第11章全等三角形整章测试(A)1
第11章三角形-2020-2021学年上学期八年级数学期末复习冲刺(人教版)(解析版)
第11章三角形学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知正多边形的一个内角是135°,则这个正多边形的边数是()A.3 B.4 C.6 D.8【答案】D【解析】【分析】根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【详解】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数=3608 45︒=︒,∴这个正多边形的边数是8.故选:D.【点睛】本题考查了正多边形的内角和与外角和的知识,知道正多边形的外角之和为360°是解题关键.2.如图,要使四边形木架(用四根木条钉成)不变形,至少要再钉上的木条的根数为()A.1根B.2根C.3根D.4根【答案】A【解析】【分析】根据三角形具有稳定性可得:沿对角线钉上1根木条即可.【详解】解:根据三角形的稳定性可得,至少要再钉上1根木条.故选A .【点睛】此题主要考查了三角形具有稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性,而四边形不具有稳定性.3.如图,△ABC 中,AE ⊥BC 于点E,AD 为BC 边上的中线,DF 为△ABD 中AB 边上的中线,已知AB=5cm,AC=3cm,△ABC 的面积为12cm 2.求△ABD 与△ACD 的周长的差( )A .3B .4C .2D .1【答案】C【解析】【分析】根据中线的性质得到BD=CD ,根据周长的计算公式计算即可;【详解】∵AD 为BC 边上的中线,∴BD=CD ,∴△ABD 与△ACD 的周长的差=(AB+AD+BD)−(AC+AD+CD)=AB −AC=2cm.故选择C.【点睛】本题考查三角形中线的性质,解题的关键是掌握三角形中线的性质.4.如图,在ABC ∆中,点,D E 分别为,BC AD 的中点,2EF FC =,若ABC ∆的面积为a ,则BEF ∆的面积为( )A .6aB .4aC .3aD .38a 【答案】C【解析】【分析】根据高相同,底成比例的两个三角形的面积也成比例即可得出答案.【详解】∵ABC ∆的面积为a ,D 为BC 的中点 ∴11S S S 22ABD ACD ABC a === ∵E 为AD 的中点 ∴11S S S 24ABE BED ABD a ===同理:11SSS 24ACE CED ACD a === ∴1S S S 2CBE BED CED a =+= ∵EF=2FC∴S2S BEF BFC = 即21S 33BEF BEC S a == 故答案选择C.【点睛】本题考查的是三角形的基本概念.5.下列命题中:①长为5cm 的线段AB 沿某一方向平移10cm 后,平移后线段AB 的长为10cm ;②三角形的高在三角形内部;③六边形的内角和是外角和的两倍;④平行于同一直线的两直线平行;⑤两个角的两边分别平行,则这两个角相等,真命题个数有()A.1B.2C.3D.4【答案】A【解析】【分析】利用平移的性质、三角形高的定义、多边形的外角与内角、平行线的性质分别判断出正确答案的个数,即可得出答案.【详解】①:平移不改变图形的形状和大小,故选项①错误;②:直角三角形的高在三角形的边上,钝角三角形的高在三角形的外面,故选项②错误;③:六边形的外角和360°,六边形的内角和720°,故选项③正确;④:平行于同一条直线的两条直线平行,故选项④正确;⑤:两个角的两边分别平行,则这两个角相等或互补,故选项⑤错误.因此正确的个数有两个,答案选择A.【点睛】本题考查了命题与定理的知识,解题的关键是了解平移的性质、三角形的高的定义、多边形的外角与内角、平行线的性质等知识,难度不大.6.如图,在中,,是的角平分线交于点,于点,下列四个结论中正确的有()①②③④A.个B.个C.个D.个【答案】C【解析】【分析】根据角平分线性质,即可得到DE=DC;根据全等三角形的判定与性质,即可得到BE=BC,△BDE≌△BDC.【详解】解:∵∠ACB=90°,BD是∠ABC的角平分线,DE⊥AB,∴DE=DC,故①正确;又∵∠C=∠BEC=90°,BD=BD,∴Rt△BCD≌Rt△BED(HL),故④正确;∴BE=BC,故②正确;∵Rt△ADE中,AD>DE=CD,∴AD=DC不成立,故③错误;故选C.【点睛】本题主要考查了全等三角形的判定与性质,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.7.等腰直角三角形的腰长为2,该三角形的重心到斜边的距离为()A.223B.23C.23D.13【答案】D【解析】【分析】作等腰直角三角形底边上的高并根据勾股定理求解,再根据三角形重心三等分中线的性质即可求出.【详解】如图,根据三线合一的性质,底边上的中线CD=2sin45°=1,∵三角形的重心到三角形顶点的距离等于中点距离的2倍,∴重心到AB 的距离=1×13=13. 故选D.【点睛】此题考查等腰直角三角形,三角形的重心,解题关键在于画出图形8.如图,△CEF 中,∠E=70°,∠F=50°,且AB ∥CF ,AD ∥CE ,连接BC ,CD ,则∠A 的度数是( )A .40°B .45°C .50°D .60°【答案】D【解析】【分析】连接AC 并延长交EF 于点M .由平行线的性质得31∠=∠,24∠∠=,再由等量代换得3412BAD FCE ∠=∠+∠=∠+∠=∠,先求出FCE ∠即可求出A ∠.【详解】连接AC 并延长交EF 于点M .∵AB CF ,∴31∠=∠,∵AD CE ,∴24∠∠=,∴3412BAD FCE ∠=∠+∠=∠+∠=∠,∵180180705060FCE E F ∠=︒-∠-∠=︒-︒-︒=︒,∴60BAD FCE ∠=∠=︒,故选D .【点睛】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.9.在△ABC 中,AB =10,BC =12,BC 边上的中线AD =8,则△ABC 边AB 上的高为( )A .8B .9.6C .10D .12【答案】B【解析】【分析】如图,作CE AB ⊥与E,利用勾股定理的逆定理证明AD BC ⊥,再利用面积法求出EC 即可.【详解】如图,作CE AB ⊥与E.AD 是ABC ∆的中线,BC =12,∴BD=6,10,8,6,AB AD BD ===∴ 222AB AD BD =+,90,ADB ∴∠=,AD BC ∴⊥ 11,22ABC S BC AD AB CE ∆== 1289.6.10CE ⨯∴== 故选B.【点睛】本题主要考查勾股定理的逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会面积法求三角形的高.10.一个四边形,截一刀后得到的新多边形的内角和将A .增加 180°B .减少 180°C .不变D .不变或增加 180°或减少 180°【答案】D【解析】【分析】根据一个四边形截一刀后得到的多边形的边数即可得出结果.【详解】∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和为180°或360°或540°.故选D【点睛】本题考查了多边形.能够得出一个四边形截一刀后得到的图形有三种情形,是解决本题的关键. 11.下列说法中不正确的是( )A .内角和是1080°的多边形是八边形B .六边形的对角线一共有8条C .三角形任一边的中线把原三角形分成两个面积相等的三角形D .一个多边形的边数每增加一条,这个多边形的内角和就增加180°【答案】B【解析】【分析】根据各选项逐个判断说法是否正确即可.【详解】A 根据正多边形的内角和计算公式可得:(82)1801080︒︒-⨯=,因此A 说法正确;B 选项说法不正确,六边形的对角线有18条;C 正确,因为每个边上的高是相等的,只要边上的中线则分成的两个三角形的面积相等;D 正确,根据多边形的内角和的计算公式可得每增加一条边,正多边形的内角增加180°.故选B.【点睛】本题主要考查正多边形的性质,这些选项都是基本性质,必须掌握.12.有两条线段长度分别为:2cm ,5cm ,再添加一条线段能构成一个三角形的是( )A .1cmB .2cmC .3cmD .4cm 【答案】D【解析】【分析】先根据三角形的三边关系确定第三边的范围,再判断各选项即可.【详解】解:∵有两条线段长度分别为:2cm ,5cm ,∴设第三条边长为acm ,故5﹣2<a <5+2,则3<a <7,故再添加一条线段长为4cm 时,能构成一个三角形.故选D .【点睛】本题考查了三角形的三边关系,三角形的三边满足:任意两边之和大于第三边,任意两边之差小于第三边.二、填空题13.如图,在ABC 中,AD 是BC 边上的高,且ACB BAD ∠=∠,AE 平分CAD ∠,交BC 于点E ,过点E 作EF AC ,分别交AB 、AD 于点F 、G .则下列结论:①90BAC ∠=︒;②AEF BEF ∠=∠;③BAE BEA ∠=∠;④2B AEF ∠=∠,其中正确的有_____.【答案】①③④【解析】【分析】利用高线和同角的余角相等,三角形内角和定理即可证明①,再利用等量代换即可得到③④均是正确的,②缺少条件无法证明.【详解】由已知可知∠ADC=∠ADB=90°, ∵∠ACB =∠BAD∴90°-∠ACB=90°-∠BAD ,即∠CAD=∠B, ∵三角形ABC 的内角和=∠ACB+∠B+∠BAD+∠CAD=180°,∴∠CAB=90°,①正确,∵AE 平分∠CAD ,EF ∥AC ,∴∠CAE=∠EAD=∠AEF ,∠C=∠FEB=∠BAD ,②错误,∵∠BAE=∠BAD+∠DAE ,∠BEA=∠BEF+∠AEF,∴∠BAE =∠BEA ,③正确,∵∠B=∠DAC=2∠CAE=2∠AEF ,④正确,故答案为:①③④.【点睛】本题考查了三角形的综合性质,高线的性质,平行线的性质,综合性强,难度较大,利用角平分线和平行线的性质得到相等的角,再利用等量代换推导角之间的关系是解题的关键.14.如图,E ∠是六边形ABCDE 的一个内角.若120E ∠=︒,则A B C D F ∠+∠+∠+∠+∠的度数为________.【答案】600︒【解析】【分析】根据多边形的内角和=(n-2)x180求出六边形的内角和,把∠E =120°代入,即可求出答案.【详解】解:∵∠A+∠B+∠C+∠D+∠E+∠F=(6-2)×180=720° ∵∠E=120°∴∠A+∠B+∠C+∠D+∠F=720°-120°=600° 故答案为600°【点睛】本题考查了多边形的内角和外角,能知道多边形的内角和公式是解此题的关键,边数为7的多边形的内角和=(n-2)×180°. 15.如图,直线12l l ,1110∠=︒,2130∠=︒,那么3∠的度数为___________度.【答案】60【解析】【分析】如图利用平行线的性质求出∠4,再根据三角形的外角的性质解决问题即可.【详解】解:∵l 1∥l 2,∴∠1+∠4=180°,∵∠1=110°,∴∠4=70°,∵∠2=∠3+∠4,∠2=130°,∴∠3=130°−70°=60°,故答案为60.【点睛】本题考查平行线的性质和三角形外角的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.,点E是AC中点,若△CDE面积为1,则△ABC的16.如图,△ABC中,点D在BC上,且BD2DC面积为____.【答案】6【解析】【分析】根据等底同高的两个三角形的面积公式得到△ADC的面积,然后根据△ABC与△ADC的底边的数量关系来求△ABC.【详解】∵△CDE面积为1,点E是AC中点,∴S△ADC=2S△CDE=2.又∵BD=2DC,∴S△ABC=3S△ADC=6.故答案是:6.【点睛】考查了三角形的面积,熟记等底同高、同底等高三角形面积间的数量关系即可解答.三、解答题17.(1)如图,△ABC, ∠ABC、∠ACB 的三等分线交于点E、D,若∠1=130°,∠2=110°,求∠A 的度数.(2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°,∠2=130°,求∠A 的度数.【答案】(1)∠A=60°,(2)∠A=60°【解析】【分析】(1)由三角形内角和及三等角平分线的定义可得到方程组,则可求得∠ABC+∠ACB,再利用三角形内角和可求得∠A.(2)由三角形外角可得∠DBC=20°由三等角平分线的定义可得∠ABC=60°,三角形内角和可得∠ECB=30°,角平分线的定义可得∠ACB=60°,由三角形内角和可得∠A=60°.【详解】解:(1)∵∠ABC、∠ACB 的三等分线交于点E、D设∴∠=∠=∠=∠=∠=∠=;ABE EBD DBC x ACE ECD DCB y,, ∠ABC=3x,∠ACB=3y∴∠=∠=22EBC x ECB y∠∠+∠=∠+∠+∠=1+180,2180EBC DCB ECB DBC130+2x+y=180110+2y+x=180⎧∴⎨⎩①②①+②得:240°+3x+3y=360° 即3x+3y=120°∴∠ABC+∠ACB=120°∴∠A=180°-(∠ABC+∠ACB)=180°-120°=60° (2)∵∠ABC 的三等分线分别与∠ACB 的平分线交于点 D,E;ABD DBE EBC x ACE DCB y ∴∠=∠=∠=∠=∠=设32ABC x ACB y ∴∠=∠=,710879=1209÷ 【点睛】掌握三角形内角和和外角和以及角的三等分线及角平分线是解题的关键.18.如图是某厂生产的一块模板,已知该模板的边//AB CF ,//CD AE ,按规定AB ,CD 的延长线相交成70︒角,因交点不在模板上,不便测量,这时师傅规定徒弟只需测一个角,便知道AB ,CD 的延长线的夹角是否合乎规定,你知道需测哪一个角吗?说明理由.【答案】测A ∠或C ∠的度数,只需110A ∠=︒或110C ∠=︒,见解析.【解析】【分析】连接AF ,由AB ∥CF 可证明360BAE E EFC ∠+∠+∠=︒,设AB ,CD 延长线交于点M ,若∠M =70°,则在五边形AEFCM 中,∠C =540°-360°-70°=110°,即当∠C =110°时,可知AB ,CD 的延长线的夹角合乎规定,再按此思路整理写出即可.【详解】解:测A ∠或C ∠的度数,只需110A ∠=︒或110C ∠=︒,即知模板中AB ,CD 的延长线的夹角是否符合规定,理由如下:连接AF .因为//AB CF ,所以180BAF AFC ∠+∠=︒.又因为180EAF E AFE ∠+∠+∠=︒,所以360BAE E EFC ∠+∠+∠=︒.若110C ∠=︒,则AB ,CD 延长线的夹角∠M 54036011070=︒-︒-︒=.即符合规定;同理,若连接CE ,当110A ∠=︒时,也可说明AB ,CD 延长线的夹角为70°,符合规定.【点睛】此题考查了多边形的内角和和平行线的性质的实际应用,解题的关键是通过连接AF 架起已知和所求的桥梁,进而解决问题.19.(1)如图,四边形ABCD 中,30A ∠=︒,60B ∠=︒,20C ∠=︒,则ADC ∠=________. (2)对于任意的凹四边形ABCD ,猜想A ∠,B ,C ∠与ADC ∠的大小关系,并证明.(3)一个零件的形状如图所示,按规定,A ∠应等于40︒,B 与C ∠应分别是70︒和25︒,工人检验140ADC ∠=︒,就断定这个零件不合格,请你运用上述结论,说明零件不合格的理由.【答案】(1)110︒;(2)ADC A B C ∠=∠+∠+∠,见解析;(3)见解析.【解析】【分析】(1)延长AD 交BC 于E ,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ADC ; (2)连接BD 并延长,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ADC.(3)延长AD 交BC 于E ,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ADC ,然后即可判断.【详解】(1)延长AD 交BC 于E ,∵∠A=30°,∠B=60°,∴∠AEC=∠A+∠B=30°+60°=90°,∵∠C=20°,∴∠ADC=∠C+∠AEC=20°+90°=110°. (2)ADC A B C ∠=∠+∠+∠.证明:连接BD 并延长,如图所示.在ABD △中,13∠=∠+∠A ,在BCD 中,24C ∠=∠+∠,1234A C ∴∠+∠=∠+∠+∠+∠,即ADC ABC A C ∠=∠+∠+∠.(3)延长AD 交BC 于E ,∵∠A=40°,∠B=70°,∴∠AEC=∠A+∠B=40°+70°=110°,∵∠C=25°,∴∠ADC=∠C+∠AEC=25°+110°=135°. 又∵∠ADC=140°,∴这个零件不合格.【点睛】此题考查多边形内角与外角了,三角形的外角性质,解题关键在于作辅助线.20.如图,在△ABC中,AD是BC边上的高,将△ABD沿AD折叠得到△AED,点E落在CD上,∠B=50°,∠C=30°.(1)填空:∠BAD= 度;(2)求∠CAE的度数.【答案】(1)40;(2)20°【解析】【分析】(1)直接根据三角形内角和定理求出∠BAD的度数;(2)先根据图形折叠的性质求出∠AED的度数,再由三角形外角的性质即可得出结论.【详解】(1)∵AD是BC边上的高,∠B=50°,∴∠BAD=180°-90°-50°=40°.故答案为40;(2)∵△AED是由△ABD折叠得到,∴∠AED=∠B=50°,∵∠AED是△ACE的外角,∴∠AED=∠CAE+∠C,∴∠CAE=∠AED-∠C=50°-30°=20°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.21.如图,点D与点E分别是△ABC的边长BC、AC的中点,△ABC的面积是20cm2.(1)求△ABD与△BEC的面积;(2)△AOE与△BOD的面积相等吗?为什么?【答案】(1)10,10;(2)相等,理由,见解析【解析】【分析】(1)要计算△ABE与△BCE的面积,可设点A到边BC的高为h,则S△ABD=12BD·h,S△ACD=12CD·h;再根据中点的定义得BD=CD,然后利用等量代换即可得到S△ABD=S△ACD,同理S△ABE=S△BCE,再结合△ABC的面积即可解决;(2)结合上面的推理可得S△ABE=S△ABD,再根据图形可知S△ABE=S△ABO+S△AOE,S△ABD=S△ABO+S△BOD,【详解】(1)可设点A到边BC的高为h,则S△ABD=12BD·h,S△ACD=12CD·h,∵点D是BC边的中点,∴BD=CD.∴S△ABD=S△ACD,同理S△ABE=S△BCE,∴S△ABD=S△BCE=12S△ABC=12×20=10(cm2).(2)△AOE与△BOD的面积相等,理由如下.根据(1)可得:S△ABE=S△ABD,∵S△ABE=S△ABO+S△AOE,S△ABD=S△ABO+S△BOD,∴S△AOE=S△BOD.【点睛】此题考查中点的定义和三角形面积的计算方法,掌握定义及公式是解题的关键;22.如图为一个正n 边形的一部分,AB 和DC 延长后相交于点P ,若∠BPC=120°,求n .【答案】n=12.【解析】试题分析:因为是正多边形,所以外角相等,根据∠BPC =120°,利用三角形内角和可求出正多边形的外角,再利用多边形外角等于360°,即可求出正多边形的边数. 试题解析:∵PB =PC ,∠BPC =120°, ∴∠PBC =∠PCB =12(180°﹣∠BPC )=30°, 即正n 边形的一个外角为30°, ∴n =36030︒︒=12. 23.已知,在平面直角坐标系中,AB ⊥x 轴于点B ,A(a ,b)满足64a b -+-=0,平移线段AB 使点A 与原点重合,点B 的对应点为点C .OA ∥CB .(1)填空:a =_______,b =_______,点C 的坐标为_______;(2)如图1,点P(x ,y)在线段BC 上,求x ,y 满足的关系式;(3)如图2,点E 是OB 一动点,以OB 为边作∠BOG =∠AOB 交BC 于点G ,连CE 交OG 于点F ,当点E 在OB 上运动时,OFC FCG OEC∠+∠∠的值是否发生变化?若变化,请说明理由;若不变,请求出其值.【答案】(1)()6,4,0,4-;(2)2312x y -=;(3)不变,2OFC FCG OEC∠+∠=∠. 【解析】【分析】(14b -=0,可得,a b 的值,再根据AB=OC ,且C 在y 轴负半轴上,可得C 的坐标; (2)过点P 分别作P M ⊥x 轴于点M ,P N ⊥y 轴于点N ,连接OP ,根据BOC POB POC SS S =+,可得,x y 满足的关系式;(3)由//BC OA ,证明,AOB OBC ∠=∠结合已知条件可得,BOG CBO ∠=∠ 再利用三角形的外角的性质证明∠OGC=2∠OBC ,∠OFC=∠FCG+∠OGC ,得到∠OFC+∠FCG =2∠OEC ,从而可得结论.【详解】解:(1)∵ 40b -=,∴60,40a b -=⎧⎨-=⎩∴6,4a b =⎧⎨=⎩ 4,6,AB OB ∴==由平移得:4,OC =且C 在y 轴负半轴上,()0,4,C ∴-故答案为:()6,4,0,4-;(2)如图,过点P 分别作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,连接OP .∵AB ⊥x 轴于点B ,且点A ,P ,C 三点的坐标分别为:()()()6,4,,,0,4,x y -∴OB=6,OC=4,,,PM y PN x =-= ∴()1111462222BOC POC POB S S S OC PN OB PM x y =+=•+•=⨯+⨯⨯- 23x y =-,而116412,22BOC S OB OC =•=⨯⨯=2312,x y ∴-=∴,x y 满足的关系式为:2312,x y -=(3) OFC FCG OEC∠+∠∠的值不变,值为2. 理由如下:∵线段OC 是由线段AB 平移得到,∴//,OA CB ,∴∠AOB=∠OBC ,又∵∠BOG=∠AOB ,∴∠BOG=∠OBC ,根据三角形外角性质,可得∠OGC=2∠OBC ,∠OFC=∠FCG+∠OGC ,,OEC FCG OBC ∠=∠+∠∴∠OFC+∠FCG=2∠FCG+2∠OBC =2(∠FCG+∠OBC ) =2∠OEC ,∴22OFC FCG OEC OEC OEC∠+∠∠==∠∠; 所以:OFC FCG OEC ∠+∠∠的值不变,值为2.【点睛】本题属于几何变换综合题,主要考查了非负数的性质,坐标与图形,平行线的性质以及平移的性质,三角形的外角的性质,解决问题的关键是作辅助线,运用面积法,角的和差关系以及平行线的性质进行求解. 24.已知a ,b ,c 分别为△ABC 的三条边,且满足23a b c +=-,26a b c -=-,a b >. (1)求c 的取值范围.(2)若ABC ∆的周长为12,求c 的值.【答案】(1)36c <<;(2)5c =.【解析】【分析】(1)根据三角形两边之和大于第三边,两边之差小于第三边即可求解;(2)根据23a b c +=-得三角形的周长为33-c 等于12,即可求出c 的值.【详解】解:(1)∵a ,b ,c 分别为ABC ∆的三条边,且23a b c +=-,26a b c -=-,∴23,26,c c c c ->⎧⎨-<⎩ 解得36c <<.故答案为:36c <<.(2)∵ABC ∆的周长为12,23a b c +=-,∴3312a b c c ++=-=,解得5c =.故答案为:5c =.【点睛】此题考查三角形的三边关系,利用三角形任意两边之和大于第三边,任意两边之差小于第三边,建立不等式解决问题.。
八年级上册第11章全等三角形全章测试卷
八年级上册第11章全等三角形全章测试卷时间:120分钟 满分:150分 姓名: 得分:一、选择题(每小题5分,共25分):1、如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( )A .线段CD 的中点B .OA 与OB 的中垂线的交点C .OA 与CD 的中垂线的交点 D .CD 与∠AOB 的平分线的交点第1题 第2题2、如图所示,△ABD ≌△CDB ,下面四个结论中,不正确的是( )A .△ABD 和△CDB 的面积相等 B .△ABD 和△CDB 的周长相等C .∠A +∠ABD =∠C +∠CBD D .AD ∥BC ,且AD =BC3、如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°, ∠ADB =30°,则∠BCF = ( ) A .150° B .40° C .80° D .90°第3题 第4题4、如图所示,BE ⊥AC 于点D ,且AD =CD ,BD =ED ,若∠ABC =54°,则∠E =( )A .25°B .27°C .30°D .45°5、如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )A .SSSB .SASC .AASD .ASA二、填空题(每题5分,共50分): 1、已知,如图,AD =AC ,BD =BC ,O 为AB 上一点,那么,图中共有 对全等三角形.BACBAED第1题图第2题图A DA CE B D ACB O DC BA2、如图,△ABC ≌△ADE ,则,AB =,∠E =∠.若∠BAE =120°,∠BAD =40°,则∠BAC = .3、如图,已知AC =BD ,21∠=∠,那么△ABC ≌ , 其判定根据是__________.4、如图,ABC ∆中,BC AD ⊥于D ,要使△ABD ≌△ACD ,若根据“HL ”判定,还需加条件___ = ___.5、如图,已知AC =BD ,D A ∠=∠,请你添一个直接条件, = ,使△AFC ≌△DEB .6、如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是是 ..A D第3题图 第4题图 第5题图○1 ○2 ○3 A BA ′C ′9、如图,AB =CD ,AD =BC ,O 为BD 中点,过O 点作直线与DA 、BC 延长线交于E 、F ,若∠ADB =60°,EO =10,则∠DBC = ,FO = .10、如图,DO 垂直AC ,且AO=OC 交AB 于点D ,若AB=7cm ,BC=5cm ,则△BDC 的周长是三、解答题(共75分):11、(8分)如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.12、(9分)已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .13、(10分)如图,∠DCE =90o ,CD =CE ,AD ⊥AC ,BE ⊥AC ,垂足分别为A 、B , 试说明AD +AB =BE .14、(10分)要将如图中的∠MON 平分,小梅设计了如下方案:在射线OM ,ON 上分别取OA =OB ,过A 作DA ⊥OM 于A ,交ON 于D ,过B 作EB ⊥ON 于B 交OM 于E ,AD ,EB 交于点C ,过O ,C 作射线OC 即为MON 的平分线,试说明这样做的理由.CA15、(12分)如图所示,A ,E ,F ,C 在一条直线上,AE =CF ,过E ,F 分别作DE ⊥AC ,BF ⊥AC ,若AB =CD ,可以得到BD 平分EF ,为什么?若将△DEC 的边EC 沿AC 方向移动,变为图时,其余条件不变,上述结论是否成立?请说明理由.16、(14分)如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE ⊥DF ,交AB 于点E ,连结EG 、EF . (1)求证:BG =CF . (2)请你判断BE +CF 与EF 的大小关系,并说明理由.17、(12分)如图,在 △ABC 中,点D 是BC 的中点, DE ⊥AB , DF ⊥AC ,E 、F 为垂足,DE =DF ,求证: AB=AC .(第3题)G DF A C BE G DFA CB E F EDC B A G。
(最新最全)人教版第11章全等三角形练习题综合拔高题(全word已整理)
全等三角形拔高题1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。
2. 已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。
3. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,•PN ⊥CD 于N ,判断PM 与PN 的关系.4. 如图所示,P 为∠AOB 的平分线上一点,PC ⊥OA 于C ,•∠OAP+∠OBP=180°,若OC=4cm ,求AO+BO 的值.A B C DE P D ACM NPDA CBO5.如图所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE•⊥AC,BF⊥AC,若AB=CD,可以得到BD平分EF,为什么?若将△DEC的边EC沿AC方向移动,变为如图所示时,其余条件不变,上述结论是否成立?请说明理由.6.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由。
7.已知:如图E在△ABC的边AC上,且∠AEB=∠ABC。
(1)求证:∠ABE=∠C;(2)若∠BAE的平分线AF交BE于F,FD∥BC交AC于D,设AB=5,AC=8,求DC的长。
GD FAC BEGD FACBEFED CBAG8. 如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M .(1) 求证:△ABC ≌△DCB ;(2)过点C 作CN ∥BD ,过点B 作BN ∥AC ,CN 与BN 交于点N ,试判断线段BN 与CN 的数量关系,并证明你的结论.9. 已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1) 求证:△AED ≌△EBC .(2) 观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):10. 如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1) 求证:MB =MD ,ME =MF(2) 当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.BA DMOE D C B A11. 如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E .(1) 若BD 平分∠ABC ,求证CE=12BD ;(2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由。
人教版数学八年级上册 第11章 三角形单元测试(配套练习附答案)
∵E是AC的中点,
∴EH是△ACG的中位线,
∴EH∥AD,
∴∠GDF=∠HEF,
∵F是DE的中点,
∴DF=EF,
在△DFG和△EFH中, ,
∴△DFG≌△EFH(ASA),
∴FG=FH,S△EFH=S△DGF,
又∵FC=FH+HC=FH+GH=FH+FG+FH=3FH,
所以,由题意可得180(n-2)=2×360º
解得:n=6
16.十边形的外角和是_____°.
【答案】360
【解析】
【分析】
根据多边形外角和等于360°性质可得.
【详解】根据多边形的外角和等于360°,即可得十边形的外角和是360°.
【点睛】本题考查了多边形的外角和.熟记多边形外角和是关键.
17.若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为__________.
考点:找规律-图形的变化
点评:解答此类问题的关键是仔细分析所给图形的特征得到规律,再把这个规律应用于解题.
C. 一个等腰三角形一定不是锐角三角形
D. 一个等边三角形一定不是钝角三角形
【答案】
【解析】
【分析】
根据三角形的分类方法进行分析判断.三角形按角分为锐角三角形、直角三角形和钝角三角形;三角形按边分为不等边三角形和等腰三角形(等边三角形).
【详解】解:A、如等腰直角三角形,既是直角三角形,也是等腰三角形,故该选项错误;
A.4cm2B.6cm2C.8cm2D.9cm2
【答案】A
【解析】
试题分析:取CG的中点H,连接EH,根据三角形的中位线定理可得EH∥AD,再根据两直线平行,内错角相等可得∠GDF=∠HEF,然后利用“角边角”证明△DFG和△EFH全等,根据全等三角形对应边相等可得FG=FH,全等三角形的面积相等可得S△EFH=S△DGF,再求出FC=3FH,再根据等高的三角形的面积比等于底边的比求出两三角形的面积的比,从而得解.
全等三角形单元测试题(含答案)
全等三角形单元测试题一、填空题(每小题4分,共32分).1.已知:///≌,/ABC A B C∆∆∠=∠,70B B∠=∠,/A A=,则AB cmC∠=︒,15 /∠=_________,//CA B=__________.∆中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角2.如图1,在ABC形_______对.图1 图2 图33.已知△AB C≌△A′B′C′,若△ABC的面积为10 cm2,则△A′B′C′的面积为______ cm2,若△A′B′C′的周长为16 cm,则△AB C的周长为________cm.4.如图2所示,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是________________(只添一个条件即可).5.如图3所示,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还需补充一个条件________,依据是________________.6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部.7.如图4,两平面镜α、β的夹角θ,入射光线AO平行于β,入射到α上,经两次反射后的出射光线CB平行于α,则角θ等于________.图4 图5 图68.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为______.二、选择题(每小题4分,共24分)9.如图6,AE =AF ,AB =AC ,EC 与B F 交于点O ,∠A =600,∠B =250,则∠EOB 的度数为( )A 、600B 、700C 、750D 、85010.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( )A .35 cmB .30 cmC .45 cmD .55 cm11.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( )A .A 、FB .C 、E C .C 、AD .E 、F12.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD =•BC ,再定出BF的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC ≌△ABC ,•得到ED =AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( )A .边角边公理B .角边角公理;C .边边边公理D .斜边直角边公理13.如图9,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( )A .1:2B .1:3C .2:3D .1:414.如图10,P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于CD ,则CD _____P 点到∠AOB N A M C B 图7 图8 图9 图10两边距离之和.( )A.小于B.大于C.等于D.不能确定三、解答题(共46分)中,∠ACB=90°,延长BC至B',使15.已知如图11,ABCC B'=BC,连结A B'.求证:△AB B'是等腰三角形.参考答案。
全等三角形测试题含答案
《全等三角形》整章水平测试题(一)一、认认真真选,沉着应战!1.下列命题中正确的是( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等 2.下列各条件中,不能作出惟一三角形的是() A .已知两边和夹角 B .已知两角和夹边 C .已知两边和其中一边的对角 D .已知三边4.下列各组条件中,能判定△ABC ≌△DEF 的是( ) A .AB =DE ,BC =EF ,∠A =∠D B .∠A =∠D ,∠C =∠F ,AC =EFC .AB =DE ,BC =EF ,△ABC 的周长= △DEF 的周长D .∠A =∠D ,∠B =∠E ,∠C =∠F5.如图,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC , 则∠BCM :∠BCN 等于() A .1:2B .1:3C .2:3D .1:4 6.如图, ∠AOB 和一条定长线段A ,在∠AOB 内找一点P ,使P到OA 、OB 的距离都等于A ,做法如下:(1)作OB 的垂线NH , 使NH =A ,H 为垂足.(2)过N 作NM ∥OB .(3)作∠AOB 的平 分线OP ,与NM 交于P .(4)点P 即为所求. 其中(3)的依据是( )A .平行线之间的距离处处相等B .到角的两边距离相等的点在角的平分线上C .角的平分线上的点到角的两边的距离相等D .到线段的两个端点距离相等的点在线段的垂直平分线上7.如图,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条角平分线将△ABC 分为三个三角形,则S △ABO ︰S △BCO ︰S △CAO 等于( ) A .1︰1︰1 B .1︰2︰3 C .2︰3︰4 D .3︰4︰5 8.如图,从下列四个条件:①BC =B ′C , ②AC =A ′C ,③∠A ′CB =∠B ′CB ,④AB =A ′B ′中,任取三个为条件, 余下的一个为结论,则最多可以构成正确的结论的个数是( ) A .1个B .2个C .3个D .4个9.要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线B F 上 取两点C ,D ,使CD =BC ,再定出B F 的垂线DE ,使A ,C ,E 在同 一条直线上,如图,可以得到EDC ABC ≅,所以ED =AB ,因 此测得ED 的长就是AB 的长,判定EDC ABC ≅的理由是( ) A .SAS B .ASA C .SSS D .HL10.如图所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边 翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度ACB DFEN AMCB FCEABD数为( )A .80°B .100°C .60°D .45°. 二、仔仔细细填,记录自信!11.如图,在△ABC 中,AD=DE ,AB=BE ,∠A=80°, 则∠CED=_____.12.已知△DE F ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4cm ,则△DE F 的边中必有一条边等于______.13. 在△ABC 中,∠C =90°,BC =4CM ,∠BAC 的平分线交BC 于D ,且BD ︰DC =5︰3,则D 到AB 的距离为_____________.14. 如图,△ABC 是不等边三角形,DE =BC ,以D ,E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个.D E15. 如图,AD A D '',分别是锐角三角形ABC 和锐角三角形A B C '''中,BC B C ''边上的高,且AB A B AD A D ''''==,.若使ABC A B C '''△≌△,请你补充条件___________.(填写一个你认为适当的条件即可)17.如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.19. 如右图,已知在ABC 中,90,,A AB AC CD ∠=︒=平分ACB ∠,DE BC ⊥于E ,若15cm BC =,则DEB △ 的周长为cm .20.在数学活动课上,小明提出这样一个问题:∠B =∠C =900,E 是 BC 的中点,DE 平分∠ADC ,∠CED =350,如图,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______. 三、平心静气做,展示智慧!21.如图,公园有一条“Z ”字形道路ABCD ,其中AB ∥CD ,在,,E M F 处各有一个小石凳,且BE CF =, M 为BC 的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.22.如图,给出五个等量关系:①AD BC =②AC BD =③CE DE =④D C ∠=∠EA B C D'A 'B 'D 'CC B⑤DAB CBA ∠=∠.请你以其中两个为条件,另三个中的一个为结论,推出一个正确 的结论(只需写出一种情况),并加以证明. 已知: 求证: 证明:23.如图,在∠AOB 的两边OA ,OB 上分别取OM =ON ,OD =OE , DN 和EM 相交于点C .求证:点C 在∠AOB 的平分线上. 四、发散思维,游刃有余!24. (1)如图1,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断ABC △与AEG △面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石 铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和 是b 平方米,这条小路一共占地多少平方米?参考答案一、1—5:DCDCD 6—10:BCBBA 二、 11.100°12.4cm 或9.5cm13.1.5cm 14.4 15.略16.15AD << 17. 互补或相等 18. 180 19.15 20.350三、 21.在一条直线上.连结EM 并延长交CD 于'F 证'CF CF =.22.情况一:已知:AD BC AC BD ==,求证:CE DE =(或D C ∠=∠或DAB CBA ∠=∠) 证明:在△ABD 和△BAC 中AD BC AC BD ==∵, AB BA =ABDC EOM NAGFC BDE(图1)∴△ABD ≌△BAC∴CAB DBA ∠=∠AE BE =∴ ∴AC AE BD BE -=-即CE ED =情况二:已知:D C DAB CBA ∠=∠∠=∠,求证:AD BC =(或AC BD =或CE DE =) 证明:在△ABD 和△BAC 中D C ∠=∠,DAB CBA ∠=∠AB AB =∵∴△ABD ≌△BAC ∴AD BC =23.提示:OM =ON ,OE =OD ,∠MOE =∠NOD ,∴△MOE ≌△NOD ,∴∠OME =∠OND ,又DM =EN ,∠DCM =∠ECN ,∴△MDC ≌△NEC ,∴MC =NC ,易得△OMC ≌△ONC (SSS )∴∠MOC =∠NOC ,∴点C 在∠AOB 的平分线上.四、24. (1)解:ABC △与AEG △面积相等过点C 作CM AB ⊥于M ,过点G 作GN EA ⊥交EA 延长线于N ,则AMC ∠=90ANG ∠=四边形ABDE 和四边形ACFG 都是正方形90180BAE CAG AB AE AC AG BAC EAG ∴∠=∠===∴∠+∠=,,180EAG GAN BAC GAN ∠+∠=∴∠=∠ACM AGN ∴△≌△1122ABCAEG CM GN S AB CM S AE GN ∴===△△,ABC AEGS S ∴=△△(2)解:由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和∴这条小路的面积为(2)a b +平方米.BD。
渝北区第九中学八年级数学上册 第11章 三角形章末综合训练含解析新人教版
第11章三角形一、选择题1. 如图,D,E,F是△ABC的边BC上的点,且BD=DE=EF=FC,那么△ABE的中线是( )A.线段AD B.线段AEC.线段AF D.线段DF2. 在△ABC中,∠A=95°,∠B=40°,则∠C的度数是 ( )A. 35°B. 40°C. 45°D. 50°3. 至少有两边相等的三角形是( )A.等边三角形B.等腰三角形C.等腰直角三角形D.锐角三角形4. 如图,小明书上的三角形被墨迹遮挡了一部分,测得其中两个角的度数分别为28°,62°,于是他很快判断出这个三角形是( )A.等边三角形B.等腰三角形C.直角三角形D.钝角三角形5. 如图是六边形ABCDEF,则该图形的对角线的条数是()A.6B.9C.12D.186. 如图,为估计池塘岸边A,B两地之间的距离,小明在池塘的一侧选取一点O,测得OA =10米,OB=8米,那么A,B两地之间的距离可能是( )A.2米B.15米C.18米D.28米7. 如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A.118°B.119°C.120°D.121°8. 如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m).则点E的坐标是( )A. (2,-3)B. (2,3)C. (3,2)D. (3,-2)9. 如图,将△ABC沿BC向右平移后得到△DEF,∠A=65°,∠B=30°,则∠DFC的度数是( )A.65° B.35° C.80° D.85°10. 如图,在△ABC中,∠ACB=70°,∠1=∠2,则∠BPC的度数为( )A .70°B .108°C .110°D .125°二、填空题11. 如图,已知∠CAE 是△ABC 的外角,AD ∥BC ,且AD 是∠EAC 的平分线.若∠B=71°,则∠BAC=________.12. 如图,在△ABC 中,∠ABC,∠ACB 的平分线相交于点O ,OD⊥OC 交BC 于点D.若∠A=80°,则∠BOD=________°.13. 如图,小明从点A 出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°……照这样走下去,他第一次回到出发地点A 时,一共走了________米.14. 如图,在△ABC 中,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,垂足分别是D ,E ,F .若AC =4,AD =3,BE =2,则BC =________.15. 如图所示,在△ABC 中,∠A =36°,E 是BC 延长线上一点,∠DBE =23∠ABE ,∠DCE =23∠ACE ,则∠D 的度数为________.16. 如图,若该图案是由8个形状和大小相同的梯形拼成的,则∠1=________°.三、解答题17. 数学活动课上,老师让同学们用长度分别是20 cm,90 cm,100 cm的三根木棒搭一个三角形的木架,小明不小心把100 cm的木棒折去了35 cm,他发现:用折断后剩下的木棒与另两根木棒怎么也搭不成三角形.(1)你知道为什么吗?(2)100 cm长的木棒至少折去多长后剩余的部分就不能与另两根木棒搭成三角形?18. 如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=25°,∠E=30°,求∠BAC的度数.19. 如图1-Z-18是一个大型模板,设计要求BA与CD相交成20°角,DA与CB相交成40°角,现测得∠A=145°,∠B=75°,∠C=85°,∠D=55°,就断定这块模板是合格的,这是为什么?20. 如图,在△ABC中,CD,BE分别是AB,AC边上的高,BE,CD相交于点O.(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)求证:∠BOC+∠A=180°.21. 如图,在△ABC中,BD是角平分线,CE是AB边上的高,且∠ACB=60°,∠ADB=97°,求∠A和∠ACE的度数.人教版八年级上册第11章三角形章末综合训练-答案一、选择题1. 【答案】A2. 【答案】C3. 【答案】B4. 【答案】C5. 【答案】B6. 【答案】B7. 【答案】C∴∠ACB=180°-∠A-∠ABC=78°.∵∠ABC,∠ACB的平分线分别为BE,CD,∴∠FBC=∠ABC=21°,∠FCB=∠ACB=39°,∴∠BFC=180°-∠FBC-∠FCB=120°.故选C.8. 【答案】C9. 【答案】D10. 【答案】C ∠1=∠2,∴∠2+∠BCP=∠1+∠BCP=∠ACB=70°.∴∠BPC=180°-∠2-∠BCP=180°-70°=110°.二、填空题11. 【答案】38°12. 【答案】4013. 【答案】120 则他第一次回到出发地点A时,一共走了12×10=120(米).故答案为120.14. 【答案】8 315. 【答案】24°16. 【答案】67.5三、解答题17. 【答案】解:(1)把100 cm的木棒折去了35 cm后还剩余65 cm.∵20+65<90,∴20 cm,65 cm,90 cm长的三根木棒不能构成三角形.(2)设折去x cm后剩余的部分不能与另两根木棒搭成三角形.根据题意,得20+(100-x)≤90,解得x≤30,∴100 cm长的木棒至少折去30 cm后剩余的部分就不能与另两根木棒搭成三角形.18. 【答案】解:∵∠B=25°,∠E=30°,∴∠ECD=∠B+∠E=55°.∵CE是∠ACD的平分线,∴∠ACE=∠ECD=55°.∴∠BAC=∠ACE+∠E=85°.19. 【答案】解:如图,延长DA,CB相交于点F,延长BA,CD相交于点E.∵∠C+∠ADC=85°+55°=140°,∴∠F=180°-140°=40°.∵∠C+∠ABC=85°+75°=160°,∴∠E=180°-160°=20°.故这块模板是合格的.20. 【答案】解:(1)∵CD⊥AB,BE⊥AC,∴∠BDC=∠BEC=90°.∵∠ABC=50°,∠ACB=60°.∴∠BCO=40°,∠CBO=30°.∴∠BOC=180°-40°-30°=110°.(2)证明:∵CD⊥AB,BE⊥AC,∴∠BDC=∠BEC=90°.∴∠ABE=90°-∠A.∴∠BOC=∠ABE+∠BDC=90°-∠A+90°=180°-∠A.∴∠BOC+∠A=180°.21. 【答案】解:∵∠ADB=∠DBC+∠ACB,∴∠DBC=∠ADB-∠ACB=97°-60°=37°.∵BD是△ABC的角平分线,∴∠ABC=74°.∴∠A=180°-∠ABC-∠ACB=46°.∵CE是AB边上的高,∴∠AEC=90°.∴∠ACE=90°-∠A=44°.第2课时等腰三角形的判定教学目标1、理解并掌握等腰三角形的判定定理及推论2、能利用其性质与判定证明线段或角的相等关系.教学重点:等腰三角形的判定定理及推论的运用教学难点:正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.教学过程:一、复习等腰三角形的性质二、新授:I提出问题,创设情境出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.II引入新课1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB= AC吗?作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?2.引导学生根据图形,写出已知、求证.2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.4.引导学生说出引例中地质专家的测量方法的根据.III例题与练习1.如图2其中△ABC是等腰三角形的是 [ ]2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.④若已知 AD=4cm,则BC______cm.3.以问题形式引出推论l______.4.以问题形式引出推论2______.例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?练习:IV课堂小结1.判定一个三角形是等腰三角形有几种方法?2.判定一个三角形是等边三角形有几种方法?3.等腰三角形的性质定理与判定定理有何关系?4.现在证明线段相等问题,一般应从几方面考虑?V布置作业:第13章《整式的乘除》整章水平测试(A)一、选择题(每小题3分,共30分)1、下列计算正确的是()(A)(-a)2.(-a)3=-a5(B)(-a)2.(-a4)=(-a)6(C)-a4.(-a)3=(-a)7(D)-a4.a3=-a122、(-x n-1)2的运算的结果是()(A)x2n-1(B)x2n-2(C)-x2n-2(D)-2x2n-23、(a m)3.a n的运算结果是()(A)a3m+n(B)a m+3n(C)a3mn(D)a3(m+n)4、(-2x3y4)3的运算结果是()(A)-6x6y7(B)-8x27y64(C)-6x9y12(D)-8x9y125、下列计算题中,能用公式(a+b)(a-b)=a2-b2的是()(A)(x-2y)(x+y) (B)(n+m)(-m-n)(C)(2x+3)(3x-2) (D)(-a-2b)(-a+2b)6、下列各式从左到右的变形中,是因式分解的是()(A)3x+2x-1=5x-1 (B)(3a+2b)(3a—2b)=9a2-4b2(C)x2+x=x2(1+1/x) (D)2x2—8y2=2(x+2y)(x-2y)7、(1-4x)(x+3y)是下列哪个多项式分解因式的结果()(A)4x2+12xy-x-3y (B)4x2-12xy+x-3y(C)4x2+12xy-x-3y (D)x+3y-4x2-12xy8、多项式a2+b2—2a+4b+6的值总是()(A)负数(B)0 (C)正数(D)非负数9、在下列各多项式中,各项的公因式是6x2y3的是()A、6x2y+12xy2-24y3B、x4y3-3x3y4+2x2y5C、6x4y3+12x3y4-24x2y5D、x2y-3xy2+2y310、下列各多项式中:① x2-y2;②x2+1;③x2+4x;④x2-10x+25其中能直接运用公式法分解因式的个数是()A、1个B、2个C、3个D、4个二、填空题(每小题3分,共24分)11、0.0005=0.5×10n,则n=______.12、-32×(-3)2×3=___.13、a.a 2.a 3.a 4.a 5=________.14、[(102)3]4=_____.15、分解因式:22a a -= . 16、分解因式:92-x = . 17、分解因式2x 2-18 = .18、若3a-b=2,则9a 2-6ab+b 2=______. 三、解答题(共46分)19、(12分)计算:(1)(-2b )2.a 3.(-a)2+(-2ab)2.(-a)3.b.(2)(-4a 2b )3.(bc 2)2-(2a 4b 3c 2).(-a 2b 2).c 2.(3)(-a 5)÷(-a)2+(-3a 2)(-2a).20、分解因式(16分)(1)ma 2—4ma+4m ;(2)a 2—ab+ac —bc.(3)4x 2―y 2+2yz —z 2.(4)a 4+a 3b —ab 3—b 4.21、(4分)已知,求的值.22、(4分)利用因式分解计算.23.(5分)给你若干个长方形和正方形的卡片,如图所示,请你运用拼图的方法,下载趣相应的种类和数量的卡片,拼成一个矩形,使它的面积等于a 2+5ab+4b 2并根据你拼成的图形分解多项式a 2+5ab+4b 2.24、(5分)观察下列等式: 9-1=2×4,16-4=3×4,25-9=4×4,36-16=5×4,…,这些等式反映出自然数间的某种规律,设n 表示自然数,请你猜想出这个规律,用含n 的等式表示出来.并加以证明.参考答案一、1.B ;提示:正确的是(-a)2.(-a 4)=(-a)62、B ;提示:利用积的乘方法则,注意符号,结果为x 2n-23、A ;提示:先算乘方,再算积,结果为(a m )3.a n4、D ;提示:利用公式(ab )2=a 2b 25、C ;提示:注意公式中的字母的对应.6、D;提示:A示加法,B是整式的乘法,C的右边不是整式,故正确的是D.7、D;提示:x+3y-4x2-12xy=(x+3y)-4x(x+3y)=(1-4x)(x+3y)8、C;提示:a2+b2—2a+4b+6=(a2-2a+1)+(b2+4b+4)+1=(a-1)2+(b+2)2+19、C;提示:6x4y3+12x3y4-24x2y5=6x2y3(x2+3xy-4y2)10、B;提示:能运用公式法的有①④二、11、-2;提示:0.0005=0.5×10-2=0.5×10n,∴n=-212、-243;提示:-32×(-3)2×3=-32+2+1=-3513、a15;提示:a.a2.a3.a4.a5=a1+2+3+4+5=a15,注意a指数是114、1024;提示:、[(102)3]4=102×3×415、原式=a(a-2);16、原式=(x+3)(x-3);17、原式=2(x+3)(x-3);18、4;提示:9a2-6ab+b2=(3a-2b)2三、19、(1)-12a5b3;(2)-62a6b5c4;(3)7a320.(1)m(a—2)2;(2)(a+c)(a—b);(3)(2x—y+z)(2x+y—z);(4)(a+b)(a—b)(a2+ab+b2).21.解:.则可列方程为,∴.点评:熟练掌握单项式除以单项式的除法法则是解题关键.22、解:.23、由式a2+5ab+4b2知,可用1张图(1),5张图(2),4张图(3)拼成如图.由图形的面积可把a2+5ab+4b2分解为(a+b)(a+4b)。
(人教版数学)初中8年级上册-单元检测-第11章 三角形 单元检测
三角形单元测试题一.选择题(共7小题)1.已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O 是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP.其中正确的有()个.A.①②③B.①②④C.①③④D.①②③④2.如图,四边形ABCD是直角梯形,AB∥CD,AD⊥AB,点P是腰AD上的一个动点,要使PC+PB 最小,则点P应该满足()A.P B=PC B.P A=PD C.∠BPC=90°D.∠APB=∠DPC3.如图,△ABC是等腰直角三角形,△DEF是一个含30°角的直角三角形,将D放在BC的中点上,转动△DEF,设DE,DF分别交AC,BA的延长线于E,G,则下列结论:①AG=CE ②DG=DE③BG﹣AC=CE ④S△BDG﹣S△CDE=S△ABC其中总是成立的是()A.①②③B.①②③④C.②③④D.①②④4.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是()A.①②③B.①②④C.①③④D.①②③④5.如图,BC∥AM,∠A=90°,∠BCD=75°,点E在AB上,△CDE为等边三角形,BM交CD于F,下列结论:①∠ADE=45°,②AB=BC,③EF⊥CD,④若∠AMB=30°,则CF=DF.其中正确的有()A.①②③B.①②④C.①③④D.②③④6.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,连接EF交AP于G.给出四个结论:①AE=CF;②EF=AP;③△EPF是等腰直角三角形;④∠AEP=∠AGF.其中正确的结论有()A.1个B.2个C.3个D.4个7.如图,AM、BE是△ABC的角平分线,AM交BE于N,AL⊥BE于F交BC于L,若∠ABC=2∠C,下列结论:①B E=EC;②BF=AE+EF;③AC=BM+BL;④∠MAL=∠ABC,其中正确的结论是()A.①②③B.①④C.①②③④D.①②二.解答题(共8小题)8.如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG=BF+CG.9.如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a﹣t)2+|b﹣t|=0(t>0).(1)证明:OB=OC;(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE 的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变;(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN 交x轴于点T,过T作TQ⊥MN交y轴于点Q,求点Q的坐标.10.如图1,在平面直角坐标系中,点A(4,4),点B、C分别在x轴、y轴的正半轴上,S四边形=16.OBAC(1)∠COA的值为_________;(2)求∠CAB的度数;(3)如图2,点M、N分别是x轴正半轴及射线OA上一点,且OH⊥MN的延长线于H,满足∠HON=∠NMO,请探究两条线段MN、OH之间的数量关系,并给出证明.11.如图,已知A(a,b),AB⊥y轴于B,且满足+(b﹣2)2=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1试判定线段AC和DC的数量关系和位置关系.(3)如图2过A作AE⊥x轴于E,F,G分别为线段OE,AE上的两个动点,满足∠FBG=45°,试探究的值是否发生变化?如果不变,请说明理由并求其值;如果变化,请说明理由.12.(2013•日照)问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为_________.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.13.(2013•六盘水)(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE 的最小值为_________.(2)实践运用如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为_________.(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN的值最小,保留作图痕迹,不写作法.14.(2013•抚顺)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是_________;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.15.(2013•东营)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.参考答案与试题解析一.选择题(共7小题)1.已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O 是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP.其中正确的有()个.A.①②③B.①②④C.①③④D.①②③④考点:等腰三角形的判定与性质;全等三角形的判定与性质;等边三角形的判定与性质.4387773分析:①利用等边对等角,即可证得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;③首先证明∴△OPA≌△CPE,则AO=CE,AC=AE+CE=AO+AP.④过点C作CH⊥AB于H,根据S四边形AOCP=S△ACP+S△AOC,利用三角形的面积公式即可求解.解答:解:连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=∠BAC=×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°,∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°;故①正确;∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形;故②正确;在AC上截取AE=PA,∵∠PAE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OPA和△CPE中,,∴△OPA≌△CPE(SAS),∴AO=CE,∴AC=AE+CE=AO+AP;故③正确;过点C作CH⊥AB于H,∵∠PAC=∠DAC=60°,AD⊥BC,∴CH=CD,∴S△ABC=AB•CH,S四边形AOCP=S△ACP+S△AOC=AP•CH+OA•CD=AP•CH+OA•CH=CH•(AP+OA)=CH•AC,∴S△ABC=S四边形AOCP;故④正确.故选D.点评:本题考查了等腰三角形的判定与性质,关键是正确作出辅助线.2.如图,四边形ABCD是直角梯形,AB∥CD,AD⊥AB,点P是腰AD上的一个动点,要使PC+PB 最小,则点P应该满足()A.P B=PC B.P A=PD C.∠BPC=90°D.∠APB=∠DPC考点:轴对称-最短路线问题;直角梯形.专题:压轴题;动点型.分析:首先根据轴对称的知识,可知P点的位置是连接点B和点C关于AD的对称点E与AD的交点,利用轴对称和对顶角相等的性质可得.解答:解:如图,作点C关于AD的对称点E,连接BE交AD于P,连接CP.根据轴对称的性质,得∠DPC=∠EPD,根据对顶角相等知∠APB=∠EPD,所以∠APB=∠DPC.故选D.点评:此题的关键是应知点P是怎样确定的.要找直线上一个点和直线同侧的两个点的距离之和最小,则需要利用轴对称的性质进行确定.3.如图,△ABC是等腰直角三角形,△DEF是一个含30°角的直角三角形,将D放在BC的中点上,转动△DEF,设DE,DF分别交AC,BA的延长线于E,G,则下列结论:①AG=CE ②DG=DE③BG﹣AC=CE ④S△BDG﹣S△CDE=S△ABC其中总是成立的是()A.①②③B.①②③④C.②③④D.①②④考点:旋转的性质;全等三角形的判定与性质.4387773专题:开放型.分析:连DA,由△ABC是等腰直角三角形,D点为BC的中点,根据等腰直角三角形的性质得AD⊥BC,AD=DC,∠ACD=∠CAD=45°,得到∠GAD=∠ECD=135°,由∠EDF=90°,根据同角的余角相等得到∠1=∠2,所以△DAG≌△DCE,AG=E C,DG=DE,由此可分别判断.解答:解:连DA,如图,∵△ABC是等腰直角三角形,D点为BC的中点,∴AD⊥BC,AD=DC,∠ACD=∠CAD=45°,∴∠GAD=∠ECD=135°,又∵△DEF是一个含30°角的直角三角形,∴∠EDF=90°,∴∠1=∠2,∴△DAG≌△DCE,∴AG=EC,DG=DE,所以①②正确;∵AB=AC,∴BG﹣AC=BG﹣AB=AG=EC,所以③正确;∵S△BDG﹣S△CDE=S△BDG﹣S△ADG=S△ADB=S△ABC.所以④正确.故选B.点评:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等腰直三角形的性质,特别是斜边上的中线垂直斜边并且等于斜边的一半.4.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是()A.①②③B.①②④C.①③④D.①②③④考点:等腰直角三角形;全等三角形的判定与性质;等腰三角形的判定与性质;含30度角的直角三角形.4387773分析:①根据:∠CAD=30°,AC=BC=AD,利用等腰三角形的性质和三角形内角和定理即可求出∠ECA=165°,从而得证结论正确;②根据CE⊥CD,∠ECA=165°,利用SAS求证△ACD≌△BCE即可得出结论;③根据∠ACB=90°,∠CAD=30°,AC=BC,利用等腰三角形的性质和△ACD≌△BCE,求出∠CBE=30°,然后即可得出结论;④过D作DM⊥AC于M,过D作DN⊥BC于N.由∠CAD=30°,可得CM=AC,求证△CMD≌△CND,可得CN=CM=AC=BC,从而得出CN=BN.然后即可得出结论.解答:解:①∵∠CAD=30°,AC=BC=AD,∴∠ACD=∠ADC=(180°﹣30°)=75°,∵CE⊥CD,∴∠DCE=90°,∴∠ECA=165°∴①正确;②∵CE⊥CD,∠ECA=165°(已证),∴∠BAE=∠ECA﹣∠ACB=165﹣90=75°,∴△ACD≌△BCE(SAS),∴BE=BC,∴②正确;③∵∠ACB=90°,∠CAD=30°,AC=BC,∴∠CAB=∠ACB=45°∴∠BAD=∠BAC﹣∠CAD=45﹣30=15°,∵△ACD≌△BCE,∴∠CBE=30°,∴∠ABF=45+30=75°,∴∠AFB=180﹣15﹣75=90°,∴AD⊥BE.④证明:如图,过D作DM⊥AC于M,过D作DN⊥B C于N.∵∠CAD=30°,且DM=AC,∵AC=AD,∠CAD=30°,∴∠ACD=75°,∴∠NCD=90°﹣∠ACD=15°,∠MDC=∠DMC﹣∠ACD=15°,∴△CMD≌△CND,∴CN=CM=AC=BC,∴CN=BN.∵DN⊥BC,∴BD=CD.∴④正确.所以4个结论都正确.故选D.点评:此题主要考查等腰直角三角形,全等三角形的判定与性质,等腰三角形的判定与性质,含30度角的直角三角形等知识点的理解和掌握,此题有一定的拔高难度,属于难题.5.如图,BC∥AM,∠A=90°,∠BCD=75°,点E在AB上,△CDE为等边三角形,BM交CD于F,下列结论:①∠ADE=45°,②AB=BC,③EF⊥CD,④若∠AMB=30°,则CF=DF.其中正确的有()A.①②③B.①②④C.①③④D.②③④考点:直角梯形;等边三角形的性质;含30度角的直角三角形;等腰直角三角形.4387773分析:由BC∥AM得∠CDA=105°,根据等边三角形的性质得∠CDE=60°,则∠EDA=105°﹣60°=45°;过C作CG⊥AM,则四边形ABCG为矩形,于是∠DCG=90°﹣∠BCD=15°,而∠BCE=75°﹣60°=15°,易证得Rt△CBE≌Rt△CGD,则BC=CG,得到AB=BC;由于AG=BC,而AG≠MD,则CF:FD=BC:MD≠1,不能得到F点是CD的中点,根据等边三角形的性质则不能得到EF⊥CD;若∠AMB=30°,则∠CBF=30°,在Rt△AMB中根据含30度的直角三角形三边的关系得到BM=2AB,则BM=2BC,易得∠BFC=75°,所以BF=BC,得MF=BF,由CB∥AM得CF:FD=BF:MF=1,即可有CF=DF.解答:解:∵BC∥AM,∴∠BCD+∠CDA=180°,∵∠BCD=75°,∴∠CDA=105°,∵△CDE为等边三角形,∴∠CDE=60°,∴∠EDA=105°﹣60°=45°,所以①正确;过C作CG⊥AM,如图,∵∠A=90°,∴四边形ABCG为矩形,∴∠DCG=90°﹣∠BCD=15°,而△CDE为等边三角形,∴∠DCE=60°,CE=CD,∴∠BCE=75°﹣60°=15°,∴Rt△CBE≌Rt△CGD,∴BC=CG,∴AB=BC,所以②正确;∵AG=BC,而AG≠MD,∴CF:FD=BC:MD≠1,∴F点不是CD的中点,∴EF不垂直CD,所以③错误;若∠AMB=30°,则∠CBF=30°,∴在Rt△AMB中,BM=2AB,∴BM=2BC,∵∠BCD=75°,∴∠BFC=180°﹣30°﹣75°=75°,∴BF=BC,∴MF=BF,而CB∥AM,∴CF:FD=BF:MF=1,∴CF=FD,所以④正确.故选B.点评:本题考查了直角梯形的性质:有一组对边平行,另一组对边不平行,且有一个直角.也考查了矩形和等边三角形的性质、含30度的直角三角形三边的关系以及相似三角形的判定与性质.6.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,连接EF交AP于G.给出四个结论:①AE=CF;②EF=AP;③△EPF是等腰直角三角形;④∠AEP=∠AGF.其中正确的结论有()A.1个B.2个C.3个D.4个考点:全等三角形的判定与性质;等腰直角三角形.4387773分析:根据等腰直角三角形的性质得:AP⊥BC,AP=BC,AP平分∠BAC.所以可证∠C=∠EAP;∠FPC=∠EPA;AP=PC.即证得△APE与△CPF全等.根据全等三角形性质判断结论是否正确.解答:解:∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴AP⊥BC,AP=BC=PC,∠BAP=∠CAP=45°=∠C.∵∠APF+∠FPC=90°,∠APF+∠APE=90°,∴∠FPC=∠EPA.∴△APE≌△CPF(ASA).∴①AE=CF;③EP=PF,即△EPF是等腰直角三角形;∵△ABC是等腰直角三角形,P是BC的中点,∴AP=BC,∵EF不是△ABC的中位线,∴EF≠AP,故②错误;④∵∠AGF=∠EGP=180°﹣∠APE﹣∠PEF=180°﹣∠APE﹣45°,∠AEP=180°﹣∠APE﹣∠EAP=180°﹣∠APE﹣45°,∴∠AEP=∠AGF.故正确的有①、③、④,共三个.因此选C.点评:此题考查全等三角形的判定和性质,综合性较强.7.如图,AM、BE是△ABC的角平分线,AM交BE于N,AL⊥BE于F交BC于L,若∠ABC=2∠C,下列结论:①BE=EC;②BF=AE+EF;③AC=BM+BL;④∠MAL=∠ABC,其中正确的结论是()A.①②③B.①④C.①②③④D.①②考点:全等三角形的判定与性质;等腰三角形的判定与性质.4387773分析:根据角平分线定义求出∠ABE=∠EBC=∠C,根据等角对等边求出BE=CE,即可判断①;证△ABE∽△ACB,推出AB2=AE×AC,求出AF2=AB2﹣BF2=AE2﹣EF2,把AB2=AE×AC代入入上式即可求出BF=AE+EF,即可判断②;延长AB到N,使BN=BM,连接MN,证△AMC≌△AMN,△AFB≌△BLF,推出AB=BL,即可判断③;设∠LAC=x°,∠LAM=y°,则∠BAM=∠MAC=(x+y)°,证△AFB≌△BLF推出∠BAF=∠BLF,∠BAF=∠BAM+∠MAL=x°+y°+y°,∠BLA=∠C+∠LAC=∠C+x°,得出方程x°+y°+y°=∠C+x°,求出∠C=2y°,∠ABC=4y°,即可判断④.解答:解:∵BE是∠ABC的角平分线,∴∠EBC=∠ABE=∠ABC,∵∠ABC=2∠C,∴∠ABE=∠EBC=∠C,∴BE=EC,∴①正确;∵∠ABE=∠ACB,∠BAC=∠EAB∴△ABE∽△ACB,∴=,∴AB2=AE×AC,在Rt△AFB与Rt△AFE中,由勾股定理得:AF2=AB2﹣BF2=AE2﹣EF2,把AB2=AE×AC代入入上式得:AE×AC﹣BF2=AE2﹣EF2,则BF2=AC×AE﹣AE2+EF2=AE×(AC﹣AE)+EF2=AE×EC+EF2=AE×BE+EF2,即(BE﹣EF)2=AE×BE+EF2,∴BE2﹣2BE×EF+EF2=AE×BE+EF2,∴BE2﹣2BE×EF=AE×BE,∴BE﹣2EF=AE,BE﹣EF=AE+EF,即BF=AE+EF,∴②正确;延长AB到N′,使BN=BM,连接MN′,则△BMN′为等腰三角形,∴∠BN′M=∠BMN′,△BN′M的一个外角∠ABC=∠BN′M+∠BM′N=2∠BN′M,则∠BN′M=∠ACB,在△AMC与△AMN′中,∴△AMC≌△AMN′(AAS),∴AN′=AC=AB+BN′=AB+BM,又∵AL⊥BE,∴∠AFB=∠LFB=90°,在△AFB与△LFB中,,∴△AFB≌△BLF(ASA),∴AB=BL,则AN′=AC=AB+BN′=AB+BM=BM+BL,即AC=BM+BL,∴③正确;设∠LAC=x°,∠LAM=y°,∵AM平分∠BAC,∴∠BAM=∠MAC=(x+y)°.∵△AFB≌△BLF,∴∠BAF=∠BLF,∵∠BAF=∠BAM+∠MAL=x°+y°+y°,∠BLA=∠C+∠LAC=∠C+x°,∴x°+y°+y°=∠C+x°,∴∠C=2y°,∵∠ABC=2∠C,∴∠ABC=4y°,即∠MAL=∠ABC,∴④正确.故选C.点评:本题考查了勾股定理,相似三角形的性质和判定,角平分线性质,相似三角形的性质和判定等知识点的综合运用.二.解答题(共8小题)8.如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG=BF+CG.考点:等腰三角形的性质;全等三角形的判定与性质.4387773专题:证明题.分析:(1)根据等腰三角形两底角相等求出∠C,再根据直角三角形两锐角互余求出∠CEG,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CEF,然后计算即可得解;(2)过点E作EH∥AB交BC于H,根据两直线平行,同位角相等可得∠ABC=∠EHC,内错角相等可得∠D=∠FEH,然后求出∠EHC=∠C,再根据等角对等边可得EC=EH,然后求出BD=EH,再利用“角角边”证明△BDF和△HEF全等,根据全等三角形对应边相等可得BF=FH,根据等腰三角形三线合一的性质可得CG=HG,即可得证.解答:(1)解:∵∠A=50°,∴∠C=(180°﹣∠A)=(180°﹣50°)=65°,∵EG⊥BC,∴∠CEG=90°﹣∠C=90°﹣65°=25°,∵∠A=50°,∠D=30°,∴∠CEF=∠A+∠D=50°+30°=80°,∴∠GEF=∠CEF﹣∠CEG=80°﹣25°=55°;(2)证明:过点E作EH∥AB交BC于H,则∠ABC=∠EHC,∠D=∠FEH,∵AB=AC,∴∠ABC=∠C,∴∠EHC=∠C,∴EC=EH,∵BD=CE,∴BD=EH,在△BDF和△HEF中,,∴△BDF≌△HEF(AAS),∴BF=FH,又∵EC=EH,EG⊥BC,∴CG=HG,∴FG=FH+HG=BF+CG.点评:本题考查了等腰三角形的性质,全等三角形的判定与性质,主要利用了等腰三角形两底角相等的性质,等角对等边的性质,(2)作辅助线构造出全等三角形是解题的关键.9.如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a﹣t)2+|b﹣t|=0(t>0).(1)证明:OB=OC;(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE 的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变;(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN交x轴于点T,过T作TQ⊥MN交y轴于点Q,求点Q的坐标.考点:全等三角形的判定与性质;非负数的性质:绝对值;非负数的性质:偶次方;坐标与图形性质;等腰直角三角形.4387773分析:(1)根据a=t,b=t,推出a=b即可;(2)延长AF至T,使TF=AF,连接TC,TO,证△TCF≌△AEF,推出CT=AE,∠TCF=∠AEF,再证△TCO≌△ABO,推出TO=AO,∠TOC=∠AOB,求出△TAO为等腰直角三角形即可;(3)连接MQ,NQ,BQ,B′Q,过M作MH∥CN交x轴于H,证△NTB′≌△MTH,推出TN=MT,证△NQB′≌△MQB,推出∠NB′Q=∠CBQ,求出△BQB′是等腰直角三角形即可.解答:(1)解:∵a,b满足(a﹣t)2+|b﹣t|=0(t>0).∴a﹣t=0,b﹣t=0,∴a=t,b=t,∴a=b,∵B(t,0),点C(0,t)∴OB=OC;(2)证明:延长AF至T,使TF=AF,连接TC,TO,∵F为CE中点,∴CF=EF,在△TCF和△AEF中∴△TCF≌△AEF(SAS),∴CT=AE,∠TCF=∠AEF,∴TC∥AD,∴∠TCD=∠CDA,∵AB=AE,∴TC=AB,∵AD⊥AB,OB⊥OC,∴∠COB=∠BAD=90°,∴∠ABO+∠ADO=180°,∵∠ADO+∠ADC=180°,∴∠ADC=∠ABC,∵∠TCD=∠CDA,∴∠TCD=∠ABO,在△TCO和△ABO中∴△TCO≌△ABO(SAS),∴TO=AO,∠TOC=∠AOB,∵∠AOB+∠AOC=90°,∴∠TOC+∠AOC=90°,∴△TAO为等腰直角三角形,∴∠OAF=45°;(3)解:连接MQ,NQ,BQ,B′Q,过M作MH∥CN交x轴于H,∵B和B′关于关于y轴对称,C在y轴上,∴CB=CB′,∴∠CBB′=∠CB′B,∵MH∥CN,∴∠MHB=∠CB′B,∴∠MHB=∠CBB′,∴MH=BM,∵BM=B′N,∴MH=B′N,∵MH∥CN,∴∠NB′T=∠MHT,在△NTB′和△MTH中∴△NTB′≌△MTH,∴TN=MT,又TQ⊥MN,∴MQ=NQ,∵CQ垂直平分BB′,∴BQ=B′Q,∵在∴△NQB′和△MQB中∴△NQB′≌△MQB (SSS),∴∠NB′Q=∠CBQ,而∠NB′Q+∠CB′Q=180°∴∠CBQ+∠CB′Q=180°∴∠B′CB+∠B′QB=180°,又∠B′CB=90°,∴∠B′QB=90°∴△BQB′是等腰直角三角形,∴OQ=OB=t,∴Q(0,﹣t).点评:本题考查了全等三角形的性质和判定,坐标与图形性质,等腰三角形的性质,等腰直角三角形的性质和判定,相等垂直平分线,偶次方,绝对值等知识点的综合运用.10.如图1,在平面直角坐标系中,点A(4,4),点B、C分别在x轴、y轴的正半轴上,S四边形=16.OBAC(1)∠COA的值为45°;(2)求∠CAB的度数;(3)如图2,点M、N分别是x轴正半轴及射线OA上一点,且OH⊥MN的延长线于H,满足∠HON=∠NMO,请探究两条线段MN、OH之间的数量关系,并给出证明.考点:全等三角形的判定与性质;坐标与图形性质.4387773分析:(1)过A作AN⊥OC于N,AM⊥OB于M,得出正方形NOMA,根据正方形性质求出∠COA=∠COB,代入求出即可;(2)求出CN=BM,证△ANC≌△AMB,推出∠NAC=∠MAB,求出∠CAB=∠NAM,即可求出答案;(3)求出∠HON=∠NMO=22.5°,延长OH至点P使PH=OH,连接MP交OA于L,求出∠HON=∠NMO=∠LMN,求出OL=ML,证△OLP≌△MLN,推出MN=OP,即可得出答案.解答:解:(1)过A作AN⊥OC于N,AM⊥OB于M,则∠ANO=∠AMO=∠COB=90°,∵A(4,4),∴AN=AM=4,∴四边形NOMA是正方形,∴∠COA=∠COB=×90°=45°.故答案为:45°;(2)∵四边形NOMA是正方形,∴AM=AN=4,OM=ON=4,∴OC×AN+OB×AM=16,∴OC+OB=8=ON+OM,即ON﹣OC=OB﹣OM,∴CN=BM,在△ANC和△AMB中,,∴△ANC≌△AMB(SAS),∴∠NAC=∠MAB,∴∠CAB=∠CAM+∠MAB=∠NAM=360°﹣90°﹣90°﹣90°=90°,即∠CAB=90°;(3)MN=2OH,证明:在Rt△OMH中,∠HON+∠NMO+∠NOM=90°,又∵∠NOM=45°,∠HON=∠NMO,∴∠HON=∠NMO=22.5°,延长OH至点P使PH=OH,连接MP交OA于L,∴OM=MP,∠OMP=2∠OMN=45°,∴∠HON=∠NMO=∠LMN,∴∠OLM=90°=∠PLO,∴OL=ML,在△OLP和△MLN中,∴△OLP≌△MLN(ASA),∴MN=OP,∵OP=2HO,∴MN=2HO.点评:本题考查了坐标与图形性质,等腰三角形的性质和判定,正方形的性质和判定,全等三角形的性质和判定等知识点的应用,题目综合性比较强,有一定的难度.11.如图,已知A(a,b),AB⊥y轴于B,且满足+(b﹣2)2=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1试判定线段AC和DC的数量关系和位置关系.(3)如图2过A作AE⊥x轴于E,F,G分别为线段OE,AE上的两个动点,满足∠FBG=45°,试探究的值是否发生变化?如果不变,请说明理由并求其值;如果变化,请说明理由.考点:全等三角形的判定与性质;非负数的性质:偶次方;非负数的性质:算术平方根;坐标与图形性质;等边三角形的性质.4387773专题:探究型.分析:(1)根据二次根式以及偶次方都是非负数,两个非负数的和是0,则每个数一定同时等于0,即可求解;(2)连接OC,只要证明OC是∠AOD的角平分线即可判断AC=CD,求出∠ACD的度数即可判断位置关系;(3)延长GA至点M,使AM=OF,连接BM,由全等三角形的判定定理得出△BAM≌△BOF,△FBG≌△MBG,故可得出FG=GM=AG+OF,由此即可得出结论.解答:解:(1)根据题意得:a﹣2=0且b﹣2=0,解得:a=2,b=2,则A的坐标是(2,2);(2)AC=CD,且AC⊥CD.如图1,连接OC,CD,∵A的坐标是(2,2),∴AB=OB=2,∵△ABC是等边三角形,∴∠OBC=30°,OB=BC,∴∠BOC=∠BCO=75°,∵在直角△ABO中,∠BOA=45°,∴∠AOC=∠BOC﹣∠BOA=75°﹣45°=30°,∵△OAD是等边三角形,∴∠DOC=∠AOC=30°,即OC是∠AOD的角平分线,∴OC⊥AD,且OC平分AD,∴AC=DC,∴∠ACO=∠DCO=60°+75°=135°,∴∠ACD=360°﹣135°﹣135°=90°,∴AC⊥CD,故AC=CD,且AC⊥CD.(3)不变.延长GA至点M,使AM=OF,连接BM,∵在△BAM与△BOF中,,∴△BAM≌△BOF(SAS),∴∠ABM=∠OBF,BF=BM,∵∠OBF+∠ABG=90°﹣∠FBG=45°,∴∠MBG=45°,∵在△FBG与△MBG中,,∴△FBG≌△MBG(SAS),∴FG=GM=AG+OF,∴=1.点评:本题考查的是全等三角形的判定与性质,涉及到非负数的性质及等边三角形的性质等知识,难度适中.12.(2013•日照)问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为2.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.考点:轴对称-最短路线问题.4387773分析:(1)找点A或点B关于CD的对称点,再连接其中一点的对称点和另一点,和MN的交点P 就是所求作的位置.根据题意先求出∠C′AE,再根据勾股定理求出AE,即可得出PA+PB的最小值;(2)首先在斜边AC上截取AB′=AB,连结BB′,再过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,则线段B′F的长即为所求.解答:解:(1)作点B关于CD的对称点E,连接AE交CD于点P此时PA+PB最小,且等于AE.作直径AC′,连接C′E.根据垂径定理得弧BD=弧DE.∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°,∴∠AOE=90°,∴∠C′AE=45°,又AC′为圆的直径,∴∠AEC′=90°,∴∠C′=∠C′AE=45°,∴C′E=AE=AC′=2,即AP+BP的最小值是2.故答案为:2;(2)如图,在斜边AC上截取AB′=AB,连结BB′.∵AD平分∠BAC,∴点B与点B′关于直线AD对称.过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,则线段B′F的长即为所求.(点到直线的距离最短)在Rt△AFB′中,∵∠BAC=45°,AB′=AB=10,∴B′F=AB′•sin45°=AB•sin45°=10×=5,∴BE+EF的最小值为.点评:此题主要考查了利用轴对称求最短路径问题以及锐角三角函数关系等知识,根据已知得出对应点P位置是解题关键.13.(2013•六盘水)(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE 的最小值为.(2)实践运用如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为.(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN的值最小,保留作图痕迹,不写作法.考点:圆的综合题;轴对称-最短路线问题.4387773专题:压轴题.分析:(1)观察发现:利用作法得到CE的长为BP+PE的最小值;由AB=2,点E是AB的中点,根据等边三角形的性质得到CE⊥AB,∠BCE=∠BCA=30°,BE=1,再根据含30度的直角三角形三边的关系得CE=;(2)实践运用:过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,根据垂径定理得到CD平分BE,即点E与点B关于CD对称,则AE的长就是BP+AP的最小值;由于的度数为60°,点B是的中点得到∠BOC=30°,∠AOC=60°,所以∠AOE=60°+30°=90°,于是可判断△OAE为等腰直角三角形,则AE=OA=;(3)拓展延伸:分别作出点P关于AB和BC的对称点E和F,然后连结EF,EF交AB于M、交BC于N.解答:解:(1)观察发现如图(2),CE的长为BP+PE的最小值,∵在等边三角形ABC中,AB=2,点E是AB的中点∴CE⊥AB,∠BCE=∠BCA=30°,BE=1,∴CE=BE=;故答案为;(2)实践运用如图(3),过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,∵BE⊥CD,∴CD平分BE,即点E与点B关于CD对称,∵的度数为60°,点B是的中点,∴∠BOC=30°,∠AOC=60°,∴∠EOC=30°,∴∠AOE=60°+30°=90°,∵OA=OE=1,∴AE=OA=,∵AE的长就是BP+AP的最小值.故答案为;(3)拓展延伸如图(4).点评:本题考查了圆的综合题:弧、弦和圆心角之间的关系以及圆周角定理在有关圆的几何证明中经常用到,同时熟练掌握等边三角形的性质以及轴对称﹣最短路径问题.14.(2013•抚顺)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是DE=BC;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.考点:全等三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形.4387773分析:(1)由∠ACB=90°,∠A=30°得到∠B=60°,根据直角三角形斜边上中线性质得到DB=DC,则可判断△DCB为等边三角形,由于DE⊥BC,DE=BC;(2)根据旋转的性质得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,则可根据“SAS”可判断△DCP≌△DBF,则CP=BF,利用CP=BC﹣BP,DE=BC可得到BF+BP=DE;(3)与(2)的证明方法一样得到△DCP≌△DBF得到CP=BF,而CP=BC+BP,则BF﹣BP=BC,所以BF﹣BP=DE.解答:解:(1)∵∠ACB=90°,∠A=30°,∴∠B=60°,∵点D是AB的中点,∴DB=DC,∴△DCB为等边三角形,∵DE⊥BC,∴DE=BC;故答案为DE=BC.(2)BF+BP=DE.理由如下:∵线段DP绕点D逆时针旋转60°,得到线段DF,∴∠PDF=60°,DP=DF,而∠CDB=60°,∴∠CDB﹣∠PDB=∠PDF﹣∠PDB,∴∠CDP=∠BDF,在△DCP和△DBF中,∴△DCP≌△DBF(SAS),∴CP=BF,而CP=BC﹣BP,∴BF+BP=BC,∵DE=BC,∴BC=DE,∴BF+BP=DE;(3)如图,与(2)一样可证明△DCP≌△DBF,∴CP=BF,而CP=BC+BP,∴BF﹣BP=BC,∴BF﹣BP=DE.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质以及含30度的直角三角形三边的关系.15.(2013•东营)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.考点:全等三角形的判定与性质;等边三角形的判定.4387773专题:压轴题.分析:(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)与(1)的证明方法一样;(3)与前面的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,根据等边三角形的性质得∠ABF=∠CAF=60°,则∠DBA+∠ABF=∠CAE+∠CAF,则∠DBF=∠FAE,利用“SAS”可判断△DBF≌△EAF,所以DF=EF,∠BFD=∠AFE,于是∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,根据等边三角形的判定方法可得到△DEF为等边三角形.解答:证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.。
8年级数学上册第11章三角形测试题及答案人教版
8年级数学上册第11章三角形测试题一、填空题1.在△ABC中,∠A=40°,∠B=∠C,则∠C=°.2.小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是:,,(单位:cm).3.如果等腰三角形的一个底角是40°,它的顶角是.4.三角形的一边为5cm,一边为7cm,则第三边的取值范围是.5.△ABC中,若∠A=35°,∠B=65°,则∠C=;若∠A=120°,∠B=2∠C,则∠C=.6.三角形三个内角中,最多有个直角,最多有个钝角,最多有个锐角,至少有个锐角.7.三角形按角的不同分类,可分为三角形,三角形和三角形.8.一个三角形三个内角度数的比是2:3:4,那么这个三角形是三角形.9.在△ABC中,∠A﹣∠B=36°,∠C=2∠B,则∠A=,∠B=,∠C=.10.若△ABC中,∠A+∠B=∠C,则此三角形是三角形.11.已知等腰三角形的两个内角的度数之比为1:2,则这个等腰三角形的顶角为.12.已知△ABC为等腰三角形,①当它的两个边长分别为8cm和3cm时,它的周长为;②如果它的一边长为4cm,一边的长为6cm,则周长为.二、判断题.13.有一个角是钝角的三角形就是钝角三角形. (判断对错)14.一个等腰三角形的顶角是80°,它的两个底角都是60°.(判断对错)15.两个内角和是90°的三角形是直角三角形. (判断对错)16.一个三角形最多只能有一个钝角或一个直角. (判断对错)17.在锐角三角形中,任意的两个锐角之和一定要大于90°.(判断对错)18.一个三角形,已知两个内角分别是85°和25°,这个三角形一定是钝角三角形. (判断对错)三、选择题19.如果三角形的三个内角的度数比是2:3:4,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形20.下列说法正确的是( )A.三角形的内角中最多有一个锐角B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角D.三角形的内角都大于60°21.已知△ABC中,∠A=2(∠B+∠C),则∠A的度数为( )A.100°B.120°C.140°D.160°22.已知三角形两个内角的差等于第三个内角,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形23.等腰三角形的底边BC=8cm,且|AC﹣BC|=2cm,则腰长AC的长为( )A.10cm或6cmB.10cmC.6cmD.8cm或6cm24.在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是( )A.4cmB.5cmC.9cmD.13cm25.已知△ABC的三个内角∠A,∠B,∠C满足关系式∠B+∠C=3∠A,则此三角形( )A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形26.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B= ∠C中,能确定△ABC是直角三角形的条件有( )A.1个B.2个C.3个D.4个27.已知三角形的三边分别为2,a,4,那么a的取值范围是( )A.128.在△ABC中,∠A= ∠B= ∠C,则此三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形四、解答题29.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE②AE=CD③∠BAC=∠BCA④∠ADB=∠CEB请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;你选出的条件是.证明:30.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明.31.如图所示,AB=AD,AC=AE,∠1=∠2,求证:△ABC≌△ADE.32.如图,BF⊥AC,CE⊥AB,BE=CF,BF、CE交于点D,求证:AD平分∠BAC.33.如图,已知∠A=∠B,CE∥DA,CE交AB于点E.求证:CE=CB.34.如图,∠BDA=∠CEA,AE=AD.求证:AB=AC.8年级数学上册第11章三角形测试题人教版参考答案一、填空题1.在△ABC中,∠A=40°,∠B=∠C,则∠C=70 °.【考点】三角形内角和定理.【分析】由三角形的内角和定理直接列式计算,即可解决问题.【解答】解:∵∠A+∠B+∠C=180°,且∠A=40°,∠B=∠C,∴∠C=(180°﹣40°)÷2=70°,故答案为70.【点评】该题主要考查了三角形的内角和定理及其应用问题;灵活运用是解题的关键.2.小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是: 6 ,11 ,16 (单位:cm).【考点】三角形三边关系.【分析】首先得到每三根组合的情况,再根据三角形的三边关系进行判断.【解答】解:每三根组合,有5,6,11;5,6,16;11,16,5;11,6,16四种情况.根据三角形的三边关系,得其中只有11,6,16能组成三角形.【点评】此题要特别注意看是否符合三角形的三边关系.3.如果等腰三角形的一个底角是40°,它的顶角是100°.【考点】等腰三角形的性质.【分析】等腰三角形的两个底角相等,根据三角形的内角和即可解决问题.【解答】解:180°﹣40°×2=100°,答:顶角是100°.故答案为:100°【点评】此题考查了等腰三角形的性质和三角形内角和的应用,解答此题的关键:根据三角形的内角和、等腰三角形的两底角和顶角三个量之间的关系进行解答即可.4.三角形的一边为5cm,一边为7cm,则第三边的取值范围是2cm【考点】三角形三边关系.【分析】设第三边长为xcm,再由三角形三边关系即可得出结论.【解答】解:设第三边长为xcm,∵三角形的一边为5cm,一边为7cm,∴7﹣5故答案为:2cm【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.5.△ABC中,若∠A=35°,∠B=65°,则∠C=80°;若∠A=120°,∠B=2∠C,则∠C=20°.【考点】三角形内角和定理.【分析】根据三角形内角和定理,求得∠C的度数和∠B+∠C=60°,进而得出∠C的度数.【解答】解:∵△ABC中,∠A=35°,∠B=65°,∴∠C=180°﹣35°﹣65°=80°;∵∠A=120°,∴∠B+∠C=60°,又∵∠B=2∠C,∴∠C=20°.故答案为:80°,20°.【点评】本题主要考查了三角形内角和定理的运用,解题时注意:三角形内角和是180°.6.三角形三个内角中,最多有 1 个直角,最多有 1 个钝角,最多有3 个锐角,至少有 2 个锐角.【考点】三角形内角和定理.【分析】依据三角形的内角和是180度,假设一个三角形中可以有多于1个的钝角或直角,则会得出违背三角形内角和是180度的结论,假设不成立,从而可以得出一个三角形中最多有1个钝角或直角,如果一个三角形中只有1个锐角,也就是出现2个或3个直角,再加上第三个角,那么三角形的内角和就大于180°,也不符合三角形内角和是180°.【解答】解:因为三角形的内角和等于180°,所以在三角形内角中,最多有1个直角;最多有1个钝角,最多有3个锐角,至少有2个锐角.故答案为:1,1,3,2【点评】本题主要考查了三角形内角和定理,属于基础题,关键是掌握三角形内角和为180度.7.三角形按角的不同分类,可分为锐角三角形,直角三角形和钝角三角形.【考点】三角形.【分析】根据三角形的分类方法进行填空即可.【解答】解:三角形按角的不同分类,可分为锐角三角形,直角三角形和钝角三角形.故答案为:锐角;直角;钝角.【点评】此题主要考查了三角形,关键是掌握三角形分类一种是按边分类,一种是按角分类.8.一个三角形三个内角度数的比是2:3:4,那么这个三角形是锐角三角形.【考点】三角形内角和定理.【专题】计算题.【分析】已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.【解答】解:设一份为k°,则三个内角的度数分别为2k°,3k°,4k°.则2k°+3k°+4k°=180°,解得k°=20°,∴2k°=40°,3k°=60°,4k°=80°,所以这个三角形是锐角三角形.故答案是:锐角.【点评】本题主要考查了内角和定理.解答此类题利用三角形内角和定理列方程求解可简化计算.9.在△ABC中,∠A﹣∠B=36°,∠C=2∠B,则∠A=72°,∠B= 36°,∠C=72°.【考点】三角形内角和定理.【分析】根据三角形的内角和定理可得出∠A+∠B+∠C=180°,再与∠A﹣∠B=36°,∠C=2∠B,联立列出方程组,即可求得答案.【解答】解:由题意得,解得,故答案为72°,36°,72°.【点评】本题考查了三角形的内角和定理,解题的关键是利用三角形内角和定理和已知条件列方程组求解计算.10.若△ABC中,∠A+∠B=∠C,则此三角形是直角三角形.【考点】三角形内角和定理.【分析】由三角形内角和定理和直角三角形的判定可知.【解答】解:∠A+∠B+∠C=2∠C=180°,∴∠C=90°,∴此三角形是直角三角形.【点评】本题考查了三角形内角和定理.三角形的内角和是180°.11.已知等腰三角形的两个内角的度数之比为1:2,则这个等腰三角形的顶角为36°或90°.【考点】等腰三角形的性质;三角形内角和定理.【分析】先可求出两角,然后分两种情况:顶角与底角的度数比是1:2或底角与顶角的度数比是1:2.根据三角形的内角和定理就可求解.【解答】解:当顶角与底角的度数比是1:2时,则等腰三角形的顶角是180°× =36°;当底角与顶角的度数比是1:2时,则等腰三角形的顶角是180°×=90°.即该等腰三角形的顶角为36°或90°.故填36°或90°.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.12.已知△ABC为等腰三角形,①当它的两个边长分别为8cm和3cm时,它的周长为19cm ;②如果它的一边长为4cm,一边的长为6cm,则周长为14cm 或16cm .【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:①当腰长为8cm时,三边是8cm,8cm,3cm,符合三角形的三边关系,此时周长是19cm;当腰长为3cm时,三角形的三边是8cm,3cm,3cm,因为3+3<8,应舍去.②当腰长为4cm时,三角形的三边是4cm,4cm,6cm,符合三角形的三边关系,此时周长是14cm;当腰长为6cm时,三角形的三边是6cm,6cm,4cm,符合三角形的三边关系,此时周长是16cm.故答案为:19cm,14cm或16cm.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.二、判断题.13.有一个角是钝角的三角形就是钝角三角形. √(判断对错)【考点】三角形.【分析】根据三角形的分类:有一个角是钝角的三角形,叫钝角三角形;进行解答即可.【解答】解:根据钝角三角形的定义可知:有一个角是钝角的三角形是钝角三角形;所以“有一个角是钝角的三角形是钝角三角形”的说法是正确的.故答案为:√.【点评】此题考查了根据角对三角形分类的方法:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.14.一个等腰三角形的顶角是80°,它的两个底角都是60°.×(判断对错)【考点】等腰三角形的性质.【分析】三角形的内角和是180°,等腰三角形的两个底角相等,先用“180°﹣80°”求出两个底角的度数和,然后除以2进行解答即可.【解答】解:(180°﹣80°)÷2,=100°÷2,=50°;它的一个底角度数是50°;故错,故答案为:×【点评】此题考查等腰三角形的性质,解答此题的关键:根据三角形的内角和、等腰三角形的两底角和顶角三个量之间的关系进行解答即可.15.两个内角和是90°的三角形是直角三角形. 对(判断对错)【考点】三角形.【分析】根据三角形内角和为180°可得两个内角和是90°的三角形,第三个角是90°,是直角三角形.【解答】解:两个内角和是90°的三角形是直角三角形,说法正确;故答案为:对.【点评】此题主要考查了三角形,关键是掌握三角形内角和为180°.16.一个三角形最多只能有一个钝角或一个直角. 正确(判断对错)【考点】三角形.【分析】这个结论正确,可以利用反证法证明.【解答】解:一个三角形最多只能有一个钝角或一个直角.理由:假如一个三角形有两个钝角或两个直角,那么这个三角形的内角和大于180°,这与三角形内角和为180°矛盾,所以假设不成立,所以一个三角形最多只能有一个钝角或一个直角.故答案为正确.【点评】本题考查三角形,三角形的内角和、反证法等知识,解题的关键是灵活运用三角形内角和定理,属于中考常考题型.17.在锐角三角形中,任意的两个锐角之和一定要大于90°.正确(判断对错)【考点】三角形.【分析】这个结论是正确的,可以用反证法证明.【解答】解:这个结论是正确的.假如两个锐角之和小于等于90,那么第三个角是90°或钝角,这个三角形是钝角三角形,与已知条件矛盾,所以假设不成立,故在锐角三角形中,任意的两个锐角之和一定要大于90°.【点评】本题考查三角形内角和定理,反证法等知识,解题的关键是学会利用反证法证明,属于中考常考题型.18.一个三角形,已知两个内角分别是85°和25°,这个三角形一定是钝角三角形. 错(判断对错)【考点】三角形内角和定理.【分析】根据三角形内角和定理,求得第三个内角,进而判定三角形的形状.【解答】解:∵一个三角形的两个内角分别是85°和25°,∴第三个内角为70°,∴这个三角形一定是锐角三角形.故答案为:错【点评】本题主要考查了三角形内角和定理的运用,解决问题的关键是掌握:三角形内角和是180°.三、选择题19.如果三角形的三个内角的度数比是2:3:4,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形【考点】三角形内角和定理.【分析】利用“设k法”求出最大角的度数,然后作出判断即可.【解答】解:设三个内角分别为2k、3k、4k,则2k+3k+4k=180°,解得k=20°,所以,最大的角为4×20°=80°,所以,三角形是锐角三角形.故选A.【点评】本题考查了三角形的内角和定理,利用“设k法”表示出三个内角求解更加简便.20.下列说法正确的是( )A.三角形的内角中最多有一个锐角B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角D.三角形的内角都大于60°【考点】三角形内角和定理.【专题】探究型.【分析】根据三角形内角和定理对各选项进行逐一分析即可.【解答】解:A、直角三角形中有两个锐角,故本选项错误;B、等边三角形的三个角都是锐角,故本选项错误;C、三角形的内角中最多有一个直角,故本选项正确;D、若三角形的内角都大于60°,则三个内角的和大于180°,这样的三角形不存在,故本选项错误.故选C.【点评】本题考查的是三角形内角和定理,即三角形内角和是180°.21.已知△ABC中,∠A=2(∠B+∠C),则∠A的度数为( )A.100°B.120°C.140°D.160°【考点】三角形内角和定理.【分析】根据三角形的内角和定理和已知条件即可得到∠A的方程,从而求解.【解答】解:∵∠A=2(∠B+∠C),∠A+∠B+∠C=180°,∴∠A+ ∠A=180°,∠A=120°.故选B.【点评】此题考查了三角形的内角和定理.22.已知三角形两个内角的差等于第三个内角,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形【考点】三角形内角和定理.【分析】设三角形三个内角分别为∠A、∠B、∠C,且∠A﹣∠B=∠C,则∠B+∠C=∠A,根据三角形内角和定理得到∠A+∠B+∠C=180°,于是可计算出∠A=90°,由此可判断三角形为直角三角形.【解答】解:设三角形三个内角分别为∠A、∠B、∠C,且∠A﹣∠B=∠C,则∠B+∠C=∠A,∵∠A+∠B+∠C=180°,∴∠A+∠A=180°,∴∠A=90°,∴这个三角形为直角三角形.故选C.【点评】本题考查了三角形内角和定理:三角形内角和是180°.利用三角形内角和可直接根据两已知角求第三个角或依据三角形中角的关系,用代数方法求三个角,也可在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.23.等腰三角形的底边BC=8cm,且|AC﹣BC|=2cm,则腰长AC的长为( )A.10cm或6cmB.10cmC.6cmD.8cm或6cm【考点】等腰三角形的性质;三角形三边关系.【分析】根据绝对值的性质求出AC的长即可.【解答】解:∵|AC﹣BC|=2cm,∴AC﹣BC=2cm或﹣AC+BC=2cm,∵BC=8cm,∴AC=(2+8)cm或AC=(8﹣2)cm,即10cm或6cm.故选A【点评】本题考查的是等腰三角形的性质,熟知“等腰三角形的两腰相等”是解答此题的关键.24.在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是( )A.4cmB.5cmC.9cmD.13cm【考点】三角形三边关系.【分析】易得第三边的取值范围,看选项中哪个在范围内即可.【解答】解:设第三边为c,则9+4>c>9﹣4,即13>c>5.只有9符合要求.故选C.【点评】已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.25.已知△ABC的三个内角∠A,∠B,∠C满足关系式∠B+∠C=3∠A,则此三角形( )A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形【考点】三角形内角和定理.【分析】由三角形内角和定理知.【解答】解:∵∠B+∠C+∠A=180°,∠B+∠C=3∠A,∴∠B+∠C+∠A=4∠A=180°,∴∠A=45°.故选A.【点评】本题利用了三角形内角和为180°求解.26.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B= ∠C中,能确定△ABC是直角三角形的条件有( )A.1个B.2个C.3个D.4个【考点】三角形内角和定理.【分析】根据三角形的内角和定理得出∠A+∠B+∠C=180°,再根据已知的条件逐个求出∠C的度数,即可得出答案.【解答】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,∴①正确;②∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C= ×180°=90°,∴△ABC是直角三角形,∴②正确;③∵∠A=90°﹣∠B,∴∠A+∠B=90°,∵∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,∴③正确;④∵∠A=∠B= ∠C,∴∠C=2∠A=2∠B,∵∠A+∠B+∠C=180°,∴∠A+∠A+2∠A=180°,∴∠A=45°,∴∠C=90°,∴△ABC是直角三角形,∴④正确;故选D.【点评】本题考查了三角形内角和定理的应用,能求出每种情况的∠C的度数是解此题的关键,题目比较好,难度适中.27.已知三角形的三边分别为2,a,4,那么a的取值范围是( )A.1【考点】三角形三边关系.【专题】应用题.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【解答】解:由于在三角形中任意两边之和大于第三边,∴a<2+4=6,任意两边之差小于第三边,∴a>4﹣2=2,∴2故选B.【点评】本题考查了构成三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边,难度适中.28.在△ABC中,∠A= ∠B= ∠C,则此三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【考点】三角形内角和定理.【分析】用∠A表示出∠B、∠C,然后利用三角形的内角和等于180°列方程求解即可.【解答】解:∵∠A= ∠B= ∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,∴∠A+2∠A+3∠A=180°,解得∠A=30°,所以,∠B=2×30°=60°,∠C=3×30°=90°,所以,此三角形是直角三角形.故选B.【点评】本题考查了三角形的内角和定理,熟记定理并用∠A列出方程是解题的关键.四、解答题29.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE②AE=CD③∠BAC=∠BCA④∠ADB=∠CEB请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;你选出的条件是②.证明:【考点】全等三角形的判定.【分析】要证明△ADB≌△CEB,两三角形中已知的条件有BD=BE,有一个公共角,那么根据三角形的判定公理和推论,我们可看出①不符合条件,没有SSA 的判定条件,因此不正确.②AE=CD,可得出AB=BC,这样就构成了SAS,因此可得出全等的结论.③构成了全等三角形判定中的AAS,因此可得出三角形全等的结论.④构成了全等三角形判定中的ASA,因此可得出三角形全等的结论.【解答】解:选择②,证明:∵AE=CD,BE=BD,∴AB=CB,又∵∠ABD=∠CBE,BE=BD∴△ADB≌△CEB(SAS).故答案为:②【点评】本题考查了全等三角形的判定公理及推论.注意SSA和AAA是不能得出三角形全等的结论的.30.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明.【考点】直角三角形全等的判定.【专题】证明题;开放型.【分析】本题考查三角形的全等知识.第(1)小题是根据对图形的直观判断和一定的推理可得结果,要求考虑问题要全面.第(2)个问题具有一定的开放性,选择证明不同的结论,判定方法会有不同,这里根据HL(斜边直角边定理)来判断两个直角三角形全等.【解答】解:(1)3对.分别是:△ABD≌△ACD;△ADE≌△ADF;△BDE≌△CDF.(2)△BDE≌△CDF.证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.又D是BC的中点,∴BD=CD.在Rt△BDE和Rt△CDF中,,∴△BDE≌△C DF(HL).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.做题时要结合已知条件与全等的判定方法逐一验证.31.如图所示,AB=AD,AC=AE,∠1=∠2,求证:△ABC≌△ADE.【考点】全等三角形的判定与性质.【分析】已知∠1=∠2,∠DAC是公共角,从而可推出∠DAE=∠BAC,已知AB=AD,AC=AE,从而可以利用SAS来判定△ABC≌△ADE.【解答】证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(SAS).【点评】此题主要考查全等三角形的判定方法,常用的判定方法有:SSS,SAS,AAS,HL等,做题时注意灵活运用.32.如图,BF⊥AC,CE⊥AB,BE=CF,BF、CE交于点D,求证:AD平分∠BAC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先由条件可以得出△BED≌△CFD就有DE=DF,就可以得出结论.【解答】证明:∵BF⊥AC,CE⊥AB,∴∠BED=∠CFD=90°.在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF.∵DF⊥AC,DE⊥AB,∴AD平分∠BAC.【点评】本题考查了全等三角形的判定及性质的运用,角平分线的判定及性质的运用,解答时证明三角形全等是关键.33.如图,已知∠A=∠B,CE∥DA,CE交AB于点E.求证:CE=CB.【考点】等腰三角形的判定与性质;平行线的性质.【专题】证明题.【分析】根据平行线的性质可以得到∠A=∠CEB,则∠CEB=∠B,根据等角对等边即可证得.【解答】证明:∵CE∥DA,∴∠A=∠CEB,∵∠A=∠B,∴∠CEB=∠B,∴CE=CB.【点评】本题考查了平行线的性质以及等腰三角形的判定定理,理解定理是关键.34.如图,∠BDA=∠CEA,AE=AD.求证:AB=AC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由已知条件加上公共角相等,利用ASA得到三角形ABD与三角形ACE全等,利用全等三角形对应边相等即可得证.【解答】证明:在△ABD和△ACE中,,∴△ABD≌△ACE(ASA),∴AB=AC.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.。
《全等三角形》测试题A卷及答案
第十四章全等三角形测试题、选择题(每小题4分,共32 分)1 .下列命题中真命题的个数有()⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,C、1个2.如图,已知△ ABC的六个元素,则下面甲、乙、丙三个三角形中和,厶=/ A',若证N ABC B" A'B'C'还要从下列条件中补选一个,错误的选法是(C. BC=B'C'D. AC=A C'4. P是/ AOB平分线上一点,CD丄OP于F,并分别交OA、OB于CD,贝U CD _____________ P点到/ AOB两边距离之和.()A.小于B.大于5.如图,从下列四个条件:①BC= B C,②AC= A 'C,③/ A 'CA=Z B CB,④AB= A B '中, 任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A. 1个B. 2个C. 3个D. 4个6.有以下条件:①一锐角与一边对应相等;②两边对应相等;③两锐角对应相等。
其中能判断两直角三角形全等的是()A.① B ② C ③ D ①②7 .如图,△ ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ ABC分A .甲和乙 E.乙和丙 C.只有乙 D.只有丙△ ABC全等的图形是(3 .在"ABC 和"A 'B'C'中,AB=A 'B'C.等于D.不能确定(5题)CF = 4,贝V S ABEF 为.三:解答题(共44 分)15、( 5分)已知:如图,AC 、BD 相交于点 O , Z A = Z D , AB=CD.求证:△ AOB ^A DOC ,。
为三个三角形,则 &ABO : S ^BCO : &CAO 等于( B . 1 : 2 : 3 C . 2 : 3 : 4 &如图所示,在 Rt △ ABC 中,AD 是斜边上的高,Z 交AD AC 于点F 、E, EG 丄BC 于 G 下列结论正确的是 A . Z C= / ABC B. BA=BG CC . AE=CE D. AF=FD 二、填空题(每小题4分,共24 分) 9 .如图,Rt △ ABC 中,直角边是 ,斜边是 10.如图,点D,E 分别在线段 AB, AC 上, BE, CD 相交于 /A点 O, AE AD , 要使△ ABE ACD ,需添加一个条件是(只要写一个(10 题) (11题)11.如图,把△ ABC 绕C 点顺时针旋转35。
全等三角形的基础和经典例题含有答案
第十一章:全等三角形一、基础知识1.全等图形的有关概念 (1)全等图形的定义能够完全重合的两个图形就是全等图形。
例如:图13-1和图13-2就是全等图形图13-1图13-2 (2)全等多边形的定义两个多边形是全等图形,则称为全等多边形。
例如:图13-3和图13-4中的两对多边形就是全等多边形。
图13-3 图13-4(3)全等多边形的对应顶点、对应角、对应边两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。
(4)全等多边形的表示例如:图13-5中的两个五边形是全等的,记作五边形ABCDE ≌五边形A ’B ’C ’D ’E ’(这里符号“≌”表示全等,读作“全等于”)。
图13-5表示图形的全等时,要把对应顶点写在对应的位置。
(5)全等多边形的性质全等多边形的对应边、对应角分别相等。
A B DC E B ’A ’ C ’ D ’ E ’(6)全等多边形的识别多边形相等、对应角相等的两个多边形全等。
2.全等三角形的识别(1)根据定义若两个三角形的边、角分别对应相等,则这两个三角形全等。
(2)根据SSS如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
相似三角形的识别法中有一个与(SSS)全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。
(3)根据SAS如果两个三角形有两边机器夹角分别对应相等,那么这两个三角形全等。
相似三角形的识别法中同样有一个是与(SAS)全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。
(4)根据ASA如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
(5)根据AAS如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。
3.直角三角形全等的识别(1)根据HL如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。
【苏科版】七年级数学下册第十一章 图形的全等 单元测试A卷(含答案)
七(下)数学下第11章图形的全等 A卷一.选择题(每题4分,共20分)1.全等图形是指两个图形( )A.大小相同B.形状相同C.能够重合D.相等2.如图,△ABC≌△ECD,∠A=48°,∠D=62°点B.C.D在同一直线上,则图中∠ACE的度数是( )A.38°B.48°C.132°D.62°3.下列各组的条件,能判定△ABC≌△A′B′C′的是( )A.AB=A′B′,AC=A′C′,∠C=∠C′ ;B.AB=A′B′,AC=A′C′,∠B=∠B′C.AB=A′B′,AC=A′C′,∠A=∠A′ ;D.∠A=∠A′,∠B=∠B′,∠C=∠C′4.如图,已知AB=AC,BD⊥AC于点D,CE⊥AB于点E,图中全等三角形的组数是( )A.5B.4C.3D.25.说法错误的是( )A.如果两个三角形中,有一角及这个角的平分线以及这个角所对边上的高对应相等,那么这两个三角形全等B.如果两个三角形中,有两条边和第三边上的高对应相等,那么这两个三角形全等C.如果两个三角形中,有一边及该边上的高和中线对应相等,那么这两个三角形全等D.如果两个三角形中,有两个角和其中一角的平分线对应相等,那么这两个三角形全等二.填空题(第6~10题,每题4分,第11题8分,共28分)6.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有______对全等三角形.7.如图,△ABC≌△ADE,则,AB=_________,∠E=∠________.若∠BAE=120°,∠BAD=40°,则∠BAC=_________°.8.如图,在△ABC中,AD平分∠BAC,D为BC边的中点,DE⊥AB于点E,DF⊥AC于点F,图中有_________对相等的线段,它们是_______________________.9.两根钢条AB′.BA′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5 cm,则槽宽为__________cm.10.如图,在△ABC和△ABD中,∠C=∠D=90,若利用“AAS”证明△ABC≌△ABD,则需要加条件________或________;若利用“HL”证明△ABC≌△ABD,则需要加条件___________或____________.11.如图,已知∠ACB=∠BDA=90°,要使△ABC≌△BAD还需要增加一个什么条件?把增加的条件在横线上,并将相应的根据填在后面的括号内.(1)_______________;(2)_________________;(3)_______________;(4)_________________.三.解答题(第12.13题,每题8分,第14~17题,每题9分,共52分)12.如图,∠A=∠D,∠C=∠F,要使△ABC≌DEF,还要增加什么条件?试说明你的理由.13.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3 cm,求∠DFE的度数和EC的长.14.如图,△ABC中,AB=AC,D是BC的中点,试说明AD⊥BC.15.如图,A.B两点是湖两岸上的两点,为测A.B两点距离,由于不能直接测量,请你设计一种方案,测出A.B两点的距离,并说明你的方案的可行性.(8分)16.已知:如图.AB=CD,AF=CE,BE=DF,试说明∠B=∠C.你认为本题还可以得到哪些结论,尽可能多地写出来.17.将一个正方形分割成4个全等的部分.你有几种分割的方法?在每一种方法中,每一个全等部分是怎样得到另一个全等部分的?请你至少提供三种不同的方案.参考答案—.1.C 2.B 3.C4.B5.B二.6.3 7.AD,∠C,80 8.5,AB=AC.AE=AF.BE=CF.BD=CD.DE=DF9.510.∠CAB=∠DAB,∠ABC=∠ABD.AC=AD,BC=BD11.AC=BD,BC=AD,SAS∠BAC=∠ABD,AC=BD,ASA;∠BAC=∠ABD,BC=AD,AAS;AC=BD,HL三.12.只要增加一对边相等即可,利用“AAS”或“ASA”证明两三角形全等.13.∠DFE=90°,CE=3 cm14.由已知得△ABD≌△ACD,则∠ADB=∠ADC,进而得AD⊥BC15.构造以AB为一边的三角形以及这个三角形的全等三角形,如过A作河岸的平行线AC,过B作AC的垂直线BD.AC.BD交于点O.在OC上取点C使OC=OA.过C作∠ACD=∠BAC.CD交BD于点D.由“ASA”得△OCD≌△OAB,则有AB=CD,只要测量出CD的长,即可. 16.由AF=CE,得AE=CF,则可证△ABE≌△CDF,即∠B=∠C还可以得到∠D=∠B,∠AEB=∠CFD17.分割成如图1.图2或图3均可(答案不唯一).其中图1.图2的全等部分可以看作是平移得到的;图l.图3的全等部分可以看作是旋转得到的.。
(完整)八年级上《全等三角形》单元检测卷(提高版)
O EA B D C八年级上《全等三角形》单元检测卷(提高)一、选择题1. 在下列条件中,能判断两个直角三角形全等的是 ( )A.一个锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条边对应相等 2.如图1,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店 去配一块完全一样的玻璃,那么最省事的办法是( ) A. 带①去 B. 带②去 C. 带③去 D. 带①和②去3.如图2,将两根钢条AA ′、BB ′的中点 O 连在一起,使AA ′、BB ′ 能绕着点 O 自由转动,就做成了一个测量工具,则A ′B ′的长等于内槽 宽 AB ,那么判定△OAB ≌△OA ′B ′的理由是 ( ) A .SAS B .ASA C .SSS D .HL4.如图3,OA =OB ,OC =OD ,∠O =50°,∠D =35°,则∠AEC 等于 ( ) A .60° B .50° C .45° D .30°5.如图4,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是 ( ) A. 线段CD 的中点 B. OA 与OB 的中垂线的交点 C. OA 与CD 的中垂线的交点 D. CD 与∠AOB 的平分线的交点6.已知,如图5,△ABC 中,AB=AC ,AD 是角平分线,BE=CF ,则下列说法正确的有几个( )(1)AD 平分∠EDF ;(2)△EBD ≌△FCD ;(3)BD=CD ;(4)AD ⊥BC .(A )1个 (B )2个 (C )3个 (D )4个7.已知:如图6,AD 是ABC △的角平分线,且AB :AC=3:2,则ABD △与ACD △的面积之比为( )A.3:2 B.6:4C.2:3 D.不能确定图2 _ B _ D_ O _ C _ A 图4 图1 图3图58.直线L1、L2、L3表示三条相互交叉的公路,现要建立一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有( )A 一处B 二处C 三处D 四处9.如图7,用直尺和圆规作一个角等于已知角的示意图如图所示,则说明A O B AOB '''∠=∠的依据是 .A 、SSSB 、SASC 、ASAD 、AAS 10.如图8,已知ABC △中,45ABC ∠=o,4AC =,H 是高AD 和BE 的交点,则线段BH 的长度为( )A .2B .4C .5D .不能确定二、填空题11. 如图9,若 △ABC ≌△DEF ,则∠E= °12.杜师傅在做完门框后,为防止门框变形常常需钉两根 斜拉的木条,这样做的数学原理是 13.如图10,如果△ABC ≌△DEF ,△DEF 周长是32cm ,DE=9cm, EF=13cm.∠E=∠B ,则AC=____ cm.14.如图11,AD ⊥BC ,D 为BC 的中点,则△ABD ≌_________.15.如图12,若AB =DE ,BE =CF ,要证△ABF ≌△DEC ,需补充条 件________或 。
【人教版】八年级上册数学:第11章三角形单元测试(含答案)
第十一章三角形单元测试一、单选题(共10题;共30分)1、如图,小正方形边长为1,连结小正方形的三个顶点,可得△ABC,则AC边上的高是()A、 B、C、D、2、等腰三角形的两边分别为5cm、4cm,则它的周长是()A、14cmB、13cmC、16cm或9cmD、13cm或14cm3、若一个多边形有14条对角线,则这个多边形的边数是()A、10B、7C、14D、64、在四边形的内角中,直角最多可以有()A、1个B、2个C、3个D、4个5、一个多边形的内角和是720°,则这个多边形的边数为()A、4B、5C、6D、76、下列图形中有稳定性的是()A、正方形B、直角三角形C、长方形D、平行四边形7、八边形的对角线共有()A、8条B、16条C、18条D、20条8、多边形的每个内角都等于150°,则从此多边形的一个顶点出发可作的对角线共有()A、8条B、9条C、10条D、11条9、若一个多边形的外角和与它的内角和相等,则这个多边形是()A、三角形B、五边形C、四边形D、六边形10、如图,在证明“△ABC内角和等于180°”时,延长BC至D,过点C作CE∥AB,得到∠ABC=∠ECD,∠BAC=∠ACE,由于∠BCD=180°,可得到∠ABC+∠ACB+∠BAC=180°,这个证明方法体现的数学思想是()A、数形结合B、特殊到一般C、一般到特殊D、转化二、填空题(共8题;共27分)11、一个等腰三角形的两边长分别为5厘米、9厘米,则这个三角形的周长为________.12、超重机的底座、输电线路的支架、自行车的斜支架等,都是采用三角形结构,这样做的数学道理是利用了________ .13、若一个多边形从一个顶点可以引8条对角线,则这个多边形的边数是________ ,这个多边形所有对角线的条数是________ .14、现要用两种不同的正多边形地砖铺地板,若已选用正三角形,则还可以选用正________ 边形与它搭配铺成无空隙且不重叠的地面(只需要写出一种即可)15、如果等腰三角形一个角是45°,那么另外两个角的度数为________16、已知一个多边形的内角和是1620°,则这个多边形是________边形.17、在格点图中,横排或竖排相邻两格点问的距离都为1,若格点多边形边界上有200个格点,面积为199,则这个格点多边形内有________个格点.18、一个多边形的每一个内角都是108°,你们这个多边形的边数是________.三、解答题(共5题;共32分)19、如图,已知,l1∥l2, C1在l1上,并且C1A⊥l2, A为垂足,C2, C3是l1上任意两点,点B在l2上.设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.20、如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.21、如图,在△ABC中,∠B=40°,∠C=62°,AD是△ABC的高,AE是△ABC的角平分线.求∠EAD的度数.22、如图,△ABC的中线AD、BE相交于点F.△ABF与四边形CEFD的面积有怎样的数量关系?为什么?23、如图,在7×8的方格纸中,已知图中每个小正方形的边长都为1,求图中阴影部分的面积.四、综合题(共1题;共11分)24、已知点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M,N分别是射线AE,AF上的点,且PM=PN.(1)如图1,当点M在线段AB上,点N在线段AC的延长线上时,求证:BM=CN;(2)在(1)的条件下,直接写出线段AM,AN与AC之间的数量关系________;(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,若AC:PC=2:1,且PC=4,求四边形ANPM的面积.答案解析一、单选题1、【答案】 C【考点】三角形的面积,勾股定理【解析】【分析】以AC、AB、BC为斜边的三个直角三角形的面积分别为1、1、,因此△ABC的面积为;用勾股定理计算AC的长为,因此AC边上的高为.【解答】∵三角形的面积等于小正方形的面积减去三个直角三角形的面积,即S△ABC=4-×1×2-×1×1-×1×2=∵=,∴AC边上的高==,故选C.【点评】此题首先根据大正方形的面积减去三个直角三角形的面积计算,再根据勾股定理求得AC的长,最后根据三角形的面积公式计算.2、【答案】 D【考点】三角形三边关系,等腰三角形的性质【解析】【分析】因为等腰三角形的两边分别为5cm和4cm,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论【解答】当4为底时,其它两边都为5,4、5、5可以构成三角形,周长为14cm;当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为13cm.故选D.3、【答案】 B【考点】多边形的对角线【解析】【分析】根据多边形的对角线与边的关系,n边形的对角线条数为:(n≥3,且n为整数)。
八年级数学上册第十一章全等三角形整章测试(A)
八年级数学(上)第11章 全等三角形 整章测试(A )(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(每题2分;共32分)1.能够____ 的两个图形叫做全等图形.2.判定两个三角形全等除用定义外;还有几种方法;它们分别可以简写成_______;_______;_______;_______;_________.3.已知;如图;AD =AC ;BD =BC ;O 为AB 上一点;那么;图中共有 对全等三角形.4.如图;△ABC ≌△ADE ;则;AB = ;∠E =∠ .若∠BAE =120°;∠BAD =40°;则∠BAC = .5.△ABC ≌△DEF ;且△ABC 的周长为12;若AB =3;EF =4;则AC = . 6.如图;AE =BF ;AD ∥BC ;AD =BC ;则有ΔADF ≌ ;且DF = . 7.如图;在ΔABC 与ΔDEF 中;如果AB =DE ;BE =CF ;只要加上∠ =∠ ; 或 ∥ ;就可证明ΔABC ≌ΔDEF .8.△ABC ≌△BAD ;A 和B ;C 和D 是对应顶点;如果AB =8cm ;BD =•6cm ;AD =5cm ;则BC =________cm .9.△ABC 中;∠C =90°;AD 平分∠BAC 交BC 于点D ;且CD =4cm ;则点D 到AB •BACBAED第3题图 第4题图的距离是________.10.如图;已知AC =BD ;21∠=∠;那么△ABC ≌ ; 其判定根据是__________.11.如图;ABC ∆中;BC AD ⊥于D ;要使△ABD ≌△ACD ;若根据“HL ”判定;还需加条件___ = ___.12.如图;已知AC =BD ;D A ∠=∠;请你添一个直接条件; = ;使△AFC ≌△DEB .13.如图;某同学把一块三角形的玻璃打碎成三片;现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配;这样做的数学依据是是 .14.把两根钢条AA ´、BB ´的中点连在一起;可以做成一个测量工件内槽宽的工具(卡钳); 如图;若测得AB =5厘米;则槽宽为 米.15.△ABC 中;∠B =60°;∠C =80°;O 是三条角平分线的交点;则∠OAC =______;∠BOC =________.16.将一张长方形纸片按如图所示的方式进行折叠;其中BC BD ,为折痕;则BCD ∠的度数为 .二、填空题(共68分)17.如下左图;AB 与CD 交于点O ;OA =OC ;OD =OB ;∠AOD =________;•根据A DEBFCBCADABCD12第10题图 第11题图 第12题图③①②BABA第10题图 第11题图 第12题图BCD__________可得到△AOD ≌△COB ;从而可以得到AD =_________.O DCBADCBA18.如上右图;已知△ABC 中;AB =AC ;AD 平分∠BAC ;请补充完整过程说明△ABD≌△ACD 的理由. ∵AD 平分∠BAC∴∠________=∠_________(角平分线的定义) 在△ABD 和△ACD 中∵⎪⎪⎩⎪⎪⎨⎧∴△ABD ≌△ACD ( )19.如图;A 、B 两建筑物位于河的两岸;要测得它们之间的距离;可以从B 点出发沿河岸画一条射线BF ;在BF 上截取BC =CD ;过D 作DE ∥AB ;使E 、C 、A 在同一直线上;则DE 的长就是A 、B 之间的距离;请你说明道理.20.已知:如图;点D 、E 在BC 上;且BD=CE ;AD=AE ;求证:AB=AC .ABC21.如图;在四边形ABCD 中;E 是AC 上的一点;∠1=∠2;∠3=∠4;求证: ∠5=∠6.22.已知:如图;A 、C 、F 、D 在同一直线上;AF =D C ;AB =DE ;BC =EF ;求证:△ABC ≌△DEF .23.已知AB ∥DE ;BC ∥EF ;D ;C 在AF 上;且AD =CF ;求证:△ABC ≌△DEF .654321E D CBABCD EF A24.已知:如图;AB =AC ;BD ⊥AC ;CE ⊥AB ;垂足分别为D 、E ;BD 、CE 相交于点F ;求证:BE =CD .25.如图;在△ABC 中;AD 为∠BAC 的平分线;DE ⊥AB 于E ;DF ⊥AC 于F ;△ABC面积是282cm ;AB =20cm ;AC =8cm ;求DE 的长.26.已知:BE ⊥CD ;BE =DE ;BC =DA ;求证:① △BEC ≌△DAE ; ②DF ⊥BC .AC B DEF27.已知:如图;△ABC 中;∠C =2∠B ;∠1=∠2;求证:AB =AC+CD .28.已知:∠AOB =90°;OM 是∠AOB 的平分线;将三角板的直角顶P 在射线OM 上滑动;两直角边分别与OA 、OB 交于C 、D .PC 和PD 有怎样的数量关系;证明你的结论.参考答案 一、填空题1.完全重合 2.SS 、SAS 、ASA 、AAS 、HL 3.3 4.AD ;C ;80度5.5 6.△BCE ;CE 7.B ;DEF ;AB ;DE 8.5 9.4cm 10.BAD ;SAS 11.AB=AC 12.AF=DEBABCD1 213.③;两个角及它们的夹边对应相等的两个三角形全等14.0.05 15.20度;110度16.90度二、解答题17.COB;SAS;CB 18.略19.略20.略21.略22.略23.略24.略25.2cm 26.略27.略28.PC=PD;理由略。
八年级上册数学第十一章 三角形 单元测试题 (6)200809(含答案解析)
第十一章 三角形 单元测试题 (6)一、单选题1.用正三角形和正六边形铺成一个平面,则在同一个顶点处,正三角形和正六边形的个数之比为( ) A .4:1B .1:1C .1:4D .4:1或1:12.在ABC 中,A 150.∠=第一步:在ABC 上方确定一点1A ,使1A BA ABC ∠∠=,1A CA ACB ∠∠=,如图1.第二步:在1A BC 上方确定一点2A ,使211A BA A BA ∠∠=,211A CA A CA ∠∠=,如图2.照此下去,至多能进行( )步.A .3B .4C .5D .63.如图,三角形纸片ABC ,AB=AC ,∠BAC=90°,点E 为AB 中点,沿过点E 的直线折叠,使点B 与点A 重合,折痕现交于点F ,已知EF=32,则BC 的长是( )A .322B .32C .3D .334.若一个多边形的内角和等于720°,则这个多边形的边数是( ) A .5B .6C .7D .85.如图,在△ABC 中,AC =DC =DB ,∠ACB =105°,则∠B 的大小为( )A .15°B .20°C .25°D .40° 6.下列图形中具有稳定性的是( )A .菱形B .钝角三角形C .长方形D .正方形7.如图,AD是∠CAE的平分线,∠B=30°, ∠DAE=60°,那么∠ACD等于()A.90°B.60°C.80°D.100°8.已知等腰三角形两边长分别为6cm、2cm,则这个三角形的周长是()A.14cm B.10cm C.14cm或10cm D.12cm9.下列说法错误的是()A.一个三角形中至少有两个角为锐角;B.三角形的三条中线的交点为三角形的重心;.C.三角形的三条高线相交于一点;D.直角三角形有三条高。
10.设三角形的三边之长分别为4, 8, 2a,则a的取值范围为( ).A.4<a<12 B.1 <a<3 C.2<a<3 D.2<a<611.在Rt△ABC中,∠C=90°,∠A﹣∠B=50°,则∠A的度数为()A.80°B.70°C.60°D.50°12.已知四条线段的长分别为13 cm,10 cm,7 cm,5 cm,从中任取三条线段为边组成三角形,则这样的三角形共有A.1个B.2个C.3个D.4个二、填空题13.阅读材料:连接多边形的对角线或在多边形边上(非顶点)取一点或在多边形内部取一点与多边形各顶点的连线,能将多边形分割成若干个小三角形,图1给出了四边形的具体分割方法,分别将四边形分割成了2个、3个、4个小三角形.(1)请你按照上述方法将图2中的六边形进行分割,并写出每种方法所得到的小三角形的个数为个、个,个(2)当多边形为n边形时,按照上述方法进行分割,写出每种分法所得到的小三角形的个数为个、个,个14.一个多边形截去一个角后,形成的另一个多边形后的内角和为720°,那么原多边形的边数为.15.若O是△ABC外一点,OB、OC分别平分△ABC的外角∠CBE、∠BCF,若∠A=50°,则∠BOC=_______度.16.如图,已知a//b ,且∠2是∠1的2倍,那么∠2的度数为__________°;17.如图,∠1+∠2+∠3+∠4=___________度18.一个正n 边形的一个外角等于72°,则n 的值等于_____.三、解答题19.已知ABC ∆中,A ABC CB =∠∠,D 为线段CB 上一点(不与,C B 重合),点E 为射线CA 上一点,ADE AED ∠=∠,设BAD ∠=α,CDE β∠=.(1)如图1,①若50BAC ∠=︒,40DAE ∠=︒,则α=__________,β=___________.②若58BAC ∠=︒,42DAE ∠=︒,则α=__________,β=___________. ③写出α与β的数量关系,并说明理由;(2)如图2,当E 点在CA 的延长线上时,其它条件不变,请直接写出α与β的数量关系.20.如图,在ABC ∆中点D 是BC 边上的一点, 50, 30B BAD ∠=︒∠=︒,将ABD ∆沿AD 折叠得到 ,AED AE 与BC 相交于点F .(1)求AFC ∠的度数; (2)求EDF ∠的度数.21.探索:在图1至图2中,已知ABC ∆的面积为a(1)如图1,延长ABC ∆的边BC 到点D ,使CD =BC ,连接DA ;延长边CA 到点E ,使CA =AE ,连接DE ;若DCE ∆的面积为1S ,则1S = (用含a 的代数式表示); (2)在图1的基础上延长AB 到点F ,使BF =AB ,连接FD ,FE ,得到DEF ∆(如图2).若阴影部分的面积为2S ,则2S = (用a 含的代数式表示);(3)发现:像上面那样,将ABC ∆各边均顺次延长一倍,连接所得端点,得到DEF ∆(如图2),此时,我们称ABC ∆向外扩展了一次.可以发现,扩展n 次后得到的三角形的面积是ABC ∆面积的 倍(用含n 的代数式表示);(4)应用:某市准备在市民广场一块足够大的空地上栽种牡丹花卉,工程人员进行了如下的图案设计:首先在ABC ∆的空地上种紫色牡丹,然后将ABC ∆向外扩展二次(如图3).在第一次扩展区域内种黄色牡丹,第二次扩展区域内种紫色牡丹,紫色牡丹花的种植成本为100元/平方米,黄色牡丹花的种植成本为95元/平方米.要使得种植费用不超过48700元,工程人员在设计时,三角形ABC 的面积至多为多少平方米?22.如图①,∠MON=70°,点A 、B 在∠MON 的两条边上运动,∠MAB 与∠NBA 的平分线交于点P .(1)点A 、B 在运动过程中,∠P 的大小会变吗?如果不会,求出∠P 的度数;如果会,请说明理由.(2)如图②,继续作BC 是平分ABO ∠,AP 的反向延长线交BC 的延长线于点D ,点A 、B 在运动过程中,∠D 的大小会变吗?如果不会,求出∠D 的度数;如果会,请说明理由. (3)如图②,∠P 和∠D 有怎样的数量关系?(直接写出答案)23.如图,在△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.(1)∠B=30°,∠C=70°,求∠EAD的大小;(2)若∠B<∠C,求证:2∠EAD=∠C-∠B.24.学习几何的一个重要方法就是要学会抓住基本图形,让我们来做一次研究性学习.(1)如图①所示的图形,像我们常见的学习用品一圆规,我们常把这样的图形叫做“规形图”.请你观察“规形图”,试探究∠BOC与∠A、∠B、∠C之间的关系,并说明理由:(2)如图②,若△ABC中,BO平分∠ABC,CO平分∠ACB,且它们相交于点O,试探究∠BOC与∠A的关系;(3)如图③,若△ABC中,∠ABO=13∠ABC,∠ACO=13∠ACB,且BO、CO相交于点O,请直接写出∠BOC与∠A的关系式为_.25.如图,已知AB∥CD,分别探讨下面三个图形中∠AEC与∠EAB,∠ECD之间的关系,请你从所得到的关系中任选一个加以证明.(1)在图1中,∠AEC与∠EAB,∠ECD之间的关系是:________________.(2)在图2中,∠AEC与∠EAB,∠ECD之间的关系是:________________.(3)在图3中,∠AEC与∠EAB,∠ECD之间的关系是:________________.(4)在图______中,求证:________________.(并写出完整的证明过程)26.如图,在△ABC中,AD,AF分别为△ABC的中线和高,BE为△ABD的角平分线.(1)若∠BED=40°,∠BAD=25°,求∠BAF的大小;(2)若△ABC的面积为40,BD=5,求AF的长.【答案与解析】一、单选题 1.D 解析:D根据正六边形的角度为120°,正三角形的内角为60°,根据平面密铺的条件列出方程,讨论可得出答案.∵正六边形的角度为120°,正三角形的内角为60°, ∴120x+60y=360°,当x=2时,y=2,即正三角形和正六边形的个数之比为1:1; 当x=1时,y=4,即正三角形和正六边形的个数之比为4:1. 故选D. 【点睛】此题考查平面镶嵌(密铺),解题关键在于根据正六边形的角度为120°,正三角形的内角为60°,进行解答2.B解析:B由三角形内角和定理可得出30ABC ACB ∠+∠=,由1A BA ABC ∠=∠、1ACA ACB ∠=∠结合三角形内角和定理可求出1120A ∠=,同理可求出290A ∠=、360A ∠=、⋯、()180301n A n ∠=-⋅+,令0n A ∠>,求出n 的最大值即可.解:150A ∠=,18030ABC ACB A ∴∠+∠=-∠= .1A BA ABC∠=∠,1ACA ACB ∠=∠, ()11260A BC ACB ABC ACB ∴∠+∠=∠+∠=,()111180120A A BC ACB ∴∠=-∠+∠=.同理可得:290A ∠=,360A ∠=,⋯,()180301n A n ∠=-⋅+,∴当0n A ∠>时,()1803010n -⋅+>, 解得5n <,∴至多能进行4步. 故选:B . 【点睛】本题考查了三角形内角和定理,根据三角形内角和定理找出()180301n A n ∠=-⋅+是解题的关键.3.B解析:B折叠的性质主要有:1.重叠部分全等;2.折痕是对称轴,对称点的连线被对称轴垂直平分. 由折叠的性质可知45B EAF ∠=∠=︒,所以可求出∠AFB=90°,再直角三角形的性质可知12EF AB =,所以AB AC =,的长可求,再利用勾股定理即可求出BC 的长. 解:E B A 沿过点的直线折叠,使点与点重合,B EAF 45∠∠∴==︒,AFB 90∠∴=︒,E AB AFB 90∠=︒点为中点,且,1EF AB 2∴=,3EF 2=,3AB 2EF 232∴==⨯=,ΔRtABC 在中,AB =AC ,AB 3,=BC ∴===,故选B. 【点睛】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出∠AFB=90°是解题的关键.4.B解析:B试题分析:根据内角和定理180°×(n-2)即可求得. 解:180°×(n-2)=720°,解得n=6. 考点:多边形的内角和定理.5.C解析:C根据边相等的角相等,用∠B表示出∠CDA,然后就可以表示出∠ACB,求解方程即可.解:设∠B=x∵AC=DC=DB∴∠CAD=∠CDA=2x∴∠ACB=180°-2x -x=105°解得x=25°.故选:C.【点睛】本题主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.(1)三角形的外角等于与它不相邻的两个内角和.(2)三角形的内角和是180°.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.6.B解析:B三角形不容易产生变形,因此三角形是最稳定的;四边形没有稳定性.解:根据三角形具有稳定性,可知四个选项中只有钝角三角形具有稳定性的.故选:B.【点睛】考核知识点:此题考查的是对三角形稳定性的知识的理解.理解稳定性的意义是关键.7.A解析:A解:根据AD平分∠CAE,且∠DAE=60°,可得∠CAE=120°,然后根据邻补角的意义可知∠CAB=60°,再根据三角形的外角等于不相邻的两内角的和,可直接求得∠ACD=90°.故选A.【点睛】此题主要考查了三角形的内角和和外角性质,解题关键是明确三角形的内外角的关系,然后可求解.三角形的内角和定理:三角形的内角和为180°;三角形的外角:三角形的一个外角大于不相邻两内角的和.8.A解析:A由等腰三角形的两边长分别为6cm和2cm,分别从若2cm为腰长,6cm为底边长与若2cm 为底边长,6cm为腰长去分析求解即可求得答案.若2cm为腰长,6cm为底边长,∵2+2=4<6,不能组成三角形,∴不合题意,舍去;若2cm为底边长,6cm为腰长,则此三角形的周长为:2+6+6=14cm.故选A.【点睛】此题考查了等腰三角形的性质与三角形的三边关系.此题比较简单,注意掌握分类讨论思想的应用.9.C解析:C根据三角形重心的定义、三角形的内角和定理、三角形的高定义进行逐项判断. 解:A 、三角形的内角和为180°,若一个三角形由2个钝角或2个直角,则内角和大于180°,与三角形内角和定理矛盾,所以一个三角形中至少有两个角为锐角,故A 选项正确;B 、三角形的三条中线的交点叫作三角形的重心,故B 选项正确;C 、三角形的三条高线或它们的延长线交于一点,故C 选项错误;D 、直角三角形有三条高,故D 选项正确. 故选:C 【点睛】本题考查三角形的相关概念及相关性质,掌握概念和性质是解答此题的关键.10.D解析:D根据三角形的三边关系可得关于a 的不等式组,解不等式组即得答案. 解:根据题意,得84284a -<<+,即4212a <<,解得:26a <<. 故选:D. 【点睛】本题考查了三角形的三边关系和一元一次不等式组的解法,属于基础题型,熟练掌握三角形的三边关系是关键.11.B解析:B根据直角三角形两锐角互余,构建方程组即可解决问题. 解:∵∠C=90°, ∴∠A+∠B=90°, ∵∠A-∠B=50°,∴9050A B A B ⎧∠+∠=⎨∠-∠=⎩,∴2∠A=140°, ∴∠A=70°, 故选:B . 【点睛】本题考查直角三角形的性质,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.12.C解析:C首先可以组合为13,10,5;13,10,7;13,5,7;10,5,7,再根据三角形的三边关系,发现其中的13,5,7不符合,则可以画出的三角形有3个, 故选C.【点睛】本题考查了三角形的三边关系:即任意两边之和大于第三边,任意两边之差小于第三边.解此题的关键是先把所有的情况组合后,再看是否符合三角形的三边关系.二、填空题13.(1);(2)解析:(1)4,5,6 ;(2)()()2,1,n n n --(1)根据题中方法进行分割,然后可得答案;(2)观察图1和图2所作图形,进而得出规律即可.解:(1)如图,每种方法所得到的小三角形的个数分别为:4个,5个,6个;(2)观察图1和图2所作图形可得:第一种分割方法把n 边形分割成了(n-2)个三角形;第二种分割方法把n 边形分割成了(n-1)个三角形;第三种分割方法把n 边形分割成了n 个三角形,故答案为:(n-2),(n-1),n.【点睛】本题考查了多边形的相关问题,要能够从特殊中发现规律,进而推广到一般情况. 14.5或6或7解析:5或6或7试题分析:设内角和为720°的多边形的边数是n ,则(n-2)×180=720,∴n=6则原多边形的边数为5或6或7.考点: 多边形内角与外角.15.65°解析:65°利用三角形内角和定理求得∠ABC+∠ACB=130°,根据三角形外角性质得到∠CBE=∠A+∠ACB ,∠BCF=∠A+∠ABC ,进而求得∠CBE +∠BCF=230°,根据角平分线定义可知∠1=∠2=12∠CBE ,∠3=∠4=12∠BCF ,进而求得∠2+∠3=115°,最后利用三角形内角和定理即可解决问题.∵∠A+∠ABC+∠ACB=180°,∠A =50°,∴∠ABC+∠ACB=130°∵∠CBE、∠BCF是△ABC的外角∴∠CBE=∠A+∠ACB,∠BCF=∠A+∠ABC∴∠CBE+∠BCF=∠A+∠ACB+∠A+∠ABC=230°∵OB、OC分别平分∠CBE、∠BCF∴∠1=∠2=12∠CBE,∠3=∠4=12∠BCF∴∠2+∠3=12(∠CBE+∠BCF)=115°∵∠2+∠3+∠BOC=180°∴∠BOC=65°故答案为:65°【点睛】本题主要考查三角形内角和定理以及三角形外角性质,熟练掌握该知识点是解题关键. 16.120解析:120根据两直线平行,同旁内角互补得到∠1+∠2=180°,再把∠1=12∠2代入可计算出∠2的度数.∵a∥b,∴∠1+∠2=180°,∵∠2是∠1的2倍,∴12∠2+∠2=180°,解得:∠2=120°.故答案为120【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.17.360°;解析:360°;连接∠2和∠4的顶点,可得两个三角形,根据三角形的内角和定理,∠1+∠2+∠3+∠4=360°.故答案是: 360°.18.{解析}可以利用多边形的外角和定理求解解:∵正n边形的一个外角为72°∴n的值为360°÷72°=5故答案为:5【点睛】本题考查了多边形外角和熟记多边形的外角和等于360度是解题的关键解析:{解析}可以利用多边形的外角和定理求解.解:∵正n边形的一个外角为72°,∴n的值为360°÷72°=5.故答案为:5【点睛】本题考查了多边形外角和,熟记多边形的外角和等于360度是解题的关键.三、解答题19.(1)①10°,5°;②16°,8°;③α=2β,理由见解析;(2)2β=180°+α,理由见解析(1)①直接求α度数,根据三角形的内角和与等腰三角形的性质求∠ACB和∠AED的度数再根据外角定理求β;②解法同①;③设∠BAC=x°,∠DAE=y°,则α=x°-y°,求出∠ACB 和∠AED,利用外角定理即可求β,从而可得结论;(2)设∠BAC=x°,∠DAE=y°,则α=x°-(180°-y°)=x°-180°+y°,同理得出出∠ACB和∠AED,利用外角定理即可求β,从而可得结论.解:(1)①∵∠DAE=40°∴∠ADE+∠AED=140°∴∠ADE=∠AED=70°∵∠BAC=50°∴=504010α-=∴18050652ACB B-∠=∠==∵∠ADC=∠B+∠α=∠ADE+∠β∴65°+10°=70°+∠β∴∠β=5°故答案为10°,5°;②∵∠DAE=42°∴∠ADE+∠AED=138°∴∠ADE=∠AED=69°∵∠BAC=58°∴=584216α-=∴18058612ACB B-∠=∠==∵∠ADC=∠B+∠α=∠ADE+∠β∴61°+16°=69°+∠β∴∠β=8°故答案为16°,8°;③α=2β,理由是:如图(1),设∠BAC=x°,∠DAE=y°,则α=x°-y°,∵∠ACB=∠ABC∴180=2x ACB-∠∵∠ADE=∠AED∴180=2y AED-∠∴180180=2222y x x y AED ACBαβ----=-==∠∠∴α=2β(2)如图(2),2β=180°+α,理由是:设∠BAC=x°,∠DAE=y°,则α=x°-(180°-y°)=x°-180°+y°∵∠ACB=∠ABC∴180=2x ACB-∠∵∠ADE=∠AED∴180=2y AED-∠∵∠EDB是△EDC的一个外角∴∠EDB=∠AED+∠ACB∴180180 18022y x β---=+∴2β=x°+y°,即2β=180°+α【点睛】本题考查的是三角形的内角和定理、外角和定理和等腰三角形的性质,能够熟练运用所学知识是解题的关键.20.(1)110︒;(2)20︒(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据折叠的特点得出∠ADE=∠ADB,最后根据∠EDF=∠EDA -∠ADF,即可得出答案.(1)∵ABD△沿AD折叠得到AED,∴∠BAD=∠DAF,∵∠B=50°,∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF503030110=︒+︒+︒=︒;(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°-50°-30°=100°,∵ABD△沿AD折叠得到AED,∴∠EDA=∠BDA=100°,∴∠EDF=∠EDA -∠ADF =∠EDA –(∠B+∠BAD)()100503020=︒-︒+︒=︒.【点睛】本题考查了三角形的内角和定理、三角形的外角的性质、翻折变换等问题,解答的关键是沟通外角和内角的关系.21.(1)2a ;(2)6a ;(3)7n ;(4)ABC △的面积至多为10平方米.(1)连接AD ,根据等底等高的三角形的面积相等求出△ADE 的面积即可;(2)根据等底等高的三角形的面积相等求出△ADE 、△AEF 、△AFD 的面积,相加即可;(3)由(2)得到△ABC 向外扩展了一次得到的△DEF 的面积S △DEF =7a ,△ABC 向外扩展了二次得到的△MGH 的面积S △MGH =72a ,找出规律即可;(4)由(2)(3)的结论确定出种黄色牡丹,种紫色牡丹的面积,用总费用建立不等式,即可.(1)如图1,连接AD ,∵BC=CD ,∴S △ABC =S △DAC =a ,∵AE=AC ,∴S △DAE =S △DAC =S △ABC =a ,∴S 1=S △CDE =S △DAE +S △DAC =2a ,故答案为:2a ;(2)如图2,由(1)有,S △CDE =2a ,同(1)的方法得到,S △EAF =2a ,S △BDF =2a ,∴S 2=S △CDE +S △EAF +S △BDF =6a ,故答案为:6a ;(3)由(2)有S 2=6a ,∴S △DEF =S 2+S △ABC =6a+a=7a ,∴△ABC 向外扩展了一次得到的△DEF 的面积S △DEF =7a ,∴△ABC向外扩展了二次得到的△MGH,可以看作是△DEF向外扩展了一次得到,∴S△MGH=7S△DEF=7×7a=72a,∴△ABC向外扩展了二次得到的△MGH的面积S△MGH=72a,同理:△ABC向外扩展了n次得到的三角形的面积S=7n a,故答案为:7n;(4)由(2)有,△ABC第一次扩展区域面积为S2=6a,同理:△ABC第二次扩展区域可以看成是△DEF向外扩展了一次得到,∴S3=6S△DEF=6×7a=42a,∵在△ABC的空地上种紫色牡丹,第二次扩展区域内种紫色牡丹,∴种紫色牡丹的面积为a+42a=43a,∵在第一次扩展区域内种黄色牡丹,∴种黄色牡丹的面积为6a,∵紫色牡丹花的种植成本为100元/平方米,黄色牡丹花的种植成本为95元/平方米.要使得种植费用不超过48700元,∴100×43a+95×6a≤48700,∴a≤10,∴工程人员在设计时,三角形ABC的面积至多为10平方米.【点睛】本题考查了三角形的面积,面积和等积变形等知识点的应用,能根据等底等高的三角形的面积相等求出每个三角形的面积和根据得出的结果得出规律是解此题的关键.22.(1)不会,∠P=55°;(2)不会,∠D=35°;(3)∠P+∠D=90°.(1)先根据∠MON可求出∠OAB+∠OBA的度数,再根据∠MAB与∠NBA的平分线求出∠PAB+∠PBA的度数,即可求出∠P的度数;(2)根据BC是平分ABO∠,BP平方∠ABN,可求出∠DBP=90°,故可在直角三角形BDP中求出∠D(3)根据直角三角形BDP即可得出∠P和∠D的关系.(1)∵∠MON=70°,∴∠OAB+∠OBA=110°,∴∠MAB+∠NBA=360°-(∠OAB+∠OBA)=250°,∵∠MAB与∠NBA的平分线交于点P∴∠PAB+∠PBA=12(∠MAB+∠NBA)=125°,∴∠P=180°-(∠PAB+∠PBA)=55°.(2)∵BC是平分ABO∠,BP平方∠ABN,∴∠DBP=12∠ABN+12∠ABO=12(∠ABN+∠ABO)=90°,∴∠D=90°-∠P=35°,(3)∵△BDP为直角三角形,故∠P+∠D=90°.【点睛】此题主要考查三角形内的角度计算,解题的关键是熟知三角形的内角和与角平分线的性质进行求解.23.(1)∠EAD=20°;(2)2∠EAD=∠C-∠B.(1)由三角形内角和定理可求得∠BAC=80°,在Rt△ADC中,可求得∠DAC=20°,AE是角平分线,有∠EAC=∠BAC=40°,由∠EAD=∠EAC-∠DAC即可得到答案;(2)由(1)知,用∠C和∠B表示出∠EAD,即可知2∠EAD与∠C-∠B的关系.解:(1)∵∠B=30°,∠C=70°,∴∠BAC=180°-∠B-∠C=80°.∵AE是角平分线,∴∠EAC=∠BAC=40°.∵AD是高,∠C=70°,∴∠DAC=90°-∠C=20°,∴∠EAD=∠EAC-∠DAC=40°-20°=20°;(2)由(1)知,∠EAD=∠EAC-∠DAC=∠BAC-(90°-∠C)①,把∠BAC=180°-∠B-∠C代入①,整理得,∠EAD=∠C-∠B,所以2∠EAD=∠C-∠B.【点睛】本题考查了三角形内角和定理、角的平分线的性质、直角三角形的性质,结合图形,灵活运用角度的计算是本题的解题关键.24.(1)∠BOC=∠BAC+∠B+∠C.理由见解析;(2)∠BOC=90°+12∠A.理由见解析;(3)∠BOC=60°+23∠A.理由见解析.(1)如图1,连接AO,延长AO到H.由三角形的外角的性质证明即可得到结论:∠BOC=∠BAC+∠B+∠C;(2)利用角平分线的定义,三角形的内角和定理证明可得到结论:∠BOC=90°+12∠A;(3)类似(2)可证明结论:∠BOC=60°+23∠A.解:(1)∠BOC=∠BAC+∠B+∠C.理由:如图1,连接AO,延长AO到H.∵∠BOH=∠B+∠BAH,∠CAH=∠C+∠CAH,∴∠BOC=∠B+∠BAH+∠CAH+∠C=∠BAC+∠B+∠C,∴∠BOC=∠BAC+∠B+∠C;(2)∠BOC=90°+12∠A.理由:如图2,∵OB,OC是△ABC的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠BOC=180°-12(∠ABC+∠ACB)=180°-(180°-∠A)=90°+12∠A,∴∠BOC=90°+12∠A;(3)∠BOC=60°+23∠A.理由:∵∠ABO=13∠ABC,∠ACO=13∠ACB,∴∠BOC=180°-23(∠ABC+∠ACB)=180°-23(180°-∠A)=60°+23∠A.故答案为:∠BOC=60°+23∠A.【点睛】本题考查三角形的内角和定理,三角形的外角的性质等知识,解题的关键是熟练掌握三角形的角的基本知识.25.(1)∠AEC+∠EAB+∠ECD=360°;(2)∠AEC=∠BAE+∠ECD;(3)∠AEC+∠EAB=∠ECD;(4)见详解(1)过点E作PE∥AB,然后根据平行线的性质求证即可;(2)过点E作PE∥AB,然后根据平行线的性质求证即可;(3)把AB和EC的交点记作P,然后根据平行线的性质和三角形内角和180 求证即可;(4)选取(1)(2)(3)任意一个根据平行线性质证明即可.(1)∠AEC+∠EAB+∠ECD=360°,过点E作PE∥AB,如图1所示:∵AB∥CD,∴AB∥PE∥CD,∴∠BAE+∠PEA=180°,∠PEC+∠ECD=180°,∴∠BAE+∠PEA +∠PEC +∠ECD=360°,∴∠AEC+∠EAB+∠ECD=360°;(2)∠AEC=∠BAE+∠ECD,过点E作PE∥AB,如图2所示:∵AB∥CD,∴AB∥PE∥CD,∴∠PEA =∠BAE,∠PEC =∠ECD,∴∠AEC=∠PEA +∠PEC =∠BAE+∠ECD;(3)把AB和EC的交点记作P,如图3所示:∵AB∥CD,∴∠ECD=∠EPB∵∠AEC+∠EAB+∠EPA=180°,∠EPB+∠EPA=180°∴∠AEC+∠EAB=∠EPB∴∠AEC+∠EAB=∠ECD(4)任意选取图1、2、3,证明过程见(1)(2)(3)【点睛】本题主要考查平行线的性质,熟练掌握性质是关键.26.(1)60°;(2)8(1)先利用三角形的外角性质计算出∠ABE=15°,再利用角平分线定义得到∠ABC=2∠ABE=30°,然后根据高的定义和互余可求出∠BAF的度数;(2)先根据中线定义得到BC=2BD=10,然后利用三角形面积公式求AF的长.(1)∵∠BED=∠ABE+∠BAE,∴∠ABE=40°-25°=15°,∵BE平分∠ABC,∴∠ABC=2∠ABE=30°,∵AF为高,∴∠AFB=90°,∴∠BAF=90°-∠ABF=90°-30°=60°;(2)∵AD为中线,∴BD=CD=5,∵S△ABC=12AF•BC=40,∴AF=24010=8.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.也考查了三角形外角性质和三角形面积公式.本题的关键是充分应用三角形的角平分线、高和中线的定义.。
2024-2025学年初中八年级上学期数学(第11-12章)第一次月考卷及答案(人教版)
2024-2025学年八年级数学上学期第一次月考卷01(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版八年级上册第十一章~第十二章。
5.难度系数:0.85。
一、选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列长度的三条线段能组成三角形的是()A.6,2,3B.3,3,3C.4,3,8D.4,3,72.如图,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的()A.全等形B.稳定性C.灵活性D.对称性3.如图,CM是△ABC的中线,AB=10cm,则BM的长为()A.7cm B.6cm C.5cm D.4cm4.画△AAAAAA的AAAA边上的高AAAA,下列画法中正确的是()A.B.C.D.5.一个多边形的内角和等于540°,则它的边数为()A.4 B.5 C.6 D.86.请仔细观察用直尺和圆规作一个角∠AA′OO′AA′等于已知角∠AAOOAA的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠AA′OO′AA′=∠AAOOAA的依据是()A.SAS B.ASA C.AAS D.SSS7.如图,△ABE≌△ACF,若AB=5,AE=2,则EC的长度是()A.2 B.3 C.4 D.58.如图,若要用“HL”证明Rt△AAAAAA≌Rt△AAAAAA,则还需补充条件()A.∠AAAAAA=∠AAAAAA B.∠AA=∠AA C.AAAA=AAAA D.AAAA=AAAA9.如图,在Rt△AAAAAA中,∠AA=90°,∠AAAAAA的平分线AAAA交AAAA于点D,AAAA=3,则点D到AAAA的距离是()A.6 B.2 C.3 D.410.如图,已知△AAAAAA为直角三角形,∠AA=90°,若沿图中虚线剪去∠AA,则∠1+∠2的度数为()A.210°B.250°C.270°D.300°11.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去12.如图1,∠AADDDD=20°,将长方形纸片AAAAAAAA沿直线DDDD折叠成图2,再沿折痕为AADD折叠成图3,则∠AADDDD的度数为()A.100°B.120°C.140°D.160°二、填空题(本题共6小题,每小题2分,共12分.)13.在Rt△ABC中,∠C=90°,∠A=40°,则∠B= .14.如图,AAAA是△AAAAAA的高,∠AAAAAA=90°.若∠AA=35°,则∠AAAAAA的度数是.15.如图所示的两个三角形全等,则∠1的度数是.16.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.17.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=15°,∠ACP=50°,则∠P= °.18.如图,在射线OOAA,OOAA上分别截取OOAA1=OOAA1,连接AA1AA1,在AA1AA1、AA1AA上分别截取AA1AA2=AA1AA2,连接AA2AA2,…按此规律作下去,若∠AA1AA1OO=αα,则∠AA2023AA2023OO=.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:|−2|−6×�−12�+(−4)2+8.20.(6分)解不等式组�2xx+1>xx−123xx−1≤5,并写出它的所有正整数解.21.(8分)如图,AC和BD相交于点0,OA=OC,OB=OD,求证:DC//AB.22.(8分)如图△AAAAAA中,∠AA=40°,∠AAAAAA=∠AA.(1)作∠AAAAAA的平分线,交AAAA于点AA(用直尺和圆规按照要求作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求∠AAAAAA的大小.23.(10分)某校学生处为了了解全校1200名学生每天在上学路上所用的时间,随机调查了30名学生,下面是某一天这30名学生上学所用时间(单位:分钟):20,20,30,15,20,25,5,15,20,10,15,35,45,10,20,25,30,20,15,20,20,10,20,5,15,20,20,20,5,15.通过整理和分析数据,得到如下不完全的统计图.根据所给信息,解答下列问题:(1)补全条形统计图;(2)这30名学生上学所用时间的中位数为______ 分钟,众数为______ 分钟;(3)若随机问这30名同学中其中一名学生的时间,最有可能得到的回答是______ 分钟;(4)20分钟及以下的人数.24.(10分)中央大街工艺品店销售冰墩墩徽章和冰墩墩摆件,若购买4个冰墩墩徽章和2个冰墩墩摆件需要130元,购买3个冰墩墩徽章和5个冰墩墩摆件需要220元.(1)求每个冰墩墩徽章和每个冰墩墩摆件各需要多少钱?(2)若某旅游团计划买冰墩墩徽章和冰墩墩摆件共50个,所用钱数不超过1150元,则该旅游团至少买多少个冰墩墩徽章?25.(12分)如图,已知△AAAAAA中,AAAA=AAAA=20cm,AAAA=16cm,点AA为AAAA的中点.(1)如果点P在线段AAAA上以6cm/s的速度由A点向B点运动,同时,点Q在线段AAAA上由点B向C点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△AAAAAA与△AABBAA是否全等?说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△AAAAAA与△AABBAA全等?(2)若点Q以②中的运动速度从点B出发,点P以原来的运动速度从点A同时出发,都逆时针沿△AAAAAA三边运动,求经过多长时间点P与点Q第一次在△AAAAAA的哪条边上相遇?26.(12分)如图,在△AAAAAA中,∠AAAAAA=90°,AAAA=AAAA,点D为AAAA的中点.点E是直线AAAA上的一动点,连接AADD,作AADD⊥AADD交直线AAAA于点F.(1)如图1,若点E与点A重合时,请你直接写出线段AADD与AADD的数量关系;(2)如图2,若点E在线段AAAA上(不与A、B重合)时,请判断线段AADD与AADD的数量关系并说明理由;(3)若点E在AAAA的延长线上时,线段AADD与AADD的数量关系是否仍然满足上面(2)中的结论?请利用图3画图并说明理由.2024-2025学年八年级数学上学期第一次月考卷01(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
实验中学雒振峰《全等三角形》全章测试
《全等三角形》全章测试班级__________学号__________姓名__________成绩__________一、选择题 (每小题6分,共30分) 1.下列命题中是真命题的为( ).A.形状相同的两个三角形是全等形;B.在两个三角形中,相等的角是对应角,相等的边是对应边;C.全等三角形对应边上的高、中线及对应角平分线分别相等;D.面积相等的两个三角形全等.2.如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是( ).A .甲和乙 B.乙和丙 C.只有乙 D.只有丙3.在△ABC 和△A ′B ′C ′中,AB=A ′B ′,∠A=∠A ′,若证△ABC ≌△A ′B ′C ′还要从下列条件中补选一个,错误的选法是( ).A. ∠B=∠B ′B. ∠C=∠C ′C. BC=B ′C ′D. AC=A ′C ′4.如右图,P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于C 、D ,则( ). A .CD 小于P 点到∠AOB 两边距离之和B .CD 大于P 点到∠AOB 两边距离之和 C .CD 等于P 点到∠AOB 两边距离之和D .不能确定5.如下图,P 是∠BAC 的平分线AD 上一点,PE ⊥AB 于E ,PF ⊥AC 于F ,下列结论中不正确的是( ). A.PE PF = B. AE AF = C. △APE ≌△APF D. AP PE PF =+ADCBE F PA二、填空题 (每小题5分,共25分)6.四边形ABCD 中,AB =CD ,AD =BC .若∠B=32°,则∠A=_____°.7.如图,点D E ,分别在线段AB AC ,上,BE CD ,相交于点O AE AD ,,要使ABE ACD △≌△,需添加一个条件是____________________(只要写一个条件).8.如图,把△ABC 绕C 点顺时针旋转38°,得到△A ’B ’C , A ’B ’交AC 于点D ,若 ∠A ’DC=90°,则∠A=_____°.9.如图,AB ∥CD ,AD ∥BC ,OE=OF ,图中全等三角形共有_____对.(7题) (8题) (9题) 10.如图,点A 的坐标为(0,1),点B 的坐标为(3,1),点C 的坐标为(4,3),如果要使△ABD 与△ABC 全等,且C 、D 不重合,那么点D 的坐标是_________________________ _______________________________________________. 三、作图题 (本题5分)11.如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A 区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B 点700米,如果你是红方的指挥员,请你在图2中标出蓝方指挥部C 的位置.图1 图2OCEADB四、解答题(每小题10分,共40分)12.已知:如图,C、D在AB上,且AC=BD,AE∥FB,DE∥FC.13.已知:如图,AD 是△ABC的角平分线,BD=CD,DE⊥AB 于E,DF⊥AC于F.求证:EB=FC.FBD14.如图,已知四边形ABCD 中,AD ∥BC ,若∠DAB 的平分线AE 交CD 于E ,连结BE ,且BE恰好平分∠ABC ,求证:AB=AD +BC.15.如图,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断ABC △与AEG △面积之间的关系,并证明你的结论.参考答案:1.C2.B3.C4.B5.D6.148°7.AB=AC等8.52°9.610.(-1,3)(-1,-1)(4,-1)11.略12.证明:∵AE∥BF∴∠A=∠B∵DE∥CF∴∠EDA=∠FCB∵AC=BD∴AC+CD=BD+CD∴AD=BC△ADE≌△BCF∴AE=BF13.证明:∵AD是△ABC的角平分线,DE⊥AB、DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴EB=FC.14.证明:法1:在AB上截取AF=AD,连接EF(如图)易证AE⊥BE,△ADE≌△AFE,所以∠1=∠2,又∠2+∠4=90°,∠1+∠3=90°,所以∠3=∠4,所以可证△BCE≌△BFE,所以BC=BF,所以AB=AF+BF=AD+BC;法2:如图,延长AE 交BC 延长线于F , ∵AD ∥CB ,∴∠CBA+∠BAD=180°,∵BE 平分∠CBA ,AE 平分∠BAD , ∴∠EBA+∠BAE=90°, ∴∠BEA=180°-90°=90°, ∴BE ⊥AF ,由△ABE ≌△FBE , 可得BA=BF ,AE=FE , 于是可证△ADE ≌△FCE , 所以AD=CF ,所以AB=BC+CF=BC+AD .15.答:ABC △与AEG △面积相等证明:过点C 作CM AB ⊥于M ,过点G 作GN EA ⊥交EA 延长线于N ,则AMC ∠=90ANG ∠=四边形ABDE 和四边形ACFG 都是正方形90180BAE CAG AB AE AC AG BAC EAG ∴∠=∠===∴∠+∠=,,180EAG GAN BAC GAN∠+∠=∴∠=∠ACM AGN ∴△≌△1122ABC AEG CM GNS AB CM S AE GN∴===△△, ABC AEG S S ∴=△△BD。
(完整word版)《第十一章三角形》练习题精选
第11题图2题图D C B ACC7题图D C B C《第十一章 三角形》单元测试卷一、选择题:是( ) A .59°B.60°C.56°D.22°2题图3.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C 中,能确定△ABC 是直角三角形的条件有( )4.如图,△ABC 中,∠C =75°,若沿图中虚线截去∠C ,则∠1+∠2=( ) A. 360° B. 180° C. 255° D. 145°5.若三条线段中a =3,b =5,c 为奇数,那么由a ,b ,c 为边组成的三角形共有( ) A. 1个 B. 3个 C. 无数多个 D. 无法确定6.有四条线段,它们的长分别为1cm ,2cm ,3cm ,4cm ,从中选三条构成三角形,其中正确的选法有( ) A. 1种 B. 2种 C. 3种 D. 4种7.能把一个三角形分成两个面积相等的三角形是三角形的( ) A. 中线 B. 高线C. 角平分线D. 以上都不对 8.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A. 锐角三角形 B. 钝角三角形 C. 直角三角形 D.不能确定9.下列图形中具有稳定性的是( ) A. 直角三角形 B. 正方形 C. 长方形 D. 平行四边形10.如图,在△ABC 中,∠A =80°,∠B =40°.D 、E 分别是AB 、AC 上的点,且DE ∥BC ,则∠AED 的度数是( ) A.40° B.60° C.80° D.120° 11.已知△ABC 中,∠A =80°,∠B 、∠C 的平分线的夹角是( )A. 130°B. 60°C. 130°或50° D. 60°或120° 12.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和45°角的 三角板的一条直角边重合,则∠1的度数为( )A.45° B.60°C.75°D.85°4题图 12题图13、下列四个图形中,线段BE 是△ABC 的高的图形是( )14.如图3,在△ABC 中,点D 在BC上,且AD=BD=CD ,AE 是BC 边上的高,若沿AE 所在直线折叠,点C 恰好落在点D 处,则∠B 等于( )A .25° B.30° C.45° D.60°第8题图C A A图5D D D D C BA CCC C B B BB A A A A 图4C A DBE 图2图5(3)A /第16题图DC B A 15. 如图4,已知AB=AC=BD ,那么∠1和∠2之间的关系是( )A. ∠1=2∠2B. 2∠1+∠2=180°C. ∠1+3∠2=180°D. 3∠1-∠2=180°16.如图5,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC S = 42cm ,则S 阴影等于( )A .22cm B. 12cm C.122cm D. 142cm 17.等腰三角形两边长分别为3,7,则它的周长为( )A 、13 B 、17 C 、13或17 D 、不能确定18.下列图形中具有稳定性有( )A 、 2个 B 、 3个 C 、 4个 D 、 5个 19.在下列各图形中,分别画出了△ABC 中BC 边上的高AD ,其中正确的是( )20.已知△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,则∠BOC 一定( ) A.小于直角 B.等于直角 C.大于直角 D.不能确定21.直角三角形的两锐角平分线相交成的角的度数是( )A .45° B .135°C .45°或135°D .以上答案均不对 22、等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为( )A.150°B.80°C.50°或80°D.70° 23. 工人师傅常用角尺平分一个任意角.做法如下:如图2所示,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是 【 】.(A )AAS (B )SSS (C )SAS (D )ASA24、 在图3所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于 【 】. (A )145° (B )180° (C )225° (D )270° 25. 根据下列条件,能判定△ABC ≌△A ′B ′C ′的是 【 】. (A )AB =A ′B ′,BC =B ′C ′,∠A =∠A ′ (B )∠A =∠A ′,∠B =∠B ′,AC =B ′C ′(C )∠A =∠A ′,∠B =∠B ′,∠C =∠C ′ (D )AB =A ′B ′,BC =B ′C ′,△ABC 的周长等于△A ′B ′C ′的周长26. 如图4所示,△ABC 中,∠C =90°,点D 在AB 上,BC =BD ,DE ⊥AB 交AC 于点E .△ABC 的周长为12,△ADE 的周长为6.则BC 的长为 【 】. (A )3 (B ) 4 (C )5 (D )627. 将一副直角三角尺如图5所示放置,已知AE BC ∥,则AFD ∠的度数是 ( )(A )45 (B)50 (C )60(D )75二、填空题1.如图,△ABC 中,AD⊥BC,AE 平分∠BAC,∠B=70°,∠C=34°.则∠DAE的大小是度.1题图4题图 7题图 8题图(1)(2)(3)(4)(5)(6)8题图150︒50︒321︒图1112CA DB EF M N O D A O E C B D A CB 2.已知等腰三角形两边长是4cm 和9cm ,则它的周长是 . 3.直角三角形两锐角的平分线的夹角是 . 4.如图,已知AB∥CD,BE 平分∠ABC,∠CDE=150°,则∠C= °. 5.已知三角形三边分别为1,x ,5,则整数x = .6.一个三角形的周长为81cm ,三边长的比为2︰3︰4,则最长边比最短边长 .7.如图,Rt ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上的A /处,折痕为CD ,则∠A /DB = 8.用黑白两种颜色的正六边形地板砖按图所示的规律镶嵌成若干个图案:⑴第四个图案中有白色地板砖 块; ⑵第n 个图案中有白色地板砖 块. 9、如图9,则∠1=______,∠2=______,∠3=______,10. 等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为___ . 11.如图所示,AB =29,BC =19,AD =20,CD =16,若AC =x ,则x 的取值范围为 .9题图12. 已知,CD 是△ABC 的中线,AC 与BC 相差2cm ,则△ACD 与△BCD 的周长之差= cm 。
2024-2025学年八年级数学上学期期中模拟卷(重庆专用,人教版八上第11~13章)(考试版A4)
2024-2025学年八年级数学上学期期中模拟卷(重庆专用)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版八上第11~13章(三角形、全等三角形、轴对称)含七年级部分内容。
5.难度系数:0.69。
第一部分(选择题共40分)一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.学校为庆祝国庆,在校内张贴了“爱我中华”四字标语,这些汉字中是轴对称图形的是()A.B.C.D.V的高的图形是()2.下面四个图形中,线段BD是ABCA.B.C.D.3.下列长度的各组线段可以组成三角形的是( )A .2,3,5B .5,7,4C .4,4,8D .2,4,64.已知多边形的内角和是1080°,则这个多边形是几边形?( )A .六边形B .七边形C .八边形D .十边形5.下列说法,正确的是( )A .等腰三角形的高、中线、角平分线互相重合B .到三角形二个顶点距离相等的点是三边垂直平分线的交点C .三角形一边上的中线将三角形分成周长相等的两个三角形D .两边分别相等的两个直角三角形全等6.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是( )A .39B .44C .49D .547.如图,若31A Ð=°,那么A B C D E Ð+Ð+Ð+Ð+Ð=( )A .90°B .180°C .211°D .242°8.如图,在中,AB AC =,6BC =,且面积是24,AC 的垂直平分线EF 分别交,AC AB 边于点,E F ,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM D 周长的最小值为( )A .9B .10C .11D .129.如图,已知CAE BAD Ð=Ð,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D Ð=Ð;④B E Ð=Ð.其中能使ABC AED ≌△△的条件有( )A .1个B .2个C .3个D .4个10.如图,在等腰直角ACB △中,90ACB Ð=°,点D 是ACB △内部一点,连接DC 并延长至点E ,连接AE 、,BE AD BE ^,垂足为点,G AG 交BC 于点Q ,延长AC 交BE 于点F ,连接DF ,EAC DAC Ð=Ð.给出以下结论:①CF CQ =;②DE 平分AEB Ð;③若点G 为BF 的中点,连接GC 并延长交AE 于点H ,则AH CH DG =+:④2ACE ADFE S S =四边形△.其中正确的结论有( )A .1个B .2个C .3个D .4个第二部分(非选择题 共110分)二、填空题:本题共8小题,每小题4分,共32分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形测试(时间90分钟 满分100分)
一、填空题(每题2分,共32分)
1.能够____ 的两个图形叫做全等图形.
2.判定两个三角形全等除用定义外,还有几种方法,它们分别可以简写成_______;_______;_______;_______;_________.
3.已知,如图,AD =AC ,BD =BC ,O 为AB 上一点,那么,图中共有 对全等三角形.
4.如图,△ABC ≌△ADE ,则,AB = ,∠E =∠ .若∠BAE =120°,∠BAD =40°,则∠BAC = .
5.△ABC ≌△DEF ,且△ABC 的周长为12,若AB =3,EF =4,则AC = . 6.如图,AE =BF ,AD ∥BC ,AD =BC ,则有ΔADF ≌ ,且DF = . 7.如图,在ΔABC 与ΔDEF 中,如果AB =DE ,BE =CF ,只要加上∠ =∠ , 或 ∥ ,就可证明ΔABC ≌ΔDEF .
8.△ABC ≌△BAD ,A 和B ,C 和D 是对应顶点,如果AB =8cm ,BD =•6cm ,AD =5cm ,则BC =________cm . 9.△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,且CD =4cm ,则点D 到AB •的距离是________. 10.如图,已知AC =BD ,21∠=∠,那么△ABC ≌ ,其判定根据是__________. 11.如图,ABC ∆中,BC AD ⊥于D ,要使△ABD ≌△ACD ,若根据“HL ”判定,还需加条件___= _. 12.如图,已知AC =BD ,D A ∠=∠,请你添一个直接条件: = ,使△AFC ≌△DEB .
A D
E
B
F
C
C
A
C
D
12
第10题图 第11题图 第12题图
③
①
②
B
A
B
A
第10题图 第11题图 第12题图
O
C
B
A
C
B
A
E
D
第3题图 第4题图 图6
A
D
B
C
E
F
D
图7
B
F
A
C E
第6题图 第7题图
13.
如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是是 .
14.把两根钢条AA ´、BB ´的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳), 如图,若测得
AB =5厘米,则槽宽为 米.
15.△ABC 中,∠B =60°,∠C =80°,O 是三条角平分线的交点,则∠OAC =______,∠BOC =________.16.将一张长方形纸片按如图所示的方式进行折叠,其中BC BD ,为折痕,则BCD ∠的度数为 . 二、填空题(共68分)
17.如下左图,AB 与CD 交于点O ,OA =OC ,OD =OB ,∠AOD =________,•根据__________可得到△AOD ≌△COB ,从而可以得到AD =_________.
O D
C
B
A
D
C
B
A
18.如上右图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC
∴∠________=∠_________(角平分线的定义) 在△ABD 和△ACD 中
∵⎪⎪⎩
⎪⎪⎨
⎧ ∴△ABD ≌△ACD ( )
19.如图,A 、B 两建筑物位于河的两岸,要测得它们之间的距离,可以从B 点出发沿河岸画一条射线BF ,在BF 上截取BC =CD ,过D 作DE ∥AB ,使E 、C 、A 在同一直线上,则DE 的长就是A 、B 之间的距离,请你说明道理.
20.已知:如图,点D 、E 在BC 上,且BD=CE ,AD=AE ,求证:AB=AC .
21.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.
B
C D 6
54321E D C
B
A A
B C
22.已知:如图,A 、C 、F 、D 在同一直线上,AF =D C ,
AB =DE ,BC =EF ,
求证:△ABC ≌△DEF .
23.已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .
24.已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、
CE 相交于点F ,求证:BE =CD .
25.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282
cm ,
AB =20cm ,AC =8cm ,求DE 的长.
26.已知:BE ⊥CD ,BE =DE ,BC =DA ,
求证:① △BEC ≌△DAE ; ②DF ⊥BC .
27.已知:如图,△ABC 中,∠C =2∠B ,∠1=∠2,求证:AB =AC+CD .
28.已知:∠AOB =90°,OM 是∠AOB 的平分线,将三角板的直角顶P 在射线OM 上滑动,两直角边分
别与OA 、OB 交于C 、D .PC 和PD 有怎样的数量关系,证明你的结论.
M
B
A P
C B F
A
A
E F B C E
F A A B C
D
1 2 A
C
B D E F
全等三角形测试
参考答案
一、填空题
1.完全重合2.SS、SAS、ASA、AAS、HL 3.3 4.AD,C,80度5.5 6.△BCE,CE 7.B,DEF,AB,DE 8.5 9.4cm 10.BAD,SAS 11.AB=AC 12.AF=DE 13.③,两个角及它们的夹边对应相等的两个三角形全等14.0.05 15.20度,110度16.90度
二、解答题
17.COB,SAS,CB 18.略19.略20.略21.略22.略23.略24.略25.2cm 26.略27.略28.PC=PD,理由略。