§2--矩阵的运算

合集下载

第一节 矩阵的运算

第一节 矩阵的运算
-15-
作业: 作业
P27 1( 2), ( 3)
-16-
1 2 1 4 例5 设 A = 5 − 8 0 2 1 1 3 7
解:
求 E 3 A 和 AE 4
2 1 4 1 1 2 1 4 1 1 5 − 8 0 2 = 5 − 8 0 2 1 3×3 1 1 3 7 3×4 1 1 3 7 3×4
a11 a 21
a12 a 22
b11 a13 b21 a 23 b31
b12 def c11 b22 c 21 b32
c12 c 22
-9-
定义: A = (a ij ) m× s B = (bij ) s×n 设
a11 L a1 j M M A = a i 1 L a ij M M a m1 L a mj L a1 s b11 L b1 j L b1n M M M M L a is B = bi 1 L bij L bin M M M M a L bsj L a sn L a ms s×n m × s s1
c11 = a11b11 + a12b21 + a13 b31 c21 = a 21b11 + a 22 b21 + a 23b31 c12 = a11b12 + a12b22 + a13b32 c22 = a 21b12 + a 22b22 + a 23b32
y1 = a11 (b11t1 + b12 t 2 ) + a12 (b21t1 + b22 t 2 ) + a13 (b31t1 + b32 t 2 )

线性代数 矩阵及其运算

线性代数 矩阵及其运算

A22 ...
... ...
An 2 ...
A1n A2n ... Ann
称矩阵A的伴随矩阵,记为A*
精选版课件ppt
27
伴 随 矩 阵 有 如 下 重 要 性 质 : AA*A*A(detA)E
矩阵运算举例
例 例 1 8 设 A123T, B11 21 3, CAB ,
求 Cn
精选版课件ppt
例4
如:A 11
11
B
1 1
11
AB O
BA
2 2
22
显然有:AB 0 AB BA
总结:矩阵乘法不满足交换律与消去律.
精选版课件ppt
18
例5 设
A1 1
2 1
1 1,
求AB与BA
1 2 B1 1
2 3

3 0 3
1 3 AB2 6
BA0 3 0 1 7 1
定理2.1 若矩阵A的第i行是零行,则乘积 AB的第i行
a..i.1
... ...
a..is.n......
... bnjs
... ...
cij
精选版课件ppt
14
例2 计算
2 1
1 8 10
1 3
4 01 3
2 4
051 9
2 5 22 15
精选版课件ppt
15
例3. 非齐次线性方程组的矩阵表示
a11x1 a12x2 a1nxn b1
a21x1
关于矩阵乘法的注意事项: (1)矩阵 A 与矩阵 B 做乘法必须是左矩阵的列数与右
矩阵的行数相等; (2)矩阵的乘法中,必须注意矩阵相乘的顺序,AB是
A左乘B的乘积,BA是A右乘B的乘积;

矩阵的运算

矩阵的运算

第四章矩阵§1 概念§2 矩阵的运算教学目的:使学生学会矩阵的加、减、乘法运算及运算条件。

教学重点:矩阵的乘法课时:4教学方式:讲练结合教学内容:一、回忆矩阵的概念并举例二、矩阵的运算:(一)加法1、条件:两个矩阵的行数、列数分别相等。

2、法则:对应元素相加3、性质:(1)结合律(2)交换律(3)零矩阵(4)负矩阵注:可用负矩阵定义矩阵的减法(二)数乘1、法则:用这个数乘以矩阵的每一个元素2、性质:(1)lA=(+)k+kAAl(2)kB=+)k+(kABA(3)A()(=k)kllA(4)A⋅1A=(5))(kB A B kA AB k ==)()((三)乘法1、条件:第一个矩阵的列数等于第二个矩阵的行数,其结果矩阵的行数与第一个矩阵的行数相同,列数与第二个矩阵的列数相同。

2、法则:第一个矩阵的第i 行与第二个矩阵的第j 列的对应元素相乘后再相加即为乘积矩阵的第i 行第j 列的元素。

问:如果矩阵A 与矩阵B 可以相乘,那么矩阵B 与矩阵A 是否可以相乘?不一定。

即使矩阵A 与矩阵B 可以相乘,矩阵B 与矩阵A 也可以相乘,那么其结果是否相同?不一定。

例:333443101726210765121113121430415003112101⨯⨯⨯⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫⎝⎛---=AB 444334267321426471165231415003112101121113121430⨯⨯⨯⎪⎪⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛--=BA从而交换律不成立。

3、性质:(1)结合律(2)关于加法的左、右分配律成立 4、特殊矩阵:(1)n 级单位矩阵:主对角线上是1,其余元素全部为0的矩阵。

它与任何可以与之相乘的矩阵的乘积都是那个矩阵本身。

(2)n 级数量矩阵:即主对角线上是同一个数k ,其余元素全部为0的矩阵。

与任何可以与之相乘的矩阵的乘积都等于数k 乘以该矩阵。

工程数学2-2 矩阵的运算

工程数学2-2 矩阵的运算
λ n+1
0
n
(n + 1 )n
λ n+1
2 (n + 1 )λ n
λ
n−1
,
所以对于任意的 k 都有
k λ k A = 0 0

k −1 k
λ
0
k ( k − 1) k − 2 λ 2 k −1 kλ . λk
四、矩阵转置
λ2 = 0 0 2λ
λ2
0
1 2λ . λ2
λ 3 2 A = A A= 0 0
3 λ = 0 0
2

λ2
0
3λ 2 3λ λ3
1 λ 2λ 0 λ2 0
1
λ
0
0 1 λ
定义 把矩阵 A 的行换成同序数的列得到的 Τ 新矩阵, 的转置矩阵, 新矩阵,叫做 A 的转置矩阵,记作 A . 例
1 2 2 A= , 4 5 8
B = (18 6),
1 4 T A = 2 5 ; 2 8
18 B = . 6
T
转置矩阵的运算性质
T
)
= AT − A = − B ,
所以B为反对称矩阵 所以 为反对称矩阵. 为反对称矩阵
A + AT A − AT C B A= + = + , 2 2 2 2
命题得证. 命题得证
五、方阵的行列式
的元素所构成的行列式, 定义 由 n 阶方阵 A 的元素所构成的行列式, 的行列式, 叫做方阵 A 的行列式,记作 A 或 det A.
(3 ) λ ( AB ) = (λA)B = A(λB )

第二章 矩阵及其运算

第二章 矩阵及其运算

a11 b11 a12 b12 a1n b1n a 22 b22 a 2 n b2 n a b 21 21 a b a s 2 bs 2 a sn bsn s1 s1
称为 A 和 B 的和,记为
C A B.
批注
表示出来。
§2 矩阵的运算
矩阵的意义不仅在于把一些数据根据一定的顺序排列成 阵列形式, 而且还在于对它定义了一些有理论意义和实际意义 的运算,使它真正成为有用的工具。 一、矩阵的加法 1、定义 定义 设
A aij sn

a11 a 21 a s1 b11 b21 bs1
定义:设 A a ij

m s
是 m s 矩阵, B bij

s n
是 s n 矩阵,则定
义一个新的 m n 矩阵 C :
C cij mn
s
其中
cij ai1b1 j ai 2 b2 j aik bkj ail blj aik bkj
批注
(2) 结合律 (A) (A) ( ) A (3) 分配律 ( A B) A B
A A
(4) 若 A 为 n 阶矩阵,则有 A n A 此外,还容易得到:
0 A 0,
A (1) A
矩阵相加与数乘矩阵合起来统称为矩阵的线性运算。 例
矩阵的乘法;方阵的行列式;伴随矩阵; 逆矩阵的概念;求逆方法; 分块求逆方法。
矩阵乘法不满足交律以及由此的问题;矩阵可逆性的讨论;分块求逆 方法
讲授 习题课 答疑
教 学 内 容
第二章 矩阵及其运算
矩阵是将一组有序的数据视为 “整体量” 进行表述和运算, 使得问题简洁和易于了解本质。 矩阵不仅是解线性方程组的有 力工具, 而且是线性空间内线性变换的表现形式, 因此有关矩 阵的理论构成了线性代数的基本内容。 本章介绍矩阵的概念;矩阵的线性运算、矩阵乘法;逆矩 阵及矩阵的初等变换;分块矩阵及其运算等内容。 §1 矩阵 1、矩阵的概念

第二章 矩阵的运算及与矩阵的秩ppt课件

第二章  矩阵的运算及与矩阵的秩ppt课件

钢笔 100 150
铅笔 300 260
.
§2.1 矩阵的基本运算
每种商品进货单价和销售单价(元)如下表:
圆珠笔 钢笔 铅笔
进货单价 6 9 3
销售单价 8 12 4
.
§2.1 矩阵的基本运算
求每个月的总进货额和总销售额。
金额 月份
总进货额
总销售额
九月 200×6+100×9+300×3 200×8+100×12+300×4
0 0 2 5
0 1 8
0
0 0
A1
A2
0 0 0 3 2 0
A3
0 0 0 0 0 9
.
二、分块矩阵的运算
§2.2 分块矩阵
1.分块矩阵相加、减
设A、B是两个用相同方法分块的同型矩阵
A11
设Amn
A21 M
A12 L A22 L MO
Ap1 Ap2 L
A1q
B11 B12 L
001 a 31 a 32 a 33 a 3 4 a 31 a 32 a 33 a 34
.
§2.1 矩阵的基本运算
1 0 0 0
a11 A(E 2,3)a21
a12 a22
a13 a23
a a1 24 40 0
0 1
1 0
0 0a a1 21 1
a13 a23
a12 a22
a14 a24
P 1 P 2LP sA Q 1 Q 2LQ tB
.
三、矩阵的转置
§2.1 矩阵的基本运算
定义2.3:把m×n矩阵A的行和列依次互换得到的一个 n×m 矩阵,称为A的转置,记作AT或A’.

《线性代数》课件-第二章 矩阵及其运算

《线性代数》课件-第二章 矩阵及其运算

a11
A
A
a21
am1
a12 a22
am1
a1n
a2n
amn
数乘矩阵的运算规律
a, b, c R 结 合 (ab)c a(bc) 律 分 (a b) c ac bc 配 律 c (a b) ca cb
设 A、B是同型矩阵, , m 是数 (m)A (m A)
a11
a12
a13
a14
4
c11 a1kbk1
b11
b21
b31
b41
k 1
4
c12 a11b12 a12b22 a13b32 a14b42 a1k bk 2 k 1
一般地,
4
cij ai1b1 j ai 2b2 j ai 3b3 j ai4b4 j aikbkj k 1
行列式
矩阵
a11 a12
a1n
a21 a22
a2n
an1 an2
ann
(1) a a t( p1 p2 pn ) 1 p1 2 p2
p1 p2 pn
行数等于列数
共有n2个元素
a11 a12
a21
a22
am1 am1
anpn
a1n
a2n
amn
行数不等于列数 共有m×n个元素 本质上就是一个数表
第二章 矩阵及其运算
§1 矩阵
一、矩阵概念的引入 二、矩阵的定义 三、特殊的矩阵 四、矩阵与线性变换
B
一、矩阵概念的引入
例 某航空公司在 A、B、C、D 四座 A
城市之间开辟了若干航线,四座城市 之间的航班图如图所示,箭头从始发 地指向目的地.
城市间的航班图情况常用表格来表示:

§2矩阵的运算

§2矩阵的运算

分配

l ( A B) l A l B
备注
矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算.
© §2 2009, Henan Polytechnic University 矩阵的运算
1111
第二章 矩阵及其运算
注意:与行列式性质相区别
a11 a12 a13 l a11 l a12 l a13 a11 a12 l a13 l a21 a22 a23 a21 a22 a23 a21 a22 l a23 a31 a32 a33 a31 a32 a33 a31 a32 l a33
a11 cc cc cc cc a11 1111 aa12 1212 aa13 1313 aa14 1414 12 13 14 a21 c21 c22 c23 cc a21 c21 aa22 c22 aa23 c23 aa24 2424 22 23 24 a c aa c aa c aa c a 3131 c3131 3232 c3232 3333 c3333 3434 c3434
© §2 2009, Henan Polytechnic University 矩阵的运算
3 3
第二章 矩阵及其运算
一、矩阵的加法
1、定义
设有两个 m n矩阵 A a ij , B bij , 那末矩阵 A 与 B 的和记作 A B,规定为
a11 b11 a 21 b21 A B a b m1 m1
1212
第二章 矩阵及其运算
1 2 4 3 例1 A 0 3 , B 5 3 , 求A+2B. 解:
1 2 4 3 A 2B 0 3 2 5 3

第2章 2.2矩阵的运算

第2章 2.2矩阵的运算


X 1 (B A) 2
1 2
4 4 1
6 4 2
4 2
7
4 2 2
2
3 2
2
2 2 1 1
X 1B1A 22
1 2
1
7 2
1
二、矩阵的乘法
引例 某电子集团生产三种型号的彩电,第一季
度各40万台, 20万台, 30万台, 第二季度各30万台, 10 万台, 50万台, 每万台的利润分别是400万元, 300万 元, 500万元, 第一,二季度各类产品的利润是多少 ?
对应⑴可以用矩阵形式表示为 AX B ,称为矩阵
方程。其中
a11 a12 a1n
A
a21
a22
a2n
am1 am2 amn
,X
x1 x2
xn

b1
B
b2

bm
A称为系数矩阵,A ( A | B) 称为方程组的增广矩阵 对应齐次方程组⑵可用矩阵形式表示为 AX O
-18-
例4:计算下列矩阵的乘积.
1 1 1 1
1 1
0 0
0 0
-21-
比较:
Ø在数的乘法中,若 ab = 0 a = 0 或 b = 0
在矩阵乘法中,若 AB = O A = O 或 B = O 两个非零矩阵乘积可能为O。
Ø在数的乘法中,若 ac = ad,且 a 0 c = d (消去律成立)
在矩阵乘法中, 若 AC = AD, 且 A O C = D (消去律不成立)
例1
A
1 2
0 1
2 3
,
B
1 1
3 0
4 5,
求 3A 2B

2--矩阵的运算

2--矩阵的运算
0 17 T AB 14 13. 3 10
解法2
1 7 1 2 0 1 A , B 4 2 3 , 1 3 2 2 0 1
T TT AB B A
0 17 1 4 2 2 1 7 2 0 0 3 14 13 . 1 3 11 2 3 10
ijij两个矩阵为同型矩阵并且对应元素相等即ijij则称矩阵相等记作22211211ijkakakakakakakakakakaakka的乘积记作与矩阵akkalakakbkakjiksj是一个矩阵是一个矩阵那么规定矩阵与矩阵的乘积是一个矩阵其中注
第二节 矩阵的运算

二 三 四
矩阵的加法运算
矩阵的数乘运算 矩阵的乘法运算 矩阵的转置
n
n 1
n sin n cos sin n cos n
cos n sin n A sin n cos n
n
பைடு நூலகம்
例3:设
1 1 1 A 2, B 1 2 3 3
A B c n C s B b A a i jm n ij s ij m T T T T B b B A ( d A a ji ij) n m ji s n s m
要证: c
ji
AB ) BA 证明:(
T T T
= d ij
( A A ... A ) A ... A A 1 2
T n
T n
T T 2 1
a11 T ? a nn
T

例1

矩阵运算

矩阵运算
k =1 s

A× B = C.
注意:
( ai1
ai 2
b1 j b2 j L ais ) M b sj
= ai1b1 j + ai 2b2 j + L + ais bsj
= ∑aikbkj = cij
k= 1 s
例1.求矩阵
1 0 3 −1 A = 2 1 0 2
所 以 0 17 T ( AB) = 14 13 - 10 3
解法2:
( AB )
T
= B A
T
T
1 4 2 2 1 = 7 2 0 0 3 −1 3 1 −1 2
0 17 = 14 13. − 3 10
0 0 = 0 0
2. 运算律 1) 矩阵的乘法一般不满足交换律 2) (AB)C = A(BC) 3) λ (AB) = (λA) B = A(λ B), 4) A ( B + C ) = AB + AC ( B + C ) A = BA + CA ( 其中λ为数 );
3. 设E为单位矩阵
T T T
= E − 4XX + 4X( X X) X
T T
T
= E − 4XX + 4XX
T
T
=E
五、方阵的 行列式 1、定义 定义6 由n阶方阵A的元素所构成的行列式 (各元素的位置不变),称为方阵A的行列式, 记作 |A| 或 detA 。
2、运算律
T
1 A ).
= A;
n
2). λA = λ A;
例8 设
1 1 2,β 1 α = = 2 3 1 3

线性代数课件2-2矩阵的运算

线性代数课件2-2矩阵的运算
第二节 矩阵的运算
一 矩阵加法 二 数乘矩阵 三 矩阵乘法 四 典型例题
五、小结 思考题
2021/2/2
1
一、矩阵的加法
1、定义
设有两个m n矩阵 A aij , B bij , 那末矩阵
A 与 B 的和记作A B,规定为
a11 b11
A
B
a21 b21
am1 bm1
a12b1 a22b2 a32b3
b1 a13b1 a23b2 a33b3) b2
b3
a11b12 a22b22 a33b32 2a12b1b2 2a13b1b3 2a23b2b3 .
2021/2/2
22
(4). 已知:
x1 Xx2 ,
x331
Y yy1221,
Zzz1221,
1
22 1
2
3

1
2 2
1
2 1
2 2 1
2 2 2 2 2 2
4 4.
3
3 1 3 2 3 6
2021/2/2
20
(2) 将非齐次线性方程组(2)表示成矩阵乘积的形式
x1
X
x2
,
xn n1
b1
b
b2
,
bm m1
A (aij ) mn
则方程组(1)写成 AX b
A3 1 5 , B6 7
0 2 132
1 022
且知 Y AX , Z BY 求X 与 Z 的关系。
2021/2/2
23
解: Z BY BAX BA6 7 3 1 5 18 8 23 1 0220 2 123 3 1 5 23
zz21
18x1 8x2 23x3 3x1 x2 5x3

2.1 矩阵的概念 2.2矩阵的运算

2.1 矩阵的概念    2.2矩阵的运算

a11 b11 a 21 b21 a b m1 m1
a12 b12 a 22 b22 a m 2 bm 2
a1n b1n a 2 n b2 n a mn bmn
简记为:A B (aij ) (bij ) (aij bij )
三、矩阵与矩阵的乘法
定义2· 5
B 设矩阵 A (aij ) ms , (bij ) sn,由元素
cij ai1b1 j ai 2b2 j aisbsj aikbkj
k 1
s
构成的矩阵 C (cij ) mn称为矩阵A与矩阵B的乘积。 记为 即:
a11 a i1 a m1
a12 a 22 am2

a1n a2n a mn

1.
矩阵概念与行列式概念的区别:
a11 a12 a1n a 21 a 22 a 2 n 一个行列式 D a n1 a n 2 a nn
代表一个数
(*)
把方程组中系数aij及常数项 bi 按原来次序取出, 作一个矩阵
a11 a 21 a m1 a12 a 22 a1n a2n b1 b2 bm m×(n+1)
=A
增广矩阵
a m 2 a mn
则线性方程组(*)与 A 之间的关系是1-1对应的
则称矩阵A与矩阵B相等。记为:A=B
1 a c 1 1 例如:若 A B 且A=B 2 b 3 0 d
则有c=0; a=-1; b=2; d=3
一、矩阵的加法

第二章矩阵及其运算

第二章矩阵及其运算

数乘矩阵与数乘行 列式的区别所在!!
23
第二章 矩阵及其运算
3 1 2 0 A= 1 5 7 9
2 4 6 8
7 5 2 4 B= 5 1 9 7
3 2 1 6
求满足关系式 A+2X=B 的矩阵 X (3A—2B) 三、矩阵的乘法
定义 3:设 A=( aij ) ms B =( bij ) sn 则乘积 AB=C=( cij ) mn
线性代数教案
课题
教学内容 教学目标 教学重点
第二章 矩阵及其运算 §2.1 矩阵 §2.2 矩阵的运算
矩阵的概念; 矩阵的运算;
明确矩阵概念的形成; 掌握矩阵的加法、数与矩阵的乘法、矩阵与矩阵的乘法; 会求矩阵的转置、方阵的行列式、共轭矩阵;
掌握矩阵定义及运算法则
教学难点 矩阵乘法
教学内容、 安排
矩阵:matrix 矩阵运算:matrix operations 矩阵的加法:matrix addition 数与矩阵相乘:scalar muctiplication 转置矩阵:transposd matrix
A
的乘积。即
kA=
k
aij
=

ka21
kam1
ka12 ka22
kam2
ka1n
ka2n


kamn

用数乘以 矩阵中 的每一个元素
由定义可知 –A=(-1) A
A – B = A+(-B) 数乘矩阵满足以下的运算律 1、结合律:(kl)A=k(lA)=l(kA) 2、交换律:kA=Ak 3、分配律:k(A+ B)=kA+kB 例1、 设
教学手段、
措施

线性代数第二章 矩阵代数 S2矩阵的代数运算

线性代数第二章 矩阵代数 S2矩阵的代数运算

(1) h( A) f ( A) g( A), s( A) f ( A)g( A).
(2) f ( A)g( A) g( A) f ( A).
24
4、n阶矩阵乘积的行列式
方阵对应着行列式,于是有如下定理:
定理:若 A,B是n阶方阵,则 |AB| = |A| |B|.
(此定理可以推广到有限个同阶矩阵的情况)
或 Al .
la11
lA
Al
la21
la12
la22
la1n
la2n
.
lam1 lam1 lamn
特别的,lE 称为数量矩阵.
6
2、线性运算的运算性质
矩阵的加(减)法和数乘统称为矩阵的线性 运算,这些运算都归结为数(元)的加法与乘法.
运算性质
设A, B为同型矩阵,l, m为数,则 ➢ l(A + B) = l A + l B ➢ (l + m)A = l A+ m A ➢ l (m A) = (lm) A
0 bn2
bnn
29
a11 a12 a21 a22
A 0 an1 an2 E B 1 0
0 1
a1n c11 c12
c1n
a2n
c21
Cc22
c2n
ann cn1 cn2
cnn
0 00
0
0 00
0
00
1 0 0
0
AC
E 0
再利用拉普拉斯定 理按后n行展开
E (1)[(n1)(n2) 2n](12 n) C
(2) 由AB=O不能得出A、B至少有一个零矩阵.
如前面的A, B矩阵
A 1 1 ≠O, B 1 1 ≠ O,

矩阵的运算

矩阵的运算

矩阵的运算第三节矩阵的基本运算§ 3.1加和减§ 3.2矩阵乘法§ 3.2.1矩阵的普通乘法§ 3.2.2 矩阵的Kronecker乘法§ 3.3矩阵除法§ 3.4矩阵乘方§ 3.5矩阵的超越函数§ 3.6数组运算§ 3.6.1数组的加和减§ 3.6.2数组的乘和除§ 3.6.3数组乘方§ 3.7矩阵函数§ 3.7.1三角分解§ 3.7.2正交变换§ 3.7.3奇异值分解§ 3.7.4特征值分解§ 3.7.5 秩§ 3.1加和减如矩阵A和B的维数相同,则A+B与A-B表示矩阵A与B的和与差•如果矩阵A和B的维数不匹配,Matlab 会给出相应的错误提示信息•如:A= B=1 2 3 1 4 74 5 6 2 5 87 8 0 3 6 0C =A+B返回: C =2 6 106 10 1410 14 0如果运算对象是个标量(即1X 1矩阵),可和其它矩阵进行加减运算.例如:x= -1 y=x-1= -20 -12 1 「書二§ 3.2矩阵乘法Matlab中的矩阵乘法有通常意义上的矩阵乘法,也有Kronecker乘法,以下分别介绍.mo § 3.2.1矩阵的普通乘法矩阵乘法用“ * ”符号表示,当A矩阵列数与B 矩阵的行数相等时,二者可以进行乘法运算,否则是错误的.计算方法和线性代数中所介绍的完全相同.如:A=[1 2 ; 3 4]; B=[5 6 ; 7 8]; C=A*B ,结果为1 2 5 6 1 5 2 7 1 6 2 8 19 22C= 3 4x7 8 = 3 5 4 7 3 6 4 8 = 43 50 即Matlab 返C =19 2243 50如果A 或B 是标量,则A*B 返回标量A (或 B )乘上矩阵B (或A )的每一个元素所得的矩 阵. 「二口 \§ 322矩阵的Kronecker 乘法对n X m 阶矩阵A 和p X q 阶矩阵B , A 和B 的Kronecher 乘法运算可定义为:a 〔[B a^B .・・ a ^m Ba21B a 22B... a 2m BCABan1B an2B... a nm B由上面的式子可以看出,Kronecker 乘积 A B 表示矩阵A 的所有元素与B 之间的乘积组 合而成的较大的矩阵,B A 则完全类似.A B 和B A 均为叩X mq 矩阵,但一般情况下 ABBA.和普通矩阵的乘法不同,Kronecker 乘法并不要求两个被乘矩阵满足任何维数匹配 方面的要求.Kronecker 乘法的 Matlab 命令为C=kron (A,B ),例如给定两个矩阵A 和B :1 2 1 3 2积C :A=[12;34];B=[1 3 2; 24 6]; C=kro n(A,B)C =13 2 2 6 424 6 4 8 123 9 64 12 86 1218816242 4 6A 和B 的 Kronecker 乘A= B=则由以下命令可以求出作为比较,可以计算 B 和 A 的Kronecker 乘积D,可以看出C、D是不同的:A=[1 2; 3 4]; B=[1 3 2; 2 4 6]; D=kro n(B,A)D =1 2 3 6 2 43 4 9 12 6 82 4 4 8 6 126 8 12 16 18 24§ 3.3矩阵除法在Matlab中有两种矩阵除法符号:"\"即左除和“/”即右除•如果A矩阵是非奇异方阵,贝V A\B 是A的逆矩阵乘B,即inv(A)*B ;而B/A是B乘A的逆矩阵,即B*inv(A) •具体计算时可不用逆矩阵而直接计算.通常:x=A\B就是A*x=B的解;x=B/A就是x*A=B的解.当B与A矩阵行数相等可进行左除•如果 A 是方阵,用高斯消元法分解因数.解方程:A*x(:, j)=B(:, j),式中的(:,j)表示B矩阵的第j列,返回的结果x 具有与B矩阵相同的阶数,如果 A 是奇异矩阵将给出警告信息.如果A矩阵不是方阵,可由以列为基准的Householder正交分解法分解,这种分解法可以解决在最小二乘法中的欠定方程或超定方程,结果是m x n的x矩阵.m是A矩阵的列数,n是B矩阵的列数.每个矩阵的列向量最多有k个非零元素,k 是A的有效秩.右除B/A可由B/A=(A'\B')'左除来实现•二^§ 3.4矩阵乘方A A P意思是A的P次方.如果A是一个方阵,P是一个大于1的整数,则A A P表示A的P次幂,即A自乘P次•如果P不是整数,计算涉及到特征值和特征向量的问题,如已经求得:[V,D]=eig(A),则:A A P=V*D.A P/V (注:这里的八表示数组乘方,或点乘方,参见后面的有关介绍)如果B是方阵,a是标量,aAB就是一个按特征值与特征向量的升幂排列的B次方程§ 3.5矩阵的超越函数在Matlab中解释exp(A)和sqrt(A)时曾涉及到级数运算,此运算定义在A的单个元素上.Matlab可以计算矩阵的超越函数,如矩阵指数、矩阵对数等. 一个超越函数可以作为矩阵函数来解释,例如将“ m ”加在函数名的后边而成expm(A)和sqrtm(A),当Matlab运行时,有下列三种函数定义:expm logm sqrtm 矩阵指数矩阵对数矩阵开方阵.如果a和B都是矩阵,则「以凹、aAB是错误所列各项可以加在多种m文件中或使用funm •请见应用库中sqrtm.m , logm.m, f unm.m 文件和命令手册.§ 3.6数组运算数组运算由线性代数的矩阵运算符“ * ”、“/”、”、“八”前加一点来表示,即为“.* ”、“./”、”、“八”・注意没有“ .+ ”、“.-”运算・§ 3.6.1数组的加和减对于数组的加和减运算与矩阵运算相同,所以“+ ”、“ - ”既可被矩阵接受又可被数组接§ 3.6.2数组的乘和除数组的乘用符号.*表示,如果A与B矩阵具有相同阶数,则A.*B表示A和B单个元素之间的对应相乘•例如x=[1 2 3]; y=[ 4 5 6];计算z=x.*y结果z=4 10 18数组的左除()与数组的右除(./),由读者自行举例加以体会.§ 3.6.3数组乘方数组乘方用符号八表示.例如:键入:x=[ 1 2 3]y=[ 4 5 6]贝V z=x.A y=[1A4 2八5 3A6]=[1 32 729]⑴如指数是个标量,例如x.A2 , x同上,则:z=x.A2=[1A2 22 3八2]=[ 1 4 9](2)如底是标量,例如2 .A[x y] , x、y同上,则:z=2 .A[x y]=[2A1 2A2 2A3 2八4 2八5 2八6]=[2 4 816 32 64]从此例可以看出Matlab算法的微妙特性,虽然看上去与其它乘方没什么不同,但在2和“・” 之间的空格很重要,如果不这样做,解释程序会把“・”看成是2的小数点.Matlab看到符号“ A”时,就会当做矩阵的幂来运算,这种情况就会出错,因为指数矩阵不是方阵. 二二§ 3.7矩阵函数Matlab的数学能力大部分是从它的矩阵函数派生出来的,其中一部分装入Matlab本身处理中,它从外部的Matlab建立的M文件库中得到,还有一些由个别的用户为其自己的特殊的用途加进去的.其它功能函数在求助程序或命令手册中都可找到.手册中备有为Matlab提供数学基础的LINPACK和EISPACK软件包,提供了下面四种情况的分解函数或变换函数:(1)三角分解;(2)正交变换;(3)特征值变换;(4)奇异值分解.§ 3.7.1三角分解最基本的分解为“ LU ”分解,矩阵分解为两个基本三角矩阵形成的方阵,三角矩阵有上三角矩阵和下三角矩阵•计算算法用高斯变量消去法.从lu函数中可以得到分解出的上三角与下三角矩阵,函数inv得到矩阵的逆矩阵,det得到矩阵的行列式•解线性方程组的结果由方阵的“ ”和“/”矩阵除法来得到.例如:A=[ 1 2 34 5 67 8 0]LU分解,用Matlab的多重赋值语句[L,U]=lu(A) 得出0.1429 1.0000 00.5714 0.5000 1.00001.0000 0 07.0000 8.0000 00 0.8571 3.00000 0 4.5000注:L是下三角矩阵的置换,U是上三角矩阵的正交变换,分解作如下运算,检测计算结果只需计算L*U即可.求逆由下式给出:x=i nv(A)x =从LU分解得到的行列式的值是精确的,d=det(U)*det(L)的值可由下式给出:d=det(A)d =27直接由三角分解计算行列式:d=det(L)*det(U) d =27.0000为什么两种d的显示格式不一样呢?当Matlab做det(A)运算时,所有A的元素都是整数,所以结果为整数.但是用LU分解计算d时,L、U的元素是实数,所以Matlab产生的d也是实数.例如:线性联立方程取b=[ 135]解Ax=b方程,用Matlab矩阵除得到x=A\b结果x=0.3333 0.3333 0.0000由于A=L*U ,所以x 也可以有以下两个式子 计算:y=L\b ,x=U\y .得到相同的x 值,中间值 y 为:y = 5.0000 0.2857 0.0000Matlab 中与此相关的函数还有 rcond 、chol 和rref .其基本算法与LU 分解密切相关.chol 函数对正定矩阵进行Cholesky 分解,产生一个 上三角矩阵,以使R'*R=X .rref 用具有部分主 元的高斯一约当消去法产生矩阵 A 的化简梯形 形式.虽然计算量很少,但它是很有趣的理论线 性代数.为了教学的要求,也包括在 Matlab 中.C J ZED§ 3.7.2正交变换“QR ”分解用于矩阵的正交一三角分解.它 将矩阵分解为实正交矩阵或复酉矩阵与上三角 矩阵的积,对方阵和长方阵都很有用. 例如A=[ 4 7 10是一个降秩矩阵,中间列是其它二列的平均,1 5 8 112 36 9我们对它进行QR分解:QR]=qr(A)Q =R =-12.8841 -14.5916 -16.29920 -1.0413 -2.08260 0 0.00000 0 0可以验证Q*R就是原来的A矩阵.由R的下三角都给出0,并且R(3,3)=0.0000,说明矩阵R 与原来矩阵A 都不是满秩的.下面尝试利用QR分解来求超定和降秩的线性方程组的解.例如:b=[ 1357]讨论线性方程组Ax=b,我们可以知道方程组是超定的,采用最小二乘法的最好结果是计算x=A\b . 结果为:Warning: Rank deficient, rank = 2 tol=1.4594e-014x =0.5000 00.1667我们得到了缺秩的警告.用QR分解法计算此方程组分二个步骤:y=Q'*b x=R\y求出的y值为y 二—-9.1586-0.34710.00000.0000x的结果为Warning: Rank deficient, rank = 2 tol=1.4594e-014x =0.50000.1667用A*x来验证计算结果,我们会发现在允许的误差范围内结果等于b •这告诉我们虽然联立方程Ax=b是超定和降秩的,但两种求解方法的结果是一致的•显然x向量的解有无穷多个,而“ QR ”分解仅仅找出了其中之一. =§ 3.7.3奇异值分解在Matlab中三重赋值语句[U,S,V]=svd(A)在奇异值分解中产生三个因数:A=U*S*V 'U矩阵和V矩阵是正交矩阵,S矩阵是对角矩阵,svd(A)函数恰好返回S的对角元素,而且就是A 的奇异值(其定义为:矩阵A'*A的特征值的算术平方根)•注意到A矩阵可以不是方的矩阵.奇异值分解可被其它几种函数使用,包括广义逆矩阵pinv(A)、秩rank(A)、欧几里德矩阵范数norm(A,2)和条件数cond(A) • •§ 3.7.4特征值分解如果A是n X n矩阵,若满足Ax= x,则称为A的特征值,x为相应的特征向量.函数eig(A)返回特征值列向量,如果A是实对称的,特征值为实数•特征值也可能为复数,例如:A=[ 0 1-1 0]eig(A)产生结果ans =0 + I.OOOOi0 -I.OOOOi如果还要求求出特征向量,则可以用eig(A)函数的第二个返回值得到:[x,D]=eig(A)D的对角元素是特征值.x的列是相应的特征向量,以使A*x=x*D .计算特征值的中间结果有两种形式:Hessenberg 形式为hess(A), Schur 形式为schur(A). schur形式用来计算矩阵的超越函数,诸如sqrtm(A)和logm(A).如果A和B是方阵,函数eig(A,B)返回一个包含一般特征值的向量来解方程Ax= Bx双赋值获得特征向量[X,D]=eig(A,B)产生特征值为对角矩阵D •满秩矩阵X的列相应于特征向量,使A*X=B*X*D ,中间结果由qz(A,B)提供. 「以凹一】§ 3.7.5 秩Matlab计算矩阵A的秩的函数为rank(A),与秩的计算相关的函数还有:rref(A)、orth(A)、null(A)和广义逆矩阵pinv(A)等.利用rref(A) , A的秩为非0行的个数.rref 方法是几个定秩算法中最快的一个,但结果上并不可靠和完善.pinv(A)是基于奇异值的算法.该算法消耗时间多,但比较可靠.其它函数的详细用法可利用Help求助.上一页回目录下一页。

矩阵的运算

矩阵的运算

a11x1 a12 x2 a1n xn b1,
a21
x1 a22 x2 a2n xn
b2
,
am1x1 am2 x2 amn xn bm .

a11
A
a 21
a m1
a12 a 22
a m1
a1n
a2n
a mn
,
x1
X
x2
xn
,
b1
称矩阵C是A与B的乘积,记作C=AB.
注意:只有当左乘矩阵A的列数等于 右乘矩阵B的行数时,乘积AB才有意义.

乘积矩阵AB的行数等于左乘矩阵A的行 , 数,AB的列数等于右乘矩阵B的列数.
例2.2.2 设
1 2 3
1 1

ቤተ መጻሕፍቲ ባይዱ
A 1 1 5 , B 2 2
1
2 1
0 1
, 计算AB.
a2b2
a1bn a2bn
an
anb1 anb2 anbn
a1
BA b1 ,
b2 ,
,
bn
a2
an
b1 a1
b2 a2
bn an
n
bt at .
t 1

注意: 在这个例子中,AB是n阶矩阵,

而BA则是1阶矩阵.
例2.2.4 设
A
1 1
11,
B
1 1
11,
: :::
:
:::
, | A || B | an1 an2 ... ann a b nk k1 a b nk k 2 ... a b nk kn .
1 0 ... 0
0

矩阵教学课件

矩阵教学课件

例如:
13 2
6 2
5 2
是一个3 阶方阵.
2 2 2
(2) 只有一行的矩阵 A a1,a2 ,,an ,称为行矩阵(或行向量).
(3) 只有一列的矩阵
a1
B
a2
,
an
称为列矩阵(或列向量).
第二章 矩阵
§1 矩阵的概念
(4) 元素全为零的矩阵称为零矩阵, 记作O.
注意:不同阶数的零矩阵是不相等的.
例8: 设列矩阵X = (x1 x2 ···xn)T, 满足XTX = 1, E为n 阶单位 矩阵, H = E – 2XXT, 证明: H为对称矩阵, 且HHT = E.
证明: 自学 (见P49)
第二章 矩阵
§2 矩阵的运算
五、方阵的行列式 定义:由n阶方阵A的元素所构成的行列式(各元素的位
置不变),称为方阵A的行列式,记作|A| 或det A. 例
第二章 矩阵
§1 矩阵的概念 §2 矩阵的运算 §3 逆矩阵 §4 分块矩阵 §5 矩阵的初等变换 §6 矩阵的秩
第二章 矩阵
§1 矩阵的概念
一、矩阵的定义 定义: 由m×n个数aij (i = 1,2, ∙ ∙ ∙, m ; j = 1,2, ∙ ∙ ∙, n) 排
成的m行n列的数表
称为m行n列矩阵,简称m×n矩阵.
y1 a11x1 a12 x2 a1n xn ,
y2 a21x1 a22 x2 a2n xn ,
ym am1 x1 am2 x2 amn xn .
表示一个从变量x1、x2、…xn到变量y1、y2、…ym的线性变换,
其中aij为常数。
第二章 矩阵
§1 矩阵的概念
,
x

第二章矩阵与其运算

第二章矩阵与其运算

数,所以矩阵A与B可以相乘,其乘积AB=C是一个2 3 矩
阵。按公式(6)有
4 1 0
1 C AB 2
0 1
3 0
21
1 2 1
1 0 3
3
1 4
1 4 0 (1) 11 0 1
10 03
3 2 (1) 1 2 4 1 (1)
02 21
3 0 (1) 3 2 1 11
而BT的第i行为 (b1i
b2i
bsi ) , AT 的第j列为 a j1
aj2
aT js
因此
s
s
d ij bki a jk a jk bki
k 1
k 1
所以
dij c ji (i 1,2, , n;j 1,2, , m)
即 D=CT,亦即 ABT BT AT
例7 已知
A
2 1
下, AB BA 。
例5 还表明,矩阵 A O,B O,但却有 BA=O 这就提醒我 们要特别注意:若有两个矩阵A、B满足 AB=O,不能得出 A=O 或 B=O的结论;若A O 而AX Y O ,也不能得出 X=Y 的结论。
§2 矩阵的运算
矩阵的乘法虽不满足交换律,但仍满足下列结合律和分 配律(假设运算都是可行的)
(ⅲ) AB A B .
§3 逆矩阵
定义7 对于n阶矩阵A,如果有一个n阶矩阵B,使 AB=BA=E 则说矩阵A是可逆的,并把矩阵B称为A的逆矩阵。
如果矩阵A是可逆的,那么A的逆矩阵是唯一的,这是因 为:设B、C都是A的逆矩阵,则有
B=BE=B(AC)=B(AC)=(BA)C=EC=C 所以A的逆矩阵是唯一的。
§2 矩阵的运算
设A为n阶方阵,如果满足AT=A, 即

第二章 矩阵及其运算总结

第二章 矩阵及其运算总结

§1 矩阵及其运算一、矩阵的基本概念(必考)矩阵,是由m*n个数组成的一个m行n列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素在矩阵中的位置.比如,或表示一个m*n 矩阵,下标ij 表示元素位于该矩阵的第行、第列.元素全为零的矩阵称为零矩阵. 特别地,一个m*1矩阵,也称为一个 m维列向量;而一个 1*n矩阵B=(b1,b2,…,bn),也称为一个 n维行向量.当一个矩阵的行数m与烈数n 相等时,该矩阵称为一个 n阶方阵.若一个n阶方阵的主对角线上的元素都是,而其余元素都是零,则称为单位矩阵,记为,即: .单位矩阵与实数中的‘1’的运算相近.如一个阶方阵的主对角线上(下)方的元素都是零,则称为下(上)三角矩阵是一个阶下三角矩阵.例题:1.A既是上三角矩阵,又是下三角矩阵,则A必是对角矩阵2.两矩阵既可相加又可相乘的充要条件是两矩阵为同阶方阵.3.A=(l≠n),则A的主对角线上个元素的和为 (设矩阵为2行3列的矩阵,找规律)二、矩阵的运算1、矩阵的加法:如果是两个同型矩阵(即它们具有相同的行数和列数,比如说),则定义它们的和仍为与它们同型的矩阵(即),的元素为和对应元素的和,即:.给定矩阵,我们定义其负矩阵为: .这样我们可以定义同型矩阵的减法为: .由于矩阵的加法运算归结为其元素的加法运算,容易验证,矩阵的加法满足下列运算律:(1)交换律:; (2)结合律:;(3)存在零元:;(4)存在负元:.2 、数与矩阵的乘法的运算律:(1);(2);(3);(4) .3 、矩阵的乘法(必考)设为距阵,为距阵,则矩阵可以左乘矩阵(注意:距阵的列数等与矩阵的行数),所得的积为一个距阵,即,其中,并且(即左行乘右列)矩阵的乘法满足下列运算律(假定下面的运算均有意义):(1)结合律:; (2)左分配律:;(3)右分配律:;(4)数与矩阵乘法的结合律:;(5)单位矩阵的存在性:.若为阶方阵,则对任意正整数,我们定义:,并规定:由于矩阵乘法满足结合律,我们有:, .注意:矩阵的乘法与通常数的乘法有很大区别,特别应该注意的是:(必考重要)(1)矩阵乘法不满足交换律:一般来讲即便有意义,也未必有意义;倘使都有意义,二者也未必相等.正是由于这个原因,一般来讲,在实数中的某些运算不再适应,如,,反过来,这些公式成立的条件又恰是A、B 可逆.例:A,B,C 是同阶矩阵,A ≠0,若AB=BC,必有B=C,则A满足可逆(2)两个非零矩阵的乘积可能是零矩阵,即未必能推出或者. 同理,A ≠0,B ≠0,而AB却肯能等于0.例题:(选择题5、6)(3)矩阵的乘法不满足消去律:如果并且,未必有 .4 、矩阵的转置:定义:设为矩阵,我们定义的转置为一个矩阵,并用表示的转置,即:.矩阵的转置运算满足下列运算律:(1);(2);(3);(4) (重要).5、对称矩阵:n 阶方阵若满足条件:,则称为对称矩阵;若满足条件:,则称为反对称矩阵.若设,则为对称矩阵,当且仅当对任意的成立;为反对称矩阵,当且仅当对任意的成立.从而反对称矩阵对角线上的元素必为零.对称矩阵具有如下性质:(1)对于任意矩阵,为阶对称矩阵;而为阶对称矩阵;(2)两个同阶(反)对称矩阵的和,仍为(反)对称矩阵;(3)如果两个同阶(反)对称矩阵可交换,即,则它们的乘积必为对称矩阵,即.运算性质:1) (2) (3)(4) (5)三、逆矩阵1.定义 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得E BA AB ==.则A 称为可逆矩阵或非奇异矩阵.B 称为A 的逆矩阵,.由定义可得,A 与B 一定是同阶的,而且A 如果可逆,则A 的逆矩阵是唯一的.这是因为(反证法),如果1B 、2B 都是A 的逆矩阵,则有E A B AB ==11,E A B AB ==22,那么22212111)()(B EB B A B AB B E B B =====所以逆矩阵是唯一的.我们把矩阵A 的逆矩阵记作1-A .逆矩阵有下列性质: (1)如果A 可逆,则1-A 也可逆,且A A =--11)(.由可逆的定义,显然有A 与1-A 是互逆的. (2)如果A 、B 是两个同阶可逆矩阵,则)(AB 也可逆,且111)(---=A B AB .(必考重点) 这是因为 E A A AEA ABB A A B AB =⋅===------111111)())((E B B EB B B A A B AB A B ====------111111)())((,所以111)(---=A B AB .(必考重点)这个结论也可以推广到有限个可逆矩阵想乘的情形. (3)可逆矩阵A 的转置矩阵T A 也是可逆矩阵,且T T A A )()(11--=.这是因为E E A A A A T T TT===--)()(11,E E AA A A T T T T ===--)()(11所以 T TA A )()(11--=.(4)如果A 是可逆矩阵,则有11--=A A .这是因为E AA=-1,两边取行列式有 11=⋅-A A ,所以111--==A AA . 矩阵可逆的条件(1)n 阶方阵A 可逆的充分必要条件是| A | ≠ 0(也即r (A )= n );(2)n 阶方阵A 可逆的充分必要条件是A 可以通过初等变换(特别是只通过初等行(列)变换)化为n 阶单位矩阵;(3)n 阶方阵A 可逆的充分必要条件是A 可以写成一些初等矩阵的乘积;(4)n 阶方阵A 可逆的充分必要条件是A 的n 个特征值不为零;(5)对于n 阶方阵A ,若存在n 阶方阵B 使得AB = E (或BA = E ),则A 可逆,且A -1= B. 逆矩阵的有关结论及运算必考 ——求法方法1 定义法:设A 是数域P 上的一个n 阶方阵,如果存在P 上的n 阶方阵B ,使得AB = BA= E ,则称A 是可逆的,又称B 为A 的逆矩阵.当矩阵A 可逆时,逆矩阵由A 惟一确定,记为A -1.例1:设A 为n 阶矩阵,且满足22A - 3A + 5E = 0,求A -1.【解】22 2 -12A - 3A + 5E = 02A - 3A = - 5E23-A - A =E 552323A (- A - E) = - A - E = E555523A A = - A - E55∴∴∴∴可逆且方法 2 伴随矩阵法:A -1= 1|A|A*.定理n 阶矩阵A = a ij 为可逆的充分必要条件是A 非奇异.且11211122221121n n nnnn A A A A A A A A A A A -⎛⎫ ⎪ ⎪=⎪ ⎪⎝⎭其中A ij 是|A|中元素a ij 的代数余子式.矩阵112111222212n n nnnn A A A A A A A A A ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵,记作A*,于是有A -1=1|A|A*. 注 ①对于阶数较低(一般不超过3阶)或元素的代数余子式易于计算的矩阵可用此法求其逆矩阵.注意A* = (A ji )n ×n 元素的位置及符号.特别对于2阶方阵11122122a a A a a ⎛⎫= ⎪⎝⎭,其伴随矩阵22122111*a a A a a -⎛⎫=⎪-⎝⎭,即伴随矩阵具有“主对角元素互换,次对角元素变号”的规律.②对于分块矩阵A B C D ⎛⎫⎪⎝⎭不能按上述规律求伴随矩阵.例2:已知101A=210325⎛⎫ ⎪ ⎪ ⎪--⎝⎭,求A -1.【解】 ∵| A | = 2 ≠ 0 ∴A 可逆.由已知得111213212223313233A = - 5, A = 10, A = 7A = 2, A = - 2, A = - 2A = - 1, A = 2, A = 1 , A -1= 1|A| A* = 5115212211022511272171122⎛⎫-- ⎪--⎛⎫ ⎪⎪-=- ⎪ ⎪ ⎪ ⎪-⎝⎭- ⎪⎝⎭方法3 初等变换法:注 ①对于阶数较高(n ≥3)的矩阵,采用初等行变换法求逆矩阵一般比用伴随矩阵法简便.在用上述方法求逆矩阵时,只允许施行初等行变换.②也可以利用1E A E A -⎛⎫⎛⎫−−−−→⎪ ⎪⎝⎭⎝⎭初等列变换求得A 的逆矩阵. ③当矩阵A 可逆时,可利用求解求得A -1B 和CA -1.这一方法的优点是不需求出A 的逆矩阵和进行矩阵乘法,仅通过初等变换即求出了A -1B 或CA -1.例3::用初等行变换求矩阵231A 013125⎛⎫⎪= ⎪ ⎪⎝⎭的逆矩阵.【解】()231100125001125001A E 01301001301001301012500123110000611212500112500101301001301001910211100166311341006631310122111001663⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎛⎫ ⎪⎛⎫⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪---⎝⎭-- ⎪⎝⎭⎛--→---⎝⎫⎪⎪⎪⎪ ⎪⎪ ⎪⎭1113410066313A 010********1663-⎛⎫--⎪ ⎪ ⎪=- ⎪ ⎪ ⎪-- ⎪⎝⎭故 方法4 用分块矩阵求逆矩阵:设A 、B 分别为P 、Q 阶可逆矩阵,则:1111111111111111A A 000B 0C O A A A CB A O A O BD B O B B DA B B O A O B B O AO ----------------⎛⎫⎛⎫⎛⎫-⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭例4:已知0052002112001100A ⎛⎫⎪ ⎪=⎪-⎪⎝⎭,求A -1.【解】 将A 分块如下:12005200211200110O A A A O ⎛⎫ ⎪ ⎪⎛⎫⎪== ⎪⎪⎝⎭- ⎪ ⎪⎝⎭其中 125212,2111A A -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭可求得 1*1*1122121212111,2511||||3A A A A A A ---⎛⎫⎛⎫==== ⎪ ⎪--⎝⎭⎝⎭ 从而11211120033110331200250O A A A O ---⎛⎫ ⎪ ⎪ ⎪-⎛⎫ ⎪== ⎪⎪⎝⎭ ⎪ ⎪- ⎪-⎝⎭方法5 恒等变形法求逆矩阵:有些计算命题表面上与求逆矩阵无关,但实质上只有求出矩 阵的逆矩阵才能算出来,而求逆矩阵须对所给的矩阵等式恒等变 形,且常变形为两矩阵的乘积等于单位矩阵的等式.例8 已知,且,试求.解 由题设条件得3.伴随矩阵 如果n 阶矩阵A 的行列式0≠A ,则称A 是非奇异的(或非退化的).否则,称A 是奇异的(或退化的).(n 阶矩阵A 可逆的充要条件是:|A|≠0)设n n ij a A ⨯=)(,ij A 是A 中元素)21(n j i a ij ,,,, =的代数余子式.矩阵 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n A A A A A A A A A A 212221212111*(顺序变化,重点)称为A 的伴随矩阵. 矩阵n n ij a A ⨯=)(为可逆矩阵的充分必要条件是A 为非奇异矩阵,并且当A 可逆时,有*11A AA =-,伴随矩阵 例1. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=313132121A 判断A 是否可逆,如果可逆,求1-A .解: 因为01313132121≠=---=A ,所以A 可逆.又.13221)1(11211)1(;11312)1(71321)1(;63311)1(53112)1(;11332)1(93312)1(;83113)1(333323321331322322221221311321121111=---==-==---=-=--=-=--=-=---==--==--==---=+++++++++A A A A A A A A A所以 ⎪⎪⎪⎭⎫⎝⎛---==-1711691581*1A A A 四、分块矩阵一、分块矩阵的概念对于行数和列数较高的矩阵, 为了简化运算,经常采用分块法,使大矩阵的运算化成若干小矩阵间的运算,同时也使原矩阵的结构显得简单而清晰. 具体做法是:将大矩阵用若干条纵线和横线分成多个小矩阵. 每个小矩阵称为A 的子块, 以子块为元素的形式上的矩阵称为分块矩阵.矩阵的分块有多种方式,可根据具体需要而定注:一个矩阵也可看作以n m ⨯个元素为1阶子块的分块矩阵. 二、分块矩阵的运算分块矩阵的运算与普通矩阵的运算规则相似. 分块时要注意,运算的两矩阵按块能运算,并且参与运算的子块也能运算,即,内外都能运算.1. 设矩阵A 与B 的行数相同、列数相同,采用相同的分块法, 若,,11111111⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=st s t st s t B B B B B A A A A A其中ij A 与ij B 的行数相同、列数相同, 则.11111111⎪⎪⎪⎭⎫ ⎝⎛++++=+st st s s t t B A B A B A B A B A2.设,1111⎪⎪⎪⎭⎫ ⎝⎛=st s t A A A A Ak 为数, 则.1111⎪⎪⎪⎭⎫ ⎝⎛=st s t kA kA kA kA kA 3.设A 为l m ⨯矩阵, B 为n l ⨯矩阵, 分块成,,11111111⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=tr t r st s t B B B B B A A A A A其中pt p p A A A ,,,21 的列数分别等于tq q q B B B ,,,21 的行数, 则,1111⎪⎪⎪⎭⎫ ⎝⎛=sr s r C C C C AB 其中).,,2,1;,,2,1(1r q s p B A C t k kqpk pq ===∑=4. 分块矩阵的转置设,1111⎪⎪⎪⎭⎫ ⎝⎛=st s t A A A A A则.1111⎪⎪⎪⎪⎭⎫ ⎝⎛=T st T tT s T TA A A A A 5. 设A 为n 阶矩阵, 若A 的分块矩阵只有在对角线上有非零子块, 其余子块都为零矩阵, 且在对角线上的子块都是方阵, 即⎪⎪⎪⎪⎪⎭⎫⎝⎛=s A O A O A A21, 其中),,2,1(s i A i =都是方阵, 则称A 为分块对角矩阵.分块对角矩阵具有以下性质:(1) 若 ),,2,1(0||s i A i =≠,则0||≠A ,且|;|||||||21s A A A A =(2) .112111⎪⎪⎪⎪⎪⎭⎫⎝⎛=----s A O A O A A(3) 同结构的对角分块矩阵的和、差、积、商仍是对角分块矩阵. 且运算表现为对应子块的运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档