光学基础学习知识原理及其应用资料
光学基础知识光的折射和全反射的应用
光学基础知识光的折射和全反射的应用光学基础知识——光的折射和全反射的应用光学是研究光的传播和性质的学科,是物理学中的一个重要分支。
在光学中,光的折射和全反射是两个基本的现象和概念。
本文将对光的折射和全反射的原理及其应用进行介绍和探讨。
一、光的折射光的折射是指当光从一种介质传播到另一种介质时,由于介质的光密度不同,光线的传播方向发生改变的现象。
根据斯奈尔定律,光线在两种介质相交的界面上发生折射时,折射角和入射角之间的关系为n₁sinθ₁=n₂sinθ₂,式中n₁和n₂分别表示两种介质的折射率,θ₁和θ₂分别表示入射角和折射角。
光的折射是许多常见现象的基础,如水中的游泳池看上去比实际要浅,杯子中的吸管看上去弯曲等。
这些现象都可以通过折射原理来解释。
此外,光的折射还在光学设备中得到广泛应用,如透镜、棱镜、光纤等。
二、光的全反射光的全反射是指当光从光密度较大的介质传播到光密度较小的介质时,入射角超过一定临界值时,光将完全反射回原来的介质中的现象。
全反射发生的前提是入射光线从光密度较大的介质射向光密度较小的介质。
全反射除了是一种基本物理现象外,还广泛应用于光纤通信中。
光纤通信利用了光在光纤中的全反射特性,将信息以光的形式进行传输。
这种方式具有高速、高带宽、低损耗等优点,被广泛应用于现代通信系统中。
三、光的折射和全反射的应用光的折射和全反射在日常生活和科技领域中有许多实际应用。
下面我们分别介绍其在两个方面的应用。
1. 光学仪器光学仪器,如显微镜、望远镜、相机等,利用了光的折射原理来观察和记录远处的物体。
透镜作为光学仪器的核心部件,可以使光线经过折射和反射来聚焦和放大物体的影像。
2. 光纤通信光纤通信是一种基于光的折射和全反射原理的通信方式。
光纤内的光信号可以利用全反射的特性沿着光纤进行传输,从而实现快速、高质量的信息传递。
光纤通信已经成为现代通信领域最为重要的技术之一。
总结:光学基础知识中的光的折射和全反射是两个重要的现象,其应用涉及到各个领域,如光学仪器、光纤通信等。
光学基础知识详细版.pptx
2. 物像关系基础公式
• 高斯公式:
p 为物距,q 为像距,f 为焦距
在一般摄影时像距其实与焦距非常接近, 但是在微距摄影时,像距则可能大于焦距,此 时放大率会超过 1。利用高斯公式其实也可以 导出放大率公式:
放大率 M﹦p/q
2. 色差
• 透镜最主要像差一般为色差,大家都知道三棱 镜会将白光分散为光谱,透镜的侧面看来其实 也像棱镜,所以会有色差,红光波长较长,结 果红光焦点就比蓝光焦点长,因此焦点不在同 一平面上,所以目镜看红光影像清晰,蓝光影 像就不清晰,反之亦然,用没有消色差的透镜 当物镜就会看到物体镶了红边或蓝边,不够清 晰。
称轴线 今后我们主要研究的是共轴球面系统和平面镜、
二、成像基本概念 1、透镜类型 正透镜:凸透镜,中心厚,边缘薄,使光线会聚,也叫会聚透镜
会聚:出射光线相对于入射光线向光轴方向折转
负透镜:凹透镜,中心薄,边缘厚,使光线发散,也叫发散透镜
发散:出射光线相对于入射光线向远离光轴方向折转
2、透镜作用---成像
1. 焦距
在单透镜而言,如果窗外景物够远,那么透镜到倒立影像之距离 可视为焦距。如要更确实的量测,可以对着太阳在地面呈像,再 量测透镜到影像的距离。
• 要知道真正的焦距,还有一个方法,就是用物距与像距来计算, 因为物距与像距的比与物高与像高的比值是一样的,物高可以找 一个已知高度的物体,像高可以量测,物距可以量测,像距就可 以计算出来,而物距超过焦距五十倍以上时,算出来的像距已经 极接近焦距的数值。
第五节 光学系统类别和成像的概念
各种各样的光学仪器 显微镜:观察细小的物体 望远镜:观察远距离的物体
各种光学零件——反射镜、透镜和棱镜
光学系统:把各种光学零件按一定方式组合起来,满足一定的要求
光学基础知识详细版
光学基础知识详细版一、光的本质光是一种电磁波,是自然界中的一种能量传递形式。
光的本质可以通过波动理论和粒子理论来解释。
波动理论认为光是一种波动现象,具有波长、频率、振幅等特性;粒子理论则认为光是由光子组成的,光子是光的能量载体。
二、光的传播光在真空中的传播速度是恒定的,约为299,792,458米/秒。
光在不同介质中的传播速度不同,这是由于介质的折射率不同所致。
当光从一种介质传播到另一种介质时,会发生折射现象,即光线方向发生改变。
三、光的反射和折射光的反射是指光线在遇到界面时,按照一定规律返回原介质的现象。
光的折射是指光线在通过两种不同介质的界面时,传播方向发生改变的现象。
光的反射和折射遵循斯涅尔定律,即入射角和折射角满足一定的关系。
四、光的干涉和衍射光的干涉是指两束或多束相干光波相遇时,由于光波的叠加,形成新的光强分布的现象。
光的衍射是指光波在遇到障碍物或通过狭缝时,发生弯曲并绕过障碍物传播的现象。
五、光的偏振光的偏振是指光波的振动方向具有一定的规律性。
自然光是由无数个振动方向不同的光波组成的,因此不具有偏振性。
当光波通过某些特殊材料或经过反射、折射等过程后,可以形成具有一定偏振性的光波。
六、光的吸收和发射光的吸收是指光波在传播过程中,能量被物质吸收的现象。
光的发射是指物质在吸收光能后,以光波的形式释放能量的现象。
光的吸收和发射遵循一定的规律,如光的吸收强度与光的频率有关,光的发射强度与物质的性质有关。
七、光的成像光的成像是指利用光学系统(如透镜、反射镜等)使物体发出的光波或反射的光波在另一位置形成实像或虚像的过程。
光的成像原理是光的折射和反射现象,通过光学系统可以实现对物体形状、大小、位置的观察和研究。
八、光的测量光的测量是光学研究中的重要内容,主要包括光强、光强分布、波长、频率、相位等参数的测量。
光的测量方法有直接测量和间接测量两种,直接测量是通过光学仪器直接测量光波参数,间接测量是通过测量光波与物质相互作用的结果来推算光波参数。
光学科学的基础理论及应用
光学科学的基础理论及应用光学科学是一门探究光的本质、性质和应用的学科,它的发展历程跨越数个世纪,其重大的基础理论和应用研究被广泛应用在日常生活和各个行业。
本文将从光学科学的起源出发,介绍光学科学的基础理论及应用。
光学科学的起源早在古希腊时期,人们就开始研究有关光和光学的问题。
当时的学者认为,眼睛是由光发射出去的纤维组成,通过这些纤维,人才能看到物体。
在公元前3世纪,希腊的阿里士多德对光的传播和反射进行了最早的系统探究,他认为光在介质之间的传播速度是固定的,反射则是由于光线碰到光体后被反弹回来所引起的。
公元17世纪,荷兰科学家胡克提出光的横波理论,并用物理试验得到了光的波动性质的证据。
此外,还有包括牛顿、杨和傅科在内的众多科学家,为光学科学的发展做出了卓越的贡献。
光的性质及其基础理论光是一种电磁波,其传播速度在真空中为300,000 公里/秒。
光在介质中传播时,传播速度会发生变化,这种现象称为光的折射。
此外,光还会发生衍射、干涉和偏振等现象。
光的衍射是指当光通过一小孔或狭缝时,光会向四周发散扩散的现象。
这一现象可以通过夫琅禾费衍射实验来加以证实。
光的干涉是指两束或多束光相遇时所发生的现象,干涉可分为构成干涉和破坏干涉两种类型。
偏振是指在光传播过程中,光波振动方向受到限制的现象,多用于研究或制造光学装置,如偏光镜、偏振片等。
除此之外,光的波动性和粒子性也是光学基础理论中极为重要的一部分。
在20世纪初,爱因斯坦以光子论证明了光也具有粒子性。
光子是一个描述光的量子状态的粒子,光子数目决定了被观察到的光的亮度。
光学科学的应用研究光学科学的应用研究非常广泛,从光学原理到精密仪器和高科技汽车部件等,都具有很重要的应用价值。
以下是一些光学科学重要应用领域:1. 显微镜:显微镜是光学科学中的一个重要应用领域,它可以放大非常微小的物体。
显微镜分为光学显微镜、电子显微镜、扫描显微镜等多种类型。
2. 光纤:光纤是一种将信息通过光信号传输的技术,它具有传输带宽大、信号传输距离远、抗干扰能力强等优良特性,因此得到广泛应用。
光学三大原理
光学三大原理光学三大原理是光学领域中最基本的三个原理,它们分别是光的直线传播原理、光的反射原理和光的折射原理。
这三个原理为光学研究和应用提供了基础,也是光学领域中最重要的基础知识之一。
在本文中,我们将分别介绍这三个原理,以及它们的应用。
一、光的直线传播原理光的直线传播原理是指光在均匀介质中沿直线传播的现象。
这个原理的基础是光线模型,即将光看作是一束由数不尽的光线组成的光束。
在均匀介质中,光线是直线,因此光在均匀介质中的传播是直线传播。
这个原理在光学中的应用非常广泛,例如在建筑设计中,我们需要考虑光线的传播路径,以确定房间的采光情况。
在光学仪器中,我们也需要考虑光线的传播路径,以设计出能够精确测量和分析光的仪器。
二、光的反射原理光的反射原理是指光在与界面相交时,遵循反射定律反射的现象。
反射定律是指入射光线、反射光线和法线三者在同一平面内,且入射角等于反射角。
这个原理的基础是光的波动模型,即将光看作是一种波动,当光波遇到界面时,它会被分为反射波和折射波。
这个原理在镜子、反光镜、光学测量仪器等领域中有广泛的应用。
例如,我们在化妆时需要使用镜子,这就是利用了光的反射原理。
在反光镜和光学测量仪器中,光的反射原理也是非常重要的。
三、光的折射原理光的折射原理是指光在从一种介质传播到另一种介质时,遵循折射定律折射的现象。
折射定律是指入射光线、折射光线和法线三者在同一平面内,且入射角和折射角的正弦比为两种介质的折射率之比。
这个原理的基础也是光的波动模型。
光的折射原理在透镜、棱镜、光纤等领域中有广泛的应用。
例如,在相机中,我们需要使用透镜来调节光的折射角度,以实现对焦和变焦等功能。
在光纤通信中,光的折射原理也是非常重要的,因为光纤的传输就是基于光的折射原理。
总结光学三大原理是光学领域中最基本的三个原理,它们分别是光的直线传播原理、光的反射原理和光的折射原理。
这些原理为光学研究和应用提供了基础,也是光学领域中最重要的基础知识之一。
基础光学知识培训课件
基础光学知识培训课件基础光学知识培训课件光学是一门研究光的传播、反射、折射和干涉等现象的学科。
它在我们的日常生活中扮演着重要的角色,涉及到许多领域,如物理学、化学、医学、工程等。
为了更好地理解和应用光学知识,我们需要进行基础光学知识的培训。
一、光的本质光是一种电磁波,具有波粒二象性。
光的波动性使得它具有干涉、衍射等特性,而光的粒子性使得它能够与物质相互作用。
二、光的传播光的传播遵循直线传播的原则,即光在均匀介质中沿直线传播。
当光从一种介质传播到另一种介质时,会发生折射现象,即光线的传播方向发生改变。
折射现象是由于不同介质中光速不同而引起的。
三、光的反射光的反射是指光线从一个介质射向另一个介质时,遇到界面时发生方向改变的现象。
根据反射定律,入射角等于反射角,光线的入射角和反射角都是相对于法线而言的。
四、光的折射光的折射是指光线从一种介质传播到另一种介质时,由于介质的不同密度而发生方向改变的现象。
根据斯涅尔定律,入射角、折射角和两种介质的折射率之间满足一个简单的关系。
五、光的干涉光的干涉是指两束或多束光线相遇时发生叠加现象的过程。
干涉现象可以分为构成干涉的两种类型:相干干涉和非相干干涉。
相干干涉是指两束或多束光线具有相同的频率和相位,而非相干干涉是指两束或多束光线具有不同的频率和相位。
六、光的衍射光的衍射是指光通过一个孔或绕过一个障碍物时发生偏离直线传播的现象。
衍射现象是光的波动性质的结果,它使我们能够解释一些与光的传播有关的现象,如光的散射、光的扩散等。
七、光的色散光的色散是指光在经过介质时,由于不同频率的光具有不同的折射率而发生的现象。
根据光的波长和介质的折射率之间的关系,我们可以解释为什么光在经过一个三棱镜时会分散成不同颜色的光谱。
八、光的偏振光的偏振是指光中的电磁波在传播过程中只在一个方向上振动的现象。
光的偏振可以通过偏振片来实现,偏振片只允许特定方向上的光通过,其他方向上的光则被吸收或减弱。
光学的基本原理和应用是什么
光学的基本原理和应用基本原理光学是研究光在物质中传播和相互作用的学科。
在光学中,有一些基本的原理和概念需要了解。
光的本质光是电磁波的一种,具有波粒二象性。
根据波粒二象性,可以将光看作是一种由粒子(光子)组成的电磁波。
光的传播光通过直线传播的特点被称为直线传播特性。
光在真空中传播的速度是固定的,通常表示为光速。
光的反射和折射光遇到边界会发生反射和折射现象。
反射是光在与边界接触的时候发生的现象,即光线从一种介质反射回原来的介质。
折射是光线从一种介质进入另一种介质时发生的现象,即光线改变传播方向。
光的干涉和衍射干涉是指两束或多束光线相遇时相互干涉产生的明暗条纹。
衍射是光通过一个细缝或者物体边缘时发生的现象,使光在背后形成一系列的亮暗区域。
光的偏振光的偏振是指光波在传播过程中,振动方向的特性。
光可以是线偏振、圆偏振或者未偏振的。
应用光学的基本原理在许多应用领域中都有广泛的应用。
下面列举了一些常见的光学应用。
光学仪器光学仪器是利用光学原理制造的各种仪器。
例如,显微镜利用透镜对光进行聚焦,可以扩大小物体的细节。
望远镜利用透镜和反射镜将远处的物体看得更清楚。
光谱仪可以将光分解成不同波长的光谱,用于物质的分析和识别。
光通信光通信利用光的高频振动传播特性,将信息转化为光信号在光纤中传输。
光通信具有大容量、高速度和低延迟的优势,被广泛应用于互联网、电话和电视等领域。
光存储器光存储器利用光的特性进行信息的存储和读取。
例如,DVD和蓝光光盘就是利用激光对光盘表面进行记录和读取信息。
光谱分析光谱分析是利用光的颜色和频率的不同进行物质的分析和识别。
例如,红外光谱可以用于化学物质的成分分析,紫外光谱可以用于荧光材料的研究。
光学成像光学成像是利用光的反射、折射和干涉等原理对物体进行成像。
例如,相机和望远镜都是利用光学原理进行成像的工具。
激光技术激光是一种具有高度聚焦和定向性的光束,具有很多特殊的应用。
例如,激光切割和激光打印等工业应用,激光治疗和激光手术等医疗应用。
光学基础知识PPT课件
球面像差在镜头光圈全开或者接近全开的时候 表现最为明显,口径愈大的镜头,这种倾向愈明显。
在镜头使用上,通过缩小光圈可适当消除球面像 差。
44
球差的产生是因为理想的折射镜面不是球面,但 是为了加工方便一般都是用球面来近似,所以引起 球差。解决的方法是采用非球面技术。
45
目前主要有三种制造非球面镜片的方法: 1、研磨非球面镜片:在整块玻璃上直接研磨,这 种制造工艺成本相对较高; 2、模压非球面镜片:采用金属铸模技术将融化的 光学玻璃/光学树脂直接压制而成,这种制造工艺 成本相对较低;
41
当平行的光线由镜面的边缘(远轴光线)通过时, 它的焦点位置比较靠近镜片;而由镜片的中央通过 的光线(近轴光线),它的焦点位置则比较远离镜片 (这种沿着光轴的焦点错间开的量,称为纵向球面像 差)。
42
由于球面像差的缘故,就会在通过镜头中心部分 的近轴光线所结成的影像周围,形成由通过镜头边 缘部分的光线所产生的光斑(光晕),使人感到所形 成的影象变成模糊不清,画面整体好象蒙上一层纱 似的,变成缺少鲜锐度的灰蒙蒙的影像。这个光斑 的半径称为横向球面像差。
46
3、复合非球面镜片:在研磨成球面的玻璃镜片表 面上覆盖一层特殊的光学树脂,然后将光学树脂部 分研磨成非球面。这种制造工艺的成本界于上述两 种工艺之间。
47
像散
48
由位于主轴外的某一轴外物点,向光学系统发出 的斜射单色圆锥形光束,经该光学系列折射后,不 能结成一个清晰像点,而只能结成一弥散光斑,则 此光学系统的成像误差称为像散。
4
对于理想的反射面而言,镜面表面亮度取决 于视点,观察角度不同,表面亮度也不同;
一个理想的漫射面将入射光线在各个方向做 均匀反射,其亮度与视点无关,是个常量。
光学原理与应用
光学原理与应用光学是研究光的传播、反射、折射、干涉、衍射、色散等现象的学科,它是一门应用广泛且在现代科技中具有重要地位的学科。
本文将从光学的基本原理入手,介绍一些光学应用的领域。
一、光学原理1. 光的传播:光是一种电磁波,沿直线传播。
当光通过不同介质界面时,会发生反射和折射。
2. 光的反射和折射定律:根据斯涅尔定律,光在界面上反射和折射的角度满足一定的关系。
这个定律对于理解镜面的反射和透明介质的折射非常重要。
3. 光的干涉和衍射:干涉是指光波叠加产生明暗条纹的现象,衍射是指光波通过小孔或绕过障碍物后出现弯曲的现象。
这些现象是光波性质的重要表现。
4. 光的色散:当光通过介质时,由于介质对不同波长的光有不同的折射率,使得光发生色散现象,即白光经过折射后分离出七种颜色的光谱。
二、光学应用领域1. 光学仪器:光学仪器是利用光学原理制造的各种仪器设备,如望远镜、显微镜、光谱仪等。
望远镜可以放大远处物体的图像,显微镜可以观察微小物体,光谱仪可以将光分解成不同波长的光谱。
2. 光纤通信:光纤通信利用光的高速传输特性,将信息转化为光信号进行传输。
光纤通信具有高带宽、低损耗和抗干扰等优点,广泛应用于现代通信领域。
3. 激光技术:激光是一种具有高度定向性、单色性和相干性的光。
激光技术在医疗、材料加工、测量等领域有着广泛的应用,例如激光切割、激光打标、激光治疗等。
4. 光学显微镜:光学显微镜是一种能够观察微小物体的显微镜。
它利用光的折射和放大原理,通过物镜和目镜的组合,使得人眼能够清晰地观察到微观物体的细节。
5. 光学传感器:光学传感器是一种利用光的特性进行测量和检测的传感器。
它可以利用光的反射、折射、干涉等现象,实现对温度、压力、湿度等物理量的测量。
6. 光学材料与光学器件:光学材料是具有特殊光学性质的材料,包括透明材料、非线性光学材料、光学薄膜等。
光学器件是利用光学材料制造的光学元件,如滤光片、分光器、偏光器等。
光学原理的基础知识及其在工业生产中的应用
光学原理的基础知识及其在工业生产中的应用第一章光学原理的基础知识光学是一门研究光的产生、传播和变化规律的学科。
光学原理是基础,是了解光学的关键。
受到先进物理方面的挑战,光学原理获得了相当大的进展。
现代光学庞大而复杂,仍有很多未知的领域可以被建立。
光线理论是光学基础理论,常用于近似问题中,如透镜成像、反射、折射等。
第二章光学在工业生产中的应用光学作为一种强大的工具,不仅被广泛用于科研领域,而且在工业生产领域也得到了广泛应用。
2.1 光学成像光学成像是工业生产中应用最广泛,最基础的工具之一。
无论是在颜色分类、实时质量检测,还是在无人值守生产工艺中,光学成像都得到了广泛应用。
例如,自动售货机中的识别库存机器人,即依靠光学成像,通过对货物外形的辨别,自动检测货物数量,以实现自动化售货。
2.2 激光加工激光加工是目前比较热门的新工艺,将激光束焦距聚焦在工件上后,可以有效地实现各种非接触式加工工艺。
无论是钣金切割、机加工还是焊接,都可以采用激光技术。
激光断板机、激光切割机、激光冲压材料、激光烤漆、激光焊接等都已经得到了广泛应用。
第三章结论光学原理是现代光学的基础,不断推动着光学的进步。
从设计到生产,光学在现代工业制造中发挥了重要作用。
与传统的工具制造相比,通过光学加工,我们可以获得更高精度、更高质量的制造结果。
但是,我们也必须承认,光学应用的发展远未达到尽善尽美,这还需要继续进行探索和研究。
我们有理由相信,随着科学技术的发展,光学将会发展得更快、更远。
光学的基本原理及应用
光学的基本原理及应用1. 光学的基本原理1.1 光的传播模型•光的传播方式是沿直线传播的•光的传播速度是常数,在真空中为光速•光的传播路径遵循直线的反射和折射规律1.2 光的折射和反射•光的折射:光由一种介质射向另一种介质时,光的传播方向会改变,符合折射定律•光的反射:光射向有界面的介质时,一部分光会从界面上反射回来,符合反射定律1.3 光的干涉和衍射•光的干涉:两束或者多束光波相互叠加时,会出现干涉现象,干涉可以是增强或者相互抵消的•光的衍射:当光通过一个孔或者碰到一个遮挡物时,光会向各个方向扩散,形成衍射现象2. 光学的应用2.1 光学仪器•望远镜:利用光的折射原理,可以放大远处物体的影像,使其能够清晰可见•显微镜:利用光的折射原理,可以放大微小物体的影像,便于研究和观察微观结构•激光器:利用光的受激辐射过程,产生高度聚焦的激光光束,具有高亮度和高纯度的特点,广泛应用于科研、医疗、通信等领域2.2 光学通信光学通信是一种利用光传输信息的技术,其基本原理是利用光的高速传输和大带宽特性进行信息传递。
光学通信系统主要由光源、光纤传输介质和接收器三部分组成。
•光源:光通信系统中常用的光源有激光器和LED等,能够产生稳定的光信号•光纤传输介质:光通信系统中常用的传输介质是光纤,光信号通过光纤进行传输,具有低损耗、大带宽和抗干扰能力强的特点•接收器:接收器接收来自光纤的光信号,将光信号转换为电信号,以便进行后续的处理和解码光学通信具有传输速度快、传输距离远、抗干扰能力强等优势,广泛应用于互联网、电信、广播电视等领域。
2.3 光学信息存储光学信息存储是一种利用光的特性进行信息存储和读取的技术。
相比传统的磁盘存储和固态存储,光学存储具有存储密度高、存储容量大、读取速度快的优势。
•光盘:光盘是一种常用的光学存储介质,通过激光的反射和折射来记录和读取信息•蓝光光盘:蓝光光盘是一种基于蓝色激光的光学存储介质,具有更高的存储密度和容量,广泛应用于高清视频和高分辨率图像的存储•光存储器:光存储器是一种利用光的干涉或者散射效应进行信息存储的存储设备,具有存储容量大、读写速度快和抗磁场干扰的特点,适用于大规模数据存储和云计算等领域3. 结语光学作为研究光的传播和相互作用规律的学科,其基本原理和应用领域广泛而深入。
光学原理及应用doc资料
光学原理及应用光学的基本原理及应用人类很早就开始了对光的观察研究,逐渐积累了丰富的知识。
远在2400多年前,我国的墨翟(公元前468—前376)及其弟子们所著的《墨经》一书,就记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,可以说是世界上最早的光学著作。
现在,光学已成为物理学的一个重要分支,并在实际中有广泛应用.光学既是物理学中一门古老的基础学科,又是现代科学领域中最活跃的前沿科学之一,具有强大的生命力和不可估量的发展前景。
按研究目的的不同,光学知识可以粗略地分为两大类.一类利用光线的概念研究光的传播规律,但不研究光的本质属性,这类光学称为几何光学;另一类主要研究光的本性(包括光的波动性和粒子性)以及光和物质的相互作用规律,通常称为物理光学。
一、光学现象原理光的传播速度很快,地球上的光源发出的光,到达我们眼睛所用的时间很短,根本无法觉察,所以历史上很长一段时间里,大家都认为光的传播是不需要时间的.直到17世纪,人们才认识到光是以有限的速度传播的。
光速是物理学中一个非常重要的基本常量,科学家们一直努力更精确地测定光速.目前认为真空中光速的最可靠的值为c=299 792 458 m/s在通常的计算中可取c=3.00×108m/s玻璃、水、空气等各种物质中的光速都比真空中的光速小.(一)直线传播光能够在空气、水、玻璃透明物质中传播,这些物质叫做介质.在小学自然和初中物理中我们已经学过,光在一种均匀介质中是沿直线传播的.自然界的许多现象,如影、日食、月食、小孔成像等,都是光沿直线传播产生的.由于光沿直线传播,因此可以沿光的传播方向作直线,并在直线上标出箭头,表示光的传播方向,这样的直线叫做光线。
物理学中常常用光线表示光的传播方向。
有的光源,例如白炽灯泡,它发出的光是向四面八方传播的;但是有的光源,例如激光器,它产生的光束可以射得很远,宽度却没有明显的增加.在每束激光中都可以作出许多条光线,这些光线互相平行,所以叫做平行光线.做简单实验的时候,太阳光线也可以看做平行光线.(二)反射与折射阳光能够照亮水中的鱼和水草,同时我们也能通过水面看到烈日的倒影;这说明光从空气射到水面时,一部分光射进水中,另一部分光被反射,回到空气中.一般说来,光从一种介质射到它和另一种介质的分界面时,一部分光又回到这种介质中的现象叫做光的反射;而斜着射向界面的光进入第二种介质的现象,叫做光的折射。
光学的实际应用及知识点归纳
光学的实际应用及知识点归纳光的知识点归纳及实际应用1、光源能够发光的物体叫做光源。
可分为天然光源(恒星、萤火虫、水母)、人造光源(烛焰、灯泡、正在播放的电视机荧屏),而月亮、放电影的银幕不属于光源。
2、光的直线传播及其应用光在同种均匀介质中沿直线传播。
可解释日月食、小孔成像、影子的形成、三点一线射击。
3、光的传播速度光在真空中传播速度为3× 10^8米/秒,在水、玻璃中速度要小一些。
4、光的色散白光被分解成红、橙、黄、绿、蓝、靛、紫的现象叫光的色散。
5、色光的三原色与颜料的三原色色光的三原色是红绿蓝,调节三原色的不同比例就能得到某一种颜色的光。
颜料的三原色是红黄蓝。
颜料的颜色决定于外来照射光的颜色,以及颜料对照射光的吸收和反射情况。
比如,红色物体反射红色光,吸收其它色光。
不透明物体的颜色是它反射的色光决定的,透明物体的颜色是由它透过的色光决定的。
6、光的反射定律反射光线与入射光线、法线在同一平面上;反射光线和入射光线分居在法线两侧,反射角等于入射角。
可简记为:三线共面,一边一个,两角相等。
注意:(1)只能说反射角等于入射角;(2)入射角与反射角指的是光线与法线的夹角。
做题时充分运用两角相等,入射光线与镜面所成的角与入射角互余,法线实际为入射光线与反射光线所夹角的角平分线,法线与镜面垂直等。
7、镜面反射和漫反射造成镜面反射与漫反射的根源在于反射面的光滑程度。
反射面光滑,发生的是镜面反射,镜面反射体现出很强的方向性。
如果入射光线是平行光线,经镜面反射后,只向某一方向反射。
其它方向将感受不到这些反射光线。
反射面粗糙,发生的是漫反射,即使入射光线是平行光线,反射光向四面八方。
这样一来,各个方向都能感受到反射光线。
镜面反射与漫反射都遵守光的反射定律。
8、平面镜成像平面镜成像的特点:(1)像和物体到镜面的距离相等(2)像与物大小相等(3)平面镜所成的是虚像。
简记为“大”“垂”“离”平面镜能改变光的传播方向,这是潜望镜的原理。
光学原理的知识点总结
光学原理的知识点总结光学原理是研究光的传播、反射、折射、干涉、衍射等现象的学科。
在物理学和工程学领域中具有重要的地位。
本文将对光学原理的一些关键知识点进行总结,并探讨其在实际应用中的意义。
一、光的传播光的传播是光学原理的基础。
光是一种电磁波,具有波粒二象性。
光的传播速度在真空中是恒定的,约为3×10^8米/秒。
光的传播遵循直线传播的原则,即光线在均匀介质中直线传播,在两个介质之间发生折射。
二、光的反射光的反射是指光线从一个介质界面上发生反射的现象。
根据反射定律,入射角等于反射角,光线与法线的夹角相等。
反射现象在日常生活中随处可见,如镜子中的自己的倒影。
三、光的折射光的折射是指光线从一个介质传播到另一个介质时发生偏折的现象。
根据斯涅尔定律,入射光线、折射光线和法线所在的平面三者共面。
折射现象在透明介质中广泛存在,如光在水中的折射现象。
四、光的干涉光的干涉是指两个或多个光波相互叠加形成干涉图样的现象。
干涉现象是光的波动性质的体现。
干涉分为构成干涉的两个波的相位差相等的相干干涉和相位差不等的非相干干涉。
干涉现象在光学仪器中得到广泛应用,如干涉仪、干涉滤光片等。
五、光的衍射光的衍射是指光通过一个孔或经过一个物体边缘时发生弯曲和扩散的现象。
衍射现象是光的波动性质的重要表现。
根据夫琅禾费衍射公式,衍射角和衍射级数与入射角、波长、孔径大小等有关。
衍射现象在光学成像和衍射光栅中起到重要作用。
光学原理的应用光学原理在现代社会中有着广泛的应用。
以下是一些光学原理的应用:1. 光学仪器:光学原理的研究为光学仪器的设计和制造提供了理论基础。
例如,显微镜、望远镜、摄像机等都是基于光学原理的。
2. 光纤通信:光纤通信利用光的折射和衍射特性,将信息通过光纤传输。
光纤通信具有高带宽、低损耗、抗干扰等优点,已经成为现代通信的重要方式。
3. 光学传感器:光学传感器利用光的散射、吸收、反射等特性,测量和检测物体的性质和参数。
光学基础知识详细版
光学基础知识详细版光学是一门研究光及其与物质相互作用的科学。
它不仅对科学研究和技术发展具有重要意义,而且在我们日常生活中也随处可见。
光学基础知识包括光的传播、光的反射、光的折射、光的干涉、光的衍射和光的偏振等方面。
1. 光的传播光是一种电磁波,它在真空中的传播速度约为每秒30万千米。
光在同一种均匀介质中沿直线传播,这是光学中的基本原理之一。
当光从一种介质传播到另一种介质时,会发生折射现象。
2. 光的反射光的反射是指光线遇到界面时改变传播方向的现象。
根据反射定律,入射角等于反射角。
光的反射可以分为镜面反射和漫反射两种。
镜面反射是指光线在光滑表面上的反射,反射光线方向明确;漫反射是指光线在粗糙表面上的反射,反射光线方向杂乱无章。
3. 光的折射光的折射是指光线从一种介质传播到另一种介质时,传播方向发生改变的现象。
根据折射定律,入射角、折射角和两种介质的折射率之间存在一定的关系。
光的折射现象在生活中非常普遍,如眼镜、放大镜、显微镜等光学仪器都是基于光的折射原理制成的。
4. 光的干涉光的干涉是指两束或多束光线相遇时产生的光强分布现象。
光的干涉可以分为相干干涉和非相干干涉两种。
相干干涉是指频率相同、相位差恒定的光线相遇时产生的干涉现象;非相干干涉是指频率不同或相位差不恒定的光线相遇时产生的干涉现象。
光的干涉现象在光学测量、光学成像等领域有着广泛的应用。
5. 光的衍射光的衍射是指光线通过狭缝或障碍物时,发生偏离直线传播的现象。
光的衍射现象在光学成像、光学检测等领域有着重要的应用。
6. 光的偏振光的偏振是指光波的电场矢量在某一特定方向上振动的现象。
光的偏振可以分为自然光、线偏振光、圆偏振光和椭圆偏振光等。
光的偏振现象在光学通信、光学测量等领域有着重要的应用。
光学基础精品文档
衍射效果:产生明暗相间的 条纹,形成衍射图样
衍射应用:光学仪器、光纤 通信、全息摄影等领域
光学元件
透镜的作用:汇聚光线,形成清晰 的图像
透镜的应用:眼镜、显微镜、望远 镜等
添加标题
添加标题
添加标题
添加标题
透镜的类型:凸透镜、凹透镜、平 透镜
透镜的制造材料:玻璃、塑料、水 晶等
作用:改变光 的传播方向
超快光学的未来发展趋势:朝着更 高精度、更快速度、更广泛的应用 方向发展
非线性光学简 介:研究光与 物质相互作用 的非线性效应
非线性光学的 发展历程:从 最初的理论研 究到实际应用
非线性光学的 应用领域:光 纤通信、激光 技术、生物医
学等
非线性光学的未 来发展趋势:更 高效、更广泛的 应用,与量子光 学、纳米光学等 学科的交叉融合
原理:利用光的 干涉和衍射现象
材料:光学玻璃、 塑料等
应用:摄影、天 文观测、医疗诊 断等领域
光学仪器
显微镜的发明: 16世纪末,荷 兰科学家列文 虎克发明了显
微镜
显微镜的原理: 利用光学原理, 通过物镜和目 镜将微小物体
放大
显微镜的种类: 光学显微镜、 电子显微镜、 扫描隧道显微
镜等
显微镜的应用: 生物学、医学、 材料科学等领 域的研究和实
类型:平面反 射镜、曲面反 射镜、球面反
射镜等
应用:望远镜、 显微镜、照相 机等光学仪器
原理:光的反 射定律
作用:将一束光 分成两束或更多 束
类型:棱镜分束 器、光栅分束器、 偏振分束器等
应用:光学实验、 激光技术、光纤 通信等领域
原理:利用光的 折射、反射、衍 射等特性,实现 光的分束
光学工程及其应用知识点
光学工程及其应用知识点本文将介绍光学工程及其应用的一些基本知识点。
光学工程
1. 光学基本原理
- 光的传播方式:直线传播和弯曲传播
- 光的属性:光的波动性和粒子性
- 光的吸收、透射和反射
2. 光学仪器
- 透镜:凸透镜和凹透镜
- 增大光线聚焦的仪器:放大镜和显微镜
- 分散和聚焦光线的仪器:光栅和光导纤维
3. 光学设计
- 根据需要设计适合的光学系统
- 考虑光线传播的情况
- 优化光学系统的性能和效率
光学应用
1. 光纤通信
- 光纤的原理和结构
- 光纤的传输性能和损耗
- 光纤通信的优势和应用领域
2. 激光技术
- 激光的基本原理和特性
- 激光器的类型和性能
- 激光的应用领域,如医疗、制造和通信等3. 光学传感器
- 光学传感器的工作原理
- 不同类型的光学传感器:温度传感器、压力传感器、光电二极管等
- 光学传感器在工业和医疗等领域的应用
以上是光学工程及其应用的一些基本知识点。
了解这些知识可以帮助您更好地理解光学工程的原理和应用。
如果您想进一步深入研究和应用光学工程,可以参考相关的教材和专业课程。
---------------------------。
物理光学基本原理与应用
物理光学基本原理与应用【教案】物理光学基本原理与应用导语:光学是自然科学中的一门基础学科,其研究物质与光的相互作用规律。
在我们的日常生活中,光学应用广泛,比如光学仪器、光学通信、光学存储等。
本文将从光学基本原理和应用两个方面进行论述,帮助学生更深入地了解物理光学的知识。
一、光学基本原理1. 光的传播速度和光的折射- 描述光的传播速度的光速概念- 折射定律的表达和实例2. 光的干涉和衍射- 干涉的基本原理和条件- 衍射的基本原理和条件- 双缝干涉和单缝衍射实验3. 光的偏振- 光的偏振现象和偏振光的产生- 光的偏振方向和波的振动方向的关系二、光学应用1. 光学仪器- 望远镜的原理和应用- 显微镜的原理和应用- 光栅的原理和应用2. 光学通信- 光纤通信的原理和优势- 光纤通信的组成和工作过程- 光纤通信的应用和发展前景3. 光学存储- 光盘的原理和类型- DVD的工作原理和应用- 蓝光光盘的原理和优势4. 光学成像- 相机的工作原理和构造- 透镜的焦距和成像特点- 光学显微镜和显微摄像机的原理和应用5. 光学显示- 液晶显示的原理和结构- LED显示的工作原理和应用三、案例分析1. 光学仪器的案例- 利用望远镜观测远处星体的方法- 利用显微镜观察细胞结构的应用2. 光学通信的案例- 光纤通信在国际长距离通信中的应用- 光纤通信在城市宽带传输中的应用3. 光学存储的案例- 光盘在音乐、电影、软件存储中的应用- 蓝光光盘在高清电影存储中的应用总结:光学是一门应用广泛的学科,在现代科技中扮演着重要角色。
本教案从光学基本原理和应用两个方面进行了论述,希望通过对光学知识的学习,能够拓宽学生的视野,并激发他们对光学领域的兴趣和研究。
光的原理与应用知识点总结
光的原理与应用知识点总结1. 光的性质•光是一种电磁波,具有波动性和粒子性。
•光的波动性表现为传播速度和折射现象。
•光的粒子性表现为光子的能量量子化。
2. 光的传播•光在真空中传播的速度为光速,约为3.00×10^8 m/s。
•光在介质中传播时会发生折射和反射。
•折射是光线从一种介质传播到另一种介质时改变传播方向的现象。
•反射是光线在界面上发生改变传播方向的现象。
3. 光的衍射和干涉•光的衍射是指光通过狭缝或物体边缘时出现的波阵面的变化。
•光的干涉是指两束或多束光波相遇产生的干涉条纹的现象。
4. 光的色散•光的色散是指光在通过介质时根据频率的不同而偏离原来的路径。
•常见的色散现象包括折射角的变化和光的波长的变化。
5. 光的成像•光的成像是指通过光线在透镜或反射镜上的折射或反射,使得物体在像平面上形成投影的过程。
•透镜的种类包括凸透镜和凹透镜,其性质和成像规律不同。
•反射镜的种类包括凸面镜和凹面镜,其性质和成像规律也不同。
6. 光的应用•光学仪器:显微镜、望远镜、相机等。
•光通信:利用光作为信号的传输媒介,传输速度快、带宽大。
•光储存:光盘、蓝光光盘等。
•光治疗:利用激光光束对疾病进行治疗,如激光近视手术等。
7. 光的安全•避免直接观察强光源,避免对眼睛造成损伤。
•注意使用安全眼镜或护目镜,在需要时戴上以保护眼睛。
8. 光的未来发展•随着科技的发展,光技术在信息传输、医疗诊断、能源利用等领域将发挥更重要的作用。
•光量子计算、光纤通信和太阳能发电等技术将得到进一步创新和应用。
以上是关于光的原理与应用的一些知识点总结,对光的性质、传播、衍射和干涉、色散、成像以及应用进行了简要介绍。
希望本文能对你加深对光学知识的理解有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光学的基本原理及应用人类很早就开始了对光的观察研究,逐渐积累了丰富的知识。
远在2400多年前,我国的墨翟(公元前468—前376)及其弟子们所著的《墨经》一书,就记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,可以说是世界上最早的光学著作。
现在,光学已成为物理学的一个重要分支,并在实际中有广泛应用.光学既是物理学中一门古老的基础学科,又是现代科学领域中最活跃的前沿科学之一,具有强大的生命力和不可估量的发展前景。
按研究目的的不同,光学知识可以粗略地分为两大类.一类利用光线的概念研究光的传播规律,但不研究光的本质属性,这类光学称为几何光学;另一类主要研究光的本性(包括光的波动性和粒子性)以及光和物质的相互作用规律,通常称为物理光学。
一、光学现象原理光的传播速度很快,地球上的光源发出的光,到达我们眼睛所用的时间很短,根本无法觉察,所以历史上很长一段时间里,大家都认为光的传播是不需要时间的.直到17世纪,人们才认识到光是以有限的速度传播的。
光速是物理学中一个非常重要的基本常量,科学家们一直努力更精确地测定光速.目前认为真空中光速的最可靠的值为c=299 792 458 m/s在通常的计算中可取c=3.00×108m/s玻璃、水、空气等各种物质中的光速都比真空中的光速小.(一)直线传播光能够在空气、水、玻璃透明物质中传播,这些物质叫做介质.在小学自然和初中物理中我们已经学过,光在一种均匀介质中是沿直线传播的.自然界的许多现象,如影、日食、月食、小孔成像等,都是光沿直线传播产生的.由于光沿直线传播,因此可以沿光的传播方向作直线,并在直线上标出箭头,表示光的传播方向,这样的直线叫做光线。
物理学中常常用光线表示光的传播方向。
有的光源,例如白炽灯泡,它发出的光是向四面八方传播的;但是有的光源,例如激光器,它产生的光束可以射得很远,宽度却没有明显的增加.在每束激光中都可以作出许多条光线,这些光线互相平行,所以叫做平行光线.做简单实验的时候,太阳光线也可以看做平行光线.(二)反射与折射阳光能够照亮水中的鱼和水草,同时我们也能通过水面看到烈日的倒影;这说明光从空气射到水面时,一部分光射进水中,另一部分光被反射,回到空气中.一般说来,光从一种介质射到它和另一种介质的分界面时,一部分光又回到这种介质中的现象叫做光的反射;而斜着射向界面的光进入第二种介质的现象,叫做光的折射。
光的反射定律实验表明,光的反射遵循以下规律(图18-8):过入射光线和界面的交点作界面的垂线ON,这条垂线就是法线.i 是入射角,r是反射角.(1)反射光线和入射光线、界面的法线在同一个平面内,反射光线和入射光线分别位于法线的两侧;(2)反射角等于入射角.这就是我们在初中学过的光的反射定律.由于反射角跟入射角总是相等的,所以如果使光线逆着原来的反射光线入射到两种介质的界面上,反射后会沿着原来的入射光线射出.这表明,在反射现象中光路是可逆的.(简介镜面反射及漫反射)光的折射定律在图18-10中,折射光线和法线的夹角r叫做折射角;入射光线和法线的夹角i叫做入射角.如果一种介质对光的吸收能力不强,光能够穿过,我们就说这种介质是“透明”的,否则就是不透明的.从实验可以看到,光从空气射入水中时折射角小于入射角,那么,一般情况下,折射角和入射角有什么数量关系?在很长的一段时间里,许多科学家作了多方面的尝试,直到1621年才由荷兰科学家斯涅耳(1580—1626)发现,入射角的正弦跟折射角的正弦之比是一个常量.我们在初中已经学过折射光线、入射光线和法线的位置关系(图18-10),结合斯涅耳的发现,光的折射定律可以这样表示:(1)折射光线跟入射光线和界面的法线在同一个平面内,折射光线和入射光线分别位于法线的两侧;(2)入射角的正弦跟折射角的正弦之比是一个常量,即(1)在折射现象中,光路也是可逆的.这就是说,在图18-10中,如果让光线逆着折射光线从玻璃射向界面,折射光线也会逆着入射光线射入空气.折射率折射定律告诉我们,光从一种介质射入另一种介质时,尽管折射角的大小随着入射角的大小在变化,但是两个角的正弦之比是个常量,对于水、玻璃等各种介质都是这样.但是,对于不同介质,比值n 的大小并不相同,例如,光从空气射入水时这个比值为1.33,从空气射入普通的窗玻璃时,比值约为1.5.因此,常量n是一个能够反映介质的光学性质的物理量,我们把它叫做介质的折射率.光以什么角度通过两种介质的分界面时,传播方向不会变化?光在不同介质中的传播速度不同.理论研究证明:某种介质的折射率,等于光在真空中的速度c跟光在这种介质中的速度v之比,即(2)根据光路可逆的道理,光从介质射入真空时,入射角和折射角的大小有什么关系?由于光在真空中的速度c大于光在任何介质中的速度v,从(2)式可以看出,任何介质的折射率n都大于1.于是又从(1)式看出,光从真空射入介质时,总有sin i>sin r,即入射角大于折射角.光在真空中的速度跟在空气中的速度相差很小,可以认为光从空气射入某种介质时的折射率就是那种介质的折射率.下表列出了几种介质的折射率.全反射不同介质的折射率不同,我们把折射率小的介质叫做光疏介质,折射率大的介质叫做光密介质.光疏介质和光密介质是相对的,例如水、水晶和金刚石三种物质相比较,水晶对水来说是光密介质,对金刚石来说是光疏介质.光由光疏介质射入光密介质时(例如由空气射入玻璃),折射角小于入射角,光线由光密介质射入光疏介质时(例如由玻璃射入空气),折射角大于入射角,如图18-15.既然光由光密介质射入光疏介质时折射角大于入射角,由此可以预料,当入射角增大到一定程度时,折射角就会十分接近90°,这时折射光几乎沿着平行于界面的方向传播.如果入射角再增大,会出现什么情况呢?图18-16中的电筒以不同的角度从水下把光射向水面,这个过程生动地表现了我们的推测.可以通过实验验证这个推测.如图18-17,让光透过玻璃射到玻璃砖的平直的边上,可以看到一部分光通过这条边折射到空气中,另一部分光反射回玻璃砖内.逐渐增大入射角,会看到折射光线离法线越来越远,而且亮度越来越弱,反射光线却越来越强.当入射角增大到某一角度,使折射角达到90°时折射光线完全消失,只剩下反射光线.这种现象叫做全反射.临界角上面的实验中,在入射角增大的过程中,刚刚能够发生全反射时的入射角,叫做全反射的临界角,这时的折射角等于90°.不同的介质,由于折射率不同,在空气中发生全反射的临界角是不一样的.下面我们计算折射率为n的介质在空气中发生全反射的临界角C.计算之前先想一想,光线分别从水和玻璃射入空气,哪种情况的临界角比较大?光从空气中以入射角i射到折射率为n的介质的界面上时,折射角为r(图18-18甲),这三个物理量的关系可以用下式表示:根据光路可逆的道理,如果光线在介质中逆着折射光线射向界面,光线在空气中会逆着原来的入射光线射出,这时r和i就分别表示入射角和折射角了(图18-18乙).假设这时入射角恰好为临界角C,则空气中的折射角为90°(图18-18丙),再考虑到sin 90°=1,上式就可以写成于是解出可以看出,介质的折射率越大,全反射的临界角越小.从折射率表中查出物质的折射率,就可以用上式求出光从这种介质射到空气时发生全反射的临界角.水的临界角为48.7°,各种玻璃的临界角为32°~42°,金刚石的临界角为24.5°.全反射是自然界中常见的现象.例如,水中或玻璃中的气泡,看起来特别明亮,就是因为光从水或玻璃射向气泡时,一部分光在界面上发生了全反射.横截面为等腰直角三角形的玻璃棱柱(图18-19)常常代替平面镜用在光学仪器中.如图18-20甲,在玻璃内部,光线射到等腰直角三角形的底边时,入射角为45°,而玻璃在空气中的临界角为32°~42°,入射角大于临界角,全部光线被反射.这种棱镜叫做全反射棱镜.在它的两个直角边上也能发生全反射,如图18-20乙.望远镜为了获得较大的放大倍数,镜筒需要做得很长,使用全反射棱镜能够缩短镜筒的长度(图18-21).家用平面镜为了保护反光用的金属镀层,把金属物质镀在镜子的背面.这样,前面玻璃和空气的界面所反射的光线会干扰金属镀层所成的像,所以光学仪器中的平面镜总把金属层镀在玻璃或其他平面材料的前面,但是这样就免不了发生锈蚀,降低反射能力.全反射棱镜没有这样的问题,反射效率很高,而且因为没有金属镀层,制作工艺简单.光导纤维同学们可能早就听说过“光纤通信”这个术语了.光纤通信就用到了全反射的知识.光纤是光导纤维的简称,它是一种非常细的玻璃丝,直径只有几微米到一百微米,而且分为内芯和薄薄的外套两部分(图18-22).内芯的折射率比外套大,因此光在内芯中传播时会在内芯和外套的界面上发生全反射.光波实际上也是一种电磁波,它像无线电波那样也能用来传递信息.载有话音、图像及各种数字信号的激光从光纤的一端输入,就可以沿光纤传到千里以外的另一端,实现光纤通信.光纤通信的主要优点是能同时传送大量信息,数以万计的电话机可以使用同一条光纤进行通话而不互相干扰.我国目前已经在省会城市间基本建成全国性的光纤通信网.北京有线电视台则于1999年在北京全市范围内铺设了有线电视光缆.把一束玻璃纤维的两端按相同规律排列,具有不同亮暗和色彩的图像就能从一端传到另一端(图18-23).用玻璃纤维也可以制成内窥镜,用来检查人体胃、肠、气管等内脏的内部.实际的内窥镜装有两组光纤,一组用来把光输送到人体内部,另一组用来进行观察(图18-24).(三)色散太阳、日光灯等发出的光,没有特定的颜色,叫做白光.如图18-28,让白光通过狭缝形成扁扁的一条光束,射到棱镜,受到偏折后照到屏上,我们预期可以看到一个跟狭缝宽窄相同的白色亮线.但是实际上却出现了许多具有不同颜色的亮线,它们互相连接,形成一条彩色亮带.这条亮带叫做光谱(彩图10).这个现象说明了两个问题:第一,白光实际上是由各种单色光组成的复色光;第二,不同的单色光通过棱镜时的偏折程度不同,这表明棱镜材料对不同色光的折射率不同,也就是说,不同颜色的光在同一种介质中的传播速度不一样.由于实验中红光偏折的程度最小,紫光偏折的程度最大,所以,在同种介质中,按照红、橙、黄、绿、蓝、靛、紫的顺序从红光到紫光,传播速度一个比一个小.如果用厚度可以不计的薄玻璃制作一个密封的空心“棱镜”,把它放到水里,经过棱镜的光线向哪个方向偏折?画出图来试试看.不要忘记,根据139页的(2)式,折射率越大的物质,其中的光速越小.一般说来,复色光分解成单色光的现象,叫做色散.二、光学元件(一)平面镜(二)棱镜棱镜时透明材料做成的多面体。