教材全解2016湘教版八年级数学下册第一章检测题及答案解析
【新】湘教版八年级数学下册第1章《直角三角形》单元检测(含答案)
八年级数学下册第1章《直角三角形》单元检测与简答一.选择题(共10小题,每小题3分,共30分)1.如图所示,在ABC ∆中,90C ∠=︒,//EF AB ,39B ∠=︒,则1∠的度数为( ) A .38︒B .39︒C .51︒D .52︒2.如图,在ABC ∆中,90C ∠=︒,15A ∠=︒,60DBC ∠=︒,1BC =,则AD 的长 为( ) A .1.5B .2C .3D .43.如图,ABC ∆中,90ACB ∠=︒,CM 是高,30MCA ∠=︒,若4AC =,则AB 的长度为( ) A .8B .6C .4D .54.如图,在Rt ABC ∆中,CE 是斜边AB 上的中线,CD AB ⊥,若5CD =,6CE =,则ABC ∆的面积是( ) A .24B .25C .30D .365.如果一个直角三角形的两边分别是6,8,那么斜边上的中线长为( ) A .4B .5C .3或5D .4或56.若直角三角形的三边a ,b ,c 满足2222220a ab b a c -+-,那么这个三角形 是( ) A .等边三角形B .有一角是36︒的等腰三角形C .等腰直角三角形D .有一个角是30︒的直角三角形 7.下列条件中不能判定两个直角三角形全等的是( )A .两个锐角分别对应相等B .两条直角边分别对应相等C .一条直角边和斜边分别对应相等D .一个锐角和一条斜边分别对应相等第1题图第2题图第3题图第4题图8.如图,AC BC =,AC OA ⊥,CB OB ⊥,则Rt AOC Rt BOC ∆≅∆的理由是( ) A .SSSB .ASAC .SASD .HL9.如图,在ABC ∆中,90C ∠=︒,AD 是ABC ∆的一条角平分线.若6AC =,10AB =,则点D 到AB 边的距离为( )A .2B .2.5C .3D .410.如图,ABC ∆中,90ACB ∠=︒,30CAB ∠=︒,BD 是ABC ∠的平分线,DE AB ⊥,垂足为E ,2CD =,则(AC = )A .4B .43C .6D .63二.填空题(共8小题,每小题3分,共4分)11.如图,在Rt ABC ∆中,90B ∠=︒,132ACD ∠=︒,A ∠= .12.如图,在ABC ∆中,CD AB ⊥于点D ,BE AC ⊥于点E ,F 为BC 的中点,5DE =,8BC =,则DEF ∆的周长是 .13.如图,ABC ∆为等边三角形,BD AB ⊥,BD AB =,则DCB ∠= ︒.14.如图,AC BC ⊥,AD BD ⊥,垂足分别是C 、D ,若要用“HL ”得到Rt ABC Rt BAD ∆≅∆,则你添加的条件是 .(写一种即可)第8题图 第9题图第10题图第11题图第12题图第13题图第14题图第15题图第16题图15.如图,在ABC ∆中,AD BC ⊥,AE 平分BAC ∠,若130∠=︒,220∠=︒,则B ∠= . 16.如图,点M 是AOB ∠平分线上一点,60AOB ∠=︒,ME OA ⊥于E ,3OM =,如果P 是OB 上一动点,则线段MP 的取值范围是 .17.如图,CA AB ⊥,垂足为点A ,8AB =,4AC =,射线BM AB ⊥,垂足为点B ,一动点E 从A 点出发以2/秒的速度沿射线AN 运动,点D 为射线BM 上一动点,随着E 点运动而运动,且始终保持ED CB =,当点E 运动 秒时,DEB ∆与BCA ∆全等.18.如图,OAB ∆是腰长为1的等腰直角三角形,90OAB ∠=︒,延长OA 至1B ,使1AB OA =,以1OB 为底,在OAB ∆外侧作等腰直角三角形11OA B ,再延长1OA 至2B ,使121A B OA =,以2OB 为底,在△11OA B 外侧作等腰直角三角形22OA B ,⋯⋯,按此规律作等腰直角三角形(1n n OA B n …,n 为正整数),回答下列问题:(1)33A B 的长是 ; (2)△20202020OA B 的面积是 . 三.解答题(共6小题)19.请在下面括号里补充完整证明过程:已知:如图,ABC ∆中,90ACB ∠=︒,AF 平分CAB ∠,交CD 于点E ,交CB 于点F ,且CEF CFE ∠=∠.求证:CD AB ⊥.证明:AF Q 平分CAB ∠(已知)12∴∠=∠CEF CFE ∠=∠Q ,又3CEF ∠=∠(对顶角相等) 3CFE ∴∠=∠(等量代换)Q 在ACF ∆中,90ACF ∠=︒(已知)∴ 90CFE +∠=︒12∠=∠Q ,3CFE ∠=∠(已证)∴ + 90=︒(等量代换)在AED ∆中,90ADE ∠=︒(三角形内角和定理)第17题图第18题图CD AB ∴⊥ .20.初二两个班的学生分别在M 、N 两处劳动,现要在道路AB 、AC 的交叉区域内设一个茶水供应点P ,使P 到两条道路的距离相等,且使PM PN =,尺规作图找出符合条件的点P .21.如图,四边形ABCD 中,90C ∠=︒,AD DB ⊥,点E 为AB 的中点,//DE BC . (1)求证:BD 平分ABC ∠;(2)连接EC ,若30A ∠=︒,23DC =,求EC 的长.22.如图,ABC ∆中,AB BC =,90ABC ∠=︒,F 为AB 延长线上一点,点E 在BC 上,且AE CF =. (1)求证:AE CF ⊥;(2)若25BAE ∠=︒,求ACF ∠的度数.23.问题情境在综合与实践课上,同学们以“一个含30︒的直角三角尺和两条平行线”为背景开展数学活动如图1,已知两直线a ,b 且//a b 和直角三角形ABC ,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒. 操作发现:(1)在图1中,146∠=︒,求2∠的度数;(2)如图2,创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,说明理由; 实践探究(3)缜密小组在创新小组发现结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请直接写出1∠与2∠的数量关系.24.已知ABC ∆中,90A ∠=︒,AB AC =,D 为BC 的中点.(1)如图,若E 、F 分别是AB 、AC 上的点,且BE AF =.求证:DEF ∆为等腰直角三角形; (2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE AF =,其他条件不变,那么DEF ∆是否仍为等腰直角三角形?证明你的结论.八年级数学下册第1章《直角三角形》单元检测参考简答一.选择题(共10小题)1.C . 2.B . 3.A . 4.C . 5.D . 6.C . 7.A . 8.D . 9.C . 10.C . 二.填空题(共8小题)11. 42︒ . 12. 13 . 13. 15 ︒. 14. AC BD = . 15. 50︒ . 16. 1.5MP … . 17. 0,2,6,8 . 18.(1) 22 ; (2) 20192 . 三.解答题(共6小题)19.请在下面括号里补充完整证明过程:已知:如图,ABC ∆中,90ACB ∠=︒,AF 平分CAB ∠,交CD 于点E ,交CB 于点F ,且CEF CFE ∠=∠.求证:CD AB ⊥.证明:AF Q 平分CAB ∠(已知)12∴∠=∠ (角平分线的定义)CEF CFE ∠=∠Q ,又3CEF ∠=∠(对顶角相等) 3CFE ∴∠=∠(等量代换)Q 在ACF ∆中,90ACF ∠=︒(已知)∴ 90CFE +∠=︒12∠=∠Q ,3CFE ∠=∠(已证)∴ + 90=︒(等量代换)在AED ∆中,90ADE ∠=︒(三角形内角和定理) CD AB ∴⊥ .【证明】:AF Q 平分CAB ∠(已知)12∴∠=∠(角平分线的定义)CEF CFE ∠=∠Q ,又3CEF ∠=∠(对顶角相等) 3CFE ∴∠=∠(等量代换)Q 在ACF ∆中,90ACF ∠=︒(已知)190CFE ∴∠+∠=︒(直角三角形的性质)12∠=∠Q ,3CFE ∠=∠(已证)(2)(3)90∴∠+∠=︒(等量代换)在AED ∆中,90ADE ∠=︒(三角形内角和定理) CD AB ∴⊥(垂直的定义). 故答案为:(角平分线的定义);1∠;(直角三角形的性质);2∠;3∠;(垂直的定义).20.初二两个班的学生分别在M 、N 两处劳动,现要在道路AB 、AC 的交叉区域内设一个茶水供应点P ,使P 到两条道路的距离相等,且使PM PN =,尺规作图找出符合条件的点P .【解】:如图,点P 即为所求.21.如图,四边形ABCD 中,90C ∠=︒,AD DB ⊥,点E 为AB 的中点,//DE BC . (1)求证:BD 平分ABC ∠;(2)连接EC ,若30A ∠=︒,23DC =,求EC 的长.【解】:(1)证明:AD DB ⊥Q ,点E 为AB 的中点, 12DE BE AB ∴==. 12∴∠=∠.//DE BC Q , 23∴∠=∠.13∴∠=∠.BD ∴平分ABC ∠.(2)解:AD DB ⊥Q ,30A ∠=︒ 160∴∠=︒. 3260∴∠=∠=︒. 90BCD ∠=︒Q , 430∴∠=︒.2490CDE ∴∠=∠+∠=︒.在Rt BCD ∆中,360∠=︒,23DC =,4DB ∴=.DE BE =Q ,160∠=︒, 4DE DB ∴==.2222(23)427EC DE CD ∴=+=+=.22.如图,ABC ∆中,AB BC =,90ABC ∠=︒,F 为AB 延长线上一点,点E 在BC 上,且AE CF =. (1)求证:AE CF ⊥;(2)若25BAE ∠=︒,求ACF ∠的度数.【解】:(1)证明:延长AE 交CF 于点H ,如图所示: 90ABC ∠=︒Q , 90CBF ∴∠=︒,在Rt ABE ∆与Rt CBF ∆中,AE CF AB BC =⎧⎨=⎩,Rt ABE Rt CBF(HL)∴∆≅∆,BAE BCF ∴∠=∠, 90F BCF ∠+∠=︒Q , 90BAE F ∴∠+∠=︒, 90AHF ∴∠=︒, AE CF ∴⊥;(2)AB BC =Q ,90ABC ∠=︒, 45ACB BAC ∴∠=∠=︒,由(1)得:ABE CBF ∆≅∆, 25BAE BCF ∴∠=∠=︒, 452570ACF ∴∠=︒+︒=︒.23.问题情境在综合与实践课上,同学们以“一个含30︒的直角三角尺和两条平行线”为背景开展数学活动如图1,已知两直线a ,b 且//a b 和直角三角形ABC ,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒. 操作发现:(1)在图1中,146∠=︒,求2∠的度数;(2)如图2,创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,说明理由; 实践探究(3)缜密小组在创新小组发现结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请直接写出1∠与2∠的数量关系.【解】:(1)90BCA ∠=︒Q ,390144∴∠=︒-∠=︒, //a b Q , 2344∴∠=∠=︒;(2)理由如下:过点B 作//BD a ,如图2则1802ABD ∠=︒-∠,//a b Q ,//BD a , //BD b ∴, 1DBC ∴∠=∠,60ABC ∠=︒Q , 1802160∴︒-∠+∠=︒, 21120∴∠-∠=︒;(3)12∠=∠,理由如下:AC Q 平分BAM ∠, 260BAM BAC ∴∠=∠=︒,过点C 作//CE a ,如图32BCE ∴∠=∠,//a b Q ,//CE a ,//CE b ∴,160BAM ∠=∠=︒,30ECA CAM ∴∠=∠=︒, 260BCE ∴∠=∠=︒,12∴∠=∠.24.已知ABC ∆中,90A ∠=︒,AB AC =,D 为BC 的中点.(1)如图,若E 、F 分别是AB 、AC 上的点,且BE AF =.求证:DEF ∆为等腰直角三角形;(2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE AF =,其他条件不变,那么DEF ∆是否仍为等腰直角三角形?证明你的结论.【解】:(1)证明:连接ADAB AC =Q ,90A ∠=︒,D 为BC 中点 2BC AD BD CD ∴=== 且AD 平分BAC ∠45BAD CAD ∴∠=∠=︒在BDE ∆和ADF ∆中,45BD AD B DAF BE AF =⎧⎪∠=∠=︒⎨⎪=⎩,()BDE ADF SAS ∴∆≅∆DE DF ∴=,BDE ADF ∠=∠ 90BDE ADE ∠+∠=︒Q90ADF ADE ∴∠+∠=︒即:90EDF ∠=︒EDF ∴∆为等腰直角三角形.(2)解:仍为等腰直角三角形. 理由:AFD BED ∆≅∆QDF DE ∴=,ADF BDE ∠=∠ 90ADF FDB ∠+∠=︒Q90BDE FDB ∴∠+∠=︒即:90EDF ∠=︒EDF为等腰直角三角形.。
湘教版八年级数学下册《第一章 直角三角形》测试卷-带参考答案
湘教版八年级数学下册《第一章直角三角形》测试卷-带参考答案一、选择题(每题3分,共30分)1.下列各组数中,以它们为边长能构成直角三角形的是()A.1,3,4B.2,3,4C.1,1,√3D.5,12,132.如图,已知AB∥CD,点E在直线AB上,点F,G在直线CD上,EG⊥EF于点E,∠AEF=40°,则∠EGF的度数是()(第2题)A.40°B.45°C.50°D.60°3.如图,在4×3的正方形网格中,标记格点A,B,C,D,且每个小正方形的边长都是1,下列选项中的线段长度为√13的是()(第3题)A.线段ABB.线段BCC.线段CDD.线段AD4.(母题:教材P16习题T2)在△ABC中,a,b,c分别是∠A,∠B,∠C所对的边.下列条件中,不能得出△ABC是直角三角形的是()A.b2=a2-c2B.∠A∶∠B∶∠C=3∶4∶5C.∠C=∠A-∠BD.a∶b∶c=1∶√3∶√25.如图,在Rt△ABC中,∠A=30°,DE垂直平分AC,交AB于点D,E是垂足,连接CD.若BD=1,则AC的长是()(第5题)A.2√3B.2C.4√3D.46.如图,在四边形ABCD中,∠ABC=60°,BD平分∠ABC,∠BCD>∠CBD,BC=24,P,Q分别是BD,BC上的动点,当CP+PQ取得最小值时,BQ的长是()(第6题)A.8B.10C.12D.167.若△ABC的三边长a,b,c满足(a-b)2+|a2+b2-c2|=0,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.无法确定8.如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=√3,则△AOB 与△BOC的面积之和为()(第8题)A.√34B.√32C.3√34D.√39.如图,边长为6的正方形ABCD中,M为对角线BD上的一点,连接AM并延长交CD于点P.若PM=PC,则AM的长为()(第9题)A.3(√3-1)B.3(3√3-2)C.6(√3-1)D.6(3√3-2)10.“春节”是我国最重要的传统节日,在春节期间有很多习俗,贴对联、剪窗花、挂彩灯、吃饺子、守岁、放鞭炮等,为了增添节日的气氛,某同学家买了一串长52 cm的彩灯,按如图方式(从A绕到B)缠绕在圆柱体的柱子上,且柱子的底面周长为10 cm,则柱子高()(第10题)A.2√651 cmB.√69 cmC.12 cmD.48 cm二、填空题(每题3分,共24分)11.如图,在△ABC中,BP,CP分别是∠ABC,∠ACB的平分线,若∠BPC=130°,则∠A=.(第11题)12.如图,在△ABC中,AB=AC,AD是BC边上的中线,若AB=5,BC=6,则AD的长度为.(第12题)13.如图,OC为∠AOB的平分线,CM⊥OB于点M,OC=5,OM=4,则点C到射线OA的距离为.(第13题)14.已知直角三角形的两边长分别为3和4,则此三角形的周长为.15.如图所示的象棋棋盘中,各个小正方形的边长均为1.“马”从图中的位置出发,不走重复路线,按照“马走日”的规则,走两步后的落点与出发点间的最短距离为.(第15题)16.七巧板是我国民间广为流传的一种益智玩具,某同学用边长为4 dm的正方形纸板制作了一副七巧板(如图),由5个等腰直角三角形、1个正方形和1个平行四边形组成,则图中阴影部分的面积为dm2.(第16题)17.如图,边长为2的等边三角形ABC的两个顶点A,B分别在两条射线OM,ON 上滑动,若OM⊥ON,则OC的最大值是.(第17题)18.如图,在Rt△ABC中,∠ACB=90°,以△ABC的三边为边向外作正方形ACDE,正方形CBGF,正方形AHIB,P是HI上一点,记正方形ACDE和正方形AHIB的面积分别为S1,S2,若S1=16,S2=25,则四边形ACBP的面积等于.(第18题)三、解答题(19~22题每题10分,23题12分,24题14分,共66分)19.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,CD=3.(1)求DE的长;(2)若AC=6,BC=8,求△ADB的面积.20.(母题:教材P16习题T2)如图,在边长为1的小正方形组成的网格图中,△ABC的三个顶点均在格点上,请按要求完成下列问题:(1)求△ABC的周长;(2)试判断△ABC的形状.21.海绵城市是新一代城市雨洪管理概念,下雨时吸水、蓄水、渗水、净水,需要时将蓄存的水释放并加以利用.某市是全国首批16个海绵城市建设试点城市之一,其中位于梦溪路与滨水路交界处的海绵主题公园,既是周边汇水区雨洪管理的一个有机模块,也是立体化展示海绵技术的科普公园,园区内有一块下沉式绿地(四边形ABCD,如图),经测量,AB∥CD,AB=BC=20米,∠B=60°,∠D=45°,求该绿地的周长(结果保留根号).22.如图,在△ABC中,∠ABC的平分线交AC于点D,过点D作DE∥BC交AB 于点E.(1)求证:BE=DE;(2)若∠A=80°,∠C=40°,求∠BDE的度数.23.如图,学习了勾股定理后,数学兴趣小组的小红和小明对离教室不远的一个直角三角形空地斜边上的高进行了探究:两人在直角边AB上距离直角顶点B为9米远的点D处同时开始测量,点C为终点,小明沿D→B→C的路径测得所经过的路程为18米,小红沿D→A→C的路径测得所经过的路程为18米,这时小明说:“我能求出这个直角三角形空地斜边上的高了.”小红说:“我也知道怎么求出这个直角三角形空地斜边上的高了.”你能求出这个直角三角形空地斜边上的高吗?若能,请你求出来;若不能,请说明理由.24.如图,∠A=90°,AB=AC,BD⊥AB,BC=AB+BD.(1)写出AB与BD的数量关系;(2)延长BC到点E,使CE=BC,延长DC到点F,使CF=DC,连接EF,求证:EF⊥AB;(3)在(2)的条件下,作∠ACE的平分线,交AF于点H,求证:AH=FH.答案一、1.D 2.C3.B 【点拨】由题意得AB=√12+22=√5,BC=√22+32=√13,CD=√12+12=√2,AD=√12+32=√10,故选B.4.B 【点拨】根据三角形内角和等于180°判断B,C;根据勾股定理的逆定理判断A,D,即可得出答案.5.A6.C 【点拨】作点Q关于BD的对称点H,易知点H在直线AB上,连接PH,则PQ=PH,BH=BQ,∴CP+PQ=CP+PH,∴当C,H,P三点在同一直线BC 上,且CH⊥AB时,CP+PQ=CH为最短.易得此时∠BCH=30°,∴BH=12×24=12,∴BQ=12.故选C.=127.C8.C9.C 【点拨】∵四边形ABCD是边长为6的正方形∴AD=CD=6,∠ADC=90°,∠ADM=∠CDM=45°.又∵DM=DM∴△ADM≌△CDM(SAS)∴∠DAM=∠DCM.∵PM=PC,∴∠CMP=∠DCM∴∠APD=∠CMP+∠DCM=2∠DCM=2∠DAM.又∵∠APD+∠DAM=180°-∠ADC=90°∴∠DAM=30°.设PD=x,则AP=2PD=2x,PM=PC=CD-PD=6-x∴AD=√AP2-PD2=√3x=6,解得x=2√3∴PM=6-x=6-2√3,AP=2x=4√3∴AM=AP-PM=4√3-(6-2√3)=6(√3-1).10.D二、11.80°【点拨】∵∠BPC=130°∴∠CBP+∠BCP=180°-∠BPC=50°.∵BP,CP分别是∠ABC,∠ACB的平分线∴∠ABC=2∠CBP,∠ACB=2∠BCP∴∠ABC+∠ACB=2(∠CBP+∠BCP)=100°∴∠A=180°-(∠ABC+∠ACB)=80°.12.4 【点拨】∵AB=AC,AD是BC边上的中线∴AD⊥BC,BD=CD,∴∠ADB=90°.∵BC=6,∴BD=CD=3.在Rt△ABD中,根据勾股定理得AD=√AB2-BD2=√52-32=4.13.314.12或7+√715.√2【点拨】如图,第一步到①,第二步到②.故走两步后的落点与出发点间的最短距离为√12+12=√2.16.2 【点拨】如图所示AD=2√2 dm依题意,得OD=√22OD=√2 dm.OE=12∴阴影部分的面积为OE2=(√2)2=2(dm2).17.1+√3【点拨】取AB中点D,连接OD,DC∴OC≤OD+DC,当O,D,C三点共线时,OC有最大值,最大值是OD+CD.∵△ABC为边长为2的等边三角形,点D为AB中点∴AB=BC=2,BD=1,CD⊥AB∴CD=√BC2-BD2=√3.∵△AOB 为直角三角形,点D 为斜边AB 的中点 ∴OD =12AB =1,∴OD +CD =1+√3 即OC 的最大值为1+√3.18.18.5 【点拨】∵正方形ACDE 和正方形AHIB 的面积分别为S 1,S 2,且S 1=16,S 2=25∴AC =4,AB =5.易得正方形CBGF 的面积=CB 2=AB 2-AC 2=25-16=9,∴BC =3.∴四边形ACBP 的面积=S △ABC +S △ABP =12×3×4+12×5×5=18.5.三、19.【解】(1)∵在Rt △ABC 中,∠C =90°,AD 平分∠CAB ,DE ⊥AB 于点E ,∴DE =CD .∵CD =3,∴DE =CD =3.(2)∵在Rt △ABC 中,∠C =90°,AC =6,BC =8 ∴AB =√62+82=10. ∵由(1)知,DE =CD =3∴S △ABD =12AB ·DE =12×10×3=15.20.【解】(1)∵AB =√22+12=√5,AC =√22+42=2√5,BC =√32+42=5,∴AB +AC +BC =√5+2√5+5=3√5+5,即△ABC 的周长为3√5+5. (2)∵AB 2+AC 2=(√5)2+(2√5)2=25,BC 2=52=25,∴AB 2+AC 2=BC 2. ∴△ABC 是直角三角形.21.【解】连接AC ,过点A 作AE ⊥CD ,垂足为点E ,如图.∵AB =BC =20米,∠B =60° ∴△ABC 是等边三角形. ∴AC =AB =20米,∠BAC =60°. ∵AB ∥CD∴∠ACE =∠BAC =60°.又∵∠AEC =90°,∴∠CAE =30°.∴CE =12AC =10米.∴AE =√AC 2-CE 2=10√3米.∵∠AED =90°,∠D =45°,∴∠EAD =45°. ∴DE =AE =10√3米.由勾股定理得AD =√AE 2+DE 2=10√6米. ∴该绿地的周长=AB +BC +CD +DA =20+20+10+10√3+10√6 =50+10√3+10√6(米).22.(1)【证明】∵∠ABC 的平分线交AC 于点D ∴∠ABD =∠CBD .∵DE ∥BC ,∴∠EDB =∠CBD . ∴∠EBD =∠EDB .∴BE =DE .(2)【解】∵∠A =80°,∠C =40°,∴∠ABC =60°. ∵∠ABC 的平分线交AC 于点D ∴∠ABD =∠CBD =12∠ABC =30°. 由(1)知∠BDE =∠EBD ,∴∠BDE =30°. 23.【解】能.设BC =a 米,AC =b 米,AD =x 米,斜边AC 上的高为h 米,则9+a =x +b =18,∴a =9,b =18-x .在Rt △ABC 中,由勾股定理得(9+x )2+a 2=b 2 ∴(9+x )2+92=(18-x )2,解得x =3,即AD =3米. ∴AB =AD +DB =3+9=12(米),AC =15米. ∴12×9×12=12×15h ,解得h =365.答:这个直角三角形空地斜边上的高为365米. 24.(1)【解】∵∠A =90°,AB =AC ,∴BC =√2AB . ∵BC =AB +BD ,∴√2AB =AB +BD 即(√2-1)AB =BD .第 11 页 共 11 (2)【证明】如图①,∵CE =BC ,∠2=∠1,CF =DC ,∴△CEF ≌△CBD①∴∠E =∠DBC ,∴EF ∥BD ,∵BD ⊥AB ,∴EF ⊥AB .(3)【证明】如图②,延长BA ,EF 交于点M ,延长CH 交ME 于点G .②∵EF ⊥AB ,AC ⊥AB∴ME ∥AC ,∴∠CGE =∠ACG .∵CH 是∠ACE 的平分线∴∠ACG =∠ECG ,∴∠CGE =∠ECG∴EG =EC =BC =AB +BD .∵△CBD ≌△CEF∴EF =BD ,∴EG =AB +BD =AC +EF即FG +EF =AC +EF ,∴AC =FG .在△AHC 和△FHG 中{∠ACH =∠FGH∠AHC =∠FHG AC =FG∴△AHC ≌△FHG (AAS)∴AH =HF.。
湘教版八年级数学下册第1章单元测试检测卷含答案精校打印版
第1章检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.下列长度的三条线段能组成直角三角形的是( )A .4,5,6B .2,3,4C .1,1, 2D .1,2,22.若三角形三个内角的比为1∶2∶3,则它的最长边与最短边的比为( ) A .3∶1 B .2∶1 C .3∶2 D .4∶1 3.如图,∠ABC =∠ADC =90°,点E 是AC 的中点,若BE =3,则DE 的长为( ) A .3 B .4 C .5 D .无法求出第3题图 第4题图4.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB ,CD 分别表示一楼、二楼地面的水平线,∠ABC =150°,BC 的长是8m ,则乘电梯从点B 到点C 上升的高度h 是( )A.833m B .4m C .43m D .8m 5.如图,OP 平分∠MON ,P A ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若P A =3,则PQ 的最小值为( )A. 3 B .2 C .3 D .2 3第5题图 第6题图6.如图,在△ABC 中,∠ACB =90°,∠A =30°,AB 的垂直平分线分别交AB 和AC 于点D ,E ,AE =2,则CE 的长为( )A .1 B. 2 C. 3 D. 57.如图,在△ABC 中,∠ACB =90°,AC =12,BC =5,AM =AC ,BN =BC ,则MN 的长为( )A .2B .2.6C .3D .48.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .2第7题图第8题图第10题图9.设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab 的值是()A.1.5 B.2 C.2.5 D.310.如图,∠ABC=90°,AB=6,BC=8,AD=CD=7,若点P到AC的距离为5,则点P在四边形ABCD边上的个数为()A.0个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.在Rt△ABC中,∠C=90°,斜边上的中线CD=3,则斜边AB的长是________.12.已知,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,且AD=3,AC=6,则AB =________.13.如图,∠D=∠C=90°,请你再添加一个条件,使△ABD≌△ABC,你添加的条件是________________.第13题图第14题图14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D 到直线AB的距离是________cm.15.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为________米(结果精确到0.1米,参考数据:2≈1.41,3≈1.73).第15题图第16题图16.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为________cm(结果保留π).17.如图,在等腰△ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则△ABC的周长等于________cm.第17题图第18题图18.如图,AB=6,点O是AB的中点,直线l经过点O,∠1=120°,点P是直线l上一点,当△APB为直角三角形时,AP=____________.三、解答题(共66分)19.(6分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,将△ADC沿AC 边所在的直线折叠,使点D落在点E处,得到四边形ABCE.求证:EC∥AB.20.(8分)证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,________________________________________________________________________ ______________________.求证:________.请你补全已知和求证,并写出证明过程.21.(10分)如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.22.(10分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于点E,点F在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.23.(10分)如图,一根长63的木棒(AB),斜靠在与地面(OM)垂直的墙(ON)上,与地面的倾斜角(∠ABO)为60°.当木棒A端沿墙下滑到点A′时,B端沿地面向右滑行至点B′.(1)求OB的长;(2)当AA′=1时,求BB′的长.24.(10分)如图所示,在Rt△ABC中,AB=CB,ED⊥CB,垂足为D点,且∠CED=60°,∠EAB=30°,AE=2,求CB的长.25.(12分)如图,南北方向PQ以东为我国领海,以西为公海,晚上10时28分,我国边防反偷渡巡逻101号艇在A处发现其正西方向的C处有一艘可疑船只正向我国领海靠近,便立即通知正在PQ上B处巡逻的103号艇注意其动向,经测量AC=10海里,AB=6海里,BC=8海里,若该船只的速度为12.8海里/时,则可疑船只最早何时进入我国领海?参考答案与解析1.C 2.B 3.A 4.B 5.C 6.A7.D8.C9.D10.A 解析:过点D 作DE ⊥AC ,BF ⊥AC ,垂足分别为E ,F .在Rt △ABC 中,AC =AB 2+BC 2=10,BF =6×810=4.8<5;在△ACD 中,∵AD =CD ,∴AE =CE =5,DE =72-52=26<5,则点P 在四边形ABCD 边上的个数为0个.故选A.11.6 12.12 13.AC =AD (答案不唯一) 14.2 15.2.916.3π2+1 解析:如图所示,∵无弹性的丝带从A 至C ,绕了1.5圈,∴展开后AB =1.5×2π=3π(cm),BC =3cm ,由勾股定理得AC =AB 2+BC 2=9π2+9=3π2+1(cm).17.125 解析:由AB ·CE =BC ·AD 可得8AB =6BC .设BC =8x cm ,则AB =6x cm ,BD =4x cm.在Rt △ADB 中,AB 2=AD 2+BD 2,∴(6x )2=62+(4x )2,解得x =35 5.∴△ABC 的周长为2AB +BC =12x +8x =125(cm).18.3或33或37 解析:当∠APB =90°时,分两种情况讨论,情况一:如图①,∵AO =BO ,∴PO =BO .∵∠1=120°,∴∠PBA =∠OPB =12(180°-120°)=30°,∴AP =12AB =3;情况二:如图②,∵AO =BO ,∠APB =90°,∴PO =BO .∵∠1=120°,∴∠BOP =60°,∴△BOP 为等边三角形,∴∠OBP =60°,∴∠A =30°,BP =12AB =3,∴由勾股定理得AP =AB 2-BP 2=33;当∠BAP =90°时,如图③,∵∠1=120°,∴∠AOP =60°,∴∠APO =30°.∵AO =3,∴OP =2AO =6,由勾股定理得AP =OP 2-AO 2=33;当∠ABP =90°时,如图④,∵∠1=120°,∴∠BOP =60°.∵OA =OB =3,∴OP =2OB =6,由勾股定理得PB =OP 2-AO 2=33,∴P A =PB 2+AB 2=37.综上所述,当△APB 为直角三角形时,AP 为3或33或37.19.证明:∵CD 是AB 边上的中线,且∠ACB =90°,∴CD =AD ,∴∠CAD =∠ACD .(3分)又∵△ACE 是由△ACD 沿AC 边所在的直线折叠而成,∴∠ECA =∠ACD ,∴∠ECA =∠CAD ,∴EC ∥AB .(6分)20.解:PD ⊥OA ,PE ⊥OB ,垂足分别为点D ,E (2分) PD =PE (4分) 证明如下:∵PD ⊥OA ,PE ⊥OB ,∴∠PDO =∠PEO =90°.在△PDO 和△PEO 中,⎩⎪⎨⎪⎧∠PDO =∠PEO ,∠AOC =∠BOC ,OP =OP ,∴△PDO ≌△PEO (AAS),∴PD =PE .(8分) 21.解:(1)全等.(1分)理由如下:∵∠1=∠2,∴DE =CE .∵∠A =∠B =90°,AE =BC ,∴Rt △ADE ≌Rt △BEC (HL).(5分)(2)△CDE 是直角三角形.(6分)理由如下:∵Rt △ADE ≌Rt △BEC ,∴∠AED =∠BCE .∵∠BCE +∠BEC =90°,∴∠BEC +∠AED =90°,∴∠DEC =90°,∴△CDE 是直角三角形.(10分)22.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC .(2分)在Rt △DCF和Rt △DEB 中,⎩⎪⎨⎪⎧DF =BD ,DC =DE ,∴Rt △DCF ≌Rt △DEB (HL),∴CF =EB .(5分)(2)在Rt △ADC 与Rt △ADE 中,∵⎩⎪⎨⎪⎧DC =DE ,AD =AD ,∴Rt △ADC ≌Rt △ADE (HL),∴AC =AE ,(8分)∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB .(10分)23.解:(1)∵OA ⊥OB ,∠ABO =60°,∴∠BAO =30°,∴BO =12AB =12×63=3 3.(5分)(2)在Rt △ABO 中,AO =AB 2-BO 2=9,∴A ′O =AO -AA ′=9-1=8.(7分)又由题意可知A ′B ′=AB =6 3.在Rt △A ′OB ′中,B ′O =A ′B ′2-A ′O 2=211,∴BB ′=B ′O -BO =211-3 3.(10分)24.解:过E 点作EF ⊥AB ,垂足为点F .∵∠EAB =30°,AE =2,∴EF =1,∴BD =1.(3分)又∵∠CED =60°,ED ⊥BC ,∴∠ECD =30°.而AB =CB ,AB ⊥BC ,∴∠EAC =∠ECA =45°-30°=15°,∴CE =AE =2.(6分)在Rt △CDE 中,∠ECD =30°,∴ED =1,CD =22-12=3,∴CB =CD +BD =1+ 3.(10分)25.解:∵AB =6海里,BC =8海里,∴AB 2+BC 2=100=BC 2,∴△ABC 为直角三角形,且∠ABC =90°.(3分)又∵S △ABC =12AC ·BD =12AB ·BC ,∴12×10×BD =12×6×8,∴BD =4.8海里.(5分)在Rt △BCD 中,CD 2=BC 2-BD 2=82-4.82,∴CD =6.4海里,(8分)∴可疑船只从被发现到进入我国领海的时间为6.4÷12.8=0.5(小时),(10分)∴可疑船只最早10时58分进入我国领海.(12分)。
湘教版数学八年级下册第1章《直角三角形》
初中数学试卷2016—2017学年湘教版八年级数学下册第1章《直角三角形》1.1—1.2同步练习与解析一.选择题(共8小题)1.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35° B.55° C.60° D.70°2.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40° B.30° C.20° D.10°3.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形 B.∠1=∠2C.∠1和∠B都是∠A的余角D.∠2=∠A4.如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.62C.63D.125.如图,Rt△ABC中,∠ABC=90°,点D为斜边AC的中点,BD=6cm,则AC的长为()A.3 B.6 C.63D.126.如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE的长为()A.10 B.6 C.8 D.57.一直角三角形的两直角边长为12和16,则斜边上中线长为()A.20 B.10 C.18 D.258.如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为()A.30° B.45° C.60° D.90°二.填空题(共8小题)9.如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1= 度.10.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E 处,则∠A等于度.11.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,则∠ACB′= .12.如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为米.13.若一直角三角形的两个锐角的差是20°,则其较大锐角的度数是.14.直角三角形ABC中有一个角是另一角的2倍小60°,则直角三角形中最小的角的度数为.15.若直角三角形斜边上的高和中线分别是5cm和6cm,则斜边长为,面积为.16.如图,已知∠AOB=60°,点P在OA上,OP=8,点M、N在边OB上,PM=PN,若MN=2,则OM= .三.解答题(共5小题)17.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.18.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.19.如图,树AB垂直于地面,为测树高,小明在C处,测得∠ACB=15°,他沿CB方向走了20米,到达D处,测得∠ADB=30°,你能帮助小明计算出树的高度吗?20.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,DE⊥AB于点D,交AC于点E.(1)若BC=3,AC=4,求CD的长;(2)求证:∠1=∠2.21.在△ABC中,CE,BD分别是边AB,AC上的高,F是BC边上的中点.(1)指出图中的一个等腰三角形,并说明理由.(2)若∠A=x°,求∠EFD的度数(用含x的代数式表达).四.回顾与思考(1小题)22.在等边△ABC中,(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).2016—2017学年湘教版八年级数学下册第1章《直角三角形》1.1—1.2同步练习解析一.选择题(共8小题)1.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35° B.55° C.60° D.70°【分析】根据直角三角形两锐角互余求出∠CBD,再根据角平分线的定义解答.【解答】解:∵CD⊥BD,∠C=55°,∴∠CBD=90°﹣55°=35°,∵BD平分∠ABC,∴∠ABC=2∠CBD=2×35°=70°.故选D.【点评】本题考查了直角三角形两锐角互余的性质,角平分线的定义,熟记性质是解题的关键.2.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40° B.30° C.20° D.10°【分析】在直角三角形ABC中,由∠ACB与∠A的度数,利用三角形的内角和定理求出∠B 的度数,再由折叠的性质得到∠CA′D=∠A,而∠CA′D为三角形A′BD的外角,利用三角形的外角性质即可求出∠A′DB的度数.【解答】解:在Rt△ABC中,∠ACB=90°,∠A=55°,∴∠B=180°﹣90°﹣55°=35°,由折叠可得:∠CA′D=∠A=55°,又∵∠CA′D为△A′BD的外角,∴∠CA′D=∠B+∠A′DB,则∠A′DB=55°﹣35°=20°.故选:C.【点评】此题考查了直角三角形的性质,三角形的外角性质,以及折叠的性质,熟练掌握性质是解本题的关键.3.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形 B.∠1=∠2C.∠1和∠B都是∠A的余角D.∠2=∠A【分析】在△ABC中,∠ACB=90°,CD⊥AB,因而△ACD∽△CBD∽△ABC,根据相似三角形的对应角相等,就可以证明各个选项.【解答】解:∵∠ACB=90°,CD⊥AB,垂足为D,∴△ACD∽△CBD∽△ABC.A、∵图中有三个直角三角形Rt△ACD、Rt△CBD、Rt△ABC;故本选项正确;B、应为∠1=∠B、∠2=∠A;故本选项错误;C、∵∠1=∠B、∠2=∠A,而∠B是∠A的余角,∴∠1和∠B都是∠A的余角;故本选项正确;D、∵∠2=∠A;故本选项正确.故选B.【点评】本题主要考查了直角三角形的性质,直角三角形斜边上的高,把这个三角形分成的两个三角形与原三角形相似.4.(2016•百色)如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.62C.63D.12【分析】根据30°所对的直角边等于斜边的一半求解.【解答】解:∵∠C=90°,∠A=30°,AB=12,∴BC=12AB=12×12=6,故答选A.【点评】本题考查解直角三角形,解题的关键是正确的利用合适的边角关系.5.如图,Rt△ABC中,∠ABC=90°,点D为斜边AC的中点,BD=6cm,则AC的长为()A.3 B.6 C.63D.12【分析】根据直角三角形斜边上的中线等于斜边的一半可得AC=2BD,进而可得答案.【解答】解:∵∠ABC=90°,点D为斜边AC的中点,∴AC=2BD,∵BD=6cm,∴AC=12cm,故选:D.【点评】此题主要考查了直角三角形的性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.6.如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE的长为()A.10 B.6 C.8 D.5【分析】由等腰三角形的性质证得BD=DC,根据直角三角形斜边上的中线的性质即可求得结论.【解答】解:∵AB=AC=10,AD平分∠BAC,∴BD=DC,∵E为AC的中点,∴DE=12AB=12×10=5,故选D.【点评】本题主要考查了等腰三角形的性质,三角形的中位线,熟练掌握三角形的中位线是解决问题的关键.7.一直角三角形的两直角边长为12和16,则斜边上中线长为()A.20 B.10 C.18 D.25【分析】根据勾股定理求出斜边长,根据直角三角形斜边上的中线等于斜边的一半求出答案.【解答】解:∵两直角边分别为12和16,∴斜边2212+16=20,∴斜边上的中线的长为10,故选B.【点评】本题考查的是直角三角形的性质和勾股定理,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.8.如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为()A.30° B.45° C.60° D.90°【分析】根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.【解答】解:连接AC,设每个小正方形的边长都是a,根据勾股定理可以得到:AC=BC=5a,AB=10a,∵(5a)2+(5a)2=(10a)2,∴AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠ABC=45°,故选B.【点评】本题主要考查了勾股定理,利用勾股定理判断△ABC是等腰直角三角形是解决本题的关键.二.填空题(共8小题)9.(2016•安顺)如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1= 45 度.【分析】先根据等腰直角三角形的性质求出∠ABC的度数,再由平行线的性质即可得出结论.【解答】解:∵△ABC为等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=45°,∵m∥n,∴∠1=45°;故答案为:45.【点评】此题考查了等腰直角三角形和平行线的性质,用到的知识点是:两直线平行,同位角相和等腰直角三角形的性质;关键是求出∠ABC的度数.10.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E 处,则∠A等于30 度.【分析】根据直角三角形斜边上的中线等于斜边的一半可得到EC=AE,从而得到∠A=∠ACE,再由折叠的性质及三角形的外角性质得到∠B=2∠A,从而不难求得∠A的度数.【解答】解:∵在Rt△ABC中,CE是斜边AB的中线,∴AE=CE,∴∠A=∠ACE,∵△CED是由△CBD折叠而成,∴∠B=∠CED,∵∠CEB=∠A+∠ACE=2∠A,∴∠B=2∠A,∵∠A+∠B=90°,∴∠A=30°.故答案为:30.【点评】此题主要考查:(1)在直角三角形中,斜边上的中线等于斜边的一半;(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.11.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,则∠ACB′= 10°.【分析】根据三角形内角和定理求出∠A的度数,根据直角三角形的性质分别求出∠BCD、∠DCA的度数,根据翻折变换的性质求出∠B′CD的度数,计算即可.【解答】解:∵∠ACB=90°,∠B=50°,∴∠A=40°,∵∠ACB=90°,CD是斜边上的中线,∴CD=BD,CD=AD,∴∠BCD=∠B=50°,∠DCA=∠A=40°,由翻折变换的性质可知,∠B′CD=∠BCD=50°,∴∠ACB′=∠B′CD﹣∠DCA=10°,故答案为:10°.【点评】本题考查的是直角三角形的性质、翻折变换的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.12.如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为12 米.【分析】如图,由于倒下部分与地面成30°夹角,所以∠BAC=30°,由此得到AB=2CB,而离地面米处折断倒下,即BC=4米,所以得到AB=8米,然后即可求出这棵大树在折断前的高度.【解答】解:如图,∵∠BAC=30°,∠BCA=90°,∴AB=2CB,而BC=4米,∴AB=8米,∴这棵大树在折断前的高度为AB+BC=12米.故答案为:12.【点评】此题主要利用了直角三角形中30°的角所对的边是斜边的一半解决问题,然后解题时要正确理解题意,把握题目的数量关系.13.若一直角三角形的两个锐角的差是20°,则其较大锐角的度数是55°.【分析】设较大的锐角度数是x°,根据直角三角形两锐角互余表示出较小的锐角,然后列出方程求解即可.【解答】解:设较大的锐角度数是x°,则较小的锐角为(90﹣x)°,由题意得,x﹣(90﹣x)=20,解得x=55,即较大锐角的度数是55°.故答案为:55°.【点评】本题考查了直角三角形两锐角互余的性质,熟记性质并列出方程是解题的关键.14.直角三角形ABC中有一个角是另一角的2倍小60°,则直角三角形中最小的角的度数为40°.【分析】设直角三角形中一个锐角为x,另一个锐角为2x﹣60°,根据两个锐角之和为90度即可求出答案.【解答】解:设直角三角形中一个锐角为x,另一个锐角为2x﹣60°,根据两个锐角之和为90°可得,x+2x﹣60°=90°,解的x=50°,较小角为90°﹣50°=40°,故答案为40°.【点评】本题主要考查了直角三角形的性质,解题的关键是掌握直角三角形中两个锐角之和为90°,此题基础题.15.若直角三角形斜边上的高和中线分别是5cm和6cm,则斜边长为12cm ,面积为30cm2.【分析】根据直角三角形的斜边上中线性质求出AB,根据三角形的面积公式求出即可.【解答】解:∵CD是Rt△ACB斜边AB上的中线,∴AB=2CD=2×6cm=12cm,∴Rt△ACB的面积S=12AB×CE=1212cm×5cm=30cm2,故答案为:12cm,30cm2.【点评】本题考查了直角三角形斜边上中线性质的应用,解此题的关键是根据性质求出AB 的长,注意:直角三角形斜边上的中线等于斜边的一半.16.如图,已知∠AOB=60°,点P在OA上,OP=8,点M、N在边OB上,PM=PN,若MN=2,则OM= 3 .【分析】过P作PC垂直于MN,由等腰三角形三线合一性质得到MC=CN,求出MC的长,在直角三角形OPC中,利用30度角所对的直角边等于斜边的一半求出OC的长,由OC﹣MC求出OM的长即可.【解答】解:过P作PC⊥MN,∵PM=PN,∴C为MN中点,即MC=NC=12MN=1,在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC=12OP=4,则OM=OC﹣MC=4﹣1=3,故答案为:3【点评】此题考查了含30度角的直角三角形,以及等腰三角形的性质,熟练掌握性质是解本题的关键.三.解答题(共5小题)17.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.【分析】在Rt△ABF中,∠A=70,CE,BF是两条高,求得∠EBF的度数,在Rt△BCF中∠FBC=40°求得∠FBC的度数.【解答】解:在Rt△ABF中,∠A=70,CE,BF是两条高,∴∠EBF=20°,∠ECA=20°,又∵∠BCE=30°,∴∠ACB=50°,∴在Rt△BCF中∠FBC=40°.【点评】本题考查了直角三角形的性质,三角形内角和定理,熟练掌握直角三角形的性质是解题的关键.18.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.【分析】(1)由于∠ACD与∠B都是∠BCD的余角,根据同角的余角相等即可得证;(2)根据直角三角形两锐角互余得出∠CFA=90°﹣∠CAF,∠AED=90°﹣∠DAE,再根据角平分线的定义得出∠CAF=∠DAE,然后由对顶角相等的性质,等量代换即可证明∠CEF=∠CFE.【解答】证明:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CFA=90°﹣∠CAF,同理在Rt△AED中,∠AED=90°﹣∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠CFE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.【点评】本题考查了直角三角形的性质,三角形角平分线的定义,对顶角的性质,余角的性质,难度适中.19.如图,树AB垂直于地面,为测树高,小明在C处,测得∠ACB=15°,他沿CB方向走了20米,到达D处,测得∠ADB=30°,你能帮助小明计算出树的高度吗?【分析】根据三角形外角的性质得到∠CAD=∠ADB﹣∠ACB=15°,根据等腰三角形的性质得到AD=CD=20,由直角三角形的性质即可得到结论.【解答】解:∵∠ADB=30°,∠ACB=15°,∴∠CAD=∠ADB﹣∠ACB=15°,∴∠ACB=∠CAD,∴AD=CD=20,又∵∠ABD=90°,∴AB=12AD=10, ∴树的高度为10米.【点评】本题考查了含30°角的直角三角形的性质,三角形的外角的性质,熟练掌握含30°角的直角三角形的性质是解题的关键.20.如图,在Rt △ABC 中,∠ACB=90°,CD 是AB 边上的中线,DE ⊥AB 于点D ,交AC 于点E .(1)若BC=3,AC=4,求CD 的长;(2)求证:∠1=∠2.【分析】(1)由勾股定理求出AB ,再根据直角三角形斜边上的中线等于斜边的一半解答即可;(2)由直角三角形的锐角关系和等腰三角形的性质即可得出结论.【解答】(1)解:∵∠ACB=90°,BC=3,AC=4,∴22AC BC ,∵CD 是AB 边上的中线,∴CD=12AB=2.5; (2)证明:∵∠ACB=90°,∴∠A+∠B=90°,∵DE ⊥AB ,∴∠A+∠1=90°,∴∠B=∠1,∵CD 是AB 边上的中线,∴BD=CD ,∴∠B=∠2,∴∠1=∠2.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,等腰三角形的判定与性质;熟记性质是解题的关键.21.在△ABC中,CE,BD分别是边AB,AC上的高,F是BC边上的中点.(1)指出图中的一个等腰三角形,并说明理由.(2)若∠A=x°,求∠EFD的度数(用含x的代数式表达).【分析】(1)根据直角三角形的性质得到EF=12BC,DF=12BC,等量代换即可;(2)根据三角形内角和定理和等腰三角形的性质计算;【解答】解:(1)△DEF是等腰三角形.∵CE,BD分别是边AB,AC上的高,F是BC边上的中点,∴EF=12BC,DF=12BC,∴EF=DF,∴△DEF是等腰三角形;(2)∵FE=FB,FD=FC,∴∠FEB=∠FBE,∠FDC=∠FCD,∴∠FEB+∠FDC=∠FBE+∠FCD=180°﹣∠A=180°﹣x°,∠AED+∠ADE=180°﹣∠A=180°﹣x°,∴∠FED+∠FDE=360°﹣(180°﹣x°)﹣(180°﹣x°)=2x°,∴∠EFD=180°﹣2x°;【点评】本题考查的是直角三角形的性质、三角形内角和定理、等腰三角形的判定,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.四.回顾与思考(1小题)22.(2016•北京)在等边△ABC中,(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).【分析】(1)根据等腰三角形的性质得到∠APQ=∠AQP,由邻补角的定义得到∠APB=∠AQC,根据三角形外角的性质即可得到结论;(2)如图2根据等腰三角形的性质得到∠APQ=∠AQP,由邻补角的定义得到∠APB=∠AQC,由点Q关于直线AC的对称点为M,得到AQ=AM,∠OAC=∠MAC,等量代换得到∠MAC=∠BAP,推出△APM是等边三角形,根据等边三角形的性质即可得到结论.【解答】解:(1)∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ=20°,∴∠AQB=∠APQ=∠BAP+∠B=80°;(2)如图2,∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ,∵点Q关于直线AC的对称点为M,∴AQ=AM,∠QAC=∠MAC,∴∠MAC=∠BAP,∴∠BAP+∠PAC=∠MAC+∠CAP=60°,∴∠PAM=60°,∵AP=AQ,∴AP=AM,∴△APM是等边三角形,∴AP=PM.【点评】本题考查了等边三角形的性质和判定,等腰三角形的性质,三角形的外角的性质,轴对称的性质,熟练掌握等边三角形的判定和性质是解题的关键.。
湘教版八年级下册数学第1章 直角三角形含答案
湘教版八年级下册数学第1章直角三角形含答案一、单选题(共15题,共计45分)1、在中,,,的对边分别是,,,下列说法错误的是()A.若,则是直角三角形B.若,则△是直角三角形 C.若,则是直角三角形 D.若,则不是直角三角形2、在一个直角三角形中,有一个锐角等于,则另一个锐角的度数是()A. B. C. D.3、△ABC中,∠C=90°,AC=8,BC=6,则cosA的值是()A. B. C. D.4、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,若CD=3,则BD的长是( )A.7B.6C.5D.45、在正方形网格中,△ABC的位置如图所示,则tan∠A的值为()A. B. C. D.6、如图所示,已知AB=DC,∠ABC=∠DCB=90°,可以推得Rt△ABC≌Rt△DCB,所用的判断定理简称是()A.SASB.HLC.ASAD.AAS7、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等8、如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是()A.PC⊥OA,PD⊥OBB.OC=ODC.∠OPC=∠OPDD.PC=PD9、如图,在Rt△ABC中,∠ACB=90°,D,E分别是AB,AC的中点,连接CD,过E作EF∥DC交BC的延长线于F,若四边形DCFE的周长为25cm,AC的长5cm,则AB的长为()A.13cmB.12cmC.10cmD.8cm10、在⊙O中,弦AB的长为8,圆心O到AB的距离为3,若OP=4,则点P与⊙O的位置关系是()A.P在⊙O内B.P在⊙O上C.P在⊙O外D.P与A或B重合11、如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A. B.2 C.3 D. +212、如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为A. B. C. D.13、如图,菱形ABCD的边长等于2,∠CDA= 120°,则对角线AC的长为( )A. B.2 C.2 D.114、Rt△ABC中,已知∠C=90°, ∠A=30°,BD是∠B的平分线,AC=18,则BD 的值为()A.4.9B.9C.12D.1515、如图,在△ABC中,AB=AC,∠BAC=120°,D是BC的中点,DE⊥AB于点E,若EA=2,则BE=()A.3B.4C.6D.8二、填空题(共10题,共计30分)16、在半径为2的⊙O中,弦AB=2 ,连接OA,OB.在直线OB上取一点K,使tan∠BAK=,则△OAK的面积为________.17、在平面直角坐标系中,,,,直线与分别交于点,若为四边形边上一点(不与点重合),且,则点的坐标为________.18、如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为________.19、如图,有正方形ABCD,把△ADE顺时针旋转到△ABF的位置.其中AD=4,AE=5,则BF=________.20、矩形ABCD中,对角线AC、BD交于点O,于,若,,则________.21、如图,在平面直角坐标系xoy中,四边形OABC是矩形,点A、C分别在x 轴、y轴的正半轴上,点B的坐标为(1,2),若点P是第一象限内的一点,且∠OPC=45°,则线段AP最长时的P点坐标为________.22、如图,在纸片△ABC中,AC=6,∠A=30°,∠C=90°,将∠A沿DE折叠,使点A与点B重合,则折痕DE的长________;23、如图,在矩形ABCD中,AD=4,E为线段DC上一个动点,把△ADE沿AE折叠,当点D的对应点D'落在BC的垂直平分线上时,DE的长为________.24、如图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为________厘米.25、如图,一棵大树在离地3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是________米.三、解答题(共5题,共计25分)26、在 Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a、b、c.若a∶c=15∶17,b=24,求a.27、已知等腰三角形的腰为2 cm,底边为4 cm,求这个等腰三角形的面积.28、如图是一束平行的阳光从教室窗户射入的平面示意图,小强同学测量出BC=1m,NC= m,BN= m,AC=4.5m,MC=6m,求MA的长.29、如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,求BF.30、如图,,求证:.参考答案一、单选题(共15题,共计45分)1、D2、C3、A4、B5、A6、A7、D8、D9、A10、A11、C12、B13、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
湘教版八年级数学下册第1章测试题及答案
湘教版八年级数学下册第1章测试题及答案1.1 直角三角形的性质和判定(Ⅰ)一、选择题1.若一个三角形的三个内角的度数之比为1∶2∶3,则这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形2.若直角三角形中的两个锐角之差为22°,则较小的一个锐角的度数是( )A.24°B.34°C.44°D.46°3.如图,某同学在课桌上无意中将一块三角板叠放在直尺上,则∠1+∠2等于( )A.60°B.75°C.90°D.105°4.在△ABC中,∠C=90°,∠B=60°,BC=2,则AC=()A.1B.4C.2√3D.3√25.在△ABC中,∠ACB=90°,CD是斜边AB上的高,那么与∠A互余的角有()A. 1个B. 2个C. 3个D. 4个6.在Rt△ABC中,∠ACB=90°,∠A=30°,AC=√3cm,则AB边上的中线长为()A.1cmB.1.5cmC.2cmD.√3cm二、填空题7.如果一个三角形一边的中线等于这边的一半,那么这个三角形为__________三角形.8.在Rt△ABC中,CD是斜边AB上的高,∠B=30°,AD=2cm,则AB的长度是______ cm.9.如图,在Rt△ABC中,DC是斜边AB上的中线,EF过点C且平行于AB.若∠BCF=35°,则∠ACD的度数.三、解答题10. 已知在Rt △ABC 中,∠ACB =90°,AB =8cm ,D 为AB 的中点,DE ⊥AC 于E ,∠A =30°,求BC ,CD 和DE 的长.11. 已知:在△ABC 中,AB =AC =BC (△ABC 为等边三角形),D 为BC 边上的中点, DE ⊥AC 于E .求证:AC CE 41=.参考答案一、1. B 2. B 3. C 4. C 5.B 6.A 二、7. 直角 8.8 9. 55°三、10.解:如图,在Rt △ABC 中,∵∠ACB =90 °,∠A =30°, ∴AB BC 21=.∵AB =8cm, ∴BC =4cm.∵D 为AB 的中点,CD 为中线, ∴14cm.2CD AB ==∵DE ⊥AC ,∴∠AED =90°.在Rt △ADE 中,AD DE 21=, 12AD AB =,∴12cm.4DE AB == 11.证明:如图,∵DE ⊥AC 于E ,∴∠DEC =90°. ∵△ABC 为等边三角形,∴AC =BC ,∠C =60°.∵在Rt △EDC 中,∠C =60°,∴∠EDC =90°-60°=30°. ∴1.2EC CD =∵D 为BC 的中点,∴BC DC 21=,∴AC DC 21=,∴AC CE 41=.1.2 直角三角形的性质和判定(Ⅱ)第1课时 勾股定理1.一个直角三角形的三边长为三个连续偶数,则它的斜边长为( ) A.6 B.8 C.10 D.122.已知一个三角形三个内角的比是1∶2∶1,则它的三条边的比是( )A.1 1B.1∶2∶1C.1D.1∶4∶13.如图,长方形OABC 的边OA 的长为2,边AB 的长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A.2.54.如图,点D 在△ABC 的边AC 上,将△ABC 沿BD 翻折后,点A 恰好与点C 重合.若BC =5,CD =3,则BD 的长为( )A.1B.2C.3D.45.在△ABC 中,∠C =90°,AB =7,BC =5,则边AC 的长为__________.6.在等腰△ABC 中,AB =AC =10 cm ,BC =12 cm ,则BC 边上的高是__________cm.7.一个直角三角形的斜边长比直角长边大2,另一直角边长为6,则斜边长为__________.8.如图,在△ABC 中,AB =AC =20,BC =32,D 是BC 上一点,AD =15,且AD ⊥AC ,求BD 的长.9.如图,在△ABC中,∠ACB=90°,AB=10 cm,BC=6 cm,CD⊥AB交AB于点D.求:(1)AC的长;(2)△ABC的面积;(3)CD的长.参考答案1.C2.A3.D4.D5.6.87.108.解:∵AD⊥AC,AC=20,AD=15,∴CD∴BD=BC-CD=32-25=7.9.解:(1)∵∠ACB=90°,AB=10 cm,BC=6 cm,∴AC=8 cm.(2)S△ABC=12BC·AC=12×6×8=24(cm2).(3)∵S△ABC=12BC·AC=12CD·AB,∴CD=·BC ACAB=245cm.第2课时勾股定理的实际应用1.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以到达该建筑物的最大高度是( )A.12米B.13米C.14米D.15米2.如图,一个高1.5米,宽3.6米的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( )A.3.8米B.3.9米C.4米D.4.4米3.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为( )米+1)米 D.3米4.在一次课外社会实践中,王强想知道学校旗杆的高,但不能爬上旗杆也不能把绳子解下来,可是他发现旗杆上的绳子垂到地面上还多1 m,当他把绳子的下端拉开5 m后,发现下端刚好接触地面,则旗杆的高为( )A.13 mB.12 mC.4 mD.10 m5.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B 200 m,结果他在水中实际游了520 m,该河流的宽度为__________m.6.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B 的距离为__________mm.7.如图,在一棵树的10米高B处有两只猴子,其中一只爬下树走向离树20米的池塘C,而另一只爬到树顶D后直扑池塘C,结果两只猴子经过的距离相等,问这棵树有多高?8.如图,一辆小汽车在一条东西走向的城市公路上直道行驶,某一时刻刚好行驶到路边的车速检测仪的正前方30 m处,过了2 s后,测得小汽车与车速检测仪的距离为50 m,问这辆小汽车是否超速了?(中华人民共和国交通管理条例规定:小汽车在城市公路上行驶时的速度不得超过70 km/h)参考答案1.A2.B3.C4.B5.4806.1507.解:设BD=x米,则AD=(10+x)米,CD=(30-x)米,根据题意得(30-x)2-(x+10)2=202.解得x=5.即树的高度是10+5=15(米).8.解:小汽车超速了.理由:在Rt△ABC中,AC=30 m,AB=50 m,根据勾股定理,得BC(m).小汽车的速度是40÷2=20(m/s)=72(km/h).而规定速度为70 km/h,72>70,∴小汽车超速了.第3课时勾股定理的逆定理1.下列四组线段,可以构成直角三角形的是( )A.4,5,6B.1.5,2,2.5C.2,3,4D.1,32.已知一个三角形的三边长之比为1∶1,则此三角形一定是( )A.等腰三角形B.钝角三角形C.直角三角形D.等腰直角三角形3.cm cm,那么能与它们组成直角三角形的第三条线段的长是( )A.1 cmB.5 cmC.cmD.1 cm4.如图,正方形小方格的边长为1,则网格中的△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对5.若a、b、c表示△ABC+|a-8|+(b-15)2=0,则△ABC的形状是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形6.若在△ABC中,AB=5 cm,BC=6 cm,BC边上的中线AD=4 cm,则∠ADC是__________度.7.如图,一根电线杆高8 m.为了安全起见,在电线杆顶部到与电线杆底部水平距离6 m处加一拉线,拉线工人发现所用线长为10.2 m(不计捆缚部分),则电线杆与地面__________(填“垂直”或“不垂直”).8.如图,在△ABC中,AB=2,BC=4,AC,∠C=30°,求∠B的大小.9.如图是一个零件的形状,按规定这个零件中的AD与CD必须互相垂直,工人师傅通过测量得到A到C的距离是10 cm,AD=8 cm,CD=6 cm.问这个零件是否合格?说明理由.参考答案1.B2.D3.D4.A5.B6.907.不垂直8.解:∵在△ABC中,AB=2,BC=4,AC,∴AB2+AC2=4+12=16=BC2.∴∠A=90°.∴∠B+∠C=90°.又∵∠C=30°,∴∠B=60°.9.解:合格.理由如下:连接AC.∵AD2+CD2=82+62=102=AC2,根据勾股定理的逆定理得△ACD是直角三角形,且∠ADC=90°,∴零件合格.1.3 直角三角形全等的判定一、选择题1. 如图,在Rt△ABC的斜边BC上截取CD=CA,过点D作DE⊥BC交AB于点E,则有( )A.DE=DBB.DE=AEC.AE=BED.AE=BD2.如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的依据是( )A.HLB.ASAC.AASD.SAS3. 如图,AB=CD,AE⊥BD于点E,CF⊥BD于点F,AE=CF,则图中全等的三角形有( )A.1对B.2对C.3对D.4对4. 在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,∠A=∠B′,AB=B′A,则下列结论正确的是()A. AC=A′C′B.BC=B′C′C.AC=B′C′D.∠A=∠A′5. 如图,在△ABC中,AB=AC,AD⊥BC交点D,E、F分别是DB、DC的中点,则图中全等三角形的对数是()A.1B.2C.3D.4二、填空题6. 如图,在△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,若根据“HL”判定,还需要加一个条件:__________.7. 已知:如图,AB=CD,DE⊥AC于点E,BF⊥AC于点F,且DE=BF,∠D=60°,则∠A=__________.8. 用三角尺可按下面方法画角平分线:如图,在已知∠AOB两边上分别取OM=ON,再分别过点M、N作OA、OB的垂线,两垂线交于点P,画射线OP,则OP平分∠AOB.作图过程用到了△OPM≌△OPN,那么△OPM≌△OPN的依据是__________.三、解答题9. 已知:如图,在△ABC中,BD⊥AC,CE⊥AB,BD、CE交于点O,且BD=CE.求证:OB=OC.10. 已知:在Rt△ABC中,∠ACB是直角,D是AB上一点,BD=BC,过D作AB的垂线交AC于E,求证:CD⊥BE.参考答案一、1. B 2. A 3. C 4. C 5. D 二、6.AB =AC 7. 30° 8. HL三、9. 证明:∵CE ⊥AB ,BD ⊥AC ,则∠BEC =∠CDB =90°, ∴在Rt △BCE 与Rt △CBD 中,,∴Rt △BCE ≌Rt △CBD (HL), ∴∠1=∠2,∴OB =OC.10.证明:如图,∵DE ⊥AB ,∴∠BDE =90°. ∵∠ACB =90°,∴在Rt △DEB 与Rt △CEB 中,,,BD BC BE BE =⎧⎨=⎩ ∴Rt △DEB ≌Rt △CEB (HL ), ∴DE =EC.又∵BD =BC,∴点E 、B 在CD 的垂直平分线上, 即BE ⊥CD .1.4 角平分线的性质1.如图,点D 在BC 上,DE ⊥AB ,DF ⊥AC ,且DE =DF ,∠BAD =25°,则∠CAD =(B)A .20°B .25°C .30°D .50°2.如图,在CD 上找一点P ,使它到OA ,OB 的距离相等,则点P 是(D)A .线段CD 的中点B .OA 与OB 的中垂线的交点C .OA 与CD 的中垂线的交点 D .CD 与∠AOB 的平分线的交点3.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3 cm,则点D到AC的距离是(B) A.2 cm B.3 cmC.4 cm D.6 cm4.如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上的一个动点,若P A=2,则PQ的最小值为(B)A.1 B.2C.3 D.45.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC于点E,DF⊥BC于点F,且BC=4,DE =2,则△BCD的面积是4.6.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,若AB=4,且点D到BC的距离为3,则BD=5.7.如图是一个风筝骨架.为使风筝平衡,须使∠AOP=∠BOP.已知PC⊥OA,PD⊥OB,那么PC和PD 应满足PC=PD,才能保证OP为∠AOB的平分线.8.如图,已知CE⊥AB于点E,BD⊥AC于点D,BD,CE交于点O,且AO平分∠BAC.求证:OB=OC.证明:∵AO 平分∠BAC ,CE ⊥AB 于点E ,BD ⊥AC 于点D , ∴OE =OD .在Rt △OBE 和Rt △OCD 中, ⎩⎪⎨⎪⎧∠EOB =∠DOC ,OE =OD ,∠BEO =∠CDO =90°, ∴△OBE ≌△OCD (ASA). ∴OB =OC .9.如图,在△ABC 中,∠C =90°,DF ⊥AB ,垂足为F ,DE =BD ,CE =FB .求证:点D 在∠CAB 的平分线上.证明:∵DF ⊥AB ,∠C =90°, ∴∠DFB =∠C =90°. 在Rt △CED 和Rt △FBD 中, DE =DB ,CE =FB , ∴Rt △CED ≌Rt △FBD (HL). ∴DC =DF .又∵DF ⊥AB ,DC ⊥AC , ∴点D 在∠CAB 的平分线上.。
湘教版八年级下册数学第1章 直角三角形含答案
湘教版八年级下册数学第1章直角三角形含答案一、单选题(共15题,共计45分)1、直角三角形两直角边边长分别为6cm和8cm,则连接这两条直角边中点的线段长为( )A.10cmB.3cmC.4cmD.5cm2、下列说法中正确的是()A.已知a,b,c是三角形的三边,则a 2+b 2=c 2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a 2+b 2=c 2D.在Rt△ABC中,∠B=90°,所以a 2+b 2=c 23、如图是的角平分线,于E,点F,G分别是,上的点,且,与的面积分别是10和3,则的面积是()A.4B.5C.6D.74、如图,在四边形中,,和的延长线交于点,若平面内动点满足,则满足此条件的点有()A.1个B.2个C.4个D.无数个5、已知直角三角形的一个锐角为60度,斜边长为2,那么此直角三角形的周长是()A.2.5B.3C. +2D. +36、在下列以线段a、b、c的长为三边的三角形中,不能构成直角三角形的是()A.a:b:c=3:4:5B.a=9,b=40,c=41C.a=11,b=12,c=13 D.a=b=5,c=57、若是三角形的三边长,则满足下列条件的不能构成直角三角形的是()A. ,,B. ,C. D. ,,8、如图,在△ABC中,∠BAC=90°,AB=AC,AE是经过A点的一条直线,且B,C在AE的两侧,BD⊥AE于D,CE⊥AE于E,CE=2,BD=6,则DE的长为()A.2B.3C.5D.49、下列各组数据中,能做为直角三角形三边长的是()。
A.1、2、3B.3、5、7C.3 2, 4 2, 5 2D.5、12、1310、如图,已知直线y=2x+4与x轴交于点A,与y轴交于点B,以点A为圆心,AB为半径画弧,交x轴正半轴于点C,则点C的坐标为()A. B. C. D.11、如图,在中,,是的平分线,,的面积为12,则的长度为()A.3B.4C.5D.612、如图,在矩形ABCD中,AD=10,AB=6,点E为BC上的一点,ED平分∠AEC,则BE的长为( )A.10B.8C.6D.413、要在数轴上作出表示的点,可以通过构造直角三角形的方法,下列各组数值中,可以作为这个直角三角形两条直角边长的是()A.5,5B.3,1C.1,9D.2,614、在数学活动课上,老师要求学生在4×4的正方形ABCD网格中(小正方形的边长为1)画直角三角形,要求三个顶点都在各点上,而且三边与AB或AD 都不平行,则画出的形状不同的直角三角形有()种.A.3B.4C.5D.615、如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB= ,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE=()A. B. C.2 D.二、填空题(共10题,共计30分)16、如图,在四边形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.给出以下判断:①AC垂直平分BD;②四边形ABCD的面积S=AC•BD;③顺次连接四边形ABCD的四边中点得到的四边形可能是正方形;④当A,B,C,D四点在同一个圆上时,该圆的半径为;⑤将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,当BF⊥CD时,点F到直线AB的距离为.其中正确的是________.(写出所有正确判断的序号)17、如图,优弧纸片所在的半径为2,,点为优弧上一点(点不与,重合),将图形沿折叠,得到点的对称点.当与相切时,则折痕的长________.18、如图,在四边形中,,,,,且,则四边形的面积是________.19、如图,AD是△ABC的角平分线,AB:AC=3:2,△ABD的面积为15,则△ACD的面积为________.20、如图,点A是双曲线y= 在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为________.21、如图,在中,,以A为圆心、适当长为半径画弧,分别交、于点M、N,再分别以M、N为圆心,大于长为半径画弧,两弧交于点D,作射线,交于点E.已知,若P为上一点,当时,线段的长为________.22、平面直角坐标系中,点M(x,y),N(x-2ky,y-3kx),MN=7OM,当点M 在y轴正半轴上时,k=________.23、如图,在△ABC中,AD是它的角平分线,若S△ABD :S△ACD=3:2,则AB:AC=________.24、如图,要使宽为2米的矩形平板车ABCD通过宽为2 米的等宽的直角通道,平板车的长不能超过________米.25、如图,以正六边形ABCDEF的中心O为原点建立平面直角坐标系,过点A作AP1⊥OB于点P1,再过P1作P1P2⊥OC于点P2,再过P2作P2P3⊥OD于点P3,依次进行……若正六边形的边长为1,则点P2019的横坐标为________.三、解答题(共5题,共计25分)26、如图所示,△ABC和△AEF为等边三角形,点E在△ABC内部,且E到点A,B,C的距离分别为3,4,5,求∠AEB的度数.27、如图,在△ABC中,AB=AC,D是BC边上一点,连接AD,E为△ABC外一点,连接DE,AE和BE,AD=DE,BE∥AC.求证:∠BED=∠DAB.28、如图所示,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,求点D到直线AB的距离.29、如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.30、如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF≌Rt△DCE.参考答案一、单选题(共15题,共计45分)1、D2、C3、A4、D5、D6、C7、D8、D9、D10、B11、A12、B13、B14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)28、30、。
湘教版八年级数学下册第1章《直角三角形》单元检测含答案
湘教版八年级数学下册第1章《直角三角形》单元检测含答案一.选择题(共10小题,每小题3分,共30分)1.如图所示,在ABC ∆中,90C ∠=︒,//EF AB ,39B ∠=︒,则1∠的度数为( ) A .38︒B .39︒C .51︒D .52︒2.如图,在ABC ∆中,90C ∠=︒,15A ∠=︒,60DBC ∠=︒,1BC =,则AD 的长 为( ) A .1.5B .2C .3D .43.如图,ABC ∆中,90ACB ∠=︒,CM 是高,30MCA ∠=︒,若4AC =,则AB 的长度为( ) A .8B .6C .4D .54.如图,在Rt ABC ∆中,CE 是斜边AB 上的中线,CD AB ⊥,若5CD =,6CE =,则ABC ∆的面积是( ) A .24B .25C .30D .365.如果一个直角三角形的两边分别是6,8,那么斜边上的中线长为( ) A .4B .5C .3或5D .4或56.若直角三角形的三边a ,b ,c 满足2222220a ab b a c -+-,那么这个三角形 是( ) A .等边三角形B .有一角是36︒的等腰三角形C .等腰直角三角形D .有一个角是30︒的直角三角形 7.下列条件中不能判定两个直角三角形全等的是( )A .两个锐角分别对应相等B .两条直角边分别对应相等第1题图第2题图第3题图第4题图C .一条直角边和斜边分别对应相等D .一个锐角和一条斜边分别对应相等 8.如图,AC BC =,AC OA ⊥,CB OB ⊥,则Rt AOC Rt BOC ∆≅∆的理由是( ) A .SSSB .ASAC .SASD .HL9.如图,在ABC ∆中,90C ∠=︒,AD 是ABC ∆的一条角平分线.若6AC =,10AB =,则点D 到AB 边的距离为( )A .2B .2.5C .3D .410.如图,ABC ∆中,90ACB ∠=︒,30CAB ∠=︒,BD 是ABC ∠的平分线,DE AB ⊥,垂足为E ,2CD =,则(AC = )A .4B .43C .6D .63二.填空题(共8小题,每小题3分,共4分)11.如图,在Rt ABC ∆中,90B ∠=︒,132ACD ∠=︒,A ∠= .12.如图,在ABC ∆中,CD AB ⊥于点D ,BE AC ⊥于点E ,F 为BC 的中点,5DE =,8BC =,则DEF ∆的周长是 .13.如图,ABC ∆为等边三角形,BD AB ⊥,BD AB =,则DCB ∠= ︒.14.如图,AC BC ⊥,AD BD ⊥,垂足分别是C 、D ,若要用“HL ”得到Rt ABC Rt BAD ∆≅∆,则你添加的条件是 .(写一种即可)第8题图 第9题图第10题图第11题图第12题图第13题图15.如图,在ABC ∆中,AD BC ⊥,AE 平分BAC ∠,若130∠=︒,220∠=︒,则B ∠= . 16.如图,点M 是AOB ∠平分线上一点,60AOB ∠=︒,ME OA ⊥于E ,3OM =,如果P 是OB 上一动点,则线段MP 的取值范围是 .17.如图,CA AB ⊥,垂足为点A ,8AB =,4AC =,射线BM AB ⊥,垂足为点B ,一动点E 从A 点出发以2/秒的速度沿射线AN 运动,点D 为射线BM 上一动点,随着E 点运动而运动,且始终保持ED CB =,当点E 运动 秒时,DEB ∆与BCA ∆全等.18.如图,OAB ∆是腰长为1的等腰直角三角形,90OAB ∠=︒,延长OA 至1B ,使1AB OA =,以1OB 为底,在OAB ∆外侧作等腰直角三角形11OA B ,再延长1OA 至2B ,使121A B OA =,以2OB 为底,在△11OA B 外侧作等腰直角三角形22OA B ,⋯⋯,按此规律作等腰直角三角形(1n n OA B n …,n 为正整数),回答下列问题:(1)33A B 的长是 ; (2)△20202020OA B 的面积是 . 三.解答题(共6小题)19.请在下面括号里补充完整证明过程:已知:如图,ABC ∆中,90ACB ∠=︒,AF 平分CAB ∠,交CD 于点E ,交CB 于点F ,且CEF CFE ∠=∠.求证:CD AB ⊥.证明:AF Q 平分CAB ∠(已知)12∴∠=∠CEF CFE ∠=∠Q ,又3CEF ∠=∠(对顶角相等) 3CFE ∴∠=∠(等量代换)第14题图第15题图第16题图第17题图第18题图Q 在ACF ∆中,90ACF ∠=︒(已知)∴ 90CFE +∠=︒12∠=∠Q ,3CFE ∠=∠(已证)∴ + 90=︒(等量代换)在AED ∆中,90ADE ∠=︒(三角形内角和定理) CD AB ∴⊥ .20.初二两个班的学生分别在M 、N 两处劳动,现要在道路AB 、AC 的交叉区域内设一个茶水供应点P ,使P 到两条道路的距离相等,且使PM PN =,尺规作图找出符合条件的点P .21.如图,四边形ABCD 中,90C ∠=︒,AD DB ⊥,点E 为AB 的中点,//DE BC . (1)求证:BD 平分ABC ∠;(2)连接EC ,若30A ∠=︒,23DC =,求EC 的长.22.如图,ABC ∆中,AB BC =,90ABC ∠=︒,F 为AB 延长线上一点,点E 在BC 上,且AE CF =. (1)求证:AE CF ⊥;(2)若25BAE ∠=︒,求ACF ∠的度数.23.问题情境在综合与实践课上,同学们以“一个含30︒的直角三角尺和两条平行线”为背景开展数学活动如图1,已知两直线a ,b 且//a b 和直角三角形ABC ,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒. 操作发现:(1)在图1中,146∠=︒,求2∠的度数;(2)如图2,创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,说明理由; 实践探究(3)缜密小组在创新小组发现结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请直接写出1∠与2∠的数量关系.24.已知ABC ∆中,90A ∠=︒,AB AC =,D 为BC 的中点.(1)如图,若E 、F 分别是AB 、AC 上的点,且BE AF =.求证:DEF ∆为等腰直角三角形; (2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE AF =,其他条件不变,那么DEF ∆是否仍为等腰直角三角形?证明你的结论.湘教版八年级数学下册第1章《直角三角形》单元检测含答案一.选择题(共10小题)1.C . 2.B . 3.A . 4.C . 5.D . 6.C . 7.A . 8.D . 9.C . 10.C . 二.填空题(共8小题)11. 42︒ . 12. 13 . 13. 15 ︒. 14. AC BD = . 15. 50︒ . 16. 1.5MP … . 17. 0,2,6,8 . 18.(1) 22 ; (2) 20192 . 三.解答题(共6小题)19.请在下面括号里补充完整证明过程:已知:如图,ABC ∆中,90ACB ∠=︒,AF 平分CAB ∠,交CD 于点E ,交CB 于点F ,且CEF CFE ∠=∠.求证:CD AB ⊥.证明:AF Q 平分CAB ∠(已知)12∴∠=∠ (角平分线的定义)CEF CFE ∠=∠Q ,又3CEF ∠=∠(对顶角相等) 3CFE ∴∠=∠(等量代换)Q 在ACF ∆中,90ACF ∠=︒(已知)∴ 90CFE +∠=︒12∠=∠Q ,3CFE ∠=∠(已证)∴ + 90=︒(等量代换)在AED ∆中,90ADE ∠=︒(三角形内角和定理) CD AB ∴⊥ .【证明】:AF Q 平分CAB ∠(已知)12∴∠=∠(角平分线的定义)CEF CFE ∠=∠Q ,又3CEF ∠=∠(对顶角相等)3CFE ∴∠=∠(等量代换)Q 在ACF ∆中,90ACF ∠=︒(已知)190CFE ∴∠+∠=︒(直角三角形的性质)12∠=∠Q ,3CFE ∠=∠(已证)(2)(3)90∴∠+∠=︒(等量代换)在AED ∆中,90ADE ∠=︒(三角形内角和定理) CD AB ∴⊥(垂直的定义). 故答案为:(角平分线的定义);1∠;(直角三角形的性质);2∠;3∠;(垂直的定义).20.初二两个班的学生分别在M 、N 两处劳动,现要在道路AB 、AC 的交叉区域内设一个茶水供应点P ,使P 到两条道路的距离相等,且使PM PN =,尺规作图找出符合条件的点P .【解】:如图,点P 即为所求.21.如图,四边形ABCD 中,90C ∠=︒,AD DB ⊥,点E 为AB 的中点,//DE BC . (1)求证:BD 平分ABC ∠;(2)连接EC ,若30A ∠=︒,23DC =,求EC 的长.【解】:(1)证明:AD DB ⊥Q ,点E 为AB 的中点, 12DE BE AB ∴==. 12∴∠=∠.//DE BC Q , 23∴∠=∠. 13∴∠=∠.BD ∴平分ABC ∠.(2)解:AD DB ⊥Q ,30A ∠=︒ 160∴∠=︒. 3260∴∠=∠=︒. 90BCD ∠=︒Q , 430∴∠=︒.2490CDE ∴∠=∠+∠=︒.在Rt BCD ∆中,360∠=︒,23DC =,4DB ∴=.DE BE =Q ,160∠=︒, 4DE DB ∴==.2222(23)427EC DE CD ∴=+=+=.22.如图,ABC ∆中,AB BC =,90ABC ∠=︒,F 为AB 延长线上一点,点E 在BC 上,且AE CF =. (1)求证:AE CF ⊥;(2)若25BAE ∠=︒,求ACF ∠的度数.【解】:(1)证明:延长AE 交CF 于点H ,如图所示: 90ABC ∠=︒Q , 90CBF ∴∠=︒,在Rt ABE ∆与Rt CBF ∆中,AE CFAB BC =⎧⎨=⎩,Rt ABE Rt CBF(HL)∴∆≅∆, BAE BCF ∴∠=∠, 90F BCF ∠+∠=︒Q , 90BAE F ∴∠+∠=︒, 90AHF ∴∠=︒, AE CF ∴⊥;(2)AB BC =Q ,90ABC ∠=︒, 45ACB BAC ∴∠=∠=︒,由(1)得:ABE CBF ∆≅∆, 25BAE BCF ∴∠=∠=︒, 452570ACF ∴∠=︒+︒=︒.23.问题情境在综合与实践课上,同学们以“一个含30︒的直角三角尺和两条平行线”为背景开展数学活动如图1,已知两直线a ,b 且//a b 和直角三角形ABC ,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒. 操作发现:(1)在图1中,146∠=︒,求2∠的度数;(2)如图2,创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,说明理由; 实践探究(3)缜密小组在创新小组发现结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请直接写出1∠与2∠的数量关系.【解】:(1)90Q,∠=︒BCA∴∠=︒-∠=︒,390144a bQ,//∴∠=∠=︒;2344(2)理由如下:过点B作//BD a,如图2则1802∠=︒-∠,ABDBD a,//∴,BD bQ,////a b∴∠=∠,1DBCQ,∠=︒60ABC∴︒-∠+∠=︒,1802160∴∠-∠=︒;21120(3)12∠=∠,理由如下:AC∠,Q平分BAM∴∠=∠=︒,260BAM BAC过点C作//CE a,如图32BCE ∴∠=∠,//a b Q ,//CE a ,//CE b ∴,160BAM ∠=∠=︒, 30ECA CAM ∴∠=∠=︒, 260BCE ∴∠=∠=︒,12∴∠=∠.24.已知ABC ∆中,90A ∠=︒,AB AC =,D 为BC 的中点.(1)如图,若E 、F 分别是AB 、AC 上的点,且BE AF =.求证:DEF ∆为等腰直角三角形;(2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE AF =,其他条件不变,那么DEF ∆是否仍为等腰直角三角形?证明你的结论.【解】:(1)证明:连接ADAB AC =Q ,90A ∠=︒,D 为BC 中点 2BC AD BD CD ∴=== 且AD 平分BAC ∠45BAD CAD ∴∠=∠=︒在BDE ∆和ADF ∆中,45BD AD B DAF BE AF =⎧⎪∠=∠=︒⎨⎪=⎩,()BDE ADF SAS ∴∆≅∆DE DF ∴=,BDE ADF ∠=∠ 90BDE ADE ∠+∠=︒Q90ADF ADE ∴∠+∠=︒即:90EDF ∠=︒EDF ∴∆为等腰直角三角形.(2)解:仍为等腰直角三角形.理由:AFD BEDQ∆≅∆∠=∠∴=,ADF BDE DF DEQ∠+∠=︒ADF FDB90∴∠+∠=︒90BDE FDB即:90EDF∠=︒∴∆为等腰直角三角形.EDF。
湘教版数学八年级下册第1章直角三角形测试题及答案
评卷人
得分
一、单选题
1.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是( )
A.3个B.4个C.5个D.6个
2.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=30°,BD=2,则AD的长度是()
15.如图,△ABC是等腰直角三角形,∠BAC=90°,BE是△ABC的角平分线,ED⊥BC于点D,连接AD.
(1)请你写出图中所有的等腰三角形;
(2)若BC=10,求AB+AE的长.
16.如图所示,在Rt△ABC中,∠ACB=90°,M是AB边的中点,CH⊥AB于点H,CD平分∠ACB.
(1)求证:∠1=∠2;
∴△BDF≌△CDE(AAS),正确;
D.无法判定,错误;
故选D.
4.D
【解析】
【分析】
根据等腰直角三角形的性质得到∠B=45°,根据尺规作图可知AD平分∠CAB,根据角平分线的性质定理解答即可.
【详解】
解:∵∠ACB=90°,AC=BC,
∴∠B=45°,
由尺规作图可知,AD平分∠CAB,DE⊥AB又,∠ACB=90°,
∴DE=DC,又∠B=45°,
∴DE=BE,
∴△BDE的周长=BD+BE+DE=BD+CD+BE=BC+BE=AC+BE=AE+BE=AB=10,
故选D.
【点睛】
本题考查等腰直角三角形的性质以及尺规作图,掌握等腰直角三角形的性质和基本尺规作图是解题关键.
5.A
【解析】
试题解析:过点A作AE⊥BD于E,过点C作CF⊥BD于F,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EP O D 第1题图 B A第1章 直角三角形检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共24分) 1.如图所示,平分∠,,,垂足分别为,下列结论正确的是( ) A. B.C.∠∠D.2.如图所示,有两棵树,一棵高10 m ,另一棵高4 m ,两树相距8 m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( ) A.8 m B.10 mC.12 mD.14 m3.如图所示,已知,,下列条件能使△≌△的是( ) A. B. C. D.三个答案都是4.一直角三角形的两边长分别为3和4,则第三边的长为( )C.5D.5 5.如图所示,一棵树在一次强台风中,从离地面处折断,倒下的部分与地面成角,这棵树在折断前的高度是( ) A.B.C.D.6.如图所示,在△中,,点在上,为的中点,相交于点,且.若,则( )A. B. C. D.7.(2015·浙江湖州中考)如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( ) A.10 B.7 C.5D.4第7题图8.(2015·广西桂林中考)下列各组线段能构成直角三角形的一组是( ) A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,6二、填空题(每小题3分,共24分)9.若直角三角形的两直角边长为a ,b0=,则该直角三角形的斜边长为 . 10.在△中,,,⊥于点,则_______.11.有一组勾股数,知道其中的两个数分别是17和8,则第三个数是 . 12.如图所示,是△的角平分线,于点,于点F ,连接交于点,则与的位置关系是 .13.(长沙中考)如图所示,BD 是∠ABC 的平分线,点P 是BD 上的一点,PE ⊥BA 于点E ,PE =4 cm,则点P 到边BC 的距离为________cm. 14.如图所示,是∠的平分线,于点,于,则关于直线对称的三角形共有_______对. 15.如图所示,在Rt △中,,平分,交于点,且,,则点到的距离是________.16.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步路(假设2步为),却踩伤了花草.第12题图AB C D E F GABD C OE第14题图三、解答题(共52分) 17.(6分)若△的三边满足下列条件,判断△是不是直角三角形,并说明哪个角是直角. (1);,,14543===AC AB BC (2)).1(12122>+==-=n n c n b n a ,, 18.(6分)若三角形的三个内角的比是,最短边长为,最长边长为.求:(1)这个三角形各角的度数; (2)另外一边长的平方. 19.(6分)如图所示,在△中,,∠,交于点.求证:.20.(6分)如图所示,是∠内的一点,,,垂足分别为,. 求证:(1);(2)点在∠的平分线上. 21.(6分) (2015·湖北孝感中考)我们把两组邻边相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AB =CB ,AD =CD .对角线AC ,BD 相交于点O ,OE ⊥AB ,OF ⊥CB ,垂足分别是E ,F .求证:OE =OF.第20题图AB第19题图第21题图22.(6分)如图所示,为△的高,为上一点,交于点,且有,.求证:. 23.(8分)已知:在△中,,,点是的中点,点是边上一点. (1)垂直于于点,交于点(如图①),求证:. (2)垂直于,垂足为,交的延长线于点(如图②),找出图中与相等的线段,并证明.24.(8分)如图,折叠长方形的一边,使点落在边上的点处,cm ,cm , 求:(1)的长;(2)的长.第1章 直角三角形检测题参考答案第23题图①②ABCE F第22题图1.A 解析:由平分∠,于,于,知故选项A正确.2.B 解析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所飞行的路程最短,运用勾股定理可将两树梢之间的距离求出.如图所示,设大树高AB=10 m,小树高CD=4 m.连接AC,过点C作CE⊥AB于点E,则四边形EBDC是长方形.故EB=4 m,EC=8 m,AE=AB-EB=10-4=6(m).在Rt△AEC中,AC10(m).3.D 解析:添加A选项中条件可用“”判定两个三角形全等;添加B选项中条件可用“”判定两个三角形全等;添加C选项中条件可用“”判定两个三角形全等,故选D.4.D 解析:当已知的两边均为直角边时,由勾股定理,得第三边长为5;当4为斜边长时,.点拨:本题中没有指明哪个是直角边哪个是斜边,故应该分情况进行分析.注意不要漏解.5.B 解析:如图,在Rt△中,∠,,∠,所以,所以大树的高度为.故选B.6.C 解析:因为,,,,所以,.因为所以.因为.所以.故选C.7.C 解析:过点E作EF⊥BC,垂足为F,根据角平分线上的点到角的两边的距离相等可得ED=EF=2,所以1152522BCES BC EF=?创=△,故选C.第7题答图8.A解析:在选项A中,∵=2 500,=2 500,∴,∴30,40,50能构成直角三角形;在选项B中,∵=193,=169,∴≠,∴7,12,13不能构成直角三角形;在选项C中,∵=106,=144,∴,∴5,9,12不能构成直角三角形;在选项D 中,∵=25,=36,∴≠,∴ 3,4,6不能构成直角三角形.故选A.9.5 解析:∵ 26940a a b -++-=,∴ 2690a a -+=,40b -=,解得3a =,4b =. ∵ 直角三角形的两直角边长为a ,b ,∴ 该直角三角形的斜边长为2222345a b +=+=.点拨:本题考查了勾股定理、非负数的性质、绝对值和算术平方根的意义. 10.解析:如图所示,因为等腰三角形底边上的高、中线以及顶角平分线“三线合一”,所以.因为cm ,所以.因为 ,所以.11.15 解析:设第三个数是. ①若为最长边长,则,不是正整数,不符合题意;②若17为最长边长,则,三边长都是整数,能构成勾股数,符合题意.故答案为15. 12.垂直平分 解析:因为是△的角平分线,B 于点,于点F ,所以.在Rt △和Rt △中,所以Rt △≌Rt △,所以.又是△的角平分线,所以垂直平分.13.4 解析:本题考查了角平分线的性质.∵ 角平分线上的点到角两边的距离相等,∴ 点P 到边BC 的距离等于PE 的长度.14.解析:△和△,△和△△和△△和△共4对. 15.3 解析:如图,过点作于. 因为,,, 所以.因为平分,,ABDE所以点到的距离.16.4 解析:在Rt△中,,则,少走了.17. 解:(1)因为,根据三边满足的条件,可以判断△是直角三角形,其中∠为直角.(2)因为,所以,根据三边满足的条件,可以判断△是直角三角形,其中∠为直角.18.解:(1)因为三个内角的比是,所以设三个内角的度数分别为.由,得,所以三个内角的度数分别为.(2)由(1)可知此三角形为直角三角形,则一条直角边长为1,斜边长为2.设另外一条直角边长为,则,即.所以另外一条边长的平方为3.19.证明:在△中,因为,∠,所以.又因为,所以所以.所以.所以.所以.20.证明:(1)连接.因为,,,,所以Rt△≌Rt△,所以(2)因为Rt△≌Rt△(HL),所以,所以点在∠的平分线上.21.证明:在△ABD和△CBD中,∴△ABD≌△CBD(SSS),∴∠ABD=CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.22.证明:在Rt△和在Rt△中,因为,所以Rt△≌Rt△.所以.因为,所以.又在Rt△中,,即,所以∠AEB=90°,所以23.(1)证明:因为垂直于于点,所以∠,所以.又因为∠∠,所以∠∠.因为, ∠,所以.又因为点是的中点,所以.因为,,,所以△≌△,所以.(2)解:.证明如下:在△中,因为,∠,所以,∠∠.因为,即∠,所以,所以.因为为等腰直角三角形斜边上的中线,所以,.在△和△中,,,,所以△≌△,所以.24. 解:(1)由题意可得,在Rt△中,因为,所以,所以.(2)由题意可得,可设的长为,则.在Rt△中,由勾股定理,得,解得,即的长为.。