表面及胶体化学知识点归纳
物理化学各章概念总结、公式总结电子版1 表面化学与胶体
第8章 表面化学与胶体8.1 重要概念和规律1.比表面能与表面张力物质的表面是指约几个分子厚度的一层。
由于表面两侧分子作用力不同,所以在表面上存在一个不对称力场,即处在表面上的分子都受到一个指向体相内部的合力,从而使表面分子具有比内部分子更多的能量。
单位表面上的分子比同样数量的内部分子多出的能量称为比表面能(也称比表面Gibbs函数)。
表面张力是在表面上的相邻两部分之间单位长度上的相互牵引力,它总是作用在表面上,并且促使表面积缩小。
表面张力与比表面能都是表面上不对称力场的宏观表现,即二者是相通的,它们都是表面不对称力场的度量。
它们是两个物理意义不同,单位不同,但数值相同,量纲相同的物理量。
2.具有巨大界面积的系统是热力学不稳定系统物质表面所多余出的能量γA称表面能(亦叫表面Gibbs函数),它是系统Gibbs函数的一部分,表面积A越大,系统的G值越高。
所以在热力学上这种系统是不稳定的。
根据热力学第二定律,在一定温度和压力下,为了使G值减少,系统总是自发地通过以下两种(或其中的一种)方式降低表面能γA:①在一定条件下使表面积最小。
例如液滴呈球形,液面呈平面;②降低表面张力。
例如溶液自发地将其中能使表面张力降低的物质相对浓集到表面上(即溶液的表面吸附),而固体表面则从其外部把气体或溶质的分子吸附到表面上,从而改变表面结构,致使表面张力降低。
3.润湿与铺展的区别润湿和铺展是两种与固—液界面有关的界面过程。
两者虽有联系,但意义不同。
润湿是液体表面与固体表面相互接触的过程1因此所发生的变化是由固—液界面取代了原来的液体表面和固体表面。
润湿程度通常用接触角表示,它反映液、固两个表面的亲密程度。
当θ值最小(θ=0o)时,润湿程度最大,称完全润湿。
铺展是指将液体滴洒在固体表面上时,液滴自动在表面上展开并形成一层液膜的过程,因此所发生的变化是由固—液界面和液体表面取代原来的固体表面。
铺展的判据是上述过程的∆G:若∆G<0,则能发生铺展;若∆G≥0,则不能铺展。
上海大学胶体与表面化学考试知识点
1、胶体的基本特性特有的分散程度;粒子大小在1nm~100nm之间多相不均匀性:在超级显微镜下可观察到分散相与分散介质间存在界面。
热力学不稳定性;粒子小,比表面大,表面自由能高,是热力学不稳定体系,有自发降低表面自由能的趋势,即小粒子会自动聚结成大粒子。
2、胶体制备的条件:分散相在介质中的溶解度须极小必须有稳定剂存在3、胶体分散相粒子大小分类分子分散系统胶体分散系统粗分散系统二、1、动力学性质布朗运动、扩散、沉降光学性质是其高度分散性与不均匀性的反映电学性质主要指胶体系统的电动现象丁达尔实质:胶体中分散质微粒散射出来的光超显微镜下得到的信息(1)可以测定球状胶粒的平均半径。
(2)间接推测胶粒的形状和不对称性。
例如,球状粒子不闪光,不对称的粒子在向光面变化时有闪光现象。
(3)判断粒子分散均匀的程度。
粒子大小不同,散射光的强度也不同。
(4)观察胶粒的布朗运动、电泳、沉降和凝聚等现象观察到胶粒发出的散射光,可观察布朗运动电泳沉降凝聚,只能确定质点存在和位置(光亮点),只能推测不能看到大小和形状2、胶体制备的条件溶解度稳定剂3、溶胶的净化渗析法、超过滤法4、纳米颗粒粒径在1-100之间纳米颗粒的特性与粒子尺寸紧密相关,许多特性可表现在表面效应和体积效应两方面。
5、布朗运动使胶粒克服重力的影响,6、I反比于波长λ的四次方7、溶胶产生各种颜色的原因;溶胶中的质点对可见光产生选择性吸收。
溶胶对光吸收显示特定波长的补色不吸收显示散射光的颜色agcl&agbr光透过浅红垂直淡蓝雾里黄灯减散,入射白光散射光中蓝紫色光散射最强天蓝是太阳散射光,早傍晚红色是透射光有宇散射作用8、9、胶粒带电原因:吸附、电离、同晶置换(晶格取代)、摩擦带电。
10、胶团结构:一定量难溶物分子聚结成中心称为胶核、然后胶核选择性的吸附稳定剂中的一种离子,形成紧密吸附层;由于正、负电荷相吸,在紧密层外形成反号离子的包围圈,从而形成了带与紧密层相同电荷的胶粒;胶粒与扩散层中的反号离子,形成一个电中性的胶团。
胶体与表面化学的简答题
1.什么是气凝胶?有哪些主要特点和用途?当凝胶脱去大部分溶剂,使凝胶中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质是气体,外表呈固体状,这即为干凝胶,也称为气凝胶。
气凝胶是一种固体物质形态,世界上密度最小的固体。
气凝胶貌似“弱不禁风”,其实非常坚固耐用。
它可以承受相当于自身质量几千倍的压力,在温度达到1200摄氏度时才会熔化。
此外它的导热性和折射率也很低,绝缘能力比最好的玻璃纤维还要强39倍。
用途:(1)制作火星探险宇航服(2)防弹不怕被炸(3)过滤与催化(4)隔音材料(5)日常生活用品 2.试述凝胶形成的基本条件?①降低溶解度,使被分散的物质从溶液中以“胶体分散状态”析出。
②析出的质点即不沉降,也不能自由行动,而是构成骨架,在整个溶液中形成连续的网状结构。
2.简述光学白度法测定去污力的过程。
将人工制备的污布放在盛有洗涤剂硬水的玻璃瓶中,瓶内还放有橡皮弹子,在机械转动下,人工污布受到擦洗。
在规定温度下洗涤一定时间后,用白度计在一定波长下测定污染棉布试片洗涤前后的光谱反射率,并与空白对照。
4.试述洗涤剂的发展趋势。
液体洗涤剂近几年的新的发展趋势: (1)浓缩化 (2)温和化、安全化(3)专业化 (4)功能化(5)生态化: ①无磷化②表面活性剂生物降解③以氧代氯 5.简述干洗的原理干洗是在有机溶剂中进行洗涤的方法,是利用溶剂的溶解力和表面活性剂的加溶能力去除织物表面的污垢。
3. 脂肪酶在洗涤剂中的主要作用是什么?脂肪酶,人的皮脂污垢如衣领污垢中因含有甘油三脂肪酸酯而很难去除,在食品污垢中也含有甘油三脂肪酸酯类的憎水物质,脂肪酶能将这些污垢分解成甘油和脂肪酸。
4.在洗涤剂中作为柔和剂的SAA主要是什么物质?用作柔和剂的表面活性剂主要是两性表面活性剂 8.用防水剂处理过的纤维为什么能防水?织物防水原理:将纤维织物用防水剂进行处理,可使处理后的纤维不表面变为疏水性,防水织物由于表面的疏水性使织物与水之间的接触角θ>90°,在纤维与纤维间形成的“毛细管”中的液面成凸液面,凸液面的表面张力的合力产生的附加压力△P的方向指向液体内部因此有阻止水通过毛细管渗透下来的作用。
物理化学中的表面现象与胶体化学
物理化学中的表面现象与胶体化学物理化学是一门探讨物质性质变化及相关规律的学科。
与之相关的表面现象和胶体化学则是物理化学领域中一项重要的分支。
本文将从表面现象和胶体化学两个方面入手,探讨它们的基本概念、相关应用和研究意义。
一、表面现象观察一个物体,我们会发现它的表面是与外界直接接触的部分。
因此,表面现象是物质研究中一种极其普遍和重要的现象。
表面现象是指两种或两种以上介质相接触时,有特殊性质的现象出现。
在物理化学中,表面现象主要包括表面张力、毛细现象和润湿现象。
表面张力是液体表面处由于分子间作用力而表现出来的一种现象。
表面张力较大的液体在容器中形成凸面或水滴状,这种现象称为毛细现象。
液体与固体相接触时,液体能否在固体表面上均匀分布并附着称为润湿现象。
表面现象在自然界和人类生活中都有广泛应用。
例如,水平稳定的大船只是因为水面的表面张力;高楼大厦的毛细管水系统则利用了毛细现象;润滑油、乳液、涂料等都运用了润湿性质。
二、胶体化学胶体化学是涉及无色透明的小粒子(胶体)和它所处的环境之间的相互作用的学科。
胶体是介于小分子和宏观物体之间的一种存在形式,其中粒子的平均大小在1至1000纳米之间。
胶体物理包括多种胶体类型,例如溶胶、凝胶和气溶胶等。
胶体学科研究中的主要问题是如何制备胶体,以及在胶体中所表现出的各种特殊性质。
胶体的制备方法包括溶胶法、凝胶法和胶体化合物分解法等。
在胶体中存在的各种特殊现象包括布朗运动、泡沫现象和重力分选等。
胶体的应用十分广泛,例如在涂料、油墨、胶水、陶瓷、橡胶等方面都得到了广泛的应用。
另外,人类生命活动中的一些基础物质,例如蛋白质、肌肉等,都是以胶体形式存在的。
三、物理化学中的表面现象与胶体化学的关联表面现象与胶体化学之间有着密不可分的联系。
在液态物质中,固液接触面所呈现的动态变化与胶体的形成和演化密切相关。
例如,胶体粒子表面的物理化学特征决定了胶体粒子的成长和聚集行为。
此外,表面现象和胶体化学之间也有着一些实际应用。
表面与胶体化学复习
3、微小液滴的饱和蒸汽压---开尔文公式
凸液面 RTln Pr P 2γM ρ r 2γVm r
凹液面 RTln P Pr 2γM ρ r 2γVm r
即:Pr(凸液面)>P(平液面)>Pr(凹液面)。
8.某水溶液发生负吸附后,在干净的毛吸管中的上升高度比 纯水在该毛吸管中上升的高度低。 ( )
8. 答: ×
9.通常物理吸附的速率较小,而化学吸附的速率较大。( ) 9. 答: ×
10.兰缪尔定温吸附理论只适用于单分子层吸附。( ) 10. 答:
表面化学与胶体
一、分散系统的分类
1、分散系统,分散相,分散介质
斯特恩电势 ——Stern面 与溶液本体间的电势差 ;
电动电势称为 电势。带电
的固体或胶粒在移动时,滑 动面与液体本体之间的电位 差称为电动电势。(概念)
+ +++++++ +
固体表面
+ +
斯特恩面
滑动面
+ + +
--
-
-
-
-
-
-
-
-
+ +
+ +
--
-
-
-
-
-
扩散层 斯特恩层(紧密层)
表面化学与胶体
5.水在干净的玻璃毛细管中呈凹液面,因附加压力 p >0,
所以表面张力 0 是不可能的。( )
5. 答:
6.在相同温度下,纯汞在玻璃毛吸管中呈凸液面,所以与之 平衡的饱和蒸气压必大于其平液面的蒸气压。( )
胶体化学复习资料
胶体化学复习资料名词解释表面张力:液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。
表面能:物质的表面具有表面张力σ,在恒温恒压下可逆地增大表面积dA,则需功σdA,因为所需的功等于物系自由能的增加,且这一增加是由于物系的表面积增大所致,故称为表面自由能或表面能。
接触角:在固、液、气三相接触达到平衡时,三相接触周边的任一点上,液气界面切线与固体表面间形成的并包含液体的夹角。
高能表面/低能表面:按照不同物体表面的比表面能大小不同,把比表面能大于0.1J/m2的表面称为高能表面,把比表面能小于0.1J/m2的表面称为低能表面。
PS版上空白部分的氧化铝膜,比表面能约为0.7J/m2,属于高能表面。
PS版上图文部分的重氮感光树脂层,比表面能约为0.03~0.04J/m2,属于低能表面。
润湿作用:润湿作用通常是指液体在固体表面上附着的现象。
固体表面的一种流体被另一种流体所取代的过程。
铺展:液体在另外一种不互溶的液体表面自动展开成膜的过程。
吸附热:吸附过程产生的热效应。
在吸附过程中,气体分子移向固体表面,其分子运动速度会大大降低,因此释放出热量。
物理吸附的吸附热等于吸附质的凝缩热与湿润热之和。
表面活性剂:具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。
浊点:油类、清漆等液体样品在标准状态下冷却至开始出现混浊的温度为其浊点。
非离子型表面活性剂,在水溶液中的浓度随温度上升而降低在升至一定温度值时出现浑浊,经放置或离心可得到两个液相,这个温度被称之为该表面活性剂的浊点。
kraft点:阴离子表面活性剂一般在低温下溶解困难,随着水溶液浓度上升,溶解度达到极限时,就会析出水合的活性剂。
但是,当水溶液温度上升到一定值时,由于胶束溶解,溶解度会急剧增大,这时的温度称为临界胶束溶解温度,即Kraft点。
HLB值:表面活性剂为具有亲水基团和亲油基团的两亲分子,表面活性剂分子中亲水基和亲油基之间的大小和力量平衡程度的量,定义为表面活性剂的亲水亲油平衡值。
胶体与表面面化学
一、溶胶的胶团结构:1胶粒的结构比较复杂,首先有一定量的难溶物分子聚结形成胶粒的中心称为胶核2胶核选择性的吸附稳定剂中的一种离子,形成紧密的吸附层,由于正负电荷相吸,在紧密层外形成反号离子包围层,从而形成了带有紧密层相同电荷的胶粒3胶粒与扩散层中反号离子形成一个胶团。
二、双电层理论:当固体与液体接触时,可以是固体从溶液中选择性吸附某种离子,也可以是固体分子本身发生电离作用而使离子进入溶液,以致使固液两相分别带有不同符号的电荷,在界面上形成了双电层的结构。
1平板型模型2扩散双电层模型3stem模型。
三、溶胶的聚沉:溶胶的稳定具有条件的,一旦稳定条件被破坏,溶胶中的粒子就合并,长大,最后从介质中沉出。
影响因素:电解质、加热、辐射、溶胶本身。
聚沉值:能引起某一溶胶发生明显聚沉所需加电解质的最小浓度。
四、胶凝:一定浓度的溶胶或大分子化合物的真溶液在放置过程中自动形成胶凝的过程。
性质:1所有新形成的凝胶都含有大量液体,95%以上2凝胶有一定几何外形。
显示出固定的力学性质3由固液两相组成,具有液体的某些性质,不仅分散相是连续的,分散介质也连续。
分类:1弹性凝胶(明胶、琼脂)2非弹性(SiO2、TiO2、V2O5、Fe2O3)。
形成条件:1降低溶解度,使被分散的物质从溶液中以胶体分散状态析出2析出的质点既不沉降也不自由行动,而是构成骨架,通过整个溶液形成连续的网状结构。
形成方法:1改变温度2转化溶剂3加入电解质4化学反应。
不溶物形成凝胶的条件:1在产生不溶物的同时生成大量小晶粒2晶粒的形状以不对称为好,有利于搭成骨架。
五、膨胀:凝胶在液体或蒸汽中吸收液体和蒸汽使自身体积或重量增加的现象。
机理:一阶段:溶剂化层:溶剂分子很快出入凝胶中,与凝胶分子相互作用形成溶剂化层。
特征:1液体蒸汽压很低2体积收缩3热效应4熵值降低。
二阶段:溶剂分子的渗透和吸收。
六、硅酸铝凝胶制备(共沉淀法):酸性硫酸铝溶液+水玻璃溶液——硅铝溶胶—硅铝凝胶小球—老化—铝盐活化a—水洗—表面活性剂浸渍b—干燥—烘焙。
物理化学表面现象及胶体化学总结
1.压缩因子任何温度下第七章表面现象1.在相界面上所发生的物理化学现象陈称为表面现象。
产生表面现象的主要原因是处在表面层中的物质分子与系统内部的分子存在着力场上的差异。
2.通常用比表面来表示物质的分散度。
其定义为:每单位体积物质所具有的表面积。
3.任意两相间的接触面,通常称为界面(界面层)。
物质与(另一相为气体)真空、与本身的饱和蒸气或与被其蒸汽饱和了的空气相接触的面,称为表面。
4.表面张力:在与液面相切的方向上,垂直作用于单位长度线段上的紧缩力。
5.在恒温恒压下,可逆过程的非体积功等于此过程系统的吉布斯函数变。
6.影响表面及界面张力的因素:表面张力与物质的本性有关、与接触相的性质有关(分子间作用力)、温度的影响、压力的影响。
7.润湿现象:润湿是固体(或液体)表面上的气体被液体取代的过程。
铺展:液滴在固体表面上迅速展开,形成液膜平铺在固体表面上的现象。
8.亚稳状态与新相生成:a.过饱和蒸汽:按通常相平衡条件应当凝结而未凝结的蒸汽。
过热液体:按通常相平衡条件应当沸腾而仍不沸腾的液体。
过冷液体:按相平衡条件应当凝固而未凝固的液体。
过饱和溶液:按相平衡条件应当有晶体析出而未能析出的溶液。
上述各种过饱和系统都不是真正的平衡系统,都是不稳定的状态,故称为亚稳(或介安)状态。
亚稳态所以能长期存在,是因为在指定条件下新相种子难以生成。
9.固体表面的吸附作用:吸附:在一定条件下一种物质的分子、原子或离子能自动地粘附在固体表面的现象。
或者说,在任意两相之间的界面层中,某种物质的浓度可自动发生变化的现象。
吸附分为物理吸附(范德华力)和化学吸附(化学键力)。
具有吸附能力的物质称为吸附剂或基质,被吸附的物质称为吸附质。
吸附的逆过程,即被吸附的物质脱离吸附层返回到介质中的过程,称为脱附(或解吸)。
10.吸附平衡:对于一个指定的吸附系统,当吸附速率等于脱附速率时所对应的状态。
当吸附达到平衡时的吸附量,称为吸附量。
气体在固体表面的吸附量与气体的平衡压力及系统的温度有关。
表面化学-胶体化学
表面化学-胶体化学表面化学-胶体化学表面化学是研究物质表面的性质和现象的一门学科,而胶体化学则是表面化学的一个重要分支,研究胶体溶液中物质的性质和行为。
胶体化学的研究内容涉及到胶体的形成、稳定性、表面性质、胶体颗粒的相互作用以及胶体溶液的性质等。
本文将介绍表面化学和胶体化学的基本概念、研究方法以及应用领域。
表面化学最早起源于对溶液表面现象的研究,如水的表面张力、液滴的形成和液体的湿润性等。
表面化学研究的对象是固体和液体的界面以及液体和气体的界面,主要涉及到界面上的吸附现象、界面能和界面活性物质等。
固体-液体界面上的吸附现象包括离子吸附、分子吸附和表面电荷等,而液体-气体界面上的吸附现象则涉及到液滴形成和表面张力等。
胶体化学研究的是胶体溶液中胶体颗粒的性质和行为。
胶体是一种介于溶液和悬浮液之间的物质,其特点是颗粒很小,约为1纳米到1微米大小,并且能够在溶液中均匀分散。
胶体的稳定性是胶体化学研究的重要内容,稳定性的源于胶体颗粒表面的电荷,正负电荷的平衡使得颗粒之间相互排斥,从而保持胶体溶液的稳定性。
此外,胶体溶液中还包含着胶体的吸附、吸附剂的选择、界面张力、胶体性质的测定以及胶体与其他物质的相互作用等方面的研究内容。
表面化学和胶体化学的研究方法主要包括物理化学方法和化学方法两种。
物理化学方法包括表面张力测定、界面能测定、电化学方法、X射线衍射、电子显微镜等。
而化学方法包括有机合成、溶胶-凝胶法、聚合法、共沉淀法等多种方法。
表面化学和胶体化学在许多领域中都有重要的应用。
在光学领域中,胶体颗粒可以通过改变其尺寸和组成来调控其光学性质,从而应用于光学传感器、太阳能电池、红外吸收材料等。
在材料科学领域中,胶体颗粒可以通过自组装形成多孔材料和有序结构,具有较大的比表面积和孔径,被广泛用于催化剂、分离膜和储能材料等。
此外,表面化学和胶体化学还在生物医学、环境污染治理、油水分离、食品加工等领域发挥着重要的作用。
综上所述,表面化学和胶体化学是研究物质表面性质和胶体溶液行为的学科,涉及到物质界面的吸附现象、界面能、表面张力等。
胶体与表面化学期末复习资料(老马押题小组出品)
第一章绪论1.相:体系中物理化学性质完全相同的均匀部分;2.界面:相与相之间的交界面;3.表面:一相为气相的界面;4.比表面:单位体积或重量的物质所具有的总表面积;5.胶体化学:研究胶体体系的科学;6.表面化学:研究发生在物质表面或界面上的物理化学现象的一门学科;7.胶体:粒子大小1~100nm ,热力学不稳定,动力学稳定,扩散速度慢,不发生渗析,能通过滤纸,在超显微镜下可见;8.胶体分类:按分散介质可分为“气、液、固溶胶”。
第二章胶体的制备1.胶体制备的一般条件:①分散相在介质中的溶解度必须极小,反应物浓度很稀,生成难溶物晶体颗粒很小,不具备长大条件;②必须有稳定剂存在;2.胶体制备方法:(一)分散法①机械分散法:适用于脆而易碎的物质,对于柔韧性物质必须先硬化再粉碎。
②电分散法:将金属做成两个电极,浸在水中,盛水的盘子放在冷浴中。
在水中加入少量氢氧化钠做稳定剂。
制备时在两电极上施加100V 左右的直流电,调节电极间距离,使之发出电火花,这时表面金属蒸发,是分散过程,接着金属蒸汽立即被水冷却而凝聚成凝胶。
③超声波分散法:将分散相和分散介质两种不混溶的液体放在样品管中,样品管固定在变压器油浴中。
在两电极上通入高频电流,使电极中间的石英片发生机械震荡,使样品管中的两个液相均匀地混合成乳状液。
④溶胶分散法:新生成的沉淀中加入电解质或改变体系温度而形成溶胶体系。
(二)凝聚法:用物理方法或化学反应使分子、离子狙击成胶体粒子的方法。
(1)物理凝聚:将蒸汽状态或溶解状态的物质凝聚成胶体状态的方法。
①蒸汽骤冷法;②更换溶剂法;(2)化学凝聚:通过各种化学反应使生成物呈过饱和状态。
使初生成的难溶物微粒结合成胶粒,在少量稳定剂存在的条件下形成溶胶。
3.溶胶的净化方法(一)粗粒子:过滤、沉降、离心;(二)电解质:渗析、电渗析、超过滤、渗透与反渗透4.单分散溶胶定义:溶胶粒子的尺寸、形状、结构都相同的溶胶体系;5.单分散溶胶制备理论(LaMer )控制溶质的过饱和浓度,使之略高于成核浓度,爆发式成核。
胶体与表面化学知识点整理-图文
胶体与表面化学知识点整理-图文第一章胶体的制备和性质一、什么是胶体?1.胶体体系的重要特点之一是具有很大的表面积。
通常规定胶体颗粒的大小为1-100nm(直径)2.胶体是物质以一定分散程度存在的一种特殊状态,而不是一种特殊物质,不是物质的本性。
胶体化学研究对象是溶胶(也称憎液溶胶)和高分子溶液(也称亲液溶胶)。
气溶胶:云雾,青烟、高空灰尘液溶胶:泡沫,乳状液,金溶胶、墨汁、牙膏固溶胶:泡沫塑料、沸石、冰淇淋,珍珠、水凝胶、红宝石、合金二、溶胶的制备与净化1.溶胶制备的一般条件:(1)分散相在介质中的溶解度必须极小(2)必须有稳定剂存在2.胶体的制备方法:(1)分散法:研磨法:用机械粉碎的方法将固体磨细(产品细度1-74μm)胶溶法(解胶法):仅仅是将新鲜的凝聚胶粒重新分散在介质中形成溶胶,并加入适当的稳定剂。
(目前制备纳米材料和超微细粉的方法)超声波分散法:让分散介质动起来。
主要用来制备乳状液(即分散介质是液体的体系)。
好处是不与溶液接触。
④电弧法:用于制备金属水溶胶。
金溶胶多用于美容。
(2)凝聚法:化学凝聚法物理凝聚法:A、更换溶剂法(溶解度是减小的):利用物质在不同容剂中的溶解度的显著差别,制备溶胶,而且两种溶剂要能完全互溶。
(与萃取区别)B、蒸汽骤冷法:制备碱金属的苯溶胶。
3.溶胶的净化:简单渗析法,电渗析,超过滤法三.溶胶的运动性质1.扩散:胶粒从高浓度向低浓度迁移的现象,此过程为自发过程根本原因在于存在化学位。
dmdcDAdtd某,此为Fick第一扩散定律,式中dm/dt表示单位时间通过截面A扩散的物质数量,D为扩散系数,单位为m/,D越大,质点的扩散能力越大。
扩散系数D与质点在介质中运动时阻力系数f之间的关系为:D为气体常数)若颗粒为球形,阻力系数f=6r(式中,为介质的黏度,r为质点的半径)故D2RT(NA为阿伏加德罗常数;RNAfRT1,此式即为Eintein第一扩散公式NA6r浓度梯度越大,质点扩散越快;就质点而言,半径越小,扩散能力越强,扩散速度越快。
胶体与表面化学讲义第一章 基本概念
《胶体与界面化学》讲义第一章基本概念第一节胶体与表面一、胶体与胶体分散体系•目前科学地将颗粒大小在10-6~10-9m这样的物质(不管其聚集状态是气态、液态还是固态)称为胶体。
•胶体与其分散在其中的介质组成分散体系,介质可以是气、液和固体并与胶体颗粒间存在相界面,因此它还是高分散的多相的分散体系。
•胶体分散体系一般是两个组分以上的多组分体系,不过也存在极为罕见的单组分胶体分散体系,这类分散体系是液体,但由于分子的热运动而出现的涨落现象,一些分子会在液态内部聚集成较大的聚集体,这种分散体系称为类胶体(iso-colloid)分散体系。
聚合物或大分子量物质•聚合物或大分子量物质过去也称之为胶体分散体系的物质。
•如蛋白质,纤维素以及各种天然的和人工合成的聚合物,其尺寸也在胶体范围、并具有胶体的某些性质,比如慢扩散性,不透过半透膜,电泳行为等。
•因此过去也把它们作为胶体与表面化学的讲解内容。
但由于其迅速的发展,形成一个庞大的大分子家族,而成为一个独立学科去研究,不过它的某些理论和研究方法确系胶体的理论和研究方法。
二、表面和界面•表面(surface):是指凝聚相与真空,空气或其蒸气间的交界•界面(interface):是指凝聚相与其他相间的交界面。
•水的表面张力是水的表面(与空气或蒸汽的交界面)上的表面张力,约为72.8×10-3N/m;水和苯间界面张力为35×10-3N/m;水与汞间界面张力为375×10-3N/m。
•由此可见,界面张力值决定于相邻相的物质。
相边界上“面”的含义•这里所说的“面”是指相边界上的化学概念上的而非数学概念上的面。
数学面只有面积而无厚度,而化学面是有一定厚度的,起码有几个分子大小的厚度。
数学面所示在面上相的性质(如密度、浓度等)发生突变是不可思议的,而化学面中相的性质逐渐变化才是可理解的。
但在描述它时,由于其厚度值与两相本体尺寸比较可忽略不计近似为零。
表面化学和胶体化学
注意:表面自由能与表面张力的代表符相同,均 为σ,量纲相通,但两者的概念不同!! 表面自由能是单位表面积的能量,标量;
表面张力是单位长度上的力,矢量。 讨论:dU =TdS – pdV +σdAs+Σidni dH =TdS + Vdp +σdAs+Σidni
dA =-SdT –pdV +σdAs+Σidni
s
σ= 58.85×10-3N.m-1, ps= 2 /r =11.77×103kPa
h = 0.02m,ρ=958.1kg· m-3
p静=gh = 958.1×9.8×0.02=0.1878kPa p大气=100kPa
p =100 + 0.1878 + 11.77×103 = 11.87×103kPa pr 2M 1 007127 根据开尔文公式 ln 得: p0 RT r
◆ 过饱和蒸气
降温过程:
p
微小
pB
A:不能凝出微小液滴 pA B:凝出微小液滴 AB:过饱和蒸气 pB> pA
l
B 大块
A
g TA T
消除:如人工降雨,加AgI颗粒
◆ 过冷液体
原因:凝固点下降。如纯净水可到-40℃不结冰。
◆过热液体 液体在正常沸腾温度不沸腾,要温度超过正 常沸腾温度才沸腾。 原因:液体表面气化,液体内部的极微小气泡 (新相)不能长大逸出(气泡内为凹液面)。 小气泡受到的压力为: p大气 p = p大气+ ps+ p静 p静=ρgh ps = 2σ/r h 如 r =-10-8m,T = 373.15K时, p
dG =-SdT +Vdp +σdAs+Σidni
化学中胶体知识点总结
化学中胶体知识点总结一、胶体的定义和性质1. 胶体的定义胶体是由两种或多种物质组成的混合物,其中至少有一种物质分散在另一种物质中形成胶体颗粒。
这些颗粒的直径范围在1~1000纳米之间,与溶液中的溶质颗粒直径相当。
2. 胶体的性质(1)悬浮性:胶体颗粒在溶剂中形成悬浮系统,不会很快沉淀下来。
(2)分散性:胶体颗粒的分散程度较高,不容易团聚。
(3)不可过滤性:胶体颗粒的大小与溶质颗粒相近,不容易通过过滤器。
(4)光学性质:胶体颗粒对光有一定的散射和吸收作用,显示出乳白或彩色。
(5)电性质:胶体颗粒可以带电,形成电性胶体。
(6)表面效应:胶体颗粒的表面活性较高,与外界有较强的相互作用。
二、胶体的形成和稳定1. 胶体的形成胶体的形成是由于两种或多种物质之间的相互作用所导致的。
常见的胶体形成方式包括:(1)机械法:通过机械方式混合两种或多种物质而形成的胶体。
(2)凝聚法:由于凝聚或凝聚抑制作用导致的胶体形成。
(3)化学法:由化学反应而形成的胶体,如溶胶凝胶法。
2. 胶体的稳定胶体颗粒在溶液中往往会因为分散力和聚合力的作用而发生团聚,影响胶体的稳定性。
为了稳定胶体颗粒,通常采用以下方法:(1)增加分散剂:通过增加分散剂的使用量来提高胶体颗粒的分散性。
(2)控制电荷:通过改变胶体颗粒的表面电荷来调控其相互作用,从而提高稳定性。
(3)控制溶液条件:通过调节溶液的pH值、温度等条件来影响胶体颗粒的稳定性。
三、胶体的分类1. 根据分散介质的性质,胶体可分为溶胶、凝胶和胶体溶液。
溶胶是指液体中形成的胶体,凝胶是指固体中形成的胶体,胶体溶液是指固体和液体相混合形成的胶体。
2. 根据胶体颗粒的大小,胶体可分为溶胶胶体(颗粒直径小于1纳米)、胶体(颗粒直径1~1000纳米)和胶束(颗粒直径大于1000纳米)。
3. 根据分散相和连续相之间的互作用,胶体可分为溶胶性胶体和胶凝性胶体。
溶胶性胶体是指分散相和连续相间的互作用力比较弱,易于分散;胶凝性胶体是指分散相和连续相间的互作用力比较强,不容易分散。
表面与胶体化学
7 容器内放有油和水,用力震荡使油和 水充分混合,但是静止后,为什么油和 水仍然自动分层? 答 用力震荡十油和水充分混合,油和水 的分散度增高,油水界面增大,体系的 表面能也增大,处于不稳定状态。静止 后,油和水分分层的过程是一个减小油 水界面积的过程,是自由焓降低的过程
所以自动进行。 8 为什么小液滴和小气泡总是呈球状而 不会成别的几何形状?为什么液滴越小, 越更接近球形? 答 由于表面张力的作用,或由于表面自 由焓降低是自发的,液滴总是力图缩小 其表面积。比表面记最小的几何形状就
2 1.3 0.5 r 108 米 2 7000 9.8
即当多孔透气砖的微孔半径小于0.01mm 时,就可以保证钢液柱高为2米时,钢水 就不会从小孔中漏出来。 16 图56中,用三通活塞连接的两个玻 璃管口,各吹有一个肥皂泡。并且A大于 B,若旋转活塞使A、B,内的气体连通, 则肥皂泡将会有何变化?
体系总界面的自由焓还是减少了,直到 总界面自由焓达到一个最小值时,液固 气三相的接触角就不会变化。 12 水在玻璃管中是呈凹形液面,而汞 在玻璃管中却呈凸形液面,这是为什么? 答 因为水能润湿玻璃,其接触角小于 90度,故呈凹形液面。而汞却不能润湿
玻璃,其润湿角大于90度,故在玻璃管 中是凸面的。 13 在装有部分液体的毛细管中。在一 端加热时,Δ 代表加热,问: (1)润湿性液体向毛细管哪端移动? (2)不润湿性液体向毛细管哪端移动?
化简得 1 2 PS ( ) R2 R1 对于球面。R1 R2 R,则上式变为 2 PS R
10 什么是接触角?怎样由它的大小来 说明润湿的程度? 答 接触角又叫润湿角。通过液滴中心作 一法面垂直与固体表面,在法面上的固 液气三相交界处的一点,其液界面与气 界面的切线有液相的夹角,称为接触角 当液滴大小稳定时,力的作用达到平衡, 接触角取决为三个界面的张力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
胶体: 指具有高度分散的分散体系(亦是研究对象),分散相可以是一相和多相,粒子大小通常为10-7~10-9m之间.胶体的研究内容:表面现象、分散体系、高分子溶液。
表面能δ:恒温恒压下,可逆地增加单位表面积,环境对体系所做的功,单位J·m-2。
表面张力δ:单位长度液体表面的收缩力,单位N·m-1(或mN·m-1)l aplace方程:球面,则R1=R2=R,ΔP=2σR 柱面,则R1=R,R2=∞,ΔP=σ/R 球形气泡,且R1=R2=RΔP=4σ/R表面过剩:界面相与体相的浓度差。
接触角:固液气三相交点处作气液界面的切线,此切线与固液交界线之间的夹角θ。
Gibbs吸附公式:(双组分体系)固体表面张力:新产生的两个固体表面的表面应力之和的一半。
固体表面能:指产生一平方厘米新表面所消耗的等温可逆功。
Laugmuir理论:假设被吸附分子间无作用力,因而分子脱附不受周围分子的影响。
只有碰撞在空间表面的分子才有可能被吸附(单分子层吸附)。
固体表面是均匀的,各处吸附能相同。
BET理论的基本假设:①固体表面是均匀的,同层分子(横向)间没有相互作用,分子在吸附和脱附时不受周围同层分子的影响。
②物理吸附中,固体表面与吸附质之间有范德华力,被吸附分子间也有范德华力,即吸附是多分子层的。
影响溶液中吸附的因素:吸附剂:溶质、溶剂三者极性的影响;温度:溶液吸附也是放热过程,一般T上升,吸附下降;溶解度:吸附与溶解相反,溶解度越小,越易被吸附;同系物的吸附规律一般随C-H链的增长吸附有规律的增加和减少。
Trube规则;吸附剂的孔隙大小;吸附剂的表面化学性质,同一类吸附剂由于制备条件不同,表面活性相差很大,吸附性能也会有很大差异;混合溶剂的影响,色谱法中使用混合溶剂,洗提效果比单纯溶剂好,若自极性相同的混合溶剂中吸附第三组份,等温线界于两单等温线之间;若自极性不相同的混合溶剂中吸附第三组份,吸附量比任何单一溶剂中少,混合溶剂极性一致或不一致情况不同;多种溶质的混合溶液;9、盐的影响,盐的存在通过影响溶质的活度系数、溶解度、溶质的电离平衡而影响吸附。
高分子溶液中的吸附一般特点:吸附高分子是可溶的,因而是线性的。
且一般高分子是多分散的,吸附与自多组份中的吸附相似。
;同一界面上由于高分子有多种构型,所以吸附平衡时间长。
描述高分子吸附状态需要参数很多,建立模型困难不易定量处理。
T上升,吸附量上升,这与其它吸附不同。
吸附膜厚。
吸附高分子可以被其它高分子所取代,即产生交换吸附。
吸附平衡后,用同一种溶剂稀释,可产生脱附。
离子选择性吸附:极性吸附剂在多种离子混合溶液中,表面出对某种离子吸附的选择性,即某种离子吸附较多,某种离子吸附较少的吸附现象。
离子交换吸附:一种离子被吸附的同时,从吸附剂表面顶替出等当量的带同种电荷的另一种离子。
特点:同电性离子等电量交换、离子交换吸附是可逆的,吸附和脱附速度受溶液中离子浓度的影响、吸附速度较慢,吸附平衡需要时间。
离子交换吸附的强弱规律:带正电的吸附剂容易吸附负离子,反之亦然,溶液中离子浓度相差不大时,离子价数越高,越易被吸附、同价离子在同样条件,离子半径越小,水化能力强,水化膜厚,吸附能力弱。
、常见的阴、阳离子交换吸强弱。
Li+<Na+<K+<NH4+<Mg++<Ca++<Ba++<Al3+<Fe3+<H+ SO42-<Cl-<Br-<NO3-<I-<…<OH-溶胶粒子表面的电荷来源:电离作用;吸附作用;离子的溶解作用;晶格取代;摩擦带电。
表面电势:带电质点的表面与液体内部的电位差。
电动电势:固液两相发生相对运动的界面与液体内部的电位差,称电动电势或电势。
Gouy-chapman假设:a固体表面是平板型的,y和z方向无限大,而且表面电荷分布是均匀的。
b离子扩散只存在于x方向,离子作为一个点电荷来考虑,它在双电层中的分布符合Boltzmann分布。
c正负离子电荷数相等,整个体系为电中性。
d在整个扩散层内溶剂的介电常数(ε)相同。
e溶液中只有一种对称电解质,且正负离子介数均为Z。
Stern双电层模型假设:离子有一定大小,离子中心与表面的距离不能小于离子半径;离子与质点表面除静电相互作用外,还有范德华引力作用。
电泳:在电场作用下,带电的溶胶粒子向作与自己电荷相反的电极方向迁移,对液相作相对运动。
聚沉值:在指定条件下,使溶胶聚沉所需电解质的最低浓度,以mol/L表示。
聚沉的实验规律:schulze-hardy规则,起聚沉作用的主要是反离子,离子价数越高,其聚沉率也越高;离子大小,同价离子、离子水化半径小,聚沉能力大,水化半径越大,越不易被胶粒吸附(静电引力越弱),聚沉能力越弱;同号离子的影响,大的或高价负离子对负溶胶有一定的稳定作用;不规则聚沉,电解质浓度超过聚沉值时,溶胶聚沉。
继续加入电解质,质点吸附大或高价反离子而重新带电,溶胶分散稳定,再加入电解质,由于反离子作用使溶胶重新聚沉;混合电解质的聚沉,加和性、对抗性、协同效应;溶胶的相互聚沉,指电性相反的溶胶混合发生聚沉,聚沉程度与两种溶胶的比例有关,在等电点附近聚沉最完全。
DLVO理论:胶体质点因范德华引力而相互接近时又因双电层相互重叠而相互排斥;溶胶的稳定性取决于双电层斥力与范德华引力的相对大小。
如排斥胜过吸引而占优势,则溶胶稳定;如吸引胜过排斥,则溶胶聚沉。
絮凝作用:在憎液溶胶或悬浮体内加入极少量高聚物使溶胶或悬浮体发生絮凝的作用。
高分子絮凝剂作用特点:较好絮凝剂一般是分子量高的线性化合物,既可是离子型也可是非离子型的;高分子絮凝剂的分子量和线团尺寸对絮凝作用有重要影响;絮凝剂有一最佳用量;高分子链的电荷密度,高分子的电离程度越大,电荷密度越高,分子链越伸展,有利于桥联,但有一最佳密度;高分子与胶粒表面的相互作用力要适中;二价无机盐如CaCl2常常能促进高分子的絮凝作用; 絮凝剂与憎液胶体的混合条件,搅拌速度和条件、加入浓度和速度会影响絮块大小和程度;空间稳定作用:质点表面上大分子吸附层阻止了质点的聚结的一类作用,也叫高分子保护作用。
基本要点:带电聚合物被吸附以后,会影响胶粒间的静电斥力位能。
这一点同吸附简单离子相同,同样可用DLVO理论处理;高聚物的存在通常会减小胶粒间的Hamaker常数,因而也减小了范德华吸引能;由于聚合物的存在而产生一种新的斥力位能——空间斥力位能。
高分子保护作用的实验规律:高分子稳定剂的结构特点, 最有效的高分子稳定剂一般而言是嵌段和接枝共聚物A-B, 须含有上述两种性能不同的基团,且分子比例要适当。
; 分子量与浓度, 一般分子量上升,吸附上升,稳定性上升, 一定量浓度的高分子能盖住胶粒表面,形成包被层,再多并不能增加其稳定作用;溶剂的良劣,使用良溶剂时胶粒重叠时,分子链不发生相互吸引,排斥能上升,利于稳定;溶胶被高分子稳定后,体系的物化性质发生显著变化,变得与所加高分子溶液的性质更为接近。
表面活性剂的定义:很少加量即能显著降低水溶液表面张力的物质。
表面活性剂分子结构的最大特点是具有两亲结构,亲油性和亲水性。
表面活性剂的分类:阴(或负)离子表面活性剂;阳(或正)离子表面活性剂;两性表面活性剂;非离子性表活剂。
临界胶团浓度:指表面活性剂溶液性质开始发生突变的浓度(CMC),亦即形成胶团的浓度。
加溶:表活剂水溶液在溶液浓度不大时能溶解相当量的不溶(或不易溶)于水的有机物质。
加溶(增溶)作用:稀水溶液中使不易溶有机物在水中溶度增加的作用。
胶团的结构:胶团内核;胶团内核中的渗入水;胶团-水“界面”;扩散双电层部分。
表活剂的化学结构与临界胶团浓度:表活剂的碳氢链链长,C原子增加,CMC下降;碳氢链分支及极性基位置的影响,同样C原子数,有支链者CMC较大且极性基移向C-H链的中部,CMC亦增大;C-H链中其它取代基的影响,一个苯基相当于3.5个CH2,在憎水基中引入极性基(如-O-、-OH等),使CMC增大;碳氟链化合物,碳氢链中氢被F部分取代了的表活剂,其CMC随被取代程度上升而下降;亲水基的影响,水溶液中,离子性表活剂的CMC远比非离子性大。
加溶作用的几种可能方式:胶团的内核---非极性加溶;胶团定向的表活剂分子之间,形成“栅栏”结构极性—非极性加溶;胶团的表面,即胶团-溶剂交界处----吸附加溶;亲水基团之间---特殊加溶。
影响加溶作用的因素:a、表活剂的结构,随C原子数上升溶作用增强;b、加溶物的结构,脂肪烃与烷基芳烃,加溶程度随加溶物链长增加而减小,随不饱和程度及环化程度上升而上升;c、有机物添加剂对加溶的影响,加溶一种极性有机物会使另一种极性有机物的加溶程度下降,加溶一种极性有机物则使加溶程度上升。
d、无机盐效应,少量无机盐加到离子表活剂中,可增加烃类的加溶程度,但却减少极性有机物的加溶程度e、温度的影响:离子型表活剂,增加温度一般会引起极性与非极性有机物加溶程度增加。
添加剂对表面活性剂的影响:同系物的影响,C原子数越大,表活性越高,越易在溶液中形成胶团(CMC 变小);无机电解质,对于离子型表活剂,加入与表活剂有相同离子的无机盐,表面活性得到提高,CMC下降;极性有机物,少量有机物的存在,能导致表活剂在水溶液中的CMC很大变化,常增加表面活性;非离子表活剂与离子表活剂的混合物;正离子与负离子表活剂的混合物;水溶性高分子化合物。
HLB(hydrophilic and lipophile balance)亲油系水平衡值重量百分数法(适用于聚乙二醇类非离子表活剂)HLB=(亲水基的重量/亲油基重量+亲水基重量)×20表面压:膜对单位长度的浮物所施加的力,π(mN/m)单分子膜的各种状态:气态膜(G);液态扩张膜(L1);转变膜;液态凝聚膜(L2)和固态凝聚膜(S)微乳溶液:两个互不相溶液体在表面活性剂界面膜作用下形成的热力学稳定、各向同性的、低粘度的、透明的均相分散体系。
几个重要的图形:。