Broadcom以太网交换芯片转发流程

Broadcom以太网交换芯片转发流程
Broadcom以太网交换芯片转发流程

Broadcom以太网交换芯片培训(broadcom56504/56300)

1、交换芯片架构

交换芯片由GE/XE接口(MAC/PHY)模块、CPU接口模块、输入输出匹配/修改模块、MMU模块、L2转发模块、L3转发模块、安全模块、流分类模块等模块组成,其结构如图1所示:

图1 交换芯片的组成

56504包含24个GE端口,4个10G端口,10G端口既可以用于堆叠,也可以用于上联/级联。56504交换芯片与CPU的接口称为CMIC接口。交换芯片与CPU通过PCI总线连接。其他类型交换芯片与CPU的接口可以是:SPI+MII、I2C+MII、系统总线+MII、SMI+MII等。交换芯片的包处理流程如图2所示:

图2 交换芯片的包处理流程简图

包由端口进入交换芯片之后,首先进行包头字段匹配,为流分类做准备;然后经过一个安全引擎进行包过滤;符合安全的包进行L2交换或者L3路由,并经过流分类处理器对匹配的包做相关动作(比如丢弃、限速、修改VLAN等);对于可以转发的包根据或DSCP放到不同队列的buffer中,调度器根据优先级或者WRR等算法进行队列调度,在端口发出该包之前执行流分类修改动作,最终从相应端口发送出去。

2、L2转发流程

2.1 L2转发原理

对于交换芯片来说,L2转发是一个最基本的功能。L2功能主要包括ingress 过滤、MAC学习和老化、根据MAC+VLAN转发、广播与洪泛、生成树控制等基本功能。

L2转发的具体流程如图3所示:

从端口进入交换芯片的包首先检查TAG,对于tagged包,判断是否是的包,(的包vid为0),对于untagged的包和的包,根据系统配置加上tag(这些配置包括:基于MAC的vlan、基于子网的vlan、基于协议的vlan和基于端口的vlan)。经过这一步以后,到交换芯片内部的包都变成的tagged包了(vid

为1-4094,4095保留),如果设置了ingress过滤,就会检查本端口是否在该vid对应的VLAN中,对于本端口不在该vid对应的VLAN中的包就丢弃。对于

没有设置ingress过滤,或者设置ingress过滤但本端口在该vid对应的VLAN 中的包进行STP端口状态检查,对于BPDU以外的包,只有端口处于forwarding 状态,才允许包进入。然后进行原MAC地址检查,以原MAC+VID的哈希为索引查找L2 TABLE,如果没有找到,就把这个表项(原MAC+VID)以及对应的端口写到L2 TABLE中,这个过程称为MAC地址学习。当然地址学习的方法有很多种,可以是硬件学习,也可以是软件学习,可以根据PORT表中的CMI字段的配置来进行。

图3 L2转发流程

下一步进行目的MAC地址检查:目的MAC地址为广播地址(0xffffffff)的包,在vlan内广播出去;目的MAC地址为组播地址的包,进行组播流程的处

理;对于单播包,查找L2 TABLE,如果没有找到,就在vlan内进行洪泛;如果找到,检查表项中的L3 bit是否设置,如果设置了L3 bit,就进行L3流程的转发;否则就转发到L2 TABLE表项中的端口去,在egress方向,也有egress 过滤设置(默认是使能的),如果egress端口不在vlan中也是不能转发的。至此,L2转发流程完成了。与地址学习相反的过程是地址老化。地址老化的机制是:ASIC内部有个定时器,称为age timer,命令行可以对这个寄存器进行设置,每次查找L2 TABLE时(包括原地址查找和目的地址查找,可以配置),如果命中,就会设置hit标志。当老化时间到后,ASIC把hit标志清除,当下一个老化时间到后,ASIC把hit为0的地址设置为无效,这就是为什么实际地址老化的时间为1~2倍agingTime的原因。

2.2 L2转发相关的表项

2.2.1 port表

图4 port表

Port表是一个非常重要的表,有很多与端口相关的控制都在这里设置。每个端口对应一个表项,按端口号进行索引。下面介绍一下重要的设置:

1) PVID:设置PORT_VID

2) 缺省优先级:设置PORT_PRI

3) 流分类使能:设置FILTER_ENABLE

4) VLAN转换使能:设置VT_ENABLE和VT_MISS_DROP

5) Ingress过滤使能:设置EN_IFILTER

6) 信任COS还是信任DSCP:对于IPV4:TRUST_DSCP_V4=0:信任COS;

TRUST_DSCP_V4=1:信任DSCP,对于IPV6:同样设置TRUST_DSCP_V6。

7) Ingress方向mirror使能:设置MIRROR

8) MAC地址学习方式:设置CML

9) IP组播是否使用VLAN信息:设置IPMC_DO_VLAN

10) L3转发使能:设置V4L3_ENABLE和V6L3_ENABLE

11) 是否丢弃BPDU:设置DROP_BPDU

12) 控制是否转发带tag和不带tag的包:设置PORT_DIS_TAG和PORT_DIS_UNTAG

13) Pause帧控制:设置PASS_CONTROL_FRAMES

14) 基于子网的VLAN使能:设置SUBNET_BASED_VID_ENABLE

15) 基于MAC的VLAN使能:设置MAC_BASED_VID_ENABLE

16) 设置堆叠口:HIGIG_PACKET

17) 设置NNI口:NNI_PORT

18) 修改优先级使能:MAP_TAG_PACKET_PRIORITY

19) 堆叠口modid设置:MY_MODID

20) Out tpid设置:OUTER_TPID

21) 基于MAC和基于子网的VLAN优先级设置:VLAN_PRECEDENCE

22) 是否允许单臂桥功能:PORT_BRIDGE

23) IP组播位图设置:IGNORE_IPMC_L2_BITMAP和IGNORE_IPMC_L3_BITMAP

2.2.2 egress port表

图5 egress port表

EGR_PORT是一组寄存器,每个端口一个,用于EGRESS方向的控制,有几个重要设置介绍如下:

1) 设置egress端口类型:PORT_TYPE=0,UNI端口;PORT_TYPE=1,NNI端口

2) 设置egress过滤:EN_EFILTER=1

2.2.3 L2地址表

图6 L2地址表

56504的L2地址表大小为16K,5630X的L2地址表大小为8K,地址表使用MAC+VID的hash值作为索引查表。实际上56504的L2地址表hash值为4K,每个hash值对应4条地址,这样最多可以保存4条hash冲突的地址。地址表中每个表项都保存了MAC_ADDR和VLAN_ID。MAC学习的时候使用原MAC+VID

的hash查表,把表中的MAC+VID与包中的MAC+VID进行比较,如果完全相等,表示找到了。然后看端口(TGID_PORT)是否相等,如果不相等表示地址发生了迁移,对于动态学习的地址需要更新port;如果相等表示命中,更新hit标志。其他几个重要的功能介绍如下:

1) 设置静态地址:STATIC_BIT=1

2) 设置L3转发标志:L3=1

3) 设置本地址的包都转发到CPU去:CPU=1

4) 设置本地址匹配的包丢弃:SRC_DISCARD=1、DST_DISCARD=1

5) 设置本地址匹配的包对某些端口阻塞:MAC_BLOCK_INDEX

6) 设置本地址匹配的包镜像:MIRROR=1

7) 设置组播索引:L2MC_PTR

8) 地址有效标志:VALID=1

2.2.3 VLAN表

Vlan表分为ingress和egress两个部分,分别对应入口控制和出口控制。

图7 ingress vlan表

Ingress Vlan表中主要包含了端口列表,用于ingress filter功能。PFM是用于控制组播洪泛的开关。PFM=0,组播在vlan内洪泛;PFM=1,注册的组播按组播表转发,未注册的组播在vlan内洪泛;PFM=2,注册的组播按组播表转发,未注册的组播丢弃。STG用于标识本vlan所属的生成树组。

图8 egress vlan表

Egress vlan表中除了PFM和STG外,还包含了出口方向的端口位图,以及哪些端口以untag的方式发送本vlan的包。

3、L3转发流程

图9 L3转发流程

如果查目的MAC地址表的时候发现L3bit置位了,就进入到L3转发流程。与L2交L3交换可以实现跨VLAN转发,而且它的转发依据不是根据目的MAC地址,而是根据目的IP。L3转发的流程是:首先对L3头部进行校验,校验和错的包直接丢弃;然后进行原IP地址查找,如果主机路由表中没有找到,会上报给CPU,CPU会进行相应的处理,并更新接口表;下一步进行目的IP地址查找,如果主机路由表中没有找到,就会在子网路由表中进行查找,在子网路由表中进行最长子网匹配的查找算法,如果在子网路由表中还没有找到,也送给CPU 进行处理,如果在主机路由表或子网路由表中找到了,就会得到下一跳的指针。如果ECMP使能的话,会得到ECMP的指针和ECMP的个数,从而根据hash算法得到一个下一跳指针。下一条表项中包含了下一跳的MAC地址和接口表的索引。在包转发出去的时候,用下一跳的MAC地址替换掉包的目的MAC地址。用接口

表中的MAC地址和VLAN替换掉包的原MAC地址和VLAN。

与L3有关的几个重要的表:

图10 L3单播主机路由表

图11 L3子网路由表

图12 ECMP表

图13 EGRESS 下一跳表

图14 接口表

图15 INGRESS 下一跳表

4、 L2组播转发流程

在L2转发流程中,查找目的MAC+VID的时候,如果表项的目的MAC是一个组播地址,该表项有一个组播指针指向组播表,组播表中有一个端口位图,表示哪些端口属于该组播组。组播组中的端口位图与VLAN中的端口位图相与的结果是实际转发的端口位图。静态配置的或协议动态添加的组播地址通过SSP写到MAC 地址表中,组播成员通过SSP写到组播表中。L2组播表的结构如下:

图16 L2组播表

5、 L3组播转发流程

L3组播支持有源树和共享树。所谓有源树是指根据源IP地址和组地址来确定一个组播组,而共享树是指仅根据组地址来确定一个组播组。芯片也支持反向路径检查(Reverse Path Forwarding check),所谓反向路径检查是指通过检查源IP地址确定源端口,从而不要向源端口转发的技术。

L3组播的转发流程是,先查L2表,对于组播地址而且是L3 bit 置位的,查L3表。L3表给出IPMC_INDEX。根据这个索引查L3_IPMC表,L3_IPMC 表给出L2_BITMAP和L3_BITMAP。对于L2_BITMAP,按照L2组播流程转发;对于L3_BITMAP,根据IPMC_INDEX和BITMAP得到IPMC_GROUP的VLAN_INDEX,最后根据VLAN_INDEX查找IPMC_VLAN表,IPMC_VLAN表

包含了VLAN的位图,芯片在进行L3组播的时候,对VLAN的位图中的每个成员进行组播复制。

图17 L3组播表

图18 L3组播复制L3单播和组播的转发流程综合起来,如下图所示:

图19 L3单播和组播的转发流程IPMC转发相关的表的结构如下:

图20 L3 TABLE

L3 TABLE表项大小8K(5650X)/2K(5630X)。

图21 IPMC TABLE IPMC TABLE表项大小1K。

图22 IPMC _GROUP TABLE

IPMC _GROUP TABLE表项大小1K。

图23 IPMC _VLAN TABLE

IPMC _VLAN TABLE表项大小2K。

6、流分类处理流程

在5650X/5630X中,流分类是通过CFP实现的,CFP是ContentAware Filter Processor的缩写。所谓ContentAware就是对packet的内容进行智能匹配的技术。5650X/5630X中的流分类分为5个阶段,流程如图:

图24 CFP流程

这5个部分分别是智能协议识别选择器、CAM查找引擎、策略引擎、meter 和统计引擎、动作裁决引擎。在ingress端口,智能协议识别选择器对进来的包的前128bit按照协议字段进行选择和标记,CAM查找引擎按照用户给的key匹配协议选择器的内容,如果找到了,就执行策略引擎的动作,并可以实验meter 和统计引擎进行限速、标记颜色和统计。5650X有16个CAM查找引擎,5630X 有8个CAM查找引擎,它们可以并行执行,执行的动作如果有冲突的话,由动作裁决引擎进行裁决。

与协议内容识别选择器有关的表是:

图25 协议内容识别选择器

图26 FP_TCAM表下面这个是策略引擎表项:

图27 FP_TCAM_PLUS_POLICY表

下面这个是meter表和counter表:

图28 FP_METER表

图29 FP_COUNTER表动作裁决的优先级如下:

1. DROP

2. Else REPLACE

3. Else REDIRECT

4. Then EGRESSMASK

5. Then COPY_TO_CPU

装载自:

PK体系 网络交换芯片 参考板编制说明

《PK体系网络交换芯片参考板》编制说明 一、工作简况 1、任务来源 根据2020年中国信息产业商会第一批团体标准制订立项计划,成立编制组进行《PK体系网络交换芯片参考板》标准的制定工作。 团体标准的参编单位包括:盛科网络(苏州)有限公司、新华三技术有限公司、浪潮思科网络科技有限公司、烽火通信科技股份有限公司、杭州迪普科技股份有限公司、迈普通信技术股份有限公司。 2、主要工作过程 a) 2020年,编制组正式向中国信息产业商会提交立项申请。经审核,中国信息产业商会于2020年发布的《关于印发2020年第1批标准制订立项计划的通知》(中信商【2020】标03号),批准《PK体系网络交换芯片参考板》团体标准正式立项; b)2020年9月3日,在国二招宾馆东楼三层三号会议室,PK体系标准化编制组组织召开了“PK体系团体标准专家评审会”,邀请中国工程院、中国电子标准化研究院、国家电子计算机质量监督检验中心、腾讯集团阅文公司、中国软件测评中心信创中心、中国科学院计算所泛在计算系统研究中心、中国科学院地理科学与资源研究所、中国科学院软件研究所、全国轨道交通自动收费系统技术标准组等单位,共12位标准方面专家,对PK体系各团体标准进行评审,并对编制工作给予指导; c)2020年9月15日,在中国电子信息安全技术研发基地A座1层汇报厅,PK体系标准化编制组组织召开了“PK体系标准化工作培训会”,中国电子技术标准化研究院标准化专家讲授了标准的结构和编写规则,中国信息产业商会专家讲授了团体标准的工作概率,并根据2020年9月3日专家评审会的修改意见,进行了团体标准修订工作的安排; d)2020年9月底前,提交修改后的标准,请中国信息产业商会标准化专家对标准进行审核,对标准的形式、格式、表述、架构、内容等进行了完善和修订,形成PK体系团体标准征求意见稿;

交换式以太网和共享式以太网区别

共享式以太网 共享式以太网的典型代表是使用10Base2/10Base5的总线型网络和以集线器为核心的星型网络。在使用集线器的以太网中,集线器将很多以太网设备集中到一台中心设备上,这些设备都连接到集线器中的同一物理总线结构中。从本质上讲,以集线器为核心的以太网同原先的总线型以太网无根本区别。 集线器的工作原理: 集线器并不处理或检查其上的通信量,仅通过将一个端口接收的信号重复分发给其他端口来扩展物理介质。所有连接到集线器的设备共享同一介质,其结果是它们也共享同一冲突域、广播和带宽。因此集线器和它所连接的设备组成了一个单一的冲突域。如果一个节点发出一个广播信息,集线器会将这个广播传播给所有同它相连的节点,因此它也是一个单一的广播域。 集线器的工作特点: 集线器多用于小规模的以太网,由于集线器一般使用外接电源(有源),对其接收的信号有放大处理。在某些场合,集线器也被称为“多端口中继器”。 集线器同中继器一样都是工作在物理层的网络设备。 共享式以太网存在的弊端:由于所有的节点都接在同一冲突域中,不管一个帧从哪里来或到哪里去,所有的节点都能接受到这个帧。随着节点的增加,大量的冲突将导致网络性能急剧下降。而且集线器同时只能传输一个数据帧,这意味着集线器所有端口都要共享同一带宽。 交换式以太网 交换式结构: 在交换式以太网中,交换机根据收到的数据帧中的MAC地址决定数据帧应发向交换机的哪个端口。因为端口间的帧传输彼此屏蔽,因此节点就不担心自己发送的帧在通过交换机时是否会与其他节点发送的帧产生冲突。 为什么要用交换式网络替代共享式网络: ·减少冲突:交换机将冲突隔绝在每一个端口(每个端口都是一个冲突域),避免了冲突的扩散。 ·提升带宽:接入交换机的每个节点都可以使用全部的带宽,而不是各个节点共享带宽。 交换式以太网是以交换式集线器(switching hub)或交换机(switch)为中心构成,是一种星型拓扑结构的网络。简称为交换机为核心设备而建立起来的一种高速网络,这种网络在近几年运用的非常广泛。 交换式以太网技术的优点 交换式以太网不需要改变网络其它硬件,包括电缆和用户的网卡,仅需要用交换式交换机改变共享式HUB,节省用户网络升级的费用。 交换式以太网和共享式以太网区别

高密度以太网交换芯片实现线卡功能

高密度以太网交换芯片实现线卡功能互联网内容消费正在驱动流量的增长,特别是移动互联网的高速发展进一步推动了这一趋势。有统计数据显示,到2015年,连接到IP网络的设备数量将是2015年全球人口数量的2倍,从2010年到2015年,全球移动数据流量将增长26倍,届时每秒钟将有100万分钟的视频内容跨网络传送!这一趋势使得核心网络端口的演进从1G和10G向40G和100G发展。其中,1G端口逐渐被10G替代,后者成为未来几年的主力。40G端口保持在一定水平,变化不是太大,而100G端口则成为未来网络端口最重要的发展方向。到2015年, 10/40/100GbE的收入预计将达到约500亿美元。在这一发展过程中,网络系统将提供更多带宽和功能,但同时也面临着PCB面积、系统成本和功耗方面的挑战。 高密度以太网交换方案 针对上述需求,博通(Broadcom)公司日前推出一款100GbE交换解决方案BCM88650系列,号称全球密度最高。该系列产品和博通的FE1600(BCM88750)交换矩阵搭配,可实现高度可扩展的10/40/100GbE方案,每系统可拥有高达4000个100GbE端口,速度超过100Tbps。博通公司基础设施与网络部网络交换高级产品线经理Shay Zadok表示,该产品是目前业界惟一能处理 200Gbps单码流的商用芯片,支持两个100Gbps全双工端口,并在单个芯片中集成了交换矩阵接口、网络接口、包处理器和流量管理器,其高集成度减小了电路板尺寸,并降低了功耗和系统成本。“BCM88650系列是惟一能在第二层至第四层处理单码流200Gbps流量的商用芯片解决方案,”Shay说,“该系

以太网交换机配置基础

实验1以太网交换机配置基础 一、实验内容与目标 完成本实验,您应该能够: ●掌握以太网交换机的基本配置方法 ●掌握以太网交换机的常用配置命令 二、实验组网图 三、实验设备 PC:两台有以太网接口和COM口的PC 线缆:普通网线两根,Console线缆一根 以太网交换机:Quidway S3100-26C-SI或Quidway S3610-28TP 四、实验过程 实验任务一:使用以太网交换机的console口进行配置Console口配置是路由器最基本、最直接的配置方式,当路由器第一次被配置时,console口配置成为配置的唯一手段。因为其它配置方式都必须预先在交换机上进行一些初始化配置。 1、console配置线缆的连接。 ①将配置电缆的DB-9(或DB-25)孔式插头接到要对路由器进行配置的微机或终端的串口上; ②将配置电缆的RJ45一端连到路由器的配置口(console)上。 2、运行主机上的终端软件。 ①首先启动超级终端,点击windows的开始→程序→附件→通讯→超级终端,启动超级终端; ②根据提示输入连接描述名称后确定,在选择连接时使用相应的COM口后单击“确

定”按钮,在弹出的COM1属性窗口中单击“还原为默认值”按钮后单击“确定”按钮。 ③此时,我们已经成功完成超级终端的启动。如果您已经将线缆按照要求连接好,并且交换机已经启动,此时按Enter 键,将进入交换机的用户视图并出现如下标识符:。否则您将启动交换机,超级终端会自动显示交换机的整个启动过程。 实验任务二:交换机的用户界面配置 1、 进入用户视图 交换机开机直接进入用户视图,此时交换机在超级终端中的标识符为。在该视图下可以查询交换机的一些基础信息,如版本号(display version ) %May 18 08:04:16:482 2000 AL3SW1 SHELL/4/LOGIN: Console login from aux0 display version H3C Comware Platform Software Comware software, Version 5.20, Release 0001P02 Copyright (c) 2004-2007 Hangzhou H3C Tech. Co., Ltd. All rights reserved. H3C S3610-28TP uptime is 3 weeks, 0 day, 14 hours, 51 minutes …… 从上面的信息中我们可以看到该S3610-28TP 三层以太网交换机的版本号为:

MARVEL出产的高端千兆以太网交换芯片,对每个端口支持不同的交换模式

MARVEL出产的高端千兆以太网交换芯片,对每个端口支持不同的交换模 式 MARVEL出产的高端千兆以太网交换芯片,对每个端口支持不同的交换模式。 包括4种模式: Secure模式:所带VLAN tag必须存在于VTU表中,且入端口必须是该VLAN成员,否则丢弃报文。 Check模式:所带VLAN tag必须存在于VTU表中,否则丢弃报文。 Fallback模式:入端口报文不丢弃。 802.1Q Disabled:802.1Q关闭,使用端口VLAN模式,所有报文透传。 前3种模式都遵循802.1Q规则,报文进入后按照VLAN表项进行转发,不同就在于进入的时候条件限制,有的未作限制(Fallback模式),有的(Secure模式)要求严格。在实现基于802.1Q的VLAN时采用第1种,Secure模式。报文进来时先识别所带的VLANtag。若所带VLAN tag未存在于VLAN表项中,或者进来的端口不属于该VLAN tag的VLAN 成员,报文被丢弃,顺利进入的报文则指定VLAN tag的VID进行转发;若报文中不带VLAN tag,则判断该端口的缺省VLAN(PVID),当端口未加入缺省VLAN,报文被丢弃,当端口已经加入缺省VLAN 时,则指定PVID进行转发。 在实现基于端口的VLAN时采用第4种,802.1Q Disabled。此时端口不识别报文所带的VLAN tag,被认为是不带VLAN tag的报文并被加上它的PVID,结合VLANTable(Port Base VLAN Table)的取值,查找MAC表进行转发。 关于端口隔离: 端口隔离是比VLAN表更底层的隔离,它在802.1Q使能的情况也生效,也就是说配置了隔离的端口即使在同一VLAN中也不相通。 通过端口隔离特性,用户可以对需要进行控制的端口配置端口隔离功能,实现所有需要隔离端口之间业务数据的隔离,既增强了网络的安全性,也为用户提供了灵活的组网方案。

ks8995_以太网交换芯片

KS8995 – 5 Port 10/100 Switch with PHY Introduction The KS8995 contains five 10/100 physical layer transceivers, five MAC (Media Access Control) units with an integrated layer 2 switch. The device runs in two modes. The first mode is a five port integrated switch and the second is as a five port switch with the fifth port decoupled from the physical port. In this mode access to the fifth MAC is provided using a MII (Media Independent Interface). Useful configurations include a stand alone five port switch as well as a four port switch with a routing element connected to the extra MII port. The additional port is also useful for public network interfacing. The KS8995 is designed to reside in an unmanaged design not requiring processor intervention. This is achieved through I/O strapping at system reset time On the media side, the KS8995 supports 10BaseT, 100BaseTX and 100BaseFX as specified by the IEEE 802.3 committee. Physical signal transmission and reception are enhanced through use of analog circuitry that makes the design more efficient and allows for lower power consumption and smaller chip die size. Highlights ? 5 port 10/100 Integrated Switch with Physical Layer Transceivers ?SRAM on chip for frame buffering ? 1.4Gbps high performance memory bandwidth ?10BaseT, 100BaseTX and 100BaseFX modes of operation ?Superior analog technology for reduced power and die size ?Single 2.5 V power supply ?500 mA (1.25 W) including physical transmit drivers ?128 pin PQFP package ?Support for UTP or fiber installations ?Indicators for link, activity, full / half duplex and speed ?Unmanaged operation via strapping at system reset time ?Hardware based 10/100, full/half, flow control and auto negotiation ?Individual port forced modes (full duplex, 100BaseTX) when auto negotiation is disabled ?Wire speed reception and transmission ?Integrated address Look-Up Engine, supports 1K absolute MAC addresses ?Automatic address learning, address aging and address migration ?Broadcast storm protection ?Full duplex IEEE 802.3x flow control ?Half duplex back pressure flow control ?Comprehensive LED support ?External MAC interface (MII or SNI) for router applications

以太网控制器芯片的设计及实现.

以太网控制器芯片的设计及实现 网络控制器芯片的功能与设计实现 IEEE 802.3协议是针对以太网CSMA/CD标准的传输介质物理层(PHY)和介质访问控制协议(MAC、Media Access Control)来定义的。芯片由PHY、发送模块、接收模块、FIFO、控制模块组成,其中控制模块包括寄存器堆、DMA (Direct Memory Access)模块、流量控制模块、接收缓冲区和发送缓冲区组成。网络控制器芯片的功能框图如图1所示。 图1 以太网控制器芯片的功能框图 1 IEEE 802.3以太网MAC数据帧结构 在发送数据时,发送模块自动在待传数据前加上7字节的前导码和1字节的帧起始定界符,紧随的是6字节的目的地址和6字节的源地址,然后长度/类型为2字节,接着是数据区,然后是46~1500字节的数据。若发送时,数据长度小于最短长度46字节,发送模块自动填补,以达到最小长度,最后是4个字节的循环冗余校验码。 2 发送模块 发送模块的作用就是按照CSMA/CD协议发送数据包。发送模块状态机控制协调各个发送子模块的时序,发送模块状态机如图2所示。 图2 发送模块状态转换图 S_defer状态表示网络忙,若网络空闲了,经过最小的帧间隙时间,进入网络空闲状态S_idle。若需要发送数据包,经过S_pre,S_data,S_pad,S_crc等状态发送,在这当中若检测到冲突信号,就进入S_jam状态。在S_jam状态判断是local collision还是late collision,若是local collision就进入 S_back状态,按照退避算法重发当前数据帧,否则直接进入网络忙状态,放弃该帧的发送。 3 接收模块 接收模块的任务就是接收数据帧。物理接口收发器PHY将收到的网络数据变成二进制数据送给接收模块,接收模块再把正确的数据经过接收FIFO和DMA的控制送给接收缓冲区。接收模块的功能还包括移除接收到帧的前导码/帧分隔符;比较目的地址,判断是否丢弃当前数据帧;对接收到的数据包做CRC校验,判断传输过程中数据是否出错。接收模块状态机是接收模块的核心,控制协调接收模块的各个子模块的工作与时序。接收模块状态机如图3所示。

以太网交换机交换方式学习

以太网交换机交换方式学习 在实际使用时,以太网交换机一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。 AD: 在实际使用时,以太网交换机一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。 在实际使用时,一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。交换机可以“学习”MAC地址,并把其存放在内部地址表中,通过在数据帧的始发者和目标接收者之间建立临时的交换路径,使数据帧直接由源地址到达目的地址。交换机拥有一条很高带宽的背部总线和内部交换矩阵。 交换机的所有的端口都挂接在这条背部总线上,控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的MAC(网卡的硬件地址)的NIC(网卡)挂接在哪个端口上,通过内部交换矩阵迅速将数据包传送到目的端口,目的MAC若不存在才广播到所有的端口,接收端口回应后交换机会“学习”新的地址,并把它添加入内部地址表中。 交换机在同一时刻可进行多个端口对之间的数据传输。每一端口都可视为独立的网段,连接在其上的网络设备独自享有全部的带宽,无须同其他设备竞争使用。当节点A向节点D发送数据时。 节点B可同时向节点C发送数据,而且这两个传输都享有网络的全部带宽,都有着自己的虚拟连接。和HUB 的一点小区别假使这里使用的是10Mbps的以太网交换机,那么该交换机这时的总流通量就等于2× 10Mbps=20Mbps,而使用10Mbps的共享式HUB时,一个HUB的总流通量也不会超出 10Mbps。 HUB集线器就是一种共享设备,HUB本身不能识别目的地址,当同一局域网内的A主机给B主机传输数据时,数据包在以HUB为架构的网络上是以广播方式传输的,由每一台终端通过验证数据包头的地址信息来确定是否接收。也就是说,在这种工作方式下,同一时刻网络上只能传输一组数据帧的通讯,如果发生碰撞还得重试。这种方式就是共享网络带宽

以太网交换机交换方式学习资料讲解

以太网交换机交换方 式学习

以太网交换机交换方式学习 在实际使用时,以太网交换机一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。 AD 在实际使用时,以太网交换机一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。 在实际使用时,一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。交换机可以“学习”MAC地址,并把其存放在内部地址表中,通过在数据帧的 始发者和目标接收者之间建立临时的交换路径,使数据帧直接由源地址到达目的地址。交换机拥有一条很高带宽的背部总线和内部交换矩阵。 交换机的所有的端口都挂接在这条背部总线上,控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的MAC网卡的硬件地址)的NIC(网卡)挂接在哪个端口上,通过内部交换矩阵迅速将数据包传送到目的端口,目的MAC若不存在才广播到所有的端口,接收端口回应后交换机会“学习”新的地址,并把它添加入内部地址表中。 交换机在同一时刻可进行多个端口对之间的数据传输。每一端口都可视为独立的网段,连接在其上的网络设备独自享有全部的带宽,无须同其他设备竞争使用。当节点A向节点D发送数据时。 节点B可同时向节点C发送数据,而且这两个传输都享有网络的全部带宽,都有着自己的虚拟连接。和 HUB的一点小区别假使这里使用的是10Mbps的以太网交换机,那么该交换机这时的总流通量就等于 2 X 10Mbps=20Mbps而使用10Mbps的共享式HUB时,一个HUB的总流通量也不会超出10Mbps。 HUB集线器就是一种共享设备,HUB本身不能识别目的地址,当同一局域网内的A主机给B主机传输数 据时,数据包在以HUB为架构的网络上是以广播方式传输的,由每一台终端通过验证数据包头的地址信息来确定是否接收。也就是说,在这种工作方式下,同一时刻网络上只能传输一组数据帧的通讯,如果发生碰撞还得重试。这种方式就是共享网络带宽

Broadcom以太网交换芯片转发流程

1、交换芯片架构 交换芯片由GE/XE接口(MAC/PHY)模块、CPU接口模块、输入输出匹配/修改模块、MMU模块、L2转发模块、L3转发模块、安全模块、流分类模块等模块组成,其结构如图1所示: 图1 交换芯片的组成 56504包含24个GE端口,4个10G端口,10G端口既可以用于堆叠,也可以用于上联/级联。56504交换芯片与CPU的接口称为CMIC接口。交换芯片与CPU通过PCI总线连接。其他类型交换芯片与CPU的接口可以是:SPI+MII、I2C+MII、系统总线+MII、SMI+MII等。交换芯片的包处理流程如图2所示: 图2 交换芯片的包处理流程简图 包由端口进入交换芯片之后,首先进行包头字段匹配,为流分类做准备;然后经过一个安全引擎进行包过滤;符合安全的包进行L2交换或者L3路由,并经过流分类处理器对匹配的包做相关动作(比如丢弃、限速、修改VLAN等);对于可以转发的包根据或DSCP放到不同队列的buffer中,调度器根据优先级或者WRR等算法进行队列调度,在端口发出该包之前执行流分类修改动作,最终从相应端口发送出去。 2、L2转发流程 2.1 L2转发原理 对于交换芯片来说,L2转发是一个最基本的功能。L2功能主要包括ingress 过滤、MAC学习和老化、根据MAC+VLAN转发、广播与洪泛、生成树控制等基本功能。 L2转发的具体流程如图3所示: 从端口进入交换芯片的包首先检查TAG,对于tagged包,判断是否是的包,(的包vid为0),对于untagged的包和的包,根据系统配置加上tag(这些配置包括:基于MAC的vlan、基于子网的vlan、基于协议的vlan和基于端口的vlan)。经过这一步以后,到交换芯片内部的包都变成的tagged包了(vid 为1-4094,4095保留),如果设置了ingress过滤,就会检查本端口是否在该vid对应的VLAN中,对于本端口不在该vid对应的VLAN中的包就丢弃。对于 没有设置ingress过滤,或者设置ingress过滤但本端口在该vid对应的VLAN 中的包进行STP端口状态检查,对于BPDU以外的包,只有端口处于forwarding 状态,才允许包进入。然后进行原MAC地址检查,以原MAC+VID的哈希为索引

以太网交换机基础培训教材

以太网交换机基础培训教材 Catalog 目录 1 以太网概述 (7) 2 以太网的基础知识 (8) 2.1MAC地址 (8) 2.2以太网帧的帧格式 (9) 2.2.1以太网Ⅱ (10) 2.2.2带有802.2逻辑链路控制的IEEE 802.3 (10) 2.2.3IEEE 802.3子网访问协议(以太网SNAP) (10) 2.2.4Novell以太网 (11) 2.3CSMA/CD (11) 2.4冲突域和广播域 (12) 2.5以太网的典型设备-HUB (13) 2.6全双工以太网 (13) 3 二层交换机的基本原理 (14) 3.1二层交换机 (14) 3.2支持VLAN的二层交换机 (17) 3.2.1VLAN的概念 (18) 3.2.2VLAN的划分 (19) 3.2.3VLAN的标准 (21) 3.2.4支持VLAN交换机的转发流程 (23) 4 三层交换机基本原理 (26) 4.1三层交换机的提出 (27) 4.2三层交换机基本特征 (28) 4.3三层交换机的功能模型 (28) 4.4三层交换机转发流程 (30) 4.4.1IP网络规则 (30) 4.4.2三层转发流程 (31) 4.4.3选路过程 (33) 4.5路由器和交换机 (36) 4.5.1接口 (36) 4.5.2特点对照 (37) 5 交换机相关协议和技术 (37) 5.1物理层特性(接口) (37)

5.1.1自协商 (37) 5.1.2智能MDI/MDIX自识别 (38) 5.1.3流控机制 (39) 5.1.4POE供电 (40) 5.1.5端口镜像 (41) 5.2二层协议和特性 (41) 5.2.1STP/RSTP/MSTP协议 (41) 5.2.2GARP/GVRP/GMRP (43) 5.2.3聚合特性 (45) 5.2.4Isolate-user-vlan (45) 5.2.5二层多播 (46) 5.2.6QinQ (47) 5.3三层特性 (48) 5.3.1SuperVLAN (48) 5.4Qos/ACL (49) 5.5安全特性 (49) 5.5.1802.1X (50) 5.5.2PORTAL (51) 5.6管理特性 (54) 5.6.1集群管理 (54) 5.6.2WEB网管 (55) 5.7IRF (56) 5.8与路由器相同的一些特性 (58) 6 以太网交换机主要厂商 (58) 6.1Cisco (59) 6.2Extreme (59) 6.3Foundry (59) 6.4港湾 (59) 7 参考资料 (59)

以太网交换机工作原理

以太网交换机工作原理 交换机是用来连接局域网的主要设备,交换机能够根据以太网帧中目标地址智能的转发数据,因此交换机工作在数据链路层。交换机分割冲突域,实现全双工通信。 交换机数据转发原理1: 交换机A在接收到数据帧后,执行以下操作: 交换机A查找MAC地址表,查看是否有此MAC地址 若没有,学习主机11的MAC地址 交换机A向其他所有端口发送广播 交换机数据转发原理2: 换机B在接收到数据帧后,执行以下操作: 交换机B查看MAC地址表,查看是否有此MAC地址 若没有,学习源MAC地址和端口号 交换机B向所有端口广播数据包 主机22,查看数据包的目标MAC地址不是自己,丢弃数据包

交换机数据转发原理3: 主机33,接收到数据帧 主机44,丢弃数据帧 交换机数据转发原理4: 交换机B在接收到数据帧后,执行以下操作: 交换机B学习源MAC地址和端口号 交换机B查看MAC地址表,根据MAC地址表中的条目,单播转发数据到端口3

交换机数据转发原理6: 学习 通过学习数据帧的源MAC地址来形成的MAC地址表 广播 若目标地址在MAC地址表中没有,交换机则向除接收到该数据帧的端口外的其他所有端口广播该数据帧 转发 若目标地址在MAC地址表中存在,交换机根据MAC地址表单播转发数据帧 更新 交换机MAC地址表的老化时间是300秒,即MAC地址在MAC地址表中存在的时间。 交换机若发现一个帧的入端口和MAC地址表中源MAC地址的所在端口不同,交换机将MAC 地址重新学习到新的端口 交换机的工作模式 单工 只有一个信道,传输方向只能是单向的

半双工 只有一个信道,在同一时刻,只能是单向传输 全双工 双信道,同时可以有双向数据传输 交换机的三种交换方式: 1.直通转发(Cut-through)

Broadcom以太网交换芯片转发流程

Broadcom以太网交换芯片培训(broadcom56504/56300) 1、交换芯片架构 交换芯片由GE/XE接口(MAC/PHY)模块、CPU接口模块、输入输出匹配/修改模块、MMU模块、L2转发模块、L3转发模块、安全模块、流分类模块等模块组成,其结构如图1所示: 图1 交换芯片的组成 56504包含24个GE端口,4个10G端口,10G端口既可以用于堆叠,也可以用于上联/级联。56504交换芯片与CPU的接口称为CMIC接口。交换芯片与CPU通过PCI总线连接。其他类型交换芯片与CPU的接口可以是:SPI+MII、I2C+MII、系统总线+MII、SMI+MII等。交换芯片的包处理流程如图2所示:

图2 交换芯片的包处理流程简图 包由端口进入交换芯片之后,首先进行包头字段匹配,为流分类做准备;然后经过一个安全引擎进行包过滤;符合安全的包进行L2交换或者L3路由,并经过流分类处理器对匹配的包做相关动作(比如丢弃、限速、修改VLAN等);对于可以转发的包根据或DSCP放到不同队列的buffer中,调度器根据优先级或者WRR等算法进行队列调度,在端口发出该包之前执行流分类修改动作,最终从相应端口发送出去。 2、L2转发流程 2.1 L2转发原理 对于交换芯片来说,L2转发是一个最基本的功能。L2功能主要包括ingress 过滤、MAC学习和老化、根据MAC+VLAN转发、广播与洪泛、生成树控制等基本功能。 L2转发的具体流程如图3所示: 从端口进入交换芯片的包首先检查TAG,对于tagged包,判断是否是的包,(的包vid为0),对于untagged的包和的包,根据系统配置加上tag(这些配置包括:基于MAC的vlan、基于子网的vlan、基于协议的vlan和基于端口的vlan)。经过这一步以后,到交换芯片内部的包都变成的tagged包了(vid

华为三层以太网交换机基本原理及转发流程

华为三层以太网交换机基本原理及转发流程 1.1. MAC地址介绍 MAC 地址是48 bit 二进制的地址,如:00-e0-fc-00-00-06。 能够分为单播地址、多播地址和广播地址。 单播地址:第一字节最低位为0,如:00-e0-fc-00-00-06 多播地址:第一字节最低位为1,如:01-e0-fc-00-00-06 广播地址:48 位全1,如:ff-ff-ff-ff-ff-ff 注意: 1)一般设备网卡或者路由器设备路由接口的MAC 地址一定是单播的MAC 地址才能保证其与其它设备的互通。 2)MAC 地址是一个以太网络设备在网络上运行的基础,也是链路层功能实现的立足点。 1.2. 二层转发介绍 交换机二层的转发特性,符合802.1D 网桥协议标准。 交换机的二层转发涉及到两个关键的线程:地址学习线程和报文转发线程。 学习线程如下:

华为认证技术文章 2 1)交换机接收网段上的所有数据帧,利用接收数据帧中的源MA C 地址来建立MAC 地址表; 注意:老化也是按照源MAC 地址进行老化。 报文转发线程: 1)交换机在MAC 地址表中查找数据帧中的目的MAC 地址,如果找到,就将该数据帧发送到相应的端口,如果找不到,就向所有的端口发送; 2)如果交换机收到的报文中源MAC 地址和目的MAC 地址所在的端口相同,则丢弃该报文; 3)交换机向入端口以外的其它所有端口转发广播报文。 1.3. VLAN二层转发介绍 报文转发线程: 引入了VLAN 以后对二层交换机的报文转发线程产生了如下的阻碍:

1)交换机在MAC 地址表中查找数据帧中的目的MAC 地址,如果找到(同时还要确保报文的入VLAN 和出VLAN 是一致的),就将该数据帧发送到相应的端口,如果找不到,就向(VLAN 内)所有的端口发送; 2)如果交换机收到的报文中源MAC 地址和目的MAC 地址所在的端口相同,则丢弃该报文; 3)交换机向(VLAN 内)入端口以外的其它所有端口转发广播报文。 以太网交换机上通过引入VLAN,带来了如下的好处: 1)限制了局部的网络流量,在一定程度上能够提升整个网络的处理能力。 2)虚拟的工作组,通过灵活的VLAN 设置,把不同的用户划分到工作 华为认证技术文章 3 组内; 3)安全性,一个VLAN 内的用户和其它VLAN 内的用户不能互访, 提升了安全性。

24端口快速以太网交换机单芯片解决方案

24端口快速以太网交换机单芯片解决方案 来源:https://www.360docs.net/doc/5812168198.html, 作者:出处:https://www.360docs.net/doc/5812168198.html, 2007-07-30 进入论坛 关键词: 数据通信 voip 高集成度,高性价比 和小尺寸的最佳组合,是中小型企业的理想选择 日前,美国博通公司在北京发布了业界首颗集成百兆PHY的24端口快速以太网(FE)单芯片交换机。该器件上集成了24端口100M 物理层设备(PHY)和2端口1000M 媒体接入控制器(MAC),定位于中小型企业(SMB)网络市场。目前可以提供样片。博通公司的这项最新解决方案旨在取代现有的多芯片解决方案,同时可以充分利用和保护已有的公共软件平台,以期实现高性能、低成本的完整的局域网(LAN)交换解决方案。该芯片的问世可使中小企业(SMB)客户降低成本,减少线路板面积,简化设计并加速产品上市。 技术开发成本是中小型企业(SMB)客户十分敏感的问题。随着网络在企业中的地位日趋重要,网络的部署和维护也日趋复杂。中小型企业(SMB)客户和最终用户不得不面临的这样的问题:在不增加IT预算的同时,其网络能够提供更多功能,同时还要有更好的性能。Broadcom? BCM5324单片解决方案旨在取代当前市场上典型的三片或四片解决方案。同时,它还提供了完整的二层管理特性,如对中小型企业(SMB)客户至关重要的VoIP业务的支持。器件的减少带来的是成本的下降,线路板面积的减少以及设计的简化。Broadcom? BCM5324在客户可承受的价格上集成了一个高性能交换机所需要的所有构件。 美国网件(NETGEAR)公司产品线经理彼得·牛顿(Peter Newton)说:"博通长期以来一直是中小型企业以太网交换机解决方案的领导者。美国网件(NETGEAR)公司以用户可承受的价格向中小型(SMB)企业客户提供具有更高性能、更多功能和管理性能更好的设备,于是保持了Netgear在中小型企业网络市场的领导地位。借助于博通等公司的半导体技术,美国网件(NETGEAR)公司将继续使中小型企业的IT经理和最终用户以更高的效率和有效的成本控制来完成他们的任务。" BCM5324是业界首颗集成24端口百兆PHY的快速以太网(FE)交换机。该芯片采用了0.13微米CMOS制造工艺,不仅降低了功耗,同时集成度更高,性能更好。 作为博通下一代ROBOswitch?交换机系列中的一员,BCM5324支持管理型2层交换机需

交换机基本原理及转发流程

求索知识分享社区
三层以太网交换机基本原理及转发流程
本文简要介绍了三层以太网交换机的二三层转发机制, 主要目的是帮助读者 进一步了解交换机的基本原理及转发流程, 以期有利于更好的从事设备维护工作 和建立于进一步学习的索引. 三层以太网交换机的转发机制主要分为两个部分:二层转发和三层交换.
1. 二层转发流程
1.1. MAC地址介绍 MAC 地址是 48 bit 二进制的地址,如:00-e0-fc-00-00-06.可以分为单播地址, 多播地址和广播地址. 单播地址:第一字节最低位为 0,如:00-e0-fc-00-00-06 多播地址:第一字节最低位为 1,如:01-e0-fc-00-00-06 (问题 1:以 03 开头的 MAC 地址是单播 MAC 地址还是多播 MAC 地址) 广播地址:48 位全 1,如:ff-ff-ff-ff-ff-ff 注意: 1) 普通设备网卡或者路由器设备路由接口的 MAC 地址一定是单播的 MAC 地址 才能保证其与其它设备的互通. 2) MAC 地址是一个以太网络设备在网络上运行的基础, 也是链路层功能实现的 立足点. 1.2. 二层转发介绍 交换机二层的转发特性,符合 802.1D 网桥协议标准. 交换机的二层转发涉及到两个关键的线程:地址学习线程和报文转发线程. 学习线程如下: 1)交换机接收网段上的所有数据帧,利用接收数据帧中的源 MAC 地址来建立 MAC 地址表;
https://www.360docs.net/doc/5812168198.html,

求索知识分享社区
2)端口移动机制:交换机如果发现一个包文的入端口和报文中源 MAC 地址的 所在端口(在交换机的 MAC 地址表中对应的端口)不同, 就产生端口移动, MAC 将 地址重新学习到新的端口; 3)地址老化机制:如果交换机在很长一段时间之内没有收到某台主机发出的报 文,在该主机对应的 MAC 地址就会被删除,等下次报文来的时候会重新学习. 注意: 老化也是根据源 MAC 地址进行老化. 报文转发线程: 1)交换机在 MAC 地址表中查找数据帧中的目的 MAC 地址,如果找到,就将该 数据帧发送到相应的端口,如果找不到,就向所有的端口发送; 2)如果交换机收到的报文中源 MAC 地址和目的 MAC 地址所在的端口相同,则 丢弃该报文; 3)交换机向入端口以外的其它所有端口转发广播报文. 1.3. VLAN二层转发介绍 报文转发线程: 引入了 VLAN 以后对二层交换机的报文转发线程产生了如下的影响: 1)交换机在 MAC 地址表中查找数据帧中的目的 MAC 地址,如果找到(同时还 要确保报文的入 VLAN 和出 VLAN 是一致的)就将该数据帧发送到相应的端口, , 如果找不到,就向(VLAN 内)所有的端口发送; 2)如果交换机收到的报文中源 MAC 地址和目的 MAC 地址所在的端口相同,则 丢弃该报文; 3)交换机向(VLAN 内)入端口以外的其它所有端口转发广播报文. 以太网交换机上通过引入 VLAN,带来了如下的好处: 1)限制了局部的网络流量, 在一定程度上可以提高整个网络的处理能力. 2)虚拟的工作组,通过灵活的 VLAN 设置,把不同的用户划分到工作组内; 3)安全性,一个 VLAN 内的用户和其它 VLAN 内的用户不能互访,提高了安全 性. 另外,还有常见的两个概念 VLAN 的终结和透传, 从字面意思上就可以很好的 了解这两个概念. 所谓 VLAN 的透传就是某个 VLAN 不仅在一台交换机上有效,
https://www.360docs.net/doc/5812168198.html,

以太网交换机基础知识必看内容

以太网交换机基础知识必看内容 目录 1 以太网概述.................................................... 错误!未指定书签。 2 以太网的基础知识........................................... 错误!未指定书签。 2.1 地址错误!未指定书签。 2.2 以太网帧的帧格式错误!未指定书签。 2.2.1 以太网Ⅱ......................................... 错误!未指定书签。 2.2.2 带有802.2逻辑链路控制的802.3 ...... 错误!未指定书签。 2.2.3 802.3子网访问协议(以太网) ........ 错误!未指定书签。 2.2.4 以太网............................................ 错误!未指定书签。 2.3 错误!未指定书签。 2.4 冲突域和广播域错误!未指定书签。 2.5 以太网的典型设备错误!未指定书签。 2.6 全双工以太网错误!未指定书签。 3 二层交换机的基本原理 .................................... 错误!未指定书签。 3.1 二层交换机错误!未指定书签。 3.2 支持的二层交换机错误!未指定书签。 3.2.1 的概念............................................ 错误!未指定书签。 3.2.2 的划分............................................ 错误!未指定书签。 3.2.3 的标准............................................ 错误!未指定书签。 3.2.4 支持交换机的转发流程...................... 错误!未指定书签。 4 三层交换机基本原理 ....................................... 错误!未指定书签。 4.1 三层交换机的提出错误!未指定书签。 4.2 三层交换机基本特征错误!未指定书签。 4.3 三层交换机的功能模型错误!未指定书签。 4.4 三层交换机转发流程错误!未指定书签。 4.4.1 网络规则......................................... 错误!未指定书签。 4.4.2 三层转发流程 .................................. 错误!未指定书签。 4.4.3 选路过程......................................... 错误!未指定书签。 4.5 路由器和交换机错误!未指定书签。 4.5.1 接口............................................... 错误!未指定书签。 4.5.2 特点对照......................................... 错误!未指定书签。 5 交换机相关协议和技术 .................................... 错误!未指定书签。 5.1 物理层特性(接口)错误!未指定书签。 5.1.1 自协商............................................ 错误!未指定书签。 5.1.2 智能自识别...................................... 错误!未指定书签。

相关文档
最新文档