111, 1.5,3,332⎧⎫--⎨⎬⎩⎭.【点睛】本题考查了有理数的分类熟练掌握各类数的属性和特点是解题的关键.【易错3例题】数轴3.(2021·广东七年级月考)已知下列有理数:-42-3.50-231-0.52(1)在数轴上标出这些有理数表示的点(2)设表示-0.5的点为A那么与A点的距离相差4个单位长度的点所表示的数是多少?【答案】(1)答案见解析(2)3.5或−4.5.【分析】(1)根据所给有理数画出数轴标出各数据即可.(2)直接利用数轴结合与A点的距离相差4个单位长度即可得出答案.【详解】(1)如图所示:(2)设表示−0.5的点为A则与A点的距离相差4个单位长度的点所表示的数是:−0.5+4=3.5或−0.5−4=−4.5.【点睛】本题考查数轴根据题意正确的在数轴上表示出各数据是解题关键.【易错4例题】相反数4.(2021·江苏七年级专题练习)2021的相反数为__________.-【答案】2021【分析】利用相反数的定义即可求解.【详解】-解:2021的相反数为2021-.故答案为:2021【点睛】本题考查相反数掌握相反数的定义是解题的关键.【易错5例题】绝对值5.(2021·浙江九年级三模)2021的绝对值是()A.12021B.﹣12021C.2021D.﹣2021【答案】C【分析】根据绝对值的定义即可得出正确选项.【详解】解:2021的绝对值是2021故选:C.【点睛】本题考查求绝对值.正数的绝对值是它本身0的绝对值是0负数的绝对值是它的相反数.【专题训练】一、选择题1.(2021·江苏苏州市·九年级二模)π的相反数是()A.π-B.πC.1π-D.1π【答案】A【分析】根据相反数的定义即可求解.【详解】解:π的相反数是π-故选:A【点睛】此题考查的是相反数的概念是:只有符号不同的两个数互为相反数掌握相反数的概念是解题的关键.2.(【新东方】初中数学20210625-022【初一上】)下列各对量中不具有相反意义的是()A.胜2局与负3局B.盈利3万元与亏损3万元C.气温升高4℃与气温降低10℃D.转盘逆时针转3圈与向右转5圈【答案】D【分析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【详解】解:A胜2局与负3局具有相反意义不符合题意B盈利3万元与亏损3万元具有相反意义不符合题意C气温升高4℃与气温降低10℃具有相反意义不符合题意D转盘逆时针转3圈与向右转5圈不具有相反意义符合题意故选D.【点睛】本题主要考查了正数和负数的意义解题关键是理解“正”和“负”的相对性明确什么是一对具有相反意义的量.在一对具有相反意义的量中先规定其中一个为正则另一个就用负表示.3.(【新东方】DY试卷解析初一下数学【00017】)下列关于数轴的图示画法不正确的有()A.4个B.3个C.2个D.1个【答案】B【分析】根据数轴的定义逐一判断即可得到答案.【详解】(1)中数轴的单位长度不一致画法不正确符合题意(2)中数轴没有原点画法不正确符合题意(3)中数轴画法正确不符合题意(4)中数轴没有正方向画法不正确符合题意℃画法不正确的有3个故选B.【点睛】本题主要考查数轴的画法掌握画数轴的三要素:正方向单位长度原点是解题的关键.4.(2021·上海期中)在-125% 23250-0.30.67-4257-中非负数有()A.2个B.3个C.4个D.5个【答案】C【分析】根据非负数的范围即非负数是大于等于零的数即可求解.【详解】解:非负数有:232500.67负数有:-125% -0.32 57 -非负数有4个.故选:C【点睛】本题主要考查了有理数的分类解题的关键是熟练掌握有理数的分类情况.5.(2021·江苏南京一中七年级月考)一个数的绝对值是7这个数是()A.7B.﹣7C.7或﹣7D.不能确定【答案】C【分析】根据绝对值的定义即可求解.【详解】解:℃一个数的绝对值是7℃这个数是7或﹣7.故选:C.【点睛】此题主要考查绝对值的求解解题的关键是熟知绝对值的性质.二填空题6.(2021·福建七年级期末)﹣2的相反数是___.【答案】2【分析】根据一个数的相反数就是在这个数前面添上“-”号 求解即可. 【详解】解:-2的相反数是:-(-2)=2故答案为:2. 【点睛】本题考查了相反数的意义 一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数 一个负数的相反数是正数 0的相反数是0.不要把相反数的意义与倒数的意义混淆.7.(1.有理数(题型篇))如果节约20元钱 记作“+20”元 那么浪费15元钱 记作_______元.【答案】-15 【分析】根据节约20元钱 记作“+20”元 可知浪费记为负 可得结果. 【详解】解:根据题意 节约记为正 浪费记为负 那么浪费15元钱 记作-15元故答案为:-15. 【点睛】本题考查了正负数的意义 解题关键是明确正负数代表意义相反的两个量 节约记为正 浪费记为负. 8.(2021·江苏七年级期末)下列各数:﹣1 2 1.01001…(每两个1之间依次多一个0) 0 227 3.14 其中有理数有_____个.【答案】4.【分析】 根据有理数的定义逐一判断即可.【详解】解:在所列实数中 有理数有﹣1 0227 3.14 故答案为:4.【点睛】本题考查了有理数 掌握有理数的概念是解题的关键.9.(1.有理数(题型篇))如果若|x -2|=1 则x =________.【答案】3或1根据绝对值的性质可得x-2=±1再求出x即可.【详解】解:℃|x-2|=1℃x-2=±1则x-2=1或x-2=-1解得:x=3或1故答案为:3或1.【点睛】此题主要考查了绝对值关键是掌握绝对值等于一个正数的数有两个它们互为相反数.10.(2021·湖南七年级期末)已知A B是数轴上的两点且AB=4.5点B表示的数为1则点A表示的数为___________.【答案】﹣3.5或5.5【分析】根据AB=4.5点B表示的数为1进行分类讨论A可以在B的左边或右边求得点A表示的数.【详解】解:℃AB=4.5B表示1℃A表示的数为1﹣4.5=﹣3.5或1+4.5=5.5.故答案为:﹣3.5或5.5.【点睛】本题考查了数轴上两点之间的距离解题的关键是分类讨论借助数轴来分析.三解答题11.(2021·河北七年级期中)把下列各数填在相应的表示集合的大括号里:﹣2312﹣(﹣96)﹣|﹣3| ﹣4.50|﹣2.5|13.(1)正有理数集合{…} (2)非负整数集合{…} (3)负分数集合{…}.【答案】(1)12﹣(﹣96)|﹣2.5| 13(2)12﹣(﹣96)0|﹣2.5| (3)﹣23﹣4.5化简各数 进而分别利用正有理数 非负整数 负分数分析 再分类填写. 【详解】解:﹣(﹣96)=96 ﹣|﹣3|=﹣3 |﹣2.5|=2.5(1)正有理数集合{12 ﹣(﹣96) |﹣2.5| 13…} (2)非负整数集合{12 ﹣(﹣96) 0 …}(3)负分数集合{﹣23 ﹣4.5 …}. 【点睛】本题主要考查了有理数的相关定义 正确化简各数是解题关键.12.(【新东方】初中数学1283-初一上)把下面的数填入它所属于的集合的大括号内(填序号) ① 5.3- ②5+ ③20% ④0 ⑤27- ⑥7- ⑦3--∣∣ ⑧( 1.8)-- 正数集合{ }整数集合{ }分数集合{ }有理数集合{ }【答案】见解析【分析】根据有理数的分类填空.【详解】解:-|-3|=-3 -(-1.8)=1.8.正数集合{②③⑧}整数集合{②④⑥⑦}分数集合{①③⑤⑧}有理数集合{①②③④⑤⑥⑦⑧}.【点睛】本题考查了有理数 认真掌握正数 负数 整数 分数 正有理数 负有理数 非负数的定义与特点.注意整数和正数的区别 注意0是整数 但不是正数.13.(2020·贵阳市清镇养正学校七年级期中)已知下列各有理数 2.5- 0 3- ()2-- 0.5 1-.(1)画出数轴 在数轴上标出表示这些数的点(2)用>符号把这些数连接起来.【答案】(1)见解析 (2)3->-(-2)>0.5>0>-1>-2.5【分析】(1)求出|-3|=3 -(-2)=2 在数轴上把各个数表示出来(2)根据数轴上右边的数总比左边的数大比较即可.【详解】解:(1)如图(2)3->-(-2)>0.5>0>-1>-2.5.【点睛】本题考查了有理数的大小比较和数轴的应用 关键是求出各个数的大小和在数轴上把各个数表示出来 注意:在数轴上右边的数总比左边的数大.14.(【新东方】初中数学20210625-022【初一上】)在数轴上 A B 两点的数分别用a b 表示 如果2a =- 2b a = 请你在给定的数轴上(1)画出B 点可能的位置 并标上字母(2)计算A B 两点的距离为多少?【答案】(1)见解析 (2)2或6【分析】(1)根据绝对值的意义求出b 值 在数轴上画出即可(2)根据b 值 利用两点间的距离计算方法计算即可.【详解】解:(1)℃a =-2℃2=a℃2224b a ==⨯=b=±℃4画图如下:(2)如图可知:当b=-4时AB=2即A B两点距离为2当b=4时AB=6即A B两点距离为6℃A B两点的距离为2或6.【点睛】本题考查了绝对值的意义数轴上两点之间的距离解题的关键是要进行分类讨论.15.(2021·河南七年级期末)点A B在数轴上所表示的数如图所示回答下列问题:(1)将A在数轴上向左移动1个单位长度再向右移动9个单位长度得到点C求出B C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D且A D两点间的距离是3求m的值.【答案】(1)B C两点间的距离是3个单位长度(2)m的值为2或8.【分析】(1)利用数轴上平移左移减右移加可求点C所表示的数为﹣3﹣1+9=5利用绝对值求两点距离BC=|2﹣5|=3(2)分类考虑当点D在点A的左侧与右侧利用AD=3求出点D所表示的数再利用BD=m求出m的值即可.【详解】解:(1)点C所表示的数为﹣3﹣1+9=5℃BC=|2﹣5|=3.(2)当点D在点A的右侧时点D所表示的数为﹣3+3=0所以点B移动到点D的距离为m=|2﹣0|=2。

人教版七年级数学上册第一章《有理数》期末复习知识点+易错题(含答案)

人教版七年级数学上册第一章《有理数》期末复习知识点+易错题(含答案)

人教版七年级数学上册期末复习有理数知识点+易错题有理数习知识点复习1、有理数的定义:________和________统称为有理数。

2、有理数的分类:按照符号分类,可以分为________、________和________;按照定义分类,可以分为________和________:整数分为________、________和________;分数分为________和________。

3、数轴的定义:规定了________、________和________的________叫数轴。

4、数轴的三要素:数轴的三要素是指________、________和________,缺一不可。

5、用数轴比较有理数的大小:在数轴上,________的点表示的数总比________的点表示的数大。

6、绝对值的定义:数轴上____________与________的________,叫做这个数的绝对值。

7、绝对值的表示方法如下:-2的绝对值是2,记作________;3的绝对值是3,记作________;0的绝对值是________。

8、相反数的定义:__________、__________的两个数互为相反数,其中一个数是另一个数的________。

9、表示一个数的相反数就是在这个数的前面添一个________号,如2的相反数可表示为________。

10、有理数加法法则:①同号两数相加,取________的符号,并把________相加;②异号两数相加,________相等时,和为________;绝对值不等时,取__________符号,并用________________。

③一个数与0相加,________。

11、有理数减法法则:减去一个数,等于____________。

12、有理数加法运算律:加法交换律:a+b=________;加法结合律:(a+b)+c=________。

13、有理数乘法法则:两数相乘,同号________,异号________,并把________相乘;任何数与0相乘都得________。

《有理数》易错题集:有理数

《有理数》易错题集:有理数

第1章《有理数》易错题集:有理数选择题1.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数2.下列说法正确的是()A.有最小的正数B.有最小的自然数C.有最大的有理数 D.无最大的负整数3.下列四种说法:①0是整数;②0是自然数;③0是偶数;④0是非负数.其中正确的有()A.4个 B.3个 C.2个 D.1个4.下列说法中正确的是()A.最小的正整数是零B.自然数一定是正整数C.负数中没有最大的数D.自然数包括了整数5.下列说法正确的是()A.零是最小的整数 B.有理数中存在最大的数C.整数包括正整数和负整数D.0是最小的非负数6.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“15cm”分别对应数轴上的﹣3.6和x,则()A.9<x<10 B.10<x<11 C.11<x<12 D.12<x<137.在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A.1 B.3 C.±2 D.1或﹣38.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()A.2002或2003 B.2003或2004 C.2004或2005 D.2005或2006 9.数轴上的点A表示的数是+2,那么与点A相距5个单位长度的点表示的数是()A.5 B.±5 C.7 D.7或﹣310.如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C表示的数是()A.﹣0.5 B.﹣1.5 C.0 D.0.511.点M在数轴上距原点4个单位长度,若将M向右移动2个单位长度至N点,点N表示的数是()A.6 B.﹣2 C.﹣6 D.6或﹣212.如图,正确的判断是()A.a<﹣2 B.a>﹣1 C.a>b D.b>213.如图,A、B、C、D、E为某未标出原点的数轴上的五个点,且AB=BC=CD=DE,则点D所表示的数是()A.10 B.9 C.6 D.014.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8 B.2 C.8或﹣2 D.﹣8或215.若|a﹣3|﹣3+a=0,则a的取值范围是()A.a≤3 B.a<3 C.a≥3 D.a>316.若ab<0,且a>b,则a,|a﹣b|,b的大小关系为()A.a>|a﹣b|>b B.a>b>|a﹣b|C.|a﹣b|>a>b D.|a﹣b|>b>a 17.下列说法正确的是()A.﹣|a|一定是负数B.只有两个数相等时,它们的绝对值才相等C.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数为负数18.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A.1﹣b>﹣b>1+a>a B.1+a>a>1﹣b>﹣b C.1+a>1﹣b>a>﹣b D.1﹣b>1+a>﹣b>a19.若ab>0,则++的值为()A.3 B.﹣1 C.±1或±3 D.3或﹣120.有理数a、b在数轴上的位置如图所示,下列各式成立的是()A.b﹣a>0 B.﹣b<0 C.﹣|a|>﹣b D.ab<021.已知a是有理数,且|a|=﹣a,则有理数a在数轴上的对应点在()A.原点的左边B.原点的右边C.原点或原点的左边D.原点或原点的右边22.绝对值相等的两个数在数轴上对应的两个点的距离为6,则这两个数为()A.+6和﹣6 B.+3和﹣3 C.+6和﹣3 D.+3和+623.下列说法正确的是()A.有理数的绝对值一定是正数B.一个负数的绝对值是它的相反数C.如果两个数的绝对值相等,那么这两个数相等D.如果一个数的绝对值是它本身,那么这个数是正数24.在数轴上,表示点中,在原点右边的点有()A.4个 B.3个 C.2个 D.1个25.若=﹣1,则a为()A.a>0 B.a<0 C.0<a<1 D.﹣1<a<026.已知|a|=﹣a,且a<,若数轴上的四点M,N,P,Q中的一个能表示数a,(如图),则这个点是()A.M B.N C.P D.Q填空题27.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是.28.若|a|=3,则a的值是.29.﹣|﹣2|的绝对值是.30.绝对值比2大比6小的整数共有个.第1章《有理数》易错题集:有理数参考答案与试题解析选择题1.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数【分析】按照有理数的分类判断:有理数.【解答】解:负整数和负分数统称负有理数,A正确.整数分为正整数、负整数和0,B正确.正有理数与0,负有理数组成全体有理数,C错误.3.14是小数,也是分数,小数是分数的一种表达形式,D正确.故选:C.2.下列说法正确的是()A.有最小的正数B.有最小的自然数C.有最大的有理数 D.无最大的负整数【分析】根据有理数的分类,利用排除法求解.【解答】解:既没有最大的也没有最小的正数,A错误;最小的自然数是0,B正确;有理数既没有最大也没有最小,C错误;最大的负整数是﹣1,D错误;3.下列四种说法:①0是整数;②0是自然数;③0是偶数;④0是非负数.其中正确的有()A.4个 B.3个 C.2个 D.1个【分析】根据0的特殊规定和性质对各选项作出判断后选取答案,注意:2002年国际数学协会规定,零为偶数;我国2004年也规定零为偶数.【解答】解:①0是整数,故本选项正确;②0是自然数,故本选项正确;③能被2整除的数是偶数,0可以,故本选项正确;④非负数包括正数和0,故本选项正确.所以①②③④都正确,共4个.故选:A.4.下列说法中正确的是()A.最小的正整数是零B.自然数一定是正整数C.负数中没有最大的数D.自然数包括了整数【分析】根据有理数的基本概念,进行选择.【解答】解:最小的正整数是1,A错;负数中既没有最大的数,又没有最小的数.没有最大的负数,C对.自然数包括0和正整数,B、D均错.故选:C.5.下列说法正确的是()A.零是最小的整数 B.有理数中存在最大的数C.整数包括正整数和负整数D.0是最小的非负数【分析】根据有理数的分类进行判断即可.有理数包括:整数(正整数、0和负整数)和分数(正分数和负分数).【解答】解:A、整数包括正整数、0、负整数,负整数小于0,且没有最小值,B、有理数没有最大值,故B错误;C、整数包括正整数、0、负整数,故C错误;D、正确.故选D.6.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“15cm”分别对应数轴上的﹣3.6和x,则()A.9<x<10 B.10<x<11 C.11<x<12 D.12<x<13【分析】本题图中的刻度尺对应的数并不是从0开始的,所以x对应的数要减去﹣3.6才行.【解答】解:依题意得:x﹣(﹣3.6)=15,x=11.4.故选:C.7.在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A.1 B.3 C.±2 D.1或﹣3【分析】此题可借助数轴用数形结合的方法求解.在数轴上,与表示数﹣1的点的距离是2的点有两个,分别位于与表示数﹣1的点的左右两边.【解答】解:在数轴上,与表示数﹣1的点的距离是2的点表示的数有两个:﹣1﹣2=﹣3;﹣1+2=1.故选:D.8.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()A.2002或2003 B.2003或2004 C.2004或2005 D.2005或2006【分析】某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数可能正好是2005个,也可能不是整数,而是有两个半数那就是2004个.【解答】解:依题意得:①当线段AB起点在整点时覆盖2005个数;②当线段AB起点不在整点,即在两个整点之间时覆盖2004个数.故选:C.9.数轴上的点A表示的数是+2,那么与点A相距5个单位长度的点表示的数是()A.5 B.±5 C.7 D.7或﹣3【分析】此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【解答】解:与点A相距5个单位长度的点表示的数有2个,分别是2+5=7或2﹣5=﹣3.故选:D.10.如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C表示的数是()A.﹣0.5 B.﹣1.5 C.0 D.0.5【分析】根据数轴的相关概念解题.【解答】解:∵数轴上的点A,B分别表示数﹣2和1,∴AB=1﹣(﹣2)=3.∵点C是线段AB的中点,∴AC=CB=AB=1.5,∴把点A向右移动1.5个单位长度即可得到点C,即点C表示的数是﹣2+1.5=﹣0.5.故选:A.11.点M在数轴上距原点4个单位长度,若将M向右移动2个单位长度至N点,点N表示的数是()A.6 B.﹣2 C.﹣6 D.6或﹣2【分析】首先根据绝对值的意义“数轴上表示一个数的点到原点的距离,即为这个数的绝对值”,求得点M对应的数;再根据平移和数的大小变化规律,进行分析:左减右加.【解答】解:因为点M在数轴上距原点4个单位长度,点M的坐标为±4.(1)点M坐标为4时,N点坐标为4+2=6;(2)点M坐标为﹣4时,N点坐标为﹣4+2=﹣2.所以点N表示的数是6或﹣2.故选:D.12.如图,正确的判断是()A.a<﹣2 B.a>﹣1 C.a>b D.b>2【分析】根据数轴上点的位置关系确定对应点的大小.注意:数轴上的点表示的数右边的数总比左边的数大.【解答】解:由数轴上点的位置关系可知a<﹣2<﹣1<0<1<b<2,则A、a<﹣2,正确;B、a>﹣1,错误;C、a>b,错误;D、b>2,错误.故选:A.13.如图,A、B、C、D、E为某未标出原点的数轴上的五个点,且AB=BC=CD=DE,则点D所表示的数是()A.10 B.9 C.6 D.0【分析】A与E之间的距离已知,根据AB=BC=CD=DE,即可得到DE之间的距离,从而确定点D所表示的数.【解答】解:∵AE=14﹣(﹣6)=20,又∵AB=BC=CD=DE,AB+BC+CD+DE=AE,∴DE=AE=5,∴D表示的数是14﹣5=9.故选:B.14.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8 B.2 C.8或﹣2 D.﹣8或2【分析】首先根据相反数,绝对值的概念分别求出x、y的值,然后代入x+y,即可得出结果.【解答】解:x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选:D.15.若|a﹣3|﹣3+a=0,则a的取值范围是()A.a≤3 B.a<3 C.a≥3 D.a>3【分析】移项,|a﹣3|﹣3+a=0可变为,|a﹣3|=3﹣a,根据负数的绝对值是其相反数,0的绝对值是0可知,a﹣3≤0,则a≤3.【解答】解:由|a﹣3|﹣3+a=0可得,|a﹣3|=3﹣a,根据绝对值的性质可知,a﹣3≤0,a≤3.故选:A.16.若ab<0,且a>b,则a,|a﹣b|,b的大小关系为()A.a>|a﹣b|>b B.a>b>|a﹣b|C.|a﹣b|>a>b D.|a﹣b|>b>a 【分析】根据所给条件,分析a,b的正负值,然后再比较大小.【解答】解:∵ab<0,且a>b,∴a>0,b<0∴a﹣b>a>0∴|a﹣b|>a>b故选:C.17.下列说法正确的是()A.﹣|a|一定是负数B.只有两个数相等时,它们的绝对值才相等C.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数为负数【分析】根据相反数和绝对值的性质,对选项进行一一分析,排除错误答案.【解答】解:A、﹣|a|不一定是负数,当a为0时,结果还是0,故错误;B、互为相反数的两个数的绝对值也相等,故错误;C、a等于b时,|a|=|b|,故错误;D、若一个数小于它的绝对值,则这个数为负数,符合绝对值的性质,故正确.故选:D.18.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A.1﹣b>﹣b>1+a>a B.1+a>a>1﹣b>﹣b C.1+a>1﹣b>a>﹣b D.1﹣b>1+a>﹣b>a【分析】根据绝对值的定义,可知a>0,b<0时,|a|=a,|b|=﹣b,代入|a|<|b|<1,得a<﹣b<1,由不等式的性质得﹣b>a,则1﹣b>1+a,又1+a>1,1>﹣b>a,进而得出结果.【解答】解:∵a>0,∴|a|=a;∵b<0,∴|b|=﹣b;又∵|a|<|b|<1,∴a<﹣b<1;∴1﹣b>1+a;而1+a>1,∴1﹣b>1+a>﹣b>a.故选:D.19.若ab>0,则++的值为()A.3 B.﹣1 C.±1或±3 D.3或﹣1【分析】首先根据两数相乘,同号得正,得到a,b符号相同;再根据同正、同负进行分情况讨论.【解答】解:因为ab>0,所以a,b同号.①若a,b同正,则++=1+1+1=3;②若a,b同负,则++=﹣1﹣1+1=﹣1.故选:D.20.有理数a、b在数轴上的位置如图所示,下列各式成立的是()A.b﹣a>0 B.﹣b<0 C.﹣|a|>﹣b D.ab<0【分析】本题可先对数轴进行分析,找出a、b之间的大小关系,然后分别分析A、B、C、D即可得出答案.【解答】解:根据数轴,知a>0,b<0,且b的绝对值大于a的绝对值.A、b<a,所以b﹣a<0,错误;B、﹣b>0,错误;C、正数大于一切负数,错误;D、两数相乘,异号得负,正确.故选:D.21.已知a是有理数,且|a|=﹣a,则有理数a在数轴上的对应点在()A.原点的左边B.原点的右边C.原点或原点的左边D.原点或原点的右边【分析】根据绝对值的性质判断出a的符号,然后再确定a在数轴上的位置.【解答】解:∵|a|=﹣a,∴a≤0.所以有理数a在原点或原点的左侧.故选:C.22.绝对值相等的两个数在数轴上对应的两个点的距离为6,则这两个数为()A.+6和﹣6 B.+3和﹣3 C.+6和﹣3 D.+3和+6【分析】绝对值相等的两个数只有两种情况,相等或互为相反数,因为绝对值相等的两个数在数轴上对应的两个点的距离为6,所以这两个数是互为相反数的,可求得为±3.【解答】解:由题意可得,这两个数是互为相反数的,因为两个数在数轴上对应的两个点的距离为6,从而求得这两个数为±3.故选:B.23.下列说法正确的是()A.有理数的绝对值一定是正数B.一个负数的绝对值是它的相反数C.如果两个数的绝对值相等,那么这两个数相等D.如果一个数的绝对值是它本身,那么这个数是正数【分析】根据绝对值的定义及性质进行判断.【解答】解:因为一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.所以A、D错,B正确;如果两个数的绝对值相等,那么这两个数相等或互为相反数,故C也不正确.故选B.24.在数轴上,表示点中,在原点右边的点有()A.4个 B.3个 C.2个 D.1个【分析】根据数轴上点的特点:原点右边的点都表示正数,化简后找出即可.【解答】解:在数轴上,原点右边的点都表示正数,本题中的正数有0.125,,,共3个.故选:B.25.若=﹣1,则a为()A.a>0 B.a<0 C.0<a<1 D.﹣1<a<0【分析】根据“一个负数的绝对值是它的相反数”求解.【解答】解:∵=﹣1,∴|a|=﹣a,∵a是分母,不能为0,∴a<0.故选:B.26.已知|a|=﹣a,且a<,若数轴上的四点M,N,P,Q中的一个能表示数a,(如图),则这个点是()A.M B.N C.P D.Q【分析】首先根据|a|=﹣a,且a<求出a的取值范围,然后根据数轴上表示的数的特点,找出在此取值范围内的数.【解答】解:∵|a|=﹣a,∴a≤0①,又∵a<,∴a<﹣1或0<a<1②,综上①②可知,a<﹣1,∴a<﹣1由图可知,只有点M表示的数小于﹣1.故选:A.填空题27.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是﹣3.【分析】此题可借助数轴用数形结合的方法求解.【解答】解:设点A表示的数是x.依题意,有x+7﹣4=0,解得x=﹣3.故答案为:﹣328.若|a|=3,则a的值是±3.【分析】根据绝对值的性质求解.注意a值有2个答案且互为相反数.【解答】解:∵|a|=3,∴a=±3.29.﹣|﹣2|的绝对值是2.【分析】先计算|﹣2|=2,﹣|﹣2|=﹣2,所以﹣|﹣2|的绝对值是2.【解答】解:﹣|﹣2|的绝对值是2.故本题的答案是2.30.绝对值比2大比6小的整数共有6个.【分析】根据绝对值的性质直接求得结果.【解答】解:设这个数为x,则:2<|x|<6,∴x为±3,±4,±5,∴绝对值比2大比6小的整数共有6个.。

有理数易错题汇编附答案解析

有理数易错题汇编附答案解析
B、 c <0,故 B 不符合题意; a
C、ad<bc<0,故 C 不符合题意; D、|a|>|b|=|d|,故 D 正确; 故选 D. 【点睛】 本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出 a<b<0<c< d 是解题关键,又利用了有理数的运算.
8.若 a 与 b 互为相反数,则下列式子不一定正确的是( )
20.在–2,+3.5,0, 2 ,–0.7,11 中.负分数有( ) 3
A.l 个
B.2 个
C.3 个
பைடு நூலகம்
【答案】B
【解析】
根据负数的定义先选出负数,再选出分数即可.
解:负分数是﹣ 2 ,﹣0.7,共 2 个. 3
故选 B.
D.4 个
3.有理数 a , b , c 在数轴上对应的点如图所示,则下列式子中正确的是( )
A. a b
B. a c a c
C. a b c
D. b c b c
【答案】D 【解析】
【分析】
根据数轴得出 a<b<0<c,|b|<|a|,|b|<|c|,再逐个判断即可. 【详解】
从数轴可知:a<b<0<c,|b|<|a|,|b|<|c|. A.a<b,故本选项错误; B.|a﹣c|=c﹣a,故本选项错误; C.﹣a>﹣b,故本选项错误;
的是( )
A. b c 0
【答案】A
B. a c 2
C. b 1 a
D. abc 0
【解析】
【分析】
利用特殊值法即可判断. 【详解】
∵a<c<b, | a || b | ,∴ b c 0,故 A 正确;
若 a<c<0,则 a c 2错误,故 B 不成立;

有理数易错题练习(含答案)

有理数易错题练习(含答案)

有理数·易错题练习1.填空:(1)当a________时,a与-a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是________;(3)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是________.解 (1)a为任何有理数;(2)+5;(3)+3;(4)-6.2.用“有”、“没有”填空:在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.解有,有,没有.3.用“都是”、“都不是”、“不都是”填空:(1)所有的整数________负整数;(2)小学里学过的数________正数;(3)带有“+”号的数________正数;(4)有理数的绝对值________正数;(5)若|a|+|b|=0,则a,b________零;(6)比负数大的数________正数.解 (1)都不是;(2)都是;(3)都是;(4)都是;(5)不都是;(6)都是.4.用“一定”、“不一定”、“一定不”填空:(1)-a________是负数;(2)当a>b时,________有|a|>|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;(4)|x|+|y|________是正数;(5)一个数________大于它的相反数;(6)一个数________小于或等于它的绝对值;解 (1)一定;(2)一定;(3)一定不;(4)一定;(5)一定;(6)不一定.5.把下列各数从小到大,用“<”号连接:并用“>”连接起来.8.填空:(1)如果-x=-(-11),那么x=________;(2)绝对值不大于4的负整数是________;(3)绝对值小于4.5而大于3的整数是________.解 (1)11;(2)-1,-2,-3;(3)4.9.根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和;(2)a与b的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分母是x,分子比分母的相反数大6;(4)x,y两数和的相反数乘以x,y两数和的绝对值.10.代数式-|x|的意义是什么?解代数式-|x|的意义是:x的相反数的绝对值.11.用适当的符号(>、<、≥、≤)填空:(1)若a是负数,则a________-a;(2)若a是负数,则-a_______0;(3)如果a>0,且|a|>|b|,那么a________ b.解 (1)>;(2)<;(3)<.12.写出绝对值不大于2的整数.解绝对值不大2的整数有-1,1.13.由|x|=a能推出x=±a吗?解由|x|=a能推出x=±a.如由|x|=3得到x=±3,由|x|=5得到x=±5.14.由|a|=|b|一定能得出a=b吗?解一定能得出a=b.如由|6|=|6|得出6=6,由|-4|=|-4|得-4=-4.15.绝对值小于5的偶数是几?答绝对值小于5的偶数是2,4.16.用代数式表示:比a的相反数大11的数.解-a-11.17.用语言叙述代数式:-a-3.解代数式-a-3用语言叙述为:a与3的差的相反数.18.算式-3+5-7+2-9如何读?解算式-3+5-7+2-9读作:负三、正五、减七、正二、减九.19.把下列各式先改写成省略括号的和的形式,再求出各式的值.(1)(-7)-(-4)-(+9)+(+2)-(-5);(2)(-5)-(+7)-(-6)+4.解(1)(-7)-(-4)-(+9)+(+2)-(-5)=-7-4+9+2-5=-5;(2)(-5)-(+7)-(-6)+4=5-7+6-4=8.20.计算下列各题:(2)5-|-5|=10;21.用适当的符号(>、<、≥、≤)填空:(1)若b为负数,则a+b________a;(2)若a>0,b<0,则a-b________0;(3)若a为负数,则3-a________3.解 (1)>;(2)≥;(3)≥.22.若a为有理数,求a的相反数与a的绝对值的和.解-a+|a|=-a+a=0.23.若|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.解由|a|=4,得a=±4;由|b|=2,得b=±2.当a=4,b=2时,a-b=2;当a=4,b=-2时,a-b=6;当a=-4,b=2时,a-b=-6;当a=-4,b=-2时,a-b=-2.24.列式并计算:-7与-15的绝对值的和.解 |-7|+|-15|=7+15=22.25.用简便方法计算:26.用“都”、“不都”、“都不”填空:(1)如果ab≠0,那么a,b________为零;(2)如果ab>0,且a+b>0,那么a,b________为正数;(3)如果ab<0,且a+b<0,那么a,b________为负数;(4)如果ab=0,且a+b=0,那么a,b________为零.解 (1)不都;(2)不都;(3)都;(4)不都.27.填空:(3)a,b为有理数,则-ab是_________;(4)a,b互为相反数,则(a+b)a是________.解 (1)负数;(2)正数;(3)负数;(4)正数.28.填空:(1)如果四个有理数相乘,积为负数,那么负因数个数是________;解 (1)3;(2)b>0.29.用简便方法计算:解30.比较4a和-4a的大小:解因为4a是正数,-4a是负数.而正数大于负数,所以4a>-4a.31.计算下列各题:(5)-15×12÷6×5.解=-48÷(-4)=12;(5)-15×12÷6×5解因为|a|=|b|,所以a=b.=1+1+1=3.34.下列叙述是否正确?若不正确,改正过来.(1)平方等于16的数是(±4)2;(2)(-2)3的相反数是-23;解 (1)正确;(2)正确;(3)正确.35.计算下列各题;(1)-0.752;(2)2×32.解36.已知n为自然数,用“一定”、“不一定”或“一定不”填空:(1)(-1)n+2________是负数;(2)(-1)2n+1________是负数;(3)(-1)n+(-1)n+1________是零.解 (1)一定不;(2)不一定;(3)一定不.37.下列各题中的横线处所填写的内容是否正确?若不正确,改正过来.(1)有理数a的四次幂是正数,那么a的奇数次幂是负数;(2)有理数a与它的立方相等,那么a=1;(3)有理数a的平方与它的立方相等,那么a=0;(4)若|a|=3,那么a3=9;(5)若x2=9,且x<0,那么x3=27.38.用“一定”、“不一定”或“一定不”填空:(1)有理数的平方________是正数;(2)一个负数的偶次幂________大于这个数的相反数;(3)小于1的数的平方________小于原数;(4)一个数的立方________小于它的平方.解 (1)一定;(2)一定;(3)一定;(4)一定不.39.计算下列各题:(1)(-3×2)3+3×23;(2)-24-(-2)4;(3)-2÷(-4)2;解(1)(-3×2)3+3×23=-3×23+3×23=0;(2)-24-(-2)4=0;40.用科学记数法记出下列各数:(1)314000000;(2)0.000034.解 (1)314000000=3.14×106;(2)0.000034=3.4×10-4.41.判断并改错(只改动横线上的部分):(1)用四舍五入得到的近似数0.0130有4个有效数字.(2)用四舍五入法,把0.63048精确到千分位的近似数是0.63.(3)由四舍五入得到的近似数3.70和3.7是一样的.(4)由四舍五入得到的近似数4.7万,它精确到十分位.42.改错(只改动横线上的部分):(1)已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536;(2)已知7.4273=409.7,那么74.273=4097,0.074273=0.04097;(3)已知3.412=11.63,那么(34.1)2=116300;(4)近似数2.40×104精确到百分位,它的有效数字是2,4;(5)已知5.4953=165.9,x3=0.0001659,则x=0.5495.有理数·错解诊断练习答案1.(1)不等于0的有理数;(2)+5,-5;(3)-2,+4;(4)6.2.(1)没有;(2)没有;(3)有.3.(1)不都是;(2)不都是;(3)不都是;(4)不都是;(5)都是;(6)不都是.原解错在没有注意“0”这个特殊数(除(1)、(5)两小题外).4.(1)不一定;(2)不一定;(3)不一定;(4)不一定;(5)不一定;(6)一定.上面5,6,7题的原解错在没有掌握有理数特别是负数大小的比较.8.(1)-11;(2)-1,-2,-3,-4;(3)4,-4.10.x绝对值的相反数.11.(1)<;(2)>;(3)>.12.-2,-1,0,1,2.13.不一定能推出x=±a,例如,若|x|=-2.则x值不存在.14.不一定能得出a=b,如|4|=|-4|,但4≠-4.15.-2,-4,0,2,4.16.-a+11.17.a的相反数与3的差.18.读作:负三、正五、负七、正二、负九的和,或负三加五减七加二减九.19.(1)原式=-7+4-9+2+5=-5;(2)原式=-5-7+6+4=-2.21.<;>;>.22.当a≥0时,-a+|a|=0,当a<0时,-a+|a|=-2a.23.由|a+b|=a+b知a+b≥0,根据这一条件,得a=4,b=2,所以a-b=2;a=4,b=-2,所以a-b=6.24.-7+|-15|=-7+15=8.26.(1)都不;(2)都;(3)不都;(4)都.27.(1)正数、负数或零;(2)正数、负数或零;(3)正数、负数或零;(4)0.28.(1)3或1;(2)b≠0.30.当a>0时,4a>-4a;当a=0时,4a=-4a;当a<0时,4a<-4a.(5)-150.32.当b≠0时,由|a|=|b|得a=b或a=-b,33.由ab>0得a>0且b>0,或a<0且b<0,求得原式值为3或-1.34.(1)平方等于16的数是±4;(2)(-2)3的相反数是23;(3)(-5)100.36.(1)不一定;(2)一定;(3)一定.37.(1)负数或正数;(2)a=-1,0,1;(3)a=0,1;(4)a3=±27;(5)x3=-27.38.(1)不一定;(2)不一定;(3)不一定;(4)不一定.40.(1)3.14×108;(2)3.4×10-5.41.(1)有3个有效数字;(2)0.630;(3)不一样;(4)千位.42.(1)2536,0.002536;(2)409700,0.0004097;(3)341;(4)百位,有效数字2,4,0;(5)0.05495.。

(易错题精选)初中数学有理数分类汇编及答案解析

(易错题精选)初中数学有理数分类汇编及答案解析

(易错题精选)初中数学有理数分类汇编及答案解析一、选择题1.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示. 若0b d +=,则下列结论中正确的是( )A .0b c +>B .1c a> C .ad bc > D .a d >【答案】D【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得a <b <0<c <d ,根据有理数的运算,可得答案.【详解】由数轴上的点表示的数右边的总比左边的大,得a <b <0<c <d ,A 、b+d =0,∴b+c <0,故A 不符合题意;B 、c a<0,故B 不符合题意; C 、ad <bc <0,故C 不符合题意;D 、|a|>|b|=|d|,故D 正确;故选D .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a <b <0<c <d 是解题关键,又利用了有理数的运算.2.下列说法中,正确的是( )A .在数轴上表示-a 的点一定在原点的左边B .有理数a 的倒数是1aC .一个数的相反数一定小于或等于这个数D .如果a a =-,那么a 是负数或零【答案】D【解析】【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【详解】解:A 、如果a<0,那么在数轴上表示-a 的点在原点的右边,故选项错误;B 、只有当a≠0时,有理数a 才有倒数,故选项错误;C 、负数的相反数大于这个数,故选项错误;D 、如果a a =-,那么a 是负数或零是正确.故选D.【点睛】本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.已知a b >,下列结论正确的是( )A .22a b -<-B .a b >C .22a b -<-D .22a b >【答案】C【解析】【分析】直接利用不等式的性质分别判断得出答案.【详解】A. ∵a>b ,∴a −2>b −2,故此选项错误;B. ∵a>b ,∴|a|与|b|无法确定大小关系,故此选项错误;C.∵a>b ,∴−2a<−2b ,故此选项正确;D. ∵a>b,∴a 2与b 2无法确定大小关系,故此选项错误;故选:C.【点睛】此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.4.-6的绝对值是( )A .-6B .6C .- 16D .16【答案】B【解析】【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6故选B【点睛】考点:绝对值.5.下列说法错误的是( )A .2 a 与()2a -相等B .()2a -与2a -互为相反数C .3 a 与3a -互为相反数D .a 与a -互为相反数【答案】D【解析】【分析】根据乘方、算术平方根、立方根、绝对值,以及相反数的定义,分别对每个选项进行判断,即可得到答案.【详解】解:A 、()2a -=2 a ,故A 正确;B 、()22a a -=,则()2a -与2a -互为相反数,故B 正确;C 、3 a 与3a -互为相反数,故C 正确;D 、a a -=,故D 说法错误;故选:D.【点睛】本题考查了乘方、算术平方根、立方根、绝对值,以及相反数的定义,解题的关键是熟练掌握所学的定义进行解题.6.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点51A ,那么点A 51所表示的数为( )A .﹣74B .﹣77C .﹣80D .﹣83【答案】B【解析】【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3 ,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,即可解答.【详解】解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数,1−3=−2;第2次从点A 1向右移动6个单位长度至点2A ,则2A 表示的数为−2+6=4;第3次从点A 2向左移动9个单位长度至点3A ,则3A 表示的数为4−9=−5;第4次从点A 3向右移动12个单位长度至点4A ,则4A 表示的数为−5+12=7;第5次从点A 4向左移动15个单位长度至点5A ,则5A 表示的数为7−15=−8;…;则点51A 表示:()()511312631781772+⨯-+=⨯-+=-+=-, 故选B .7.四个有理数﹣2,1,0,﹣1,其中最小的数是( )A .1B .0C .﹣1D .﹣2【答案】D【解析】【分析】根据正数大于零,零大于负数,可得答案.【详解】∵-2<-1<0<1,最小的是-2.故选D .【点睛】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.8.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .0 【答案】C【解析】【分析】 根据已知和根与系数的关系12c x x a =得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =, ∴k 2=1,解得k =1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k =1时,34430∆=--+=-<,∴k=1不合题意,故舍去,当k=−1时,34450∆=-++=>,符合题意,∴k=−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.9.如图,下列判断正确的是()A.a的绝对值大于b的绝对值B.a的绝对值小于b的绝对值C.a的相反数大于b的相反数D.a的相反数小于b的相反数【答案】C【解析】【分析】根据绝对值的性质,相反数的性质,可得答案.【详解】解:没有原点,无法判断|a|,|b|,有可能|a|>|b|,|a|=|b|,|a|<|b|.由数轴上的点表示的数右边的总比左边的大,得a<b,由不等式的性质,得﹣a>﹣b,故C符合题意;故选:C.【点睛】本题考查了数轴、绝对值、相反数,利用不等式的性质是解题关键,又利用了有理数大小的比较.10.下列各数中,最大的数是()A.12-B.14C.0 D.-2【答案】B【解析】【分析】将四个数进行排序,进而确定出最大的数即可.【详解】112024-<-<<,则最大的数是14,故选B.【点睛】此题考查了有理数大小比较,熟练掌握有理数大小比较的方法是解本题的关键.11.小麦做这样一道题“计算()3-+W”、其中“□”是被墨水污染看不清的一个数,他翻开后面的答案,得知该题计算结果是8,那么”□”表示的数是( )A.5 B.-5 C.11 D.-5或11【答案】D【解析】【分析】根据绝对值的性质求得结果,采用排除法判定正确选项.【详解】解:设”□”表示的数是x,则|(-3)+x|=8,∴-3+x=-8或-3+x=8,∴x=-5或11.故选:D.【点睛】本题考查了绝对值的运算,掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.已知一个数的绝对值等于2,那么这个数与2的和为()A.4 B.0 C.4或—4 D.0或4【答案】D【解析】【分析】先根据绝对值的定义,求出这个数,再与2相加【详解】∵这个数的绝对值为2∴这个数为2或-22+2=4,-2+2=0故选:D【点睛】本题考查求绝对值的逆定理,需要注意,一个数的绝对值为正数a,则这个为±a13.下列各组数中,互为相反数的组是()A .2-与()22-B .2-与38-C .12-与2D .2-与2【答案】A【解析】【分析】 根据相反数的概念及性质逐项分析得出答案即可.【详解】A 、-2与()22-=2,符合相反数的定义,故选项正确;B 、-2与38-=-2不互为相反数,故选项错误;C 、12-与2不互为相反数,故选项错误; D 、|-2|=2,2与2不互为相反数,故选项错误.故选:A .【点睛】此题考查相反数的定义,解题关键在于掌握只有符号不同的两个数互为相反数,在本题中要注意理解求|-2|的相反数就是求2的相反数,不要受绝对值中的符号的影响.14.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a .15.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B . 考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.16.如果a+b >0,ab >0,那么( )A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0【答案】A【解析】解:因为ab >0,可知ab 同号,又因为a +b >0,可知a >0,b >0.故选A .17.在﹣6,0,﹣1,4这四个数中,最大的数是( )A .4B .﹣6C .0D .﹣1 【答案】A【解析】【分析】根据正数大于0,负数小于0,负数绝对值大的其值反而小即可求解.【详解】∵4>0>﹣1>﹣6,∴最大的数是4.故选A .【点睛】此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质可以解决问题.18.下列各组数中互为相反数的一组是( )A .3与13B .2与|-2|C .(-1) 2与1D .-4与(-2) 2【答案】D【解析】 考点:实数的性质.专题:计算题. 分析:首先化简,然后根据互为相反数的定义即可判定选择项.解答:解:A 、两数数值不同,不能互为相反数,故选项错误;B 、2=|-2|,两数相等,不能互为相反数,故选项错误.C 、(-1)2=1,两数相等;不能互为相反数,故选项错误;D 、(-2)2=4,-4与4互为相反数,故选项正确;故选D .点评:此题主要考查相反数定义:互为相反数的两个数相加等于0.19.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <-5B .b +d <0C .||||a c <D .c d <【答案】D【解析】【分析】根据数轴得到-5<a<b<0<c<d ,且a d b c >>>,再依次判断各选项即可得到答案.【详解】由数轴得-5<a<b<0<c<d ,且a d b c >>>,∴A 错误;∵b+d>0,故B 错误; ∵a c >,∴C 错误; ∵d c >,c>0, ∴c d <D 正确,故选:D.【点睛】此题考查数轴上数的大小关系,绝对值的性质,有理数的加法法则.20.在-3,-1,0,3这四个数中,比-2小的数是( )A .-3B .-1C .0D .3【答案】A【解析】【分析】根据两个负数比较大小,绝对值较大的数反而小,正数比负数大,逐个判断与-2的大小关系即可.【详解】解:∵-32103<-<-<<∴比-2小的数是-3故选:A【点睛】本题考查有理数的大小比较,掌握负数比较大小的方法是关键.。

初一数学上册:有理数易错题型11个

初一数学上册:有理数易错题型11个

初一数学上册:有理数易错题型11个在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升考点:正数和负数。

分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解答:解:表示互为相反意义的量:足球比赛胜5场与负5场.故选A点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.此题的难点在“增产10吨粮食与减产﹣10吨粮食”在这一点上要理解“﹣”就是减产的意思.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数考点:有理数。

分析:按照有理数的分类判断:有理数解答:解:负整数和负分数统称负有理数,A正确.整数分为正整数、负整数和0,B正确.正有理数与0,负有理数组成全体有理数,C错误.3.14是小数,也是分数,小数是分数的一种表达形式,D正确.故选C.点评:认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A.1B.3C.±2D.1或﹣3考点:数轴。

分析:此题可借助数轴用数形结合的方法求解.在数轴上,与表示数﹣1的点的距离是2的点有两个,分别位于与表示数﹣1的点的左右两边.解答:解:在数轴上,与表示数﹣1的点的距离是2的点表示的数有两个:﹣1﹣2=﹣3;﹣1+2=1.故选D.点评:注意此类题应有两种情况,再根据“左减右加”的规律计算.如图,正确的判断是()A.a<-2B.a>-1C.a>bD.b>2考点:数轴;有理数大小比较.分析:根据数轴上点的位置关系确定对应点的大小.注意:数轴上的点表示的数右边的数总比左边的数大.解答:解:由数轴上点的位置关系可知a<-2<-1<0<1<b<2,则A、a<-2,正确;B、a>-1,错误;C、a>b,错误;D、b>2,错误.故选A.点评:本题考查了有理数的大小比较.用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.本题中要注意:数轴上的点表示的数右边的数总比左边的数大.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于()A.﹣1B.0C.1D.2考点:有理数的加法。

初中数学七年级上册数学《有理数》易错题

初中数学七年级上册数学《有理数》易错题

《有理数》易错题,附答案第1节 正数和负数1.易错点:对正数和负数的概念理解不清1、下列说法正确的是_____________(填序号)①不带“-”号的数都是正数;①一个数不是正数就是负数;①带负号的数是负数;①0℃表示没有温度;①若a 是正数,则-a 一定是负数。

参考答案1、①第2节 有理数 2.易错点:对有理数的相关概念理解不清 1、下列有关有理数的说法正确的是( ) A .有限小数和无限循环小数不是有理数 B .正整数与负整数构成整数 C .整数和分数统称为有理数 D .非负整数即为正整数 2、【变式1】下列有关有理数的说法中,正确的是( ) A .0不是有理数 B .﹣2是整数 C .0.5不是分数 D .有理数就是正数和负数 3、【变式2】下列说法:①0是最小的整数;①最大的负整数是﹣1;①正有理数和负有理数统称有理数;①无限小数不是有理数。

其中正确的有______(填序号) 参考答案 1、C 2、B 3、① 3.易错点:非负数、非正数中漏掉0 1、在-5,4.2,21 ,0,+10,3这六个数是,非负数是____________________,非负整数是_____________。

2、【变式1】比-3大的负整数有__________,比3小的非负整数是_________。

参考答案 1、4.2,0,+10,3;0,+10,3 2、-2,-1;2,1,0 4.易错点:数轴上到某点的距离为正数的点有两个 1、到原点的距离为35个单位长度的点表示的数是__________。

2、【变式1】已知在数轴上A 点表示的数是7,B 点到A 点的距离是3个单位长度,则B 点表示的数是_________。

3、【变式2】如果数轴上的点A 对应的有理数为-2,那么与点A 相距3个单位长度的点所对应的有理数为_______。

参考答案1、35或-352、4或103、-5或15.易错点:误以为数轴上的点只能表示有理数 1、下列说法正确的是( ) A .数轴上的点都表示有理数 B .数轴上右边的数不一定比左边的数大C .数轴上的点离原点越远,表示的数越大D .有理数都能在数轴上表示参考答案 1、D 6.易错点:对相反数的概念理解不清 1、-a 的相反数是_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数分类易错题
1.不存在最小的正数,也不存在最大的
正数( )
2.不存在最小的正有理数( )
3.不存在最小的自然数( )
4.存在最大的正有理数( )
5.存在最小的负有理数( )
6.没有最大的有理数,也没有最小的有
理数( )
7.没有最大的正整数( )
8.没有最小的负整数( )
9.有最大的非负数,没有最小的非负数
( )
10.有最大的负数,没有最小的正数( )
11.有最小的负数,没有最大正数( )
12.最大的负整数是____
13.最大的非正整数是____
14.最大的非正数是____
15.最小的正整数是____
16.最小的非正整数是____
17.最小的自然数是____
18.最小的非负数是____
19.0不是有理数( )
20.0不是自然数( )
21.0既不是正数,也不是负数( )
22.0是有理数,不是整数( )
23.0是整数,不是分数( )
24.0是正整数. ( )
25.0一定是正整数吗( )
26.零表示没有,不是自然数( ) 27.零是非负整数,是非正数,是有理
数( )
28.零是偶数.( )
29.零是整数.( )
30.零是正数.( )
31.小学学过的数都是正数( )
32.一个数不是正数,就是负数( )
33.一个有理数,不是整数就是分数( )
34.一个有理数,不是正数就是负数( )
35.有理数包括:“正数、0、负数”,对
吗?( )
36.在有理数中除了负数就是正数( )
37.整数不是正的,就是负的( )
38.整数和分数统称为有理数( )
39.整数就是正数( )
40.整数一定是自然数( )
41.正整数、负整数、正分数、负分数
统称有理数( )
42.正整数和负整数统称为整数( )
43.正整数是自然数( )
44.自然数一定是整数( )
45.自然数一定是正整数( )
46.若一个数是有理数,则这个数一定
是负数( )
47.若一个数是有理数,则这个数一定
是整数( )
48.若一个数是有理数则这个数一定是
正数( )
49.若一个数是整数,则这个数一定是
有理数( )
50.所有正数都是整数( )
51.非负有理数就是正有理数( )
52.分数是有理数( )
53.负整数不是整数( )
54.0.5666…不是有理数( )
55.0,1/4,2 004,1.25是非负数.( )
56.-0.382既是____数,又是____数.
57.-2006不是( )A.有理数 B.自然数
C.整数
D. 负有理数
58.-3.14是负分数,不是有理数( )
59.-8不属于下列集合中的( ).A.
整数集合 B.负数集合 C.有理数
集合 D.非负整数集合60.对于0.618,下面说法正确的是
( ). A.是整数,不是分数 B.不
是分数,是有理数 C.是整数,也是
分数 D.是分数,不是有理数
61.负整数是指( ).A.是整数,但不
是正数 B.是整数,而且是非负的
C.是整数,而且是负数
D.是整数,
但不包括0
62.请任意写出两个既属于负数集合,
又属于整数集合的数:
______________
63.下面两个集合,有公共部分的是
( ). A.正数集合和负数集合 B.
整数集合和分数集合 C.整数集合
和负数集会 D.非负数集合和负分
数集合。

相关文档
最新文档