5-数学中考模拟试卷

合集下载

中考数学模拟试题五

中考数学模拟试题五

中考数学模拟试题五一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是()A.B.C.D.2.|-5|的相反数是()A.5 B.-5 C.-15D.153.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.114.实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.00000156米,则这个数用科学记数法表示为()A.0.156×10-5B.0.156×105C.1.56×10-6D.1.56×1065.若不等式组恰有两个整数解,则m的取值范围是()A.-1≤m<0 B.-1<m≤0 C.-1≤m≤0 D.-1<m<06.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n的方差是()A.2 B.4 C.8 D.167.如图,在△ABC中,AB=AC=5,BC=8,⊙O经过B、C两点,且AO=4,则⊙O的半径长是()A.17或65B.4或65C.4或17D.4或17或658.银泰购物中心一月份的营业额为400万元,第一季度营业总额为1600万元,若平均每月增长率为x,则可列方程为()A.400(1+x)2=1600 B.400[1+(1+x)+(1+x)2]=1600C.400+400x+400x2=1600 D.400(1+x+2x)=16009.程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .+3(100﹣x )=100B .﹣3(100﹣x )=100C .3x +=100D .3x ﹣=100 10.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④tan ∠CAD=2.其中正确的结论有( B ) A.4个 B .3个 C .2个 D .1个二、填空题(本大题共6小题,每小题3分,满分18分.)11.分解因式:20-5a 2= .12.如图,在△ABC 中,D 为AC 边上的点,∠DBC=∠A ,BC =6,AC =3,则CD 的长为 _________ .13.已知:平面直角坐标系xOy 中,圆心在x 轴上的⊙M 与y轴交于点D (0,4)、点H ,过H 作⊙O 的切线交x 轴于点A ,若点M (-3,0),则sin ∠HAO 的值为 .14.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是 5 .15.如图,已知正方形ABCD 的边长为2,将正方形ABCD 沿直线EF 折叠,则图中折成的4个阴影三角形的周长之和为 .16.如图,在等边△ABC 中,AB=4,点P 是BC 边上的动点,点P 关于直线AB ,AC 的对称第10题图F E DB CA点分别为M ,N ,则线段MN 长的取值范围是 6≤MN ≤4 .三、解答下列各题(共72分)17、(5分)计算:21()3-20170+|2-23|-tan60°18. (6分)如右图,矩形ABCD ,E 是AB 上一点,且DE =AB ,过C 作CF ⊥DE 于F .(1)猜想:AD 与CF 的大小关系;(2)请证明上面的结论.19.(8分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,随州市某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图.请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将不完整的条形图补充完整.(3)若居民区有8000人,请估计爱吃D 粽的人数?(4)若有外型完全相同的A 、B 、C 、D粽各一个煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率?20.(7分)已知:如图,一次函数y=x+b的图象与反比例函数y=kx(k<0)的图象交于A、B两点,A点坐标为(1,m),连接OB,过点B作BC⊥x轴,垂足为点C,且△BOC的面积为32.(1)求k的值;(2)求这个一次函数的解析式.21.(7分)如图,中国海监船在钓鱼岛附近海域沿正西方向航行执行巡航任务,在A处望见钓鱼岛在南偏西45°方向,海监船航行到B处时望见钓鱼岛在南偏45°方向,又航行了15分钟到达C处,望见钓鱼岛在南偏60°方向,若海监船的速度为36海里/小时,求中国海监船在此次航行过程中离钓鱼岛的最近距离为多少海里?(3≈1.732,结果精确到0.1海里).22.(8分) 如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.(1)求证:∠ACM=∠ABC;(2)延长BC到D,使CD=BC,连接AD与CM交于点E,若⊙O的半径为2,ED=1,求AC的长.23.(9分)实验中学九年级学生小凡、小文和小宇到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小凡:如果以9元/千克的价格销售,那么每天可售出350千克.小文:如果每千克的利润为2元,那么每天可售出300千克.小宇:如果以11元/千克的价格销售,那么每天可获取利润750元.物价部门规定:该水果的加价不得超过进价的45﹪.【利润=(销售价-进价)×销售量】(1)请根据他们的对话填写下表:(3分)销售单价x(元/kg)9 10 11销售量y(kg)(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;(3分)(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?(3分)24.(10分)如图1,在边长为4的菱形ABCD中,AC为其对角线,∠ABC=60°点M、N是分别是边BC、边CD上的动点,且MB=NC.连接AM、AN、MN.MN交AC于点P.(1)△AMN是什么特殊的三角形?说明理由.(2)求△AMN面积的最小值;(3)求点P到直线CD距离的最大值;25. (12分)如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)在抛物线对称轴上是否存在点M,使|MA-MC|的值最大?若存在,请求出点M的坐标;若不存在,请说明理由.答案:21.22.(1)证明:连接OC.∵AB为⊙O的直径,∴∠ACB=90°.∴∠ABC+∠BAC=90°.∵CM是⊙O的切线,∴OC⊥CM.∴∠ACM+∠ACO=90°.∵CO=AO,∴∠BAC=∠ACO.∴∠ACM=∠ABC.(2)解:∵BC=CD,OB=OA,∴OC∥AD.又∵OC⊥CE,∴CE⊥AD,∵∠ACD=∠ACB=90°,∴∠AEC=∠ACD.∴△ADC∽△ACE.∴.∵⊙O的半径为2,∴AD=4.∴.∴AC=2.24.解:(1)如图1中,∵ABCD是菱形,∠ABC=60°,∴△ABC为等边三角形在△AMB和△ANC中,AB=AC∠B=∠ACN=60°BM=NC∴△AMB≌△ANC∴AM=AN,∠BAM+∠MAC=∠MAC+∠NAC=60°,∴∠MAN=60°,∴△AMN为等边三角形,当AM⊥BC时,△AMN的边长最小,面积最小,=•(2)2=3此时AM=MN=AN=2,S△AMN(2)如图2中,当AM⊥BC时,点P到CD距离最大.作PE⊥CD于E.理由:由(1)可知△AMN是等边三角形,当AM⊥BC时,△AMN的边长最小,此时PA长最小,PC的长最大,点P到直线CD距离的最大,∵BM=MC=2,∠CMP=30°,∠MPC=90°,∴PC=MC=1,在Rt △PCE 中,∵∠CPE=30°,PC=1,∴EC=PC=, ∴PE==.∴点P 到直线CD 距离的最大值为; 25.解:(1)∵抛物线y =x 2+bx +c 过点A (3,0),B (1,0),∴, 解得,∴抛物线的解析式为y =x 2-4x +3.(2)令x =0,则y =3,∴点C (0,3),又∵点A (3,0),∴直线AC 的解析式为y = -x +3,设点P (x ,x 2-4x +3),∵PD ∥y 轴,且点D 在AC 上,∴点D (x ,-x +3),∴PD =(-x +3)-(x 2-4x +3)=-x 2+3x =-(x-)2+, ∵a =-1<0,∴当x =时,线段PD 的长度有最大值,最大值为. (3)存在.由抛物线的对称性可知,对称轴垂直平分AB ,可得:MA =MB ,由三角形的三边关系,|MA -MC |<BC ,可得:当M 、B 、C 三点共线时,|MA -MC |最大,即为BC 的长度,设直线BC 的解析式为y =kx +b (k ≠0),由B 、C 两点的坐标分别为(1,0)、(0,3), 则, ⎩⎨⎧=++=++01039c b c b ⎩⎨⎧==3-4c b 23492349⎩⎨⎧==+30b b k解得,∴直线BC 的解析式为y = -3x +3,∵抛物线y =x 2-4x +3的对称轴为直线x =2,∴当x =2时,y=-3×2+3=-3,∴点M (2,-3),即抛物线对称轴上存在点M (2,-3),使|MA -MC |最大.⎩⎨⎧==3-3b k。

重庆市中考数学模拟试卷(05)

重庆市中考数学模拟试卷(05)

重庆市中考数学模拟试卷(05)一.选择题(共12小题,满分48分,每小题4分)1.(4分)(2022•云梦县模拟)﹣2021的倒数为()A.B.C.﹣2021D.20212.(4分)图形一般是由()A.点和线构成B.线和面构成C.点和面构成D.点、线、面构成3.(4分)(2021秋•沙坪坝区期末)计算:a3•a2的结果()A.a6B.5a C.6a D.a54.(4分)(2021秋•肇源县期末)如图,P A,PB切⊙O于A,B两点,CD切⊙于点E,交P A、PB于C、D,若△PCD的周长等于4,则线段P A的长是()A.4B.8C.2D.15.(4分)(2021秋•济宁期末)当x=﹣1时,代数式2x2﹣5x的值为()A.5B.3C.﹣2D.76.(4分)(2021秋•宁德期末)如图,△ABC与△DEF位似,位似中心是点P,其位似比为1:2,则△ABC与△DEF的面积比是()A.1:2B.1:4C.1:D.1:87.(4分)(2021秋•西湖区校级期中)为鼓励居民使用天然气,某市天然气公司采用一种收费办法.若整个小区每户都安装,收整体初装费10000元,再对每户收费500元,某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数()A.至少20户B.至多20户C.至少21户D.至多21户8.(4分)(2020秋•驿城区校级期中)如图,从左至右,第1个图由1个六边形、6个正方形和6个三角形组成;第二个图由2个六边形、11个正方形和10个三角形组成;第3个图由3个六边形、16个正方形和14个三角形组成;…按照此规律,第10个图中正方形的个数和三角形的个数之和为()A.90B.93C.96D.999.(4分)(2021•市中区二模)图1是济南动物园的一个大型娱乐设施﹣﹣摩天轮,它是一种大型转轮状的机械建筑设施,上面挂在轮边缘的是供乘客乘搭的座舱,乘客坐在摩天轮慢慢的往上转,可以从高处俯瞰泉城景色.图2是它的的简化示意图,点O是摩天轮的圆心,AB是摩天轮垂直地面的直径,小嘉从摩天轮最低处B下来先沿水平方向向右行走20m到达C,再经过一段坡度(或坡比)为i=0.75,坡长为10m的斜坡CD到达点D,然后再沿水平方向向右行走40m到达点E(A、B、C、D、E均在同一平面内),在E处测得摩天轮顶端A的仰角为24°,则AB的高度约为()米.(参考数据:sin24°≈0.4,cos24°≈0.91,tan24°≈0.45)A.24.6B.22.7C.27.5D.28.810.(4分)(2022春•九龙坡区校级月考)已知关于x的一元一次不等式组的解集为x>5,且关于y的分式方程﹣1=的解为正整数,则所有满足条件的整数a的值有()个.A.1B.2C.3D.411.(4分)(2022•东坡区校级模拟)如图,AD是△ABC的高线,BD=CD,点E是AD上一点,BE=BC,将△ABE沿BE所在直线折叠,点A落在点A′位置上,连接AA',BA′,EA′与AC相交于点H,BA′与AC相交于点F.小夏依据上述条件,写出下列四个结论:①∠EBC=60°;②∠BFC=60°;③∠EA′A=60°;④∠A′HA=60°以上结论中,正确的是()A.①B.③④C.①②③D.①②④12.(4分)(2021•永嘉县校级模拟)如图,在平面直角坐标系中,矩形OABC的顶点A,B 在双曲线y=(x>0)上,BC与x轴交于点D.若点A的坐标为(2,4),则点C的坐标为()A.(3,﹣6)B.C.(6,﹣3)D.二.填空题(共6小题,满分24分,每小题4分)13.(4分)(2022•新乡模拟)计算:()﹣1﹣=.14.(4分)(2021秋•富裕县期末)我国研制的某服务器,它的峰值计算速度达到403200000000次/秒,数据403200000000用科学记数法可表示为.15.(4分)(2021春•沙坪坝区校级期末)不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是.16.(4分)(2021秋•九龙坡区校级期中)如图,已知菱形ABCD的边长为,∠DAB=60°.AC、BD交于点O,以O为圆心,以DO的长为半径画圆,与菱形相交,则图中阴影部分的面积为.17.(4分)(2022•南岸区校级模拟)经历了漫长体训,初三学子即将迎来中考体考.初三某班的家委会为孩子们准备了脉动饮料、士力架和葡萄糖口服液.已知脉动饮料、士力架和葡萄糖口服液的单价之和为22元,计划购买脉动饮料、士力架和葡萄糖口服液的数量总共不超过200.其中,葡萄糖口服液的单价为10元,计划购买50支;脉动饮料的数量不多于士力架数量的一半,但至少购买20瓶.在做预算时,家委会将脉动饮料和士力架的单价弄反了,结果在实际购买时总费用比预算多了160元.若脉动饮料、士力架和葡萄糖口服液的单价均为整数,则实际购买脉动饮料、士力架和葡萄糖口服液的总费用最多需要花费元.18.(4分)(2019秋•九龙坡区期末)在某一个学校的运动俱乐部里面有三大筐数量相同的球,甲每次从第一个大筐中取出9个球;乙每次从第二个大筐中取出7个球;丙则是每次从第三个大筐中取出5个球.到后来甲、乙、丙三人都记不清各自取过多少次球了,于是管理人员查看发现第一个大筐中还剩下7个球,第二个大筐还剩下4个球,第三个大筐还剩下2个球,那么根据上述情况可以推知甲至少取了次.三.解答题(共8小题,满分78分)19.(10分)(2022春•天桥区校级月考)化简:(1)(a3)2▪a3;(2)(a+2b)(a﹣2b)﹣(2a+b)2;(3)(5x+y)(3x﹣y);(4)(2xy2﹣8x2)÷(2x);(5)a3▪a5+(﹣a2)4﹣3a8;(6)2y(x﹣2y)﹣2xy.20.(10分)如图,在▱ABCD中,E、F分别为AB、CD边上两点,FB平分∠EFC.(1)如图1,若AE=2,EF=5,求CD的长;(2)如图2,∠BCD=45°,BC⊥BD,若G为EF上一点,且∠GBF=∠EFD,求证:FG+2FD=AB.21.(10分)某校开展了“学习新思想,做好接班人”主题阅读活动月.请根据统计图表中的信息,解答下列问题:(1)被抽查的学生人数是人,表中m=;(2)被抽查的学生阅读文章篇数的中位数是,众数是;(3)若该校共有1600名学生,请估计该校学生在主题阅读活动月内文章阅读的篇数为4篇的有多少人?阅读篇数34567及以上人数2025m151022.(10分)在密码学中,直接可看到内容为明文(真实文),对明文进行某种处理后得到的内容为密文.有一种密码把英文的明文单词按字母分解,其中英文26个字母(不论大小写)依次对应1,2,3,…,26这26个数,见下表:a b c d e f g h i j k l m12345678910111213n o p q r s t u v w x y z14151617181920212223242526现给出一个公式:.将明文字母对应的数字x按以上公式计算得到密文字母对应的数字x',例如明文字母为g,g,所以明文字母g对应密文字母为d.现以明文good举例分析:,所以,英语单词good译成的密文是dhho.问题:按照上述规定,将明文group译成密文是什么?请写出计算过程.23.(10分)探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=的图象并探究该函数的性质.x…﹣4﹣3﹣2﹣101234…y…a24b42…(1)列表,写出表中a,b的值:a=,b=;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,下列关于函数性质的结论正确的有;①函数y=的图象关于y轴对称;②当x=0时,函数y=有最大值,最大值为6;(3)观察函数图象,请你再写出一条该函数的性质;(4)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.24.(10分)“新冠“疫情蔓延全球,口罩成了人们的生活必需品.某药店销售普通口罩和N95口罩,今年8月份的进价如表:普通口罩N95口罩进价(元/包)820(1)计划N95口罩每包售价比普通口罩贵16元,7包普通口罩和3包N95口罩总售价相同,求普通口罩和N95口罩每包售价.(2)按(1)中售价销售一段时间后,发现普通口罩的日均销售量为120包,当每包售价降价1元时,日均销售量增加20包.该药店秉承让利于民的原则,对普通口罩进行降价销售,但要保证当天的利润为320元,求此时普通口罩每包售价.(3)疫情期间,该药店进货2万包N95口罩,进价不变,店长向当地医院捐赠了a包(6000≤a≤7000)该款口罩,剩余的N95口罩向市民销售.若这2万包口罩的利润率等于10%,则N95口罩每包售价是元.(直接写出答案,售价为整数元)25.(10分)如图,抛物线y=﹣x2+x+4的图象交x轴于点A、B,交y轴于点C,作直线BC,连接AC,过点C作CD∥AB,交抛物线于点D.(1)求点A,B的坐标和CD的长;(2)把抛物线y=﹣x2+x+4的图象沿x轴向右平移,使点C移到点D的位置,得到新抛物线y′,y′交CD的延长线于点M,点E是抛物线y=﹣x2+x+4在第一象限部分上的一点,当△BCE的面积取得最大值时,点F是线段BC上一动点,求EF+MF的最小值;(3)抛物线y′的对称轴与直线BC的交点为M,点P是平面直角坐标系内一点,当点B、M、N、P四点组成的四边形为平行四边形时,直接写出点P的坐标.26.(8分)【阅读理解】如图①,射线OC在∠AOB内部,图中共有三个角∠AOC、∠AOB、∠BOC,若其中有两个角的度数之比为1:2,则称射线OC为∠AOB的“巧线”.(1)∠AOB的角平分线这个角的“巧线”;(填“是”或“不是”)(2)若∠AOB=120°,射线OC为∠AOB的“巧线”,则∠AOC=.【问题解决】如图②,已知∠AOB=150°,射线OP从OA出发,以20°/s的速度顺时针方向旋转,射线OQ从OB出发,以10°/s的速度逆时针方向旋转.两条射线同时旋转,当其中一条射线旋转到与∠AOB的边重合时,运动停止,设旋转的时间为t(s).当t为何值时,射线OA、OP、OQ中一条射线恰好是以另外两条射线为边构成的角的巧线?说明理由.。

2024年四川省绵阳市中考数学模拟试题(五)

2024年四川省绵阳市中考数学模拟试题(五)

2024年四川省绵阳市中考数学模拟试题(五)一、单选题1.在02,﹣3这四个数中,最大的数是( )A .0 BC .2D .﹣32.2020年,新冠肺炎在全球肆虐,截止9月下旬,全球已经约有38703120人确诊,将38703120用科学记数表示为( )A .38.70312×106B .3.870312×107C .3.870312×106D .3.870312×1083.某几何体如图所示,该几何体的左视图是( )A .B .C .D . 4.如图,ACD ∠是ABC V 的外角,//CE AB .若75ACB ∠=︒,50ECD ∠=︒,则A ∠的度数为( )A .50︒B .55︒C .70︒D .75︒5.明代程大位有一首类似二元一次方程组的饮酒数学诗,现进行了变式,大意是:好酒二瓶,可以醉倒5位客人;薄酒三瓶,可以醉倒二位客人,如果29位客人醉倒了,他们总共饮下16瓶酒.试问:其中好酒、薄酒分别是多少瓶?设有好酒x 瓶,薄酒y 瓶.依题意,可列方程组为( )A .16222953x y x y +=⎧⎪⎨+=⎪⎩B .1622.5293x y x y +=⎧⎪⎨+=⎪⎩C .165329x y x y +=⎧⎨+=⎩ D .1632.5292x y x y +=⎧⎪⎨+=⎪⎩ 6.下列汉字中,是轴对称图形的是( )A .喜B .迎C .冬D .奥7.一组数据123,,,,n x x x x ⋯⋯的极差是3,则另一组数据1231,1,1,,1n x x x x +++⋯⋯+的极差是( )A .3B .4C .6D .98.如图,等边△ABC 的周长为6π,半径是1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了:【 】A .2周B .3周C .4周D .5周9.如果不等式组8x x m <⎧⎨>⎩无解,那么m 的取值范围是( ) A .m >8 B .m ≥8 C .m <8 D .m ≤810.如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于点G ,给出下列结论:①BE=DF ;②∠DAF=15°;③AC 垂直平分EF ;④BE+DF=EF ;其中结论正确的共有( )A .4个B .3个C .2个D .1个11.无理数3在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间 12.如图所示,在Rt ABC V 中,90C ∠=︒,8AC =,10AB =,点O 为BC 上的点,O e 的半径1OC =,点D 是AB 边上的动点,过点D 作⊙O 的一条切线DE (点E 为切点),则线段DE 的最小值为( )A .1BC 1D .4二、填空题13.分解因式:2232x y xy y ++=.14.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点1234(0,1),(1,1),(1,0),(2,0)A A A A ,……那么点2022A 的坐标为.15x 的取值范围是.16.如图OC 是⊙O 的半径,弦AB ⊥OC 于点D ,点E 在⊙O 上,EB 恰好经过圆心O .连接EC .若∠B =∠E ,OD =32,则劣弧AB 的长为.17.,A B 两市相距150千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车快20千米/小时,甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程.18.如图,在菱形ABCD 中,4sin 5B =,点,E F 分别在边,AD BC 上,将四边形AEFB 沿EF 翻折,使AB 的对应线段MN 经过顶点C ,当MN BC ⊥时,AE AD 的值是.三、解答题19.计算:23tan30cos 452sin 60︒︒︒+-.20.一个不透明的布袋中装有4个只有颜色不同的球,其中有1个黄球、1个白球、2个红球.(1)任意摸出1个球,记下颜色后不放回,再任意摸出1个球.求两次摸出的球恰好都是红球的概率(要求画树状图或列表);(2)现再将n 个黄球放入布袋,搅匀后,使任意摸出1个球是黄球的概率为12,求n 的值. 21.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (km )与甲车行驶的时间t (h )之间的函数关系如图所示.(1)A ,B 两城相距千米;(2)当1≤t≤4时,求乙车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系式;(3)乙车出发后小时追上甲车.22.已知:如图,在△BAC中,AB=AC,,D,E分别为AB,AC边上的点,且DE∥BC,求证: △ADE是等腰三角形.23.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1).①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.24.如图,已知:在△ABC 中,90C =o ∠,点P 是BC 边上的动点.PD BC ⊥交AB 于D .以PD 为直径的⊙O 分别交AB ,AP 于点E ,F .(1)求证:EFP EPB ∠=∠.(2)若20AB =,3sin 5B =. ①当4APB APD ∠=∠,求PC 的长.②当△PEF 为等腰三角形时,请求出所有满足条件的△PEF 的腰长.(3)若sin B D ,F ,C 在一条直线上,则DP 与AC 的比值为. 25.如图,抛物线y =815x 2+bx +c 过点A (2,0)和B (3,3). (1)求抛物线的表达式;(2)点M 在第二象限的抛物线上,且∠MBO =∠ABO .①直线BM 交x 轴于点N ,求线段ON 的长;②延长BO 交抛物线于点C ,点P 是平面内一点,连接PC 、OP ,当△POC ∽△MOB 时,请直接写出点P 的坐标.。

2023年浙江省宁波市五校联考中考数学模拟试卷

2023年浙江省宁波市五校联考中考数学模拟试卷

2023年浙江省宁波市五校联考中考数学模拟试卷一.选择题(每小题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)下面四个数中,最小的数是()A.﹣2B.1C.D.π2.(4分)下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(a2)3=a5D.a10÷a2=a5 3.(4分)二十大报告指出,我国经济实力实现历史性跃升,国内生产总值从五十四万亿元增长到一百一十四万亿元,我国经济总量占世界经济的比重达百分之十八点五,提高七点二个百分点,稳居世界第二位.其中114万亿用科学记数法表示为()A.1.14×1012B.1.14×1013C.1.14×1014D.1.14×1015 4.(4分)沿正方体相邻的三条棱的中点截掉一部分,得到如图所示的几何体,则它的主视图是()A.B.C.D.5.(4分)某校要从四名学生中选拔一名参加市“汉字听写”大赛,将多轮选拔赛的成绩数据进行分析得到每名学生的平均成绩及其方差如表所示:根据表中数据,可以判断同学甲是这四名选手中成绩最好且发挥最稳定的学生,则m,n的值可以是()甲乙两丁平均数(单位:分)m909188方差s2(单位:分2)n12.514.511A.m=92,n=15B.m=92,n=8.5C.m=85,n=10D.m=90,n=12.56.(4分)使分式有意义的x的取值范围是()A.x≠0B.x>2C.x<2D.x≠27.(4分)如图,在Rt△ABC中,∠B=90°,AB=BC,AC=4,D,F分别是AB,BC边的中点,DE⊥AC于点E.连接EF,则EF的长为()A.2B.3C.D.8.(4分)《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重.问每只雀、燕的重量各为多少?”解:设雀每只x两,燕每只y两,则可列出方程组为()A.B.C.D.9.(4分)将抛物线y=x2+4x+3向右平移n(n>0)个单位得到一条新抛物线,若点A(2,y1),B(4,y2)在新抛物线上,且y1>y2,则n的值可以是()A.3B.4C.5D.610.(4分)边长为a的正方形按如图所示分割成五个小矩形,其中③号小矩形是边长为b 的正方形,若①c,且满足2a﹣2b=c,则下列小矩形中一定是正方形的是()A.①B.②C.③D.④二.填空题(每小题5分,共30分)11.(5分)﹣2023的绝对值是.12.(5分)分解因式:a2﹣1=.13.(5分)如图所示的电路图,同时闭合两个开关能使小灯泡发亮的概率是.14.(5分)如图,把直角尺的45°角的顶点A落在⊙O上,两边分别交⊙O于三点A,B,C,若⊙O的半径为2.则劣弧的长为.15.(5分)如图,在平面直角坐标系中,点A(2,0),点B是直线y=﹣x上的一个动点,以A为圆心,以线段AB的长为半径作⊙A,当⊙A与直线y=﹣x相切时,点B的坐标为.16.(5分)在△ABC中,E是边AB的中点,F是AC边上一动点,连接EF,将△AEF沿直线EF折叠得△DEF.(1)如图(1),若△ABC为边长为4的等边三角形,当点D恰好落在线段CE上时,则AF=;(2)如图(2),若△ABC为直角三角形,∠BAC=90°,AC=8.分别连接AD、BD、CD,若S△ACD=S△BDC,且CD=4,则S△ABC=.三.解答题(本大题有8小题,共80分)17.(8分)(1)计算:(a﹣3)2+a(4﹣a);(2)解不等式组:.18.(8分)图①.图②、图③都是6×6的正方形网格,每个小正方形的边长均为1.每个小正方形的顶点叫做格点,故段AB的端点都在格点上.在给定的网格中,只用无刻度的直尺,按下列要求画图,只保留作图痕迹,不要求写画法.(1)在图①中画△ABC,使△ABC的面积是10;(2)在图②中画四边形ABDE,使四边形ABDE是轴对称图形;(3)在图③中的线段AB上找一点P,使AP=2BP.19.(8分)在平面直角坐标系xOy中,反比例函数的图象经过点(﹣1,3).(1)求这个反比例函数的解析式;(2)当x<﹣1时,对于x的每一个值,函数y=﹣x+n的值大于反比例函数的值,直接写出n的取值范围.20.(10分)2022年10月12日,中国航天员首次在问天实验舱内进行授课,他们生动演示了微重力环境下的多个实验.某中学以其中4个实验(A.浮力消失实验,B.太空冰雪实验,C.水球光学实验,D.太空抛物实验)为主题开展手抄报评比活动,学校天文社团随机抽取部分同学调查他们感兴趣的主题,根据调查结果绘制了如图不完整的条形统计图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)扇形统计图中m=%,A实验所对应的圆心角的度数为;(3)若该校共有学生2000名,请根据上述调查结果,估计有多少人对“太空抛物实验”感兴趣?21.(8分)“五一”节期间,许多露营爱好者在我市郊区露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD后系在树干EF上的点E处,使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,AC=AD=2m,BF=3m.(1)天晴时打开“天幕”,若∠α=65°,求遮阳宽度CD(结果精确到0.1m);(2)下雨时收拢“天幕”,∠α从65°减少到45°,求点E下降的高度(结果精确到0.1m).(参考数据:sin65°≈0.90,cos65°≈0.42,tan65°≈2.14,≈1.41)22.(12分)某生物学习小组正在研究同一盆栽内两种植物的共同生长情况.当他们尝试施用某种药物时,发现会对A,B两种植物分别产生促进生长和抑制生长的作用.通过实验数据统计发现,药物施用量x(mg)与A,B植物的生长高度y A(cm),y B(cm)的关系如图所示.(1)请分别求植物A、植物B生长高度y(cm)与药物施用量x(mg)的函数关系式;(2)请求出两种植物生长高度相同时,药物的施用量x(mg)为多少?(3)同学们研究发现,当两种植物高度差距不超过6cm时,两种植物的生长会处于一种良好的平衡状态,请求出满足平衡状态时,该药物施用量x(mg)的取值范围.23.(12分)【基础巩固】(1)如图1,△ABC和△ADE是直角三角形,∠ABC=∠ADE=90°,∠ACB=∠AED,求证:△DAB∽△EAC;【尝试应用】(2)如图2,在Rt△ABC与RtAEDC中,直角顶点重合于点C,点D在AB 上,∠BAC=∠DBC,且sin,连接AE,若BD=2,求AE的长;【拓展提高】(3)如图3,若∠CAB=90°,∠E=∠ABC,tan,BD=5CD,过A作AQ⊥AD交EB延长线于Q,求的值.24.(14分)如图1,已知△ABC内接于⊙O,AB为⊙O的直径,AB=5,,点D是半圆上的一个动点,过点D作DE∥AC交直径AB于点E.(1)求证:∠ADE=∠CBD;(2)如图2,连接CD交AB于点F,若∠ADC=∠EDB,求cos∠CBD;(3)如图3,连接CD交AB于点F,若CD=2AE,①求AD的长;②直接写出的值为.2023年浙江省宁波市五校联考中考数学模拟试卷(参考答案)一.选择题(每小题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)下面四个数中,最小的数是()A.﹣2B.1C.D.π【解答】解:∵﹣2<1<<π,∴最小的数是﹣2.故选:A.2.(4分)下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(a2)3=a5D.a10÷a2=a5【解答】解:A.a2与a3不是同类项,不能合并,故本选项不合题意;B.a3•a2=a5,故本选项符合题意;C.(a2)3=a6,故本选项不合题意;D.a10÷a2=a8,故本选项不合题意.故选:B.3.(4分)二十大报告指出,我国经济实力实现历史性跃升,国内生产总值从五十四万亿元增长到一百一十四万亿元,我国经济总量占世界经济的比重达百分之十八点五,提高七点二个百分点,稳居世界第二位.其中114万亿用科学记数法表示为()A.1.14×1012B.1.14×1013C.1.14×1014D.1.14×1015【解答】解:114万亿=114000000000000=1.14×1014,故选:C.4.(4分)沿正方体相邻的三条棱的中点截掉一部分,得到如图所示的几何体,则它的主视图是()A.B.C.D.【解答】解:这个几何体的主视图如下:故选:A.5.(4分)某校要从四名学生中选拔一名参加市“汉字听写”大赛,将多轮选拔赛的成绩数据进行分析得到每名学生的平均成绩及其方差如表所示:根据表中数据,可以判断同学甲是这四名选手中成绩最好且发挥最稳定的学生,则m,n的值可以是()甲乙两丁平均数(单位:分)m909188方差s2(单位:分2)n12.514.511A.m=92,n=15B.m=92,n=8.5C.m=85,n=10D.m=90,n=12.5【解答】解:∵甲是这四名选手中成绩最好的,∴m>91,又∵甲是发挥最稳定的学生,∴n<11,符合此条件的是m=92,n=8.5,故选:B.6.(4分)使分式有意义的x的取值范围是()A.x≠0B.x>2C.x<2D.x≠2【解答】解:∵分式有意义,∴x﹣2≠0,解得x≠2.故选:D.7.(4分)如图,在Rt△ABC中,∠B=90°,AB=BC,AC=4,D,F分别是AB,BC边的中点,DE⊥AC于点E.连接EF,则EF的长为()A.2B.3C.D.【解答】解:∵在Rt△ABC中,∠B=90°,AB=BC,∴∠A=∠C=45°,∵AC=4,∴,∵D,F分别是AB,BC边的中点,∴DF是Rt△ABC的中位线,,∴,AC∥DF,∵DE⊥AC,∴∠ADE=45°=∠A,DE⊥DF,∴,∴,故选:D.8.(4分)《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重.问每只雀、燕的重量各为多少?”解:设雀每只x两,燕每只y两,则可列出方程组为()A.B.C.D.【解答】解:设雀每只x两,燕每只y两,则可列出方程组为:.故选:B.9.(4分)将抛物线y=x2+4x+3向右平移n(n>0)个单位得到一条新抛物线,若点A(2,y1),B(4,y2)在新抛物线上,且y1>y2,则n的值可以是()A.3B.4C.5D.6【解答】解:∵y=x2+4x+3=(x+2)2﹣1,∴将抛物线y=x2+4x+3向右平移n(n>0)个单位得到一条新抛物线为y=(x+2﹣n)2﹣1,∴抛物线开口向上,对称轴为直线x=n﹣2,∵点A(2,y1),B(4,y2)在新抛物线上,且y1>y2,∴n﹣2>,∴n>5,故选:D.10.(4分)边长为a的正方形按如图所示分割成五个小矩形,其中③号小矩形是边长为b 的正方形,若①号小矩形的周长为c,且满足2a﹣2b=c,则下列小矩形中一定是正方形的是()A.①B.②C.③D.④【解答】解:设①号小矩形的长为m,则④号小矩形的宽为a﹣m,∵①号小矩形的周长为c,且满足2a﹣2b=c,∴①号小矩形的宽为a﹣b﹣m,∴③号小矩形的宽为a﹣(a﹣b﹣m)﹣b=m,∴④号小矩形的长为a﹣m,∴④号小矩形的长和宽都是a﹣m,即④号小矩形的是正方形,故选:D.二.填空题(每小题5分,共30分)11.(5分)﹣2023的绝对值是2023.【解答】解:﹣2023的绝对值是2023,故答案为:2023.12.(5分)分解因式:a2﹣1=(a+1)(a﹣1).【解答】解:a2﹣1=(a+1)(a﹣1).故答案为:(a+1)(a﹣1).13.(5分)如图所示的电路图,同时闭合两个开关能使小灯泡发亮的概率是.【解答】解:把开关S1、S2、S3分别记为1、2、3,画树状图如下:共有6种等可能的结果,其中能使灯泡发光的结果有4种,∴同时闭合两个开关能使小灯泡发亮的概率是=,故答案为:.14.(5分)如图,把直角尺的45°角的顶点A落在⊙O上,两边分别交⊙O于三点A,B,C,若⊙O的半径为2.则劣弧的长为π.【解答】解:连接OB、OC,如图:∵∠A=45°,∴∠BOC=90°,∴劣弧的长=.故答案为:π.15.(5分)如图,在平面直角坐标系中,点A(2,0),点B是直线y=﹣x上的一个动点,以A为圆心,以线段AB的长为半径作⊙A,当⊙A与直线y=﹣x相切时,点B的坐标为(1,﹣1).【解答】解:如图:过点B作BM⊥OA,垂足为M,当⊙A与直线y=﹣x相切时,则AB⊥OB,∴∠ABO=90°,∵点A(2,0),∴OA=2,∵点B是直线y=﹣x上的一个动点,∴设点B的坐标为(m,﹣m),∴OM=BM=m,∴∠MOB=45°,∴∠OAB=90°﹣∠MOB=45°,∴△AOB是等腰直角三角形,∴AB=OB,∵BM⊥OA,∴OM=AM=OA,∴BM=OA=1,∴OM=BM=1,∴点B的坐标为(1,﹣1),故答案为:(1,﹣1).16.(5分)在△ABC中,E是边AB的中点,F是AC边上一动点,连接EF,将△AEF沿直线EF折叠得△DEF.(1)如图(1),若△ABC为边长为4的等边三角形,当点D恰好落在线段CE上时,则AF=2﹣2;(2)如图(2),若△ABC为直角三角形,∠BAC=90°,AC=8.分别连接AD、BD、CD,若S△ACD=S△BDC,且CD=4,则S△ABC=48.【解答】解:(1)过F作FH⊥AE于H,如图:∵△ABC是边长为4的等边三角形,E为AB中点,∴∠AEC=90°,∠A=60°,AE=2,∴∠AFH=30°,设AF=x,则AH=AF=x,HF=AH=x,∴EH=AE﹣AH=2﹣x,∵△AEF沿直线EF折叠得△DEF,点D恰好落在线段CE上,∴∠AEF=∠DEF=∠AEC=45°,∴△HEF的等腰直角三角形,∴EH=HF,即2﹣x=x,解得x=2﹣2,∴AF=2﹣2,故答案为:2﹣2;(2)设AE=ED=y,∵AE=EB,∴S△ADE=S△EBD,∵S△ADC=S△BDC,∴点D在△ABC的中线CE上,∵AE2+AC2=CE2,∴y2+82=(y+4)2,解得y=6,∴AB=2AE=12,∴S△ACB=•AB•AC=×12×8=48.故答案为:48.三.解答题(本大题有8小题,共80分)17.(8分)(1)计算:(a﹣3)2+a(4﹣a);(2)解不等式组:.【解答】解:(1)(a﹣3)2+a(4﹣a)=a2﹣6a+9+4a﹣a2=﹣2a+9;(2),解不等式3x﹣5<x+1,得x<3,解不等式2(2x﹣1)≥3x﹣4,得x≥﹣2,故不等式组的解集为﹣2≤x<3.18.(8分)图①.图②、图③都是6×6的正方形网格,每个小正方形的边长均为1.每个小正方形的顶点叫做格点,故段AB的端点都在格点上.在给定的网格中,只用无刻度的直尺,按下列要求画图,只保留作图痕迹,不要求写画法.(1)在图①中画△ABC,使△ABC的面积是10;(2)在图②中画四边形ABDE,使四边形ABDE是轴对称图形;(3)在图③中的线段AB上找一点P,使AP=2BP.【解答】解:(1)如图,△ABC为所求作(答案不唯一).(2)如图,矩形ABDE为所求作(答案不唯一).(3)如图,取AM=2,BN=1,连接MN交AB于P,∵△AMP∽△BNP,∴,∴AP=2BP,∴P点为所求作.19.(8分)在平面直角坐标系xOy中,反比例函数的图象经过点(﹣1,3).(1)求这个反比例函数的解析式;(2)当x<﹣1时,对于x的每一个值,函数y=﹣x+n的值大于反比例函数的值,直接写出n的取值范围.【解答】解:(1)∵反比例函数的图象经过点(﹣1,3),∴k=﹣1×3=﹣3,∴这个反比例函数的解析式为y=﹣;(2)把点(﹣1,3)代入y=﹣x+n得,3=1+n,∴n=2,当x<﹣1时,对于x的每一个值,函数y=﹣x+n的值大于反比例函数的值,则n的取值范围是n≥2.20.(10分)2022年10月12日,中国航天员首次在问天实验舱内进行授课,他们生动演示了微重力环境下的多个实验.某中学以其中4个实验(A.浮力消失实验,B.太空冰雪实验,C.水球光学实验,D.太空抛物实验)为主题开展手抄报评比活动,学校天文社团随机抽取部分同学调查他们感兴趣的主题,根据调查结果绘制了如图不完整的条形统计图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)扇形统计图中m=16%,A实验所对应的圆心角的度数为108° ;(3)若该校共有学生2000名,请根据上述调查结果,估计有多少人对“太空抛物实验”感兴趣?【解答】解:(1)由题意得,样本容量为:45÷30%=150(人),B的人数为:150﹣45﹣24﹣27=54(人),补全频数分布直方图如图所示.(2)1﹣30%﹣36%﹣18%=16%,∴m=16,A实验所对应的圆心角为30%×360°=108°.故答案为:16;108°.(3)2000×18%=360(人),答:估计在全校2000名学生中,约有360人对“太空抛物实验”感兴趣.21.(8分)“五一”节期间,许多露营爱好者在我市郊区露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD后系在树干EF上的点E处,使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,AC=AD=2m,BF=3m.(1)天晴时打开“天幕”,若∠α=65°,求遮阳宽度CD(结果精确到0.1m);(2)下雨时收拢“天幕”,∠α从65°减少到45°,求点E下降的高度(结果精确到0.1m).(参考数据:sin65°≈0.90,cos65°≈0.42,tan65°≈2.14,≈1.41)【解答】解:(1)由对称知,CD=2OD,AD=AC=2m,∠AOD=90°,在Rt△AOD中,∠OAD=α=65°,∴sinα=,∴OD=AD•sinα=2×sin65°≈2×0.90=1.80m,∴CD=2OD=3.6m,答:遮阳宽度CD约为3.6米;(2)如图,过点E作EH⊥AB于H,∴∠BHE=90°,∵AB⊥BF,EF⊥BF,∴∠ABF=∠EFB=90°,∴∠ABF=∠EFB=∠BHE=90°,∴EH=BF=3m,在Rt△AHE中,tan a=,∴AH=,当∠α=65°时,AH=≈≈1.40m,当∠α=45°时,AH==3,∴当∠α从65°减少到45°时,点E下降的高度约为3﹣1.40=1.6m.22.(12分)某生物学习小组正在研究同一盆栽内两种植物的共同生长情况.当他们尝试施用某种药物时,发现会对A,B两种植物分别产生促进生长和抑制生长的作用.通过实验数据统计发现,药物施用量x(mg)与A,B植物的生长高度y A(cm),y B(cm)的关系如图所示.(1)请分别求植物A、植物B生长高度y(cm)与药物施用量x(mg)的函数关系式;(2)请求出两种植物生长高度相同时,药物的施用量x(mg)为多少?(3)同学们研究发现,当两种植物高度差距不超过6cm时,两种植物的生长会处于一种良好的平衡状态,请求出满足平衡状态时,该药物施用量x(mg)的取值范围.【解答】解:(1)设植物A生长高度y(cm)与药物施用量x(mg)的函数关系式为y A =kx+10,根据题意得:2k+10=14,解得k=2,∴y A=2x+10(x≥0);设植物B生长高度y(cm)与药物施用量x(mg)的函数关系式为y B=mx+25,根据题意得:25m+25=0,解得m=﹣1,∴y B=﹣x+25(0≤x≤25);(22x+10=﹣x+25,解得x=5,答:两种植物生长高度相同时,药物的施用量为5mg;(3)由题意得:,解得3≤x≤7,故该药物施用量x(mg)的取值范围为3≤x≤7.23.(12分)【基础巩固】(1)如图1,△ABC和△ADE是直角三角形,∠ABC=∠ADE=90°,∠ACB=∠AED,求证:△DAB∽△EAC;【尝试应用】(2)如图2,在Rt△ABC与RtAEDC中,直角顶点重合于点C,点D在AB 上,∠BAC=∠DBC,且sin,连接AE,若BD=2,求AE的长;【拓展提高】(3)如图3,若∠CAB=90°,∠E=∠ABC,tan,BD=5CD,过A作AQ⊥AD交EB延长线于Q,求的值.【解答】(1)证明:∵∠ABC=∠ADE=90°,∠ACB=∠AED,∴△ABC∽△ADE,∴,∠BAC=∠DAE,∴∠CAE=∠BAD,∴△DAB∽△EAC;(2)解:∵∠BAC=∠DBC,sin,∴sin∠BAC=sin∠DBC==,∴AB=3BC,DE=3CD,∴AC==2BC,CE==2CD,∴=2,∵∠ACB=∠DCE=90°,∴∠BCD=∠ACE,∴△CBD∽△CAE,∴,∵BD=2,∴AE=4;(3)解:如图3,在AC上截取CH=CD,连接DH,∵tan E=,∴∠E=30°,∴∠E=∠ABC=30°,∠ABE=60°,设AC=3a,则BC=2AC=6a,AB=AC=3a,∵BD=5CD,∴BD=5a,CD=a=CH,∵∠ACB=90°﹣∠ABC=60°,∴△CDH是等边三角形,∴CH=CD=HD=a,∠CHD=120°,∴AH=2a,∵∠ABQ=180°﹣∠ABE=120°,∴∠ABQ=∠AHD,∵∠BAC=∠DAQ=90°,∴∠DAH∽△QAB,∴,∴=,∴BQ=a,∴=.24.(14分)如图1,已知△ABC内接于⊙O,AB为⊙O的直径,AB=5,,点D是半圆上的一个动点,过点D作DE∥AC交直径AB于点E.(1)求证:∠ADE=∠CBD;(2)如图2,连接CD交AB于点F,若∠ADC=∠EDB,求cos∠CBD;(3)如图3,连接CD交AB于点F,若CD=2AE,①求AD的长;②直接写出的值为.【解答】(1)证明:如图所示,延长DF交⊙O于点P,∵DE∥AC,∴,∴,∴∠ADE=∠CBD;(2)解:如图所示,延长DF交⊙O于点P,∵AB为⊙O的直径,AB=5,,∴∠ACB=90°,设AC=3k,BC=4k,则AB=5k,∴k=1,∴AC=3,BC=4,∵∠ADC=∠EDB,∴,∴,∴PB=AC=3,AP=BC=4,∵,∴∠ABD=∠CBP,∴∠CBD=∠ABC+∠CBP=∠ABP,∵,∴∠ABP=∠CAB,∴∠CBD=∠CAB,∴;(3)解:①由(1)可知∠ADE=∠CBD,∵,∴∠DAE=∠DCB,∴△BCD∽△DAE,∴,∵CD=2AE,∴BC=2AD,∵BC=4,∴AD=2;②∵AD=2,∴,∵,∴∠DAF=∠DCB,∵,∴∠ADF=∠ABC,∴△DAF∽△BCF,∴,∴BF=2DF,∵∠ACD=∠ABD,∠CAB=∠CDB,∴△ACF∽△DBF,∴,∴,解得:BF=,∴AF=,∴=,故答案为:.。

河南中考数学模拟试卷(05)

河南中考数学模拟试卷(05)

河南中考数学模拟试卷(05)一.选择题(共10小题,满分30分,每小题3分)1.(3分)21的相反数是()A.21B.﹣21C.D.﹣2.(3分)有一个正方体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2022次后,骰子朝下一面的点数是()A.5B.3C.4D.23.(3分)如图,直线AB,CD相交于点O,若CO⊥AB,∠1=56°,则∠2等于()A.30°B.45°C.34°D.56°4.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.=﹣3C.x2•x4=x6D.(2x2)3=6x65.(3分)如图,菱形ABCD的对角线AC、BD相交于O点,E、F分别是AB、BC边上的中点,连接EF,若EF=3,BD=8,则菱形ABCD的周长为()A.5B.14C.20D.286.(3分)一元二次方程6x2+2x+1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根7.(3分)甲同学射靶8次,成绩分别为:5,7,6,7,7,8,6,7,则甲同学的射靶成绩的众数为()A.5B.6C.7D.88.(3分)一种计算机每秒可以进行4×108次运算,则它工作3×103秒运算的次数为()A.12×1024B.1.2×1012C.12×1012D.1.2×1013 9.(3分)如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.10.(3分)某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),在坐标系中进行描点,则正确的是()A.B.C.D.二.填空题(共5小题,满分15分,每小题3分)11.(3分)写出同时具备下列两个条件的一次函数表达式:(1)y随着x的增大而减小;(2)图象经过点(﹣2,﹣1):(写出一个即可).12.(3分)不等式组的解集是.13.(3分)小南和小开在新华书店选购了部分课外阅读书籍,结账时发现该书店自助收银系统允许购书读者从“微信”“支付宝”“云闪付”“网银”四种支付方式中任选一种方式进行支付,则他们分别独立结账,恰好选择的是同一种支付方式的概率为.14.(3分)如图,在扇形ABC中,∠BAC=90°,AB=1,若以点C为圆心,CA为半径画弧,与交于点D,则图中阴影部分的面积和是.15.(3分)如图,直线CD与EF相交于点O,∠COE=60°,将一等腰直角三角尺AOB 的直角顶点与O重合,OA平分∠COE.将三角尺AOB以每秒2°的速度绕点O顺时针旋转,同时直线EF以每秒6°的速度绕点O顺时针旋转,设运动时间为t秒(0≤t≤60),若直线EF平分∠BOD,则t的值为.三.解答题(共8小题,满分75分)16.(10分)计算:﹣|﹣1|+.17.(9分)为倡导绿色健康节约的生活方式,某社区开展“垃圾分类,从我做起”的活动,志愿者随机抽取了社区内50名居民,对其3月份垃圾分类投放次数进行了调查,并对数据进行了统计整理,以下是部分数据和不完整的统计图表:信息1:垃圾分类投放次数分布表信息组别投放次数频数A0≤x<5aB5≤x<1010C10≤x<15cD15≤x<2014E x≥20e合计50信息2:垃圾分类投放次数占比统计图信息3:C组包含的数据:12,12,10,12,13,10,11,13,12,11,13.请结合以上信息完成下列问题:(1)统计表中的a=,e=.(2)统计图中B组对应扇形的圆心角为度;(3)C组数据的众数是,抽取的50名居民3月份垃圾分类投放次数的中位数是;(4)根据调查结果,请你估计该社区2000名居民中3月份垃圾分类投放次数不少于15次的人数.18.(9分)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数的图象于点B.(1)若AB=2,求反比例函数的解析式;(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.19.(9分)如图,从一栋两层楼的楼顶A处看对面的教学楼CD,测得教学楼底部点C处的俯角是45°,测得此大楼楼顶D处的仰角为60°,已知两栋楼的水平距离为8米.求该大楼CD的高度(结果保留根号).20.(9分)2020年5月,全国两会召开以后,应势复苏的“地摊经济”带来了市场新活力,雅苑社区拟建A,B两类摊位以激活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米,建A类摊位每平方米的费用为50元,建B类摊位每平方米的费用为40元,用120平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共100个,且B类摊位的数量不少于A类摊位数量的4倍,求建造这100个摊位的最大费用.21.(9分)某超市销售樱桃,已知樱桃的进价为15元/千克,如果售价为20元/千克,那么每天可售出250千克,如果售价为25元/千克,那么每天可售出200千克,经调查发现:每天的销售量y(千克)与售价x(元/千克)之间存在一次函数关系.(1)求y与x之间的函数关系式;(2)若樱桃的售价不得高于28元/千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?22.(10分)如图,AB是⊙O的直径,弦CD⊥AB于H,E为CD延长线上一点,过E点作⊙O的切线,切点为G,连接AG交CD于F点.(1)求证:EF=EG;(2)若FG2=FD•FE,试判断AC与GE的位置关系,并说明理由;(3)在(2)的条件下,若sin E=,AH=3,求⊙O半径的长.23.(10分)如图,已知正方形ABCD的顶点D关于射线CP的对称点G落在正方形内,连接BG并延长交边AD于点E,交射线CP于点F.连接DF,AF,CG.(1)试判断DF与BF的位置关系,并说明理由;(2)若CF=4,DF=2,求AE的长;(3)若∠ADF=2∠F AD,求tan∠F AD的值.。

2024年湖北省武汉市部分学校中考模拟数学试题(五)(含答案)

2024年湖北省武汉市部分学校中考模拟数学试题(五)(含答案)

2024年武汉市中考模拟试题数学试卷(五)亲爱的同学:在你答题前,请认真阅读下面的注意事项.1.本卷共8页,24题,满分120分.考试用时120分钟.2.答题前,请将你的学校、班级、姓名、考号填在试卷和答题卡相应的位置,并核对条码上的信息.3.答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答在“试卷”上无效.4.认真阅读答题卡上的注意事项.预祝你取得优异成绩!一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.实数2024的相反数是( )A .2024B .2024-C .12024D .12024-2.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形是()A .B .C .D .3.不透明袋子中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他区别,从袋子中随机取出1个球,下列说法正确的是()A .可以事先确定取出的小球是哪种颜色B .取出每种颜色小球的概率相等C .取出红球的概率是12,取出绿球的概率是13,取出蓝球的概率是14D .将其中1个蓝球换成红球,则取出每种颜色小球的概率相等4.下列计算结果是6x 的是( )A .33x x +B .82x x -C .23x x ⋅D .()32x 5.如图是水平放置的正三棱柱,关于它的三视图的描述正确的是()A .主视图与俯视图相同B .主视图与左视图相同C .左视图与俯视图相同D .三视图都不相同6.如图,12180∠+∠=︒,3108∠=︒,则4∠=()A .72°B .80°C .82°D .108°7.两次掷一枚质地均匀的骰子,第二次掷出的点数能够被第一次掷出的点数整除的概率是( )A .518B .13C .718D .128.甲、乙二人都以不变的速度在环形跑道上跑步,如果同时同地出发,相向而行,每隔2min 相遇一次;如果同向而行,每隔6min 相遇一次.则( )A .甲每分跑13圈,乙每分跑16圈B .甲每分跑13圈,乙每分跑16圈或甲每分跑16圈,乙每分跑13圈C .甲每分跑12圈,乙每分跑14圈D .甲每分跑12圈,乙每分跑14圈或甲每分跑14圈,乙每分跑12圈9.如图,AB 是半圆O 的直径,点C ,D 在半圆上, CD与 DB 相等,连接OC ,CA ,OD .过点B 作EB AB ⊥,交OD 的延长线于点E .设△OAC 的面积为1S ,△OBE 的面积为2S ,若1223S S =,则tan ∠ACO 的值是()ABC .75D .3210.如图,在矩形ABCD 中,23AB BC =,动点N 从A 出发,沿边AD 向点D 匀速运动,动点M 从B 出发,沿边BC 向点C 匀速运动,连接MN .动点N ,M 同时出发,点N 运动速度为1v ,点M 的运动速度为2v ,且12v v <.当点M 到达C 时,M ,N 两点同时停止运动.在运动过程中,将四边形NABM 沿MN翻折,得到四边形NA B M ''.若在某一时刻,点B 的对应点B '恰好与CD 的中点重合,则12v v 的值是()A .25B .35C .45D .34二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.2023年全球人数约为80.86亿,数80.86亿用科学记数法表示是______.12.反比例函数图象经过三点()11,x y ,()22,x y 和(1,k ),若120x x <<,则12y y >,写出一个满足条件的k 的值是______.13.计算22a b ab b a a a ⎛⎫--÷- ⎪⎝⎭的结果是______.14.如图,在Rt △ABC 中,90C ∠=︒,棱长为1的立方体展开图有两边分别在AC ,BC 上,有两个顶点在斜边AB 上,则△ABC 的面积为______.15.四边形ABCD 中,3AB =,CD =,105A ∠=︒,120D ∠=︒,E 为AD 的中点,若90BEC ∠=︒,则BC 的长度为______.16.已知二次函数()20y ax bx c a =++≠的图象如图所示,下列结论:①0abc >;②一元二次方程2ax bx c +=-的解为13x =-,25x =;③a c b +>;④150a c +=.其中,正确的是______.三、解答题(共8 小题,共 72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本小题满分8分)求满足不等式组()11,273x x -->⎧⎪⎨+≥⎪⎩①②的整数解.18.(本小题满分8分)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是OA ,OC 的中点.(1)求证:BE DF =;(2)直接写出BD 与AC 满足什么数量关系时,四边形DEBF 为矩形.19.(本小题满分8分)某校为响应进一步深化全民阅读号召,随机抽取了八年级若干名学生,对“双减”后学生周末课外阅读时间进行了调查.根据收集到的数据,整理后得到下列不完整的图表:时间段/分钟3060x ≤<6090x ≤<90120x ≤<120150x ≤<组中值75105135频数/人6204请你根据图表中提供的信息,解答下列问题:(1)扇形统计图中,120~150分钟时间段对应的扇形的圆心角度数为______,a =______;(2)样本数据的中位数位于______~______分钟时间段;(3)请通过计算估计该校八年级学生周末课外平均阅读时间.20.(本小题满分8分)阅读:《几何原本》是古希腊数学家欧几里得所著的一部数学著作,它是欧洲数学的基础,总结了平面几何五大公设,被广泛地认为是历史上学习数学几何部分最成功的教科书.下面是其中的切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.即,如图1,AB 是⊙O 的切线,则2AB AC AD =⋅.下面是切割线定理的证明过程(不完整):证明:如图1所示,连接BD ,连接BO 并延长交⊙O 与点E ,连接CE ,BC .图1 图2∵AB 是⊙O 的切线,OB 是⊙O 的半径,90ABC CBE ∴∠+∠=︒.∵BE 是⊙O 的直径,90BCE ∴∠=︒(____________).90E CBE ∴∠+∠=︒.∴____________,E CDB ∠=∠ (____________),∴____________,BAC DAB ∠=∠ ,ABC ADB ∴△∽△,AB ACAD AB∴=.2AB AC AD ∴=⋅.任务:(1)请在上面横线上补充证明过程,在括号内补充推理的依据;(2)如图2,已知AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,割线CF 交AB 于点E ,且满足::1:2:1CD DE EF =,8AC =,求AB 的长.21.(本小题满分8分)如图,在每个小正方形的边长为1的网格中,△ABC 的顶点A ,C 均落在格点上,点B 在网格线上.(1)线段AC 的长等于______;(2)半圆O 以AB 为直径,仅用无刻度直尺,在如图所示的网格中完成画图:①画∠BAC 的角平分线AE ;②在线段AB 上画点P ,使AP AC =.22.(本小题满分10分)某园林专业户计划投资种植花卉和树木,根据市场调查与预测,种植树木的利润1y 与投资量x 成正比例关系,种植花卉的利润2y 与投资量x 的平方成正比例关系,并得到了表格中的数据:投资量x (万元)2种植树木的利润1y (万元)4种植花卉的利润2y (万元)2(1)分别求出利润1y 与2y 关于投资量x 的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,设他投入种植花卉的金额为m 万元,种植花卉和树木共获利润W 万元,求出W 关于m 的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?(3)若该专业户想获利不利于22万元,在(2)的条件下,直接写出投资种植花卉的金额m 的取值范围.23.(本小题满分10分)背景:一次小组合作探究课上,小明将两个正方形按背景图位置摆放(点E ,A ,D 在同一条直线上),发现BE DG =且BE DG ⊥.小组讨论后,提出了三个问题,请你帮忙解答:背景图 图1(1)将正方形AEFG 绕点A 按逆时针方向旋转,如图1,还能得到BE DG =吗?如果能,请给出证明,如果不能,请说明理由;(2)把背景中的正方形改为菱形AEFG 和菱形ABCD ,将菱形AEFG 绕点A 按顺时针方向旋转,如图2,试问当∠EAG 与∠BAD 的大小满足什么关系时,背景中的结论BE DG =仍成立?请说明理由;图2图3(3)把背景中的正方形改为矩形AEFG 和矩形ABCD ,且23AE AB AG AD ==,4AE =,8AB =,将矩形AEFG 绕点A 按逆时针方向旋转,如图3,连接DE ,BG ,小组发现,在旋转过程中22BG DE +是定值,请求出这个定值.24.(本小题满分12分)已知:抛物线23y x bx =-++与直线1y x =+相交于A ,B 两点,与y 轴相交于点C ,点A 在x 轴的负半轴上.图1图2(1)求抛物线的函数表达式及顶点D 的坐标;(2)如图1,直线AB 上方的抛物线上有一动点P ,过点P 作PH AB ⊥于点H ,求垂线段PH 的最大值;(3)如图2,当点P 运动到抛物线对称轴右侧时,连接AP ,交抛物线的对称轴于点M ,当AM DM +最小时,直接写出此时线段AP 的长度.2024武汉市中考模拟数学试题(五)参考答案一、选择题(共10小题,每小题3分,共30分)题号12345678910答案BCDDDACBAB二、填空题(共6小题,每小题3分,共18分)11.98.08610⨯12.1(答案不唯一)13.1a b-14.161516.①②④三、解答题(共8小题,共72分)17.解:解不等式①,得0x <.解不等式②,2x ≥-.∴不等式组的解集为20x -≤<.∴满足不等式组的整数解为1,2--.18.(1)证明:∵四边形ABCD 是平行四边形,AO CO ∴=,BO DO =,又∵E ,F 分别是OA ,OC 的中点,12EO AO ∴=,12FO CO =,EO FO ∴=,∴四边形DEBF 是平行四边形,BE DF ∴=.(2)12BD AC = 答案不唯一.19.(1)36°,25.(2)60,90(3)45675201051013548440⨯+⨯+⨯+⨯=(分钟)答:估计该校八年级学生周末课外平均阅读时间为84分钟.20.(1)直径所对的圆周角是直角ABC E∠=∠同弧所对的圆周角相等,ABC CDB∠=∠(2)::1:2:1CD DE EF = ,设CD x =,则2DE x =,EF x =,4CF x ∴=由切割线定理得2AC CD CF =⋅,即2284x =,0x > ,4x ∴=,4CD ∴=,8DE =,4EF =,12CE CD DE =+=,∵AB 是圆O 的直径,AC 是圆O 的切线,AB AC ∴⊥,在Rt △ACE 中,AE ===连接AD ,BF ,ADF ABF ∠=∠ ,DEA FEB ∠=∠,ADE FBE∴△∽△AE DEFE BE∴=8BE =,BE ∴=,AB AE BE ∴=+==.21.解:(1)AC ==(2)①如图②如图22.解:(1)由题意得:设()1110y k x k =≠,()1110y k x k =≠将2x =,14y =与2x =,22y =分别代入上述关系式中,得:124k =,242k =,12k ∴=,212k =,12y x ∴=,2212y x =.(2)由题意得:()21282W m m =+-211622m m =+-()212142m =-+∴当2m =时,W 有最小值14,08m <≤ ∴当8m =时,W 有最大值32.答:他至少获得14万元利润,能获得的最大利润为32万元.(3)当22W =时,()21214222m -+=,解得12m =-,26m =,0m > ,∴当68m ≤≤时,获利不低于22万元.23.(1)还能得到BE DG =,理由如下:90EAB BAG ∠+∠=︒ ,90BAG GAD ∠+∠=︒,EAB DAG ∴∠=∠,AE AG = ,AB AD =,()SAS EAB GAD ∴△≌△,BE DG ∴=;(2)当EAG BAD ∠=∠时,BE DG =,理由如下:EAG BAD ∠=∠ ,EAB GAD ∴∠=∠,又AE AG = ,AB AD =,()SAS EAB GAD ∴△≌△,BE DG ∴=;(3)23AE AB AG AD ==,4AE FG ==,8AB DC ==,6AG EF ∴==,12AD BC ==,连接EG ,BD ,令EB 与GD 相交于点N ,EAG BAD ∠=∠ ,EAB GAD ∴∠=∠,又12AE AG AB AD == ,EAB GAD ∴△∽△,EBA GDA ∴∠=∠,又90GDA BDG ABD ∠+∠+∠=︒ ,90NBD BDN ∴∠+∠=︒,EB GD ∴⊥,222GN NB GB += ,222EN ND ED +=,222222GN EN NB ND GB ED ∴+++=+,又22222CN EN EG EF EG +==+ ,22222NB DN BD BC DC +==+,222222222264128260GB ED EF FG BC DC ∴+=+++=+++=.24.(1)∵点A 在直线1y x =+上,且在x 轴的负半轴上,10x ∴+=,解得1x =-,()1,0A ∴-,把()1,0A -代入23y x bx =-++得()2130b ---+=,解得2b =,∴抛物线解析式为223y x x =-++,又()222314y x x x =-++=--+ ,∴顶点D 的坐标为(1,4).(2)设直线AB 和y 轴相交于点E ,过点P 作PQ y ∥轴交AB 于点Q设点P 的坐标为()2,23m m m -++,则点Q 的坐标为(),1m m +,∵点P 在直线AB 上方,2231PQ m m m ∴=-++--221992244m m m ⎛⎫=-++=--+≤ ⎪⎝⎭,令0x =,则011y =+=,()0,1E ∴,1OA OE ∴==,45OAE AEO ∴∠=∠=︒,PQ y ∥,45PQH AEO ∴∠=∠=︒,在Rt ΔPHQ 中,sin sin 45PH PQH PQ PQ =∠⋅=︒⋅=,∵PH 随PQ 增大而增大,∴PH 94=.(3.。

2024年江苏省南通市海门区东洲国际学校中考数学模拟试卷(5月份)(含解析)

2024年江苏省南通市海门区东洲国际学校中考数学模拟试卷(5月份)(含解析)

2024年江苏省南通市海门区东洲国际学校中考数学模拟试卷(5月份)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.5的倒数是( )A. 5B. −5C. 15D. −152.广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为( )A. 152.33×105B. 15.233×106C. 1.5233×107D. 0.15233×1083.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是( )A. B. C. D.4.如图是由4个相同的小正方体组成的立体图形,它的俯视图为( )A.B.C. D.5.解一元一次方程12(x +1)=1−13x 时,去分母正确的是( )A. 3(x +1)=1−2x B. 2(x +1)=1−3x C. 2(x +1)=6−3xD. 3(x +1)=6−2x6.从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30°时,船离灯塔的水平距离是( )A. 423米B. 143米C. 21米D. 42米7.如图,∠A=∠B=90°,AB=7,AD=2,BC=3,在边AB上取点P,使得△PAD与△PBC相似,则这样的P点共有( )A. 1个B. 2个C. 3个D. 4个8.如图,经过原点的⊙P与两坐标轴分别交于点A,B,点C是OAB上的任意一点(不与点O,B重合)如果tan∠BCO=33,则点A和点B的坐标可能为( )A. A(23,0)和B(0,2)B. A(2,0)和B(0,23)C. A(3,0)和B(0,2)D. A(2,0)和B(0,3)9.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E 作EF⊥BD,垂足为F,则OE+EF的值为( )A. 485B. 325C. 245D. 12510.已知二次函数y=ax2+bx+c的图象经过(−3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3,则关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是( )A. −2或0B. −4或2C. −5或3D. −6或4二、填空题:本题共8小题,共30分。

5年中考3年模拟初中试卷数学

5年中考3年模拟初中试卷数学

5年中考3年模拟初中试卷数学一、选择题(每题3分,共30分)1. 下列实数中,是无理数的是()A. 0B. -3C. (1)/(3)D. √(3)2. 若一个数的相反数是3,则这个数是()A. -3B. 3C. -(1)/(3)D. (1)/(3)3. 计算(-2x^2)^3的结果是()A. -6x^{5}B. 6x^{5}C. -8x^{6}D. 8x^{6}4. 把不等式组x + 1>0 x - 1≤slant0的解集表示在数轴上,正确的是()A.-2 -1 0 1 2.o-> <-o.B.-2 -1 0 1 2.o-> o->.C.-2 -1 0 1 2.<-o <-o.D.-2 -1 0 1 2.<-o o->.5. 已知点A(x_1,y_1),B(x_2,y_2)在反比例函数y = (k)/(x)(k≠0)的图象上,如果x_1,且y_1,那么k的取值范围是()A. k>0B. k<0C. k≥slant0D. k≤slant06. 一个正多边形的每个内角都是135°,则这个正多边形是()A. 正六边形B. 正七边形C. 正八边形D. 正九边形。

7. 若关于x的一元二次方程x^2-2x + m = 0有两个不相等的实数根,则m的取值范围是()A. m<1B. m>- 1C. m = 1D. m< - 18. 如图,在ABC中,∠ ACB = 90^∘,AC = BC = 4,将ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE = 3,则sin∠ BFD的值为()A. (1)/(3)B. (√(2))/(4)C. (√(2))/(3)D. (3)/(5)9. 已知二次函数y = ax^2+bx + c(a≠0)的图象如图所示,下列结论:abc>0;2a + b = 0;b^2-4ac>0;④a - b + c<0,其中正确的个数是()A. 1个B. 2个C. 3个D. 4个。

2022届安徽省滁州地区中考数学五模试卷(含答案解析)

2022届安徽省滁州地区中考数学五模试卷(含答案解析)

2022届安徽省滁州地区中考数学五模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,数轴上的四个点A ,B ,C ,D 对应的数为整数,且AB =BC =CD =1,若|a |+|b |=2,则原点的位置可能是( )A .A 或BB .B 或CC .C 或DD .D 或A2.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )A .B .C .D .3.4的算术平方根为( ) A .2±B .2C .2±D .24.化简16的结果是( ) A .±4B .4C .2D .±25.估算9153+÷的运算结果应在( ) A .2到3之间 B .3到4之间 C .4到5之间D .5到6之间6.根据如图所示的程序计算函数y 的值,若输入的x 值是4或7时,输出的y 值相等,则b 等于( )A .9B .7C .﹣9D .﹣77.实数a 、b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <﹣1B .ab >0C .a ﹣b <0D .a +b <08.如图,在菱形ABCD 中,AB=BD ,点E 、F 分别是AB 、AD 上任意的点(不与端点重合),且AE=DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H .给出如下几个结论:①△AED ≌△DFB ;②S 四边形BCDG =;③若AF=2DF ,则BG=6GF ;④CG 与BD 一定不垂直;⑤∠BGE 的大小为定值. 其中正确的结论个数为( )A .4B .3C .2D .19.下列各式正确的是( ) A .0.360.6=± B 93=± C 33(3)3-=D 2(2)2-=-10.在下列二次函数中,其图象的对称轴为2x =-的是 A .()22y x =+B .222y x =-C .222y x =--D .()222y x =-11.下列命题中错误的有( )个 (1)等腰三角形的两个底角相等(2)对角线相等且互相垂直的四边形是正方形 (3)对角线相等的四边形为矩形 (4)圆的切线垂直于半径 (5)平分弦的直径垂直于弦 A .1 B .2 C .3 D .412.如图,AD 是半圆O 的直径,AD =12,B ,C 是半圆O 上两点.若AB BC CD ==,则图中阴影部分的面积是( )A .6πB .12πC .18πD .24π二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.一元二次方程2x 2﹣3x ﹣4=0根的判别式的值等于_____.14.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数的图像上,OA=1,OC=6,则正方形ADEF 的边长为 .15.计算2(252) 的结果等于__________.16.观察下列的“蜂窝图”按照它呈现的规律第n 个图案中的“”的个数是_____(用含n 的代数式表示)17.如图,点O (0,0),B (0,1)是正方形OBB 1C 的两个顶点,以对角线OB 1为一边作正方形OB 1B 2C 1,再以正方形OB 1B 2C 1的对角线OB 2为一边作正方形OB 2B 3C 2,……,依次下去.则点B 6的坐标____________.18.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求EFAK的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.20.(6分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:本次接受调查的跳水运动员人数为,图①中m的值为;求统计的这组跳水运动员年龄数据的平均数、众数和中位数.21.(6分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?22.(8分)如图,在平面直角坐标系中,等边三角形ABC的顶点B与原点O重合,点C在x轴上,点C坐标为(6,0),等边三角形ABC的三边上有三个动点D、E、F(不考虑与A、B、C重合),点D从A向B运动,点E从B向C运动,点F从C向A运动,三点同时运动,到终点结束,且速度均为1cm/s,设运动的时间为ts,解答下列问题:(1)求证:如图①,不论t如何变化,△DEF始终为等边三角形.(2)如图②过点E作EQ∥AB,交AC于点Q,设△AEQ的面积为S,求S与t的函数关系式及t为何值时△AEQ的面积最大?求出这个最大值.(3)在(2)的条件下,当△AEQ的面积最大时,平面内是否存在一点P,使A、D、Q、P构成的四边形是菱形,若存在请直接写出P坐标,若不存在请说明理由?23.(8分)图 1 和图 2 中,优弧AB纸片所在⊙O 的半径为2,AB=23,点P为优弧AB上一点(点P 不与A,B 重合),将图形沿BP 折叠,得到点A 的对称点A′.发现:(1)点O 到弦AB 的距离是,当BP 经过点O 时,∠ABA′=;(2)当BA′与⊙O 相切时,如图2,求折痕的长.拓展:把上图中的优弧纸片沿直径MN 剪裁,得到半圆形纸片,点P(不与点M,N 重合)为半圆上一点,将圆形沿NP 折叠,分别得到点M,O 的对称点A′,O′,设∠MNP=α.(1)当α=15°时,过点A′作A′C∥MN,如图3,判断A′C 与半圆O 的位置关系,并说明理由;(2)如图4,当α=°时,NA′与半圆O 相切,当α=°时,点O′落在NP上.(3)当线段NO′与半圆O 只有一个公共点N 时,直接写出β的取值范围.24.(10分)如图所示,在坡角为30°的山坡上有一竖立的旗杆AB,其正前方矗立一墙,当阳光与水平线成45°角时,测得旗杆AB落在坡上的影子BD的长为8米,落在墙上的影子CD的长为6米,求旗杆AB的高(结果保留根号).25.(10分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y (件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为_____件,图中d值为_____.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?26.(12分)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:天数(x) 1 3 6 10每件成本p(元)7.5 8.5 10 12任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=() () 220110401015x x xx x⎧+≤<⎪⎨≤≤⎪⎩,且为整数,且为整数,设李师傅第x天创造的产品利润为W元.直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?27.(12分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)画出△ABC关于点B成中心对称的图形△A1BC1;以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.2022学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【答案解析】根据AB=BC=CD=1,|a|+|b|=2,分四种情况进行讨论判断即可.【题目详解】∵AB=BC=CD=1,∴当点A为原点时,|a|+|b|>2,不合题意;当点B为原点时,|a|+|b|=2,符合题意;当点C为原点时,|a|+|b|=2,符合题意;当点D为原点时,|a|+|b|>2,不合题意;故选:B.【答案点睛】此题主要考查了数轴以及绝对值,解题时注意:数轴上某个数与原点的距离叫做这个数的绝对值. 2、C 【答案解析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除. 【题目详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限, 故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2ba>0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B . 故选C . 3、B 【答案解析】的值,再继续求所求数的算术平方根即可.,而2, 故选B .点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A 的错误. 4、B 【答案解析】根据算术平方根的意义求解即可. 【题目详解】4,故选:B . 【答案点睛】本题考查了算术平方根的意义,一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根,正数a 有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.5、D【答案解析】3,∵2<3,∴35到6之间.故选D.【答案点睛】此题主要考查了估算无理数的大小,正确进行计算是解题关键.6、C【答案解析】先求出x=7时y的值,再将x=4、y=-1代入y=2x+b可得答案.【题目详解】∵当x=7时,y=6-7=-1,∴当x=4时,y=2×4+b=-1,解得:b=-9,故选C.【答案点睛】本题主要考查函数值,解题的关键是掌握函数值的计算方法.7、C【答案解析】直接利用a,b在数轴上的位置,进而分别对各个选项进行分析得出答案.【题目详解】选项A,从数轴上看出,a在﹣1与0之间,∴﹣1<a<0,故选项A不合题意;选项B,从数轴上看出,a在原点左侧,b在原点右侧,∴a<0,b>0,∴ab<0,故选项B不合题意;选项C,从数轴上看出,a在b的左侧,∴a<b,即a﹣b<0,故选项C符合题意;选项D,从数轴上看出,a在﹣1与0之间,∴1<b<2,∴|a|<|b|,∵a<0,b>0,所以a+b=|b|﹣|a|>0,故选项D不合题意.故选:C.【答案点睛】本题考查数轴和有理数的四则运算,解题的关键是掌握利用数轴表示有理数的大小.8、B【答案解析】测试卷分析:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=,故本选项错误;③过点F作FP∥AE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:AE=1:6,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个,故选B.考点:四边形综合题.9、A【答案解析】3=,则B3=-,则C2,则D错,故选A.10、A【答案解析】y=(x+2)2的对称轴为x=–2,A正确;y=2x2–2的对称轴为x=0,B错误;y=–2x2–2的对称轴为x=0,C错误;y=2(x–2)2的对称轴为x=2,D错误.故选A.1.11、D【答案解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可.详解:等腰三角形的两个底角相等,(1)正确;对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误;对角线相等的平行四边形为矩形,(3)错误;圆的切线垂直于过切点的半径,(4)错误;平分弦(不是直径)的直径垂直于弦,(5)错误.故选D.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12、A【答案解析】根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.【题目详解】∵AB BC CD==,∴∠AOB=∠BOC=∠COD=60°.∴阴影部分面积=2606=6 360⨯ππ.故答案为:A.【答案点睛】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、41【答案解析】已知一元二次方程的根判别式为△=b 2﹣4ac ,代入计算即可求解.【题目详解】依题意,一元二次方程2x 2﹣3x ﹣4=0,a =2,b =﹣3,c =﹣4∴根的判别式为:△=b 2﹣4ac =(﹣3)2﹣4×2×(﹣4)=41故答案为:41【答案点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程 ax 2+bx +c =0(a ≠0)的根的判别式为△=b 2﹣4ac 是解决问题的关键.14、2【答案解析】测试卷分析:由OA=1,OC=6,可得矩形OABC 的面积为6;再根据反比例函数系数k 的几何意义,可知k=6,∴反比例函数的解析式为6y x =;设正方形ADEF 的边长为a ,则点E 的坐标为(a+1,a ),∵点E 在抛物线上,∴61a a =+,整理得260a a +-=,解得2a =或3a =-(舍去),故正方形ADEF 的边长是2.考点:反比例函数系数k 的几何意义.15、22-【答案解析】根据完全平方公式进行展开,然后再进行同类项合并即可.【题目详解】解:2.故填22-【答案点睛】主要考查的是完全平方公式及二次根式的混合运算,注意最终结果要化成最简二次根式的形式.16、3n +1【答案解析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13个图案,由此可得出规律.【题目详解】解:由题意可知:每1个都比前一个多出了3个“”,∴第n个图案中共有“”为:4+3(n﹣1)=3n+1故答案为:3n+1.【答案点睛】本题考查学生的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型.17、(-1,0)【答案解析】根据已知条件由图中可以得到B1所在的正方形的对角线长为2,B2所在的正方形的对角线长为(2)2,B3所在的正方形的对角线长为(2)3;B4所在的正方形的对角线长为(2)4;B5所在的正方形的对角线长为(2)5;可推出B6所在的正方形的对角线长为(2)6=1.又因为B6在x轴负半轴,所以B6(-1,0).解:如图所示∵正方形OBB1C,∴OB12,B1所在的象限为第一象限;∴OB2=2)2,B2在x轴正半轴;∴OB3=2)3,B3所在的象限为第四象限;∴OB4=2)4,B4在y轴负半轴;∴OB5=)5,B5所在的象限为第三象限;∴OB6=)6=1,B6在x轴负半轴.∴B6(-1,0).故答案为(-1,0).18、小林【答案解析】观察图形可知,小林的成绩波动比较大,故小林是新手.故答案是:小林.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)32;(2)1.【答案解析】(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;(2)根据EH=KD=x,得出AK=12﹣x,EF=32(12﹣x),再根据S=32x(12﹣x)=﹣32(x﹣6)2+1,可得当x=6时,S有最大值为1.【题目详解】解:(1)∵△AEF∽△ABC,∴EF AK BC AD=,∵边BC长为18,高AD长为12,∴EF BCAK AD==32;(2)∵EH=KD=x,∴AK=12﹣x,EF=32(12﹣x),∴S=32x(12﹣x)=﹣32(x﹣6)2+1.当x=6时,S有最大值为1.【答案点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.20、(1)40人;1;(2)平均数是15;众数16;中位数15.【答案解析】(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.【题目详解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案为40,1.(2)观察条形统计图,∵1341410151116121731540x⨯+⨯+⨯+⨯+⨯==,∴这组数据的平均数为15;∵在这组数据中,16出现了12次,出现的次数最多,∴这组数据的众数为16;∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有15+15=15 2,∴这组数据的中位数为15.【答案点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.21、(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50﹣x.(3)每件商品降价1元时,商场日盈利可达到2000元.【答案解析】(1)根据“盈利=单件利润×销售数量”即可得出结论;(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.【题目详解】(1)当天盈利:(50-3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元.(2)∵每件商品每降价1元,商场平均每天可多售出2件,∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.故答案为2x;50-x.(3)根据题意,得:(50-x)×(30+2x)=2000,整理,得:x2-35x+10=0,解得:x1=10,x2=1,∵商城要尽快减少库存,∴x=1.答:每件商品降价1元时,商场日盈利可达到2000元.【答案点睛】考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).22、(1)证明见解析;(2)当t=3时,△AEQ cm2;(3)(3,0)或(6,0,【答案解析】(1)由三角形ABC为等边三角形,以及AD=BE=CF,进而得出三角形ADF与三角形CFE与三角形BED全等,利用全等三角形对应边相等得到BF=DF=DE,即可得证;(2)先表示出三角形AEC面积,根据EQ与AB平行,得到三角形CEQ与三角形ABC相似,利用相似三角形面积比等于相似比的平方表示出三角形CEQ面积,进而表示出AEQ 面积,利用二次函数的性质求出面积最大值,并求出此时Q的坐标即可;(3)当△AEQ的面积最大时,D、E、F都是中点,分两种情形讨论即可解决问题;【题目详解】(1)如图①中,∵C(6,0),∴BC=6在等边三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由题意知,当0<t<6时,AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等边三角形,∴不论t如何变化,△DEF始终为等边三角形;(2)如图②中,作AH ⊥BC 于H ,则AH=AB•sin60°=33,∴S △AEC =12×3(6﹣t )33(6)t -, ∵EQ ∥AB ,∴△CEQ ∽△ABC ,∴CEQ ABC S S =(CE CB )2=2(6)36t -,即S △CEQ =2(6)36t -S △ABC =2(6)36t -×323(6)t -, ∴S △AEQ =S △AEC ﹣S △CEQ 33(6)t -23(6)t -=3t ﹣3)293 ∵a=﹣30, ∴抛物线开口向下,有最大值,∴当t=3时,△AEQ 932, (3)如图③中,由(2)知,E 点为BC 的中点,线段EQ 为△ABC 的中位线,当AD为菱形的边时,可得P1(3,0),P3(6,33),当AD为对角线时,P2(0,33),综上所述,满足条件的点P坐标为(3,0)或(6,33)或(0,33).【答案点睛】本题考查四边形综合题、等边三角形的性质和判定、菱形的判定和性质、二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.23、发现:(1)1,60°;(2)23;拓展:(1)相切,理由详见解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【答案解析】发现:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.拓展:(1)过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.用含30°角的直角三角形的性质可得OD=A'H=12A'N=12MN=2可判定A′C与半圆相切;(2)当NA′与半圆相切时,可知ON⊥A′N,则可知α=45°,当O′在PB时,连接MO′,则可知NO′=12MN,可求得∠MNO′=60°,可求得α=30°;(3)根据点A′的位置不同得到线段NO′与半圆O只有一个公共点N时α的取值范围是0°<α<30°或45°≤α<90°.【题目详解】发现:(1)过点O作OH⊥AB,垂足为H,如图1所示,∵⊙O的半径为2,AB=23,∴OH=22OB HB-=222(3)1-=在△BOH中,OH=1,BO=2∴∠ABO=30°∵图形沿BP折叠,得到点A的对称点A′.∴∠OBA′=∠ABO=30°∴∠ABA′=60°(2)过点O作OG⊥BP,垂足为G,如图2所示.∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=12OB=1.∴3∵OG⊥BP,∴3∴33拓展:(1)相切.分别过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.如图3所示,∵A'C∥MN∴四边形A'HOD是矩形∴A'H=O∵α=15°∴∠A'NH=30∴OD=A'H=12A'N=12MN=2∴A'C与半圆(2)当NA′与半圆O相切时,则ON⊥NA′,∴∠ONA′=2α=90°,∴α=45当O′在PB上时,连接MO′,则可知NO′=12 MN,∴∠O′MN=0°∴∠MNO′=60°,∴α=30°,故答案为:45°;30°.(3)∵点P,M不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段NO′与半圆只有一个公共点B;当α增大到45°时NA′与半圆相切,即线段NO′与半圆只有一个公共点B.当α继续增大时,点P逐渐靠近点N,但是点P,N不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B.综上所述0°<α<30°或45°≤α<90°.【答案点睛】本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,正确的作出辅助线是解题的关键.24、旗杆AB的高为(3)m.【答案解析】测试卷分析:过点C作CE⊥AB于E,过点B作BF⊥CD于F.在Rt△BFD中,分别求出DF、BF的长度.在Rt△ACE 中,求出AE、CE的长度,继而可求得AB的长度.测试卷解析:解:过点C作CE⊥AB于E,过点B作BF⊥CD于F,过点B作BF⊥CD于F.在Rt△BFD中,∵∠DBF=30°,sin∠DBF=DFBD=12,cos∠DBF=BFBD=32.∵BD=8,∴DF=4,BF22228443BD DF-=-=∵AB∥CD,CE⊥AB,BF⊥CD,∴四边形BFCE为矩形,∴BF=CE=43,CF=BE=CD﹣DF=1.在Rt△ACE中,∠ACE=45°,∴AE=CE=43,∴AB=43+1(m).答:旗杆AB的高为(3)m.25、80 770【答案解析】(1)由图象的信息解答即可;(2)利用待定系数法确定解析式即可;(3)根据题意列出方程解答即可.【题目详解】(1)由图象甲车间每小时加工零件个数为720÷9=80个,d=770,故答案为:80,770(2)b=80×2﹣40=120,a=(200﹣40)÷80+2=4,∴B(4,120),C(9,770)设y BC=kx+b,过B、C,∴12047709k bk b=+⎧⎨=+⎩,解得130400kb=⎧⎨=-⎩,∴y=130x﹣400(4≤x≤9)(3)由题意得:80x+130x﹣400=1000,解得:x=20 3答:甲车间加工203天时,两车间加工零件总数为1000件【答案点睛】一次函数实际应用问题,关键是根据一次函数图象的实际意义和根据图象确定一次函数关系式解答.26、(1)W=216260(11020520(1015x x x x x x x ⎧-++≤<⎨-+≤≤⎩,为整数),为整数);(2)李师傅第8天创造的利润最大,最大利润是324元;(3)李师傅共可获得160元奖金.【答案解析】(1)根据题意和表格中的数据可以求得p 与x ,W 与x 之间的函数关系式,并注明自变量x 的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题.【题目详解】(1)设p 与x 之间的函数关系式为p=kx+b ,则有7.538.5k b k b +=⎧⎨+=⎩,解得,0.57k b =⎧⎨=⎩, 即p 与x 的函数关系式为p=0.5x+7(1≤x≤15,x 为整数),当1≤x <10时,W=[20﹣(0.5x+7)](2x+20)=﹣x 2+16x+260,当10≤x≤15时,W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=2x 16260(11020520(1015x x x x x x ⎧-++≤<⎨-+≤≤⎩,为整数),为整数); (2)当1≤x <10时,W=﹣x 2+16x+260=﹣(x ﹣8)2+324,∴当x=8时,W 取得最大值,此时W=324,当10≤x≤15时,W=﹣20x+520,∴当x=10时,W 取得最大值,此时W=320,∵324>320,∴李师傅第8天创造的利润最大,最大利润是324元;(3)当1≤x <10时,令﹣x 2+16x+260=299,得x 1=3,x 2=13,当W >299时,3<x <13,∵1≤x <10,∴3<x <10,当10≤x≤15时,令W=﹣20x+520>299,得x<11.05,∴10≤x≤11,由上可得,李师傅获得奖金的的天数是第4天到第11天,李师傅共获得奖金为:20×(11﹣3)=160(元),即李师傅共可获得160元奖金.【答案点睛】本题考查了一次函数的应用,二次函数的应用等,明确题意,找出各个量之间的关系,确立函数解析式,利用函数的性质进行解答是关键.27、(1)画图见解析;(2)画图见解析,C2的坐标为(﹣6,4).【答案解析】测试卷分析:()1利用关于点对称的性质得出11,A C的坐标进而得出答案;()2利用关于原点位似图形的性质得出对应点位置进而得出答案.测试卷解析:(1)△A1BC1如图所示.(2)△A2B2C2如图所示,点C2的坐标为(-6,4).。

【解析版】福建省莆田市中考数学模拟试卷(5月份)

【解析版】福建省莆田市中考数学模拟试卷(5月份)

福建省莆田市中考数学模拟试卷(5月份)一、精心选一选:本大题共10小题,每小题4分,共40分.每小题給出的四个选项中有且只有一个选项是符合要求的.答对得4分,答错、不答或答案超过一个的一律得0分. 1.(4分)下列各数中,比﹣2小的是()A.﹣1 B.0C.﹣3 D.π2.(4分)如图,已知AB∥CD,BE平分∠ABC,且交CD于点D,∠CDE=150°,则∠C为()A.120°B.150°C.135°D.110°3.(4分)某种零件模型如图,该几何体(空心圆柱)的俯视图是()A.B.C.D.4.(4分)在一次体育测试中,小芳所在小组8人的成绩分别是66,67,78,78,79,79,79,80,则这8人体育成绩的中位数是()A.77 B.78 C.78.5 D.795.(4分)若a、b为实数,a>0,b<0,且|a|<|b|,那么下列正确的是()A.a+b<0 B.a+b=0 C.a+b>0 D.以上都不对6.(4分)如图,△ABC的中线BD、CE交于点O,连接OA,点G、F分别为OC、OB 的中点,BC=8,AO=6,则四边形DEFG的周长为()A.12 B.14 C.16 D.187.(4分)在Rt△ABC中,∠C=90°,若AC=2BC,则cosA的值是()A.B.2C.D.8.(4分)若点A(﹣2,a)、B(﹣1,b)、C(3,c)都在二次函数y=mx2(m<0)图象上,则a、b、c的大小关系是()A.c<a<b B.b<a<c C.a<b<c D.c<b<a9.(4分)如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3B.4C.3D.410.(4分)对于一个自然数n,如果能找到正整数x、y,使得n=x+y+xy,则称n为“好数”,例如:3=1+1+1×1,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数为()A.1B.2C.3D.4二、细心填一填:本大题共6小题,每小题4分,共24分.11.(4分)=.12.(4分)“任意打开一本200页的数学书,正好是第50页”,这是事件(选填“随机”,“必然”或“不可能”).13.(4分)“一带一路”是国家的发展,计划用10年左右的时间,使中国同沿线国家的年贸易额突破25000亿美元.把25000用科学记数法表示为.14.(4分)若a x=2,a y=3,则a2x+y=.15.(4分)已知圆锥的母线长是6cm,侧面积是12πcm,则圆锥侧面展开图的圆心角为.16.(4分)如图,在菱形ABCD中,AB=6,∠ABC=60°,点M、N分别在AB、AD边上,AM=AN=2,P是对角线BD上的动点,则PM+PN的最小值是.三、耐心做一做:本大题共10小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤.17.(8分)计算:(+π)0﹣4sin60°﹣|4﹣2|.18.(8分)先化简,再求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a=,b=﹣2.19.(8分)解不等式﹣≥1,并把它的解集在数轴上表示出来.20.(8分)在“中国莆田房•车生活文化节”期间,某汽车经销商推出A、B、C、D四种型号的小轿车共200辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有辆;(2)通过计算说明,哪一种型号的轿车销售的成交率最高?(3)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.21.(8分)如图,在△ABC中,AB=AC,AD⊥BC于D点,把△ACD绕着A点顺时针旋转,使得AC与AB重合,点D落在点E处,延长AE、CB相交于M点,延长EB、AD 相交于N点.求证:AM=AN.22.(8分)小红为班级数学课题学习小组的同学每人购买一盒学习用品,商场给出如下优惠条件:如果一次性购买不超过10盒,单价为3.8元;如果一次性购买多于10盒,那么每多一盒,所有的单价都降低0.2元,但不得低于3元;小红一次性购买这种学习用品付了40.8元.请问她购买了多少盒这种学习用品?23.(8分)如图,直线AB与x轴交于点C,与双曲线y=交于A(3,)、B(﹣5,a)两点,AD⊥x轴于点D,BE∥x轴且与y轴交于点E,判断四边形CBED的形状,并说明理由.24.(8分)如图,AB是⊙O的直径,弦CD=2,AB⊥CD于E点,延长AB到F,使得BF=OB,连接CF,若CF是⊙O的切线.求:⊙O的半径.25.(10分)(1)如图1,若点M、N分别在正方形ABCD的边CB、DC的延长线上,且∠MAN=45°,判断S△AMN、S△ABM、S△ADN之间的等量关系,并加以证明;(2)如图2,在△ABC中,∠BAC=45°且AD⊥BC于D,若BD=3,CD=10,求:S△ABC.26.(12分)抛物线C1:y=(x﹣m)2+m+1(m>0)的顶点为A,抛物线C2开口向下且顶点B在y轴上,若A、B两点关于点P(1,2)对称.(1)求m的值;(2)若抛物线C2与x轴的正半轴的交点是C,当△ABC为直角三角形时,求抛物线C2的解析式.福建省莆田市中考数学模拟试卷(5月份)参考答案与试题解析一、精心选一选:本大题共10小题,每小题4分,共40分.每小题給出的四个选项中有且只有一个选项是符合要求的.答对得4分,答错、不答或答案超过一个的一律得0分. 1.(4分)下列各数中,比﹣2小的是()A.﹣1 B.0C.﹣3 D.π考点:实数大小比较.专题:应用题.分析:根据题意,结合实数大小的比较,从符号和绝对值两个方面分析可得答案.解答:解:比﹣2小的数是应该是负数,且绝对值大于2的数,分析选项可得,只有C符合.故选C.点评:本题考查实数大小的比较,是基础性的题目,比较简单.2.(4分)如图,已知AB∥CD,BE平分∠ABC,且交CD于点D,∠CDE=150°,则∠C为()A.120°B.150°C.135°D.110°考点:平行线的性质.分析:先根据平行线及角平分线的性质求出∠CDB=∠CBD,再根据平角的性质求出∠CDB的度数,再根据平行线的性质求出∠C的度数即可.解答:解:∵直线AB∥CD,∴∠CDB=∠ABD,∵∠CDB=180°﹣∠CDE=30°,∴∠ABD=30°,∵BE平分∠ABC,∴∠ABD=∠CBD,∴∠ABC=∠CBD+∠ABD=60°,∵AB∥CD,∴∠C=180°﹣∠ABC=180°﹣60°=120°.故选A.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.3.(4分)某种零件模型如图,该几何体(空心圆柱)的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:由上向下看空心圆柱,看到的是一个圆环,中间的圆要画成实线.故选:D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(4分)在一次体育测试中,小芳所在小组8人的成绩分别是66,67,78,78,79,79,79,80,则这8人体育成绩的中位数是()A.77 B.78 C.78.5 D.79考点:中位数.分析:先把这些数据从小到大排列,再找出最中间的两个数的平均数,即可得出答案.解答:解:把这些数据从小到大排列为:66,67,78,78,79,79,79,80,最中间的数是78,79的平均数,即=78.5,则这8人体育成绩的中位数是78.5;故选C.点评:此题考查了中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.(4分)若a、b为实数,a>0,b<0,且|a|<|b|,那么下列正确的是()A.a+b<0 B.a+b=0 C.a+b>0 D.以上都不对考点:绝对值.分析:根据题意取a=2,b=﹣3,求出a+b=﹣1,再比较即可.解答:解:∵|b|>|a|,且a>0,b<0,∴取a=2,b=﹣3,∴a+b=﹣1,故选A.点评:本题有理数的大小比较的应用,采取了取特殊值法.6.(4分)如图,△ABC的中线BD、CE交于点O,连接OA,点G、F分别为OC、OB 的中点,BC=8,AO=6,则四边形DEFG的周长为()A.12 B.14 C.16 D.18考点:三角形中位线定理.分析:根据三角形中位线定理,可得ED=FG=BC=4,GD=EF=AO=3,进而求出四边形DEFG的周长.解答:解:∵BD,CE是△ABC的中线,∴ED∥BC且ED=BC,∵F是BO的中点,G是CO的中点,∴FG∥BC且FG=BC,∴ED=FG=BC=4,同理GD=EF=AO=3,∴四边形DEFG的周长为3+4+3+4=14.故选B.点评:本题考查了三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.三角形中位线的性质定理,为证明线段相等和平行提供了依据.7.(4分)在Rt△ABC中,∠C=90°,若AC=2BC,则cosA的值是()A.B.2C.D.考点:锐角三角函数的定义.分析:根据勾股定理,可得AB与BC的关系,根据余弦函数的定义,可得答案.解答:解:由勾股定理,得AB=BC.由余弦函数的定义,得cosA===,故选:D.点评:本题考查了锐角三角函数的定义,先利用勾股定理得出BA与BC的关系,再利用余弦函数的定义.8.(4分)若点A(﹣2,a)、B(﹣1,b)、C(3,c)都在二次函数y=mx2(m<0)图象上,则a、b、c的大小关系是()A. c<a<b B.b<a<c C.a<b<c D.c<b<a考点:二次函数图象上点的坐标特征.分析:先根据二次函数的性质得到抛物线的对称轴为y轴,然后比较三个点离对称轴的远近得到a、b、c的大小关系.解答:解:∵二次函数y=mx2(m<0)∴抛物线的对称轴为y轴,∵A(﹣2,a)、B(﹣1,b)、C(3,c)∴点C离y轴最远,点B离y轴最近,而抛物线开口向下,∴b>a>c;故选A.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.9.(4分)如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3B.4C.3D.4考点:垂径定理;勾股定理.分析:作OM⊥AB于M,ON⊥CD于N,连接OB,OD,首先利用勾股定理求得OM的长,然后判定四边形OMPN是正方形,求得正方形的对角线的长即可求得OM的长.解答:解:作OM⊥AB于M,ON⊥CD于N,连接OB,OD,由垂径定理、勾股定理得:OM=ON==3,∵弦AB、CD互相垂直,∴∠D PB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=3故选:C.点评:本题考查了垂径定理及勾股定理的知识,解题的关键是正确地作出辅助线.10.(4分)对于一个自然数n,如果能找到正整数x、y,使得n=x+y+xy,则称n为“好数”,例如:3=1+1+1×1,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数为()A.1B.2C. 3 D. 4考点:有理数的混合运算.专题:新定义.分析:根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.解答:解:根据分析,∵8=2+2+2×2,∴8是好数;∵9=1+4+1×4,∴9是好数;∵10+1=11,11是一个质数,∴10不是好数;∵11=2+3+2×3,∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11.点评:(1)此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.(2)此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n+1是合数,则n是“好数”.二、细心填一填:本大题共6小题,每小题4分,共24分.11.(4分)=5.考点:算术平方根.分析:根据开方运算,可得一个正数的算术平方根.解答:解:=5,故答案为:5.点评:本题考查了算术平方根,注意一个正数只有一个算术平方根.12.(4分)“任意打开一本200页的数学书,正好是第50页”,这是随机事件(选填“随机”,“必然”或“不可能”).考点:随机事件.分析:根据不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.解答:解:任意打开一本200页的数学书,正好是第50页”,这是随机事件,故答案为:随机.点评:考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.13.(4分)“一带一路”是国家的发展,计划用10年左右的时间,使中国同沿线国家的年贸易额突破25000亿美元.把25000用科学记数法表示为2.5×104.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将25000用科学记数法表示为2.5×104.故答案为:2.5×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(4分)若a x=2,a y=3,则a2x+y=12.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据幂的乘方和同底数幂的乘法法则计算即可.解答:解:∵a x=2,a y=3,∴a2x+y=a2x•a y,=(a x)2•a y,=4×3,=12.点评:本题主要考查了幂的有关运算.幂的乘方法则:底数不变指数相乘.同底数幂的乘法法则:底数不变指数相加.15.(4分)已知圆锥的母线长是6cm,侧面积是12πcm,则圆锥侧面展开图的圆心角为120°.考点:圆锥的计算.分析:直接利用扇形的侧面积公式计算即可确定本题的答案.解答:解:设圆心角的度数为n°,根据题意得:=12π,解得:n=120,所以圆心角为120°,故答案为:120°.点评:本题考查了圆锥的计算.牢记圆锥的计算公式是解答本题的关键,难度不大.16.(4分)如图,在菱形ABCD中,AB=6,∠ABC=60°,点M、N分别在AB、AD边上,AM=AN=2,P是对角线BD上的动点,则PM+PN的最小值是2.考点:轴对称-最短路线问题;菱形的性质.分析:首先利用菱形的性质和勾股定理求出菱形对角线BD为6,再作点M关于AC 的对称点M′,连接M′N交BD于P,此时MP+NP有最小值.然后根据勾股定理即可求出MP+NP=M′N=2.解答:解:∵在菱形ABCD中,AB=6,∠ABC=60°,∴AC=6,BD=6,作点M关于AC的对称点M′,连接M′N交BD于P,此时MP+NP有最小值,最小值为M′N的长.∵菱形ABCD关于BD对称,∴BM′=BM,又∵,∠ABC=60°,∴△BMM′是等边三角形,∴MM′=BM=AB﹣AM=6﹣2=4,∵AB=AD,AM=AN,∴MN∥BD,∴===,∴MN=×6=2,∵MM′⊥BD,MN∥BD,∴MM′⊥MN,∴M′N==2∴MP+NP=M′N=2,即MP+NP的最小值为2.故答案为2.点评:本题考查的是轴对称﹣最短路线问题及菱形的性质和勾股定理的运用,熟知两点之间线段最短的知识是解答此题的关键.三、耐心做一做:本大题共10小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤.17.(8分)计算:(+π)0﹣4sin60°﹣|4﹣2|.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式=1﹣4×﹣4+2=﹣3.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(8分)先化简,再求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a=,b=﹣2.考点:整式的混合运算—化简求值.分析:先算乘法,再合并同类项,最后代入求出即可.解答:解:原式=a2+2ab+b2﹣2ab﹣2a﹣a2=b2﹣2a,当,b=﹣2时,原式=.点评:本题考查了整式的混合运算和求值的应用,能运用整式的运算法则进行化简是解此题的关键,难度适中.19.(8分)解不等式﹣≥1,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:去分母,去括号,移项,合并同类项,系数化成1即可.解答:解:去分母得:2(2x﹣1)﹣3(5x+1)≥6,4x﹣2﹣15x﹣3≥6,﹣11x≥11,x≤﹣1,在数轴上表示不等式的解集为:.点评:本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,能求出不等式的解集是解此题的关键,难度适中.20.(8分)在“中国莆田房•车生活文化节”期间,某汽车经销商推出A、B、C、D四种型号的小轿车共200辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有50辆;(2)通过计算说明,哪一种型号的轿车销售的成交率最高?(3)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.考点:条形统计图;扇形统计图;概率公式.分析:(1)根据展销总量乘以D类所占的百分比,可得答案;(2)根据各类的成交量比上各类展销量,可得成交率,根据有理数的大小比较,可得答案;(3)根据A类的成交量比上总成交量,可得答案.解答:解:(1)参加展销的D型号轿车有200×(1﹣35%﹣20%﹣20%)=50(辆)(2)A类的成交率,B类的成交率,D类的成交率,C类的成交率,∵>,∴A型号的轿车销售的成交率最高.(3)总成交量45+25+20+30=120,A类成交量的概率;D类所占的百分比:1﹣35%﹣20%﹣20%=35,C类的展销量200×20%=40(辆),C类的成交量40×50%=20,补充如图:.点评:本题考查了条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)如图,在△ABC中,AB=AC,AD⊥BC于D点,把△ACD绕着A点顺时针旋转,使得AC与AB重合,点D落在点E处,延长AE、CB相交于M点,延长EB、AD 相交于N点.求证:AM=AN.考点:全等三角形的判定与性质.专题:证明题.分析:由旋转可以得出∠AEM=∠ADM=90°,就可以得出∠M=∠N,∠MAB=∠NAB就可以得出△ABM≌△ABN,由全等三角形的旋转就可以得出结论.解答:证明:∵AB=AC,AD⊥BC于D点,∴∠ACD=∠ABD,∠CAD=∠BAD,∠ADC=ADB=90°.∵△AEB是由△A DC旋转得到的,∴△AEB≌△ADC,∴∠AEB=∠ADC=90°,∠MAB=∠CAD.∴∠AEB=∠ADB=90°.∠MAB=∠NAB∴∠M+∠MAD=90°,∠N+∠EAN=90°,∴∠M=∠N.在△ABM和△ABN中,∴△ABM≌△ABN(AAS),∴AM=AN.点评:本题考查了旋转的旋转的运用,直角三角形的旋转的运用,全等三角形的判定及旋转的运用,解答时证明三角形全等是关键.22.(8分)小红为班级数学课题学习小组的同学每人购买一盒学习用品,商场给出如下优惠条件:如果一次性购买不超过10盒,单价为3.8元;如果一次性购买多于10盒,那么每多一盒,所有的单价都降低0.2元,但不得低于3元;小红一次性购买这种学习用品付了40.8元.请问她购买了多少盒这种学习用品?考点:一元二次方程的应用.专题:销售问题.分析:根据题意表示出购买这种学习用品的数量,进而利用单价×数量=总钱数,进而求出即可.解答:解:设小红购买x盒学习用品.根据题意得:x[3.8﹣0.2(x﹣10)]=40.8解得:x1=12,x2=17当x=12时,单价为:3.8﹣2×0.2=3.4,当x=17时,单价为:3.8﹣7×0.2=2.4<3(不合题意舍去),所以小红购买了12盒学习用品.点评:此题主要考查了一元二次方程的应用,根据题意得出正确等量关系是解题关键.23.(8分)如图,直线AB与x轴交于点C,与双曲线y=交于A(3,)、B(﹣5,a)两点,AD⊥x轴于点D,BE∥x轴且与y轴交于点E,判断四边形CBED的形状,并说明理由.考点:菱形的判定;反比例函数与一次函数的交点问题.分析:由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.解答:解:四边形CBED是菱形.∵双曲线过A(3,),∴k=20.把B(﹣5,a)代入,得a=﹣4.∴点B的坐标是(﹣5,﹣4).∵AD⊥x轴于D,∴D(3,0),设直线AB的解析式为y=mx+n,将 A(3,)、B(﹣5,﹣4)代入得:解得:.∴直线AB的解析式为:.∴点C的坐标是(﹣2,0).∵BE∥x轴,∴点E的坐标是(0,﹣4).而CD=5,BE=5,且BE∥CD.∴四边形CBED是平行四边形.在Rt△OED中,ED2=OE2+OD2,∴ED==5,∴ED=CD.∴□CBED是菱形.点评:本题考查了反比例函数综合题及菱形的判定的知识.解答此题时,利用了反比例函数图象上点的坐标特征.24.(8分)如图,AB是⊙O的直径,弦CD=2,AB⊥CD于E点,延长AB到F,使得BF=OB,连接CF,若CF是⊙O的切线.求:⊙O的半径.考点:切线的性质;相似三角形的判定与性质.分析:首先证得△COF∽△EOC,再由BF=OB,得出OE与OC的比,进一步求得CE,在直角三角形OEC中利用勾股定理求得答案即可.解答:解:∵CF是⊙O的切线∴∠OCF=90°,∴∠OCF=∠OEC,∵∠COF=∠EOC∴△COF∽△EOC,∴∵,∴,∴,∵AB⊥CD于E,∴,设OE=2x,则OC=3x.∵OC2=OE2+CE2,∴,∴⊙O的半径为3.点评:此题考查切线的性质,相似三角形的判定与性质,勾股定理的运用,垂径定理,注意结合图形,灵活利用数据解决问题.25.(10分)(1)如图1,若点M、N分别在正方形ABCD的边CB、DC的延长线上,且∠MAN=45°,判断S△AMN、S△ABM、S△ADN之间的等量关系,并加以证明;(2)如图2,在△ABC中,∠BAC=45°且AD⊥BC于D,若BD=3,CD=10,求:S△ABC.考点:全等三角形的判定与性质;正方形的性质.分析:(1)如图1,在CD上截取DE=MB,连接AE由正方形的性质就可以得出Rt△ABM≌Rt△ADE,就可以得出AM=AE,∠DAE=∠BAN,进而得出△ANM≌△ANE 就可以得出结论;(2)以AD为边作正方形ADEF,在EF上截取FQ=BD,就可以得出△ABD≌△AQF,得出∠CAQ=45°,∠BAC=∠CAQ,就有△BAC≌△QAC,从而得出BC=CQ=13,设AD=x,则QE=x﹣3,CE=x﹣10.由勾股定理就可以求出x的值,得出AD的值,由三角形的面积公式就可以求出结论.解答:解:(1)如图1,在CD上截取DE=MB,连接AE.∵四边形ABCD是正方形∴AB=BC=AD,∠ABC=∠D=90°在△ABM和△ADE中,∴△ABM≌△ADE(SAS),∴∠BAM=∠DAE,AM=AE∵∠MAN=45°∴∠DAE+∠BAN=45°.即∠NAE=45°.在△ANM和△ANE中,∴△ANM≌△ANE(SAS),∴S△AMN=S△AEN.∵S△ADN=S△AEN+S△ADE,∴S△ADN=S△ANE+S△ADE=S△AMN+S△ABM;(2)以AD为边作正方形ADEF,在EF上截取FQ=BD.在△ABD和△AQF中,∴△ABD≌△AQF(SAS),∴AB=AQ,∠BAD=∠FAQ∵∠BAC=45°∴∠BAD+∠DAC=45°∴∠DAC+∠FAQ=45°即∠CAQ=45°∴∠BAC=∠CAQ.在△BAC和△QAC中,∴△BAC≌△QAC(SAS),∴BC=CQ=BD+CD=13.设AD=x,则QE=x﹣3,CE=x﹣10.在Rt△CQE中,∠E=90°∵CE2+QE2=CQ2∴(x﹣10)2+(x﹣3)2=132解得:x1=15,x2=﹣2(不合舍去)∴AD=15∴.点评:本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的性质的运用,解答时证明三角形全等是关键.26.(12分)抛物线C1:y=(x﹣m)2+m+1(m>0)的顶点为A,抛物线C2开口向下且顶点B在y轴上,若A、B两点关于点P(1,2)对称.(1)求m的值;(2)若抛物线C2与x轴的正半轴的交点是C,当△ABC为直角三角形时,求抛物线C2的解析式.考点:抛物线与x轴的交点.分析:(1)由C1:y=(x﹣m)2+m+1(m>0),可求得顶点A(m,m+1),由于点B 在y轴上,根据对称即可解得m=2;(2)由(1)知A(2,3)、B(0,1)根据勾股定理可得AB2=(2﹣0)2+(3﹣1)2=8由抛物线C2的顶点B(0,1)在y轴上得到抛物线C2的解析式为y=ax2+1设点C坐标为(c,0),根据勾股定理得到AC2=(2﹣c)2+32=c2﹣4c+13;BC2=c2+1由于△ABC是直角三角形,进行分类讨论即可求出结果.解答:解:(1)∵C1:y=(x﹣m)2+m+1(m>0)∴顶点A(m,m+1),∵点B在y轴上,∴设B(0,b),又A、B关于点P(1,2)对称,∴,解得:m=2;(2)由(1)知A(2,3)、B(0,1)∴AB2=(2﹣0)2+(3﹣1)2=8∵抛物线C2的顶点B(0,1)在y轴上∴抛物线C2的解析式为y=ax2+1设点C坐标为(c,0),∴AC2=(2﹣c)2+32=c2﹣4c+13;BC2=c2+1∵△ABC是直角三角形,则:①当∠ABC=90°时,AC2=BC2+AB2,即c2﹣4c+13=(c2+1)+8,解得:c=1∴C1(1,0),将点C1坐标代入y=ax2+1得:a+1=0;解得:a=﹣1,∴抛物线C2的解析式为:y=﹣x2+1,②当∠BAC=90°时,BC2=AC2+AB2,即c2+1=(c2﹣4c+13)+8,解得:c=5,∴C2(5,0),将点C2坐标代入y=ax2+1得:25a+1=0,解得:a=﹣,∴抛物线C2的解析式为:y=﹣x2+1,综上,当△ABC为直角三角形时,抛物线C2的解析式为:y=﹣x2+1或y=﹣x2+1.点评:本题考查了抛物线与X轴的交点,关于点对称,正确理解关于点对称是解题的关键.21 / 21。

常州市中考数学模拟试卷(5月份)含答案解析

常州市中考数学模拟试卷(5月份)含答案解析

江苏省常州市中考数学模拟试卷(5月份)一、选择题(本大题共8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一个是正确的)1.的相反数是()A.B.C.D.2.将161000用科学记数法表示为()A.0.161×106B.1.61×105C.16.1×104D.161×1033.下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A. B. C.D.4.为参加“常州市初中毕业生升学体育考试”,小芳同学刻苦训练,在跳绳练习中,测得5次跳绳的成绩(单位:个/分钟)为150,158,162,158,166,这组数据的众数,中位数依次是()A.158,158 B.158,162 C.162,160 D.160,1605.如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于()A.20° B.40°C.60°D.80°6.斜坡的倾斜角为α,一辆汽车沿这个斜坡前进了500米,则它上升的高度是()A.500•sinα米 B.米C.500•cosα米D.米7.已知点A(﹣3,m)与点B(2,n)是直线y=﹣x+b上的两点,则m与n的大小关系是()A.m>n B.m=n C.m<n D.无法确定8.如图,3个正方形在⊙O直径的同侧,顶点B、C、G、H都在⊙O的直径上,正方形ABCD的顶点A在⊙O上,顶点D在PC上,正方形EFGH的顶点E在⊙O上、顶点F在QG上,正方形PCGQ的顶点P也在⊙O上,若BC=1,GH=2,则CG的长为()A.B. C.D.2二、填空题(每小题2分,共20分)9.|﹣2|﹣()﹣1=.10.若式子有意义,则x的取值范围是.11.分解因式:3x2﹣6xy+3y2=.12.如图,线段AD与BC相交于点O,AB∥CD,若AB:CD=2:3,△ABO的面积是2,则△CDO的面积等于.13.方程=0的解是.14.已知圆锥的高是4cm,圆锥的底面半径是3cm,则该圆锥的侧面积是cm2.15.若二次函数y=2x2﹣mx+1的图象与x轴有且只有一个公共点,则m=.16.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=36°,则∠C=.17.已知点A是反比例函数y=(x>0)图象上的一点,点A′是点A关于y轴的对称点,当△AOA′为直角三角形时,点A的坐标是.18.如图,在△ABC中,AB=AC=5,BC=6,将△ABC绕点B逆时针旋转60°得到△A′BC′,连接A′C,则A′C的长为.三、解答题(共10小题,共84分)19.先化简,再求值:(a+b)(a﹣b)+b(b﹣2),其中a=2,b=1.5.20.解方程和不等式组(1)x2﹣3x=x﹣3(2).21.为了解某区九年级学生身体素质情况,该区从全区九年级学生中随机抽取了部分学生进行了一次体育考试科目测试(把测试结果分为四个等级:A级:优秀:B级:良好;C 级:及格;D级:不及格),并将测试结果绘成了如图两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生是;(2)求图1中∠α的度数是°,把图2条形统计图补充完整;(3)该区九年级有学生3500名,如果全部参加这次体育科目测试,请估计不及格的人数为.22.甲、乙、丙三位同学用质地、大小完全一样的纸片分别制作一张卡片a、b、c,收集后放在一个不透明的箱子中,然后每人从箱子中随机抽取一张.(1)用列表或画树状图的方法表示三位同学抽到卡片的所有可能的结果;(2)求三位同学中至少有一人抽到自己制作卡片的概率.23.如图,△ABC中,∠C=90°,∠BAC=30°,点E是AB的中点.以△ABC的边AB向外作等边△ABD,连接DE.求证:AC=DE.24.图l、图2分别是7×6的网格,网格中的每个小正方形的边长均为1,点A、B在小正方形的顶点上.请在网格中按照下列要求画出图形:(1)在图1中以AB为边作四边形ABCD(点C、D在小正方形的顶点上),使得四边形ABCD为中心对称图形,且△ABD为轴对称图形(画出一个即可);(2)在图2中以AB为边作四边形ABEF(点E、F在小正方形的顶点上),使得四边形ABEF中心对称图形但不是轴对称图形,且tan∠FAB=3.25.某景区的三个景点A,B,C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离开景点A后的路程S(米)关于时间t(分钟)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲相遇?(2)若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?26.如图,甲、乙两只捕捞船同时从A港出海捕鱼,甲船以每小时千米的速度沿北偏西60°方向前进,乙船以每小时15千米的速度沿东北方向前进,甲船航行2小时到达C 处,此时甲船发现渔具丢在乙船上,于是甲船加快速度(匀速)沿北偏东75°的方向追赶,结果两船在B处相遇.(1)甲船从C处追赶上乙船用了多少时间?(2)求甲船加快速度后,追赶乙船时的速度.(结果保留根号)27.如图,△ABC中,∠ACB=90°,BC=6,AC=8.点E与点B在AC的同侧,且AE⊥AC.(1)如图1,点E不与点A重合,连结CE交AB于点P.设AE=x,AP=y,求y关于x 的函数解析式,并写出自变量x的取值范围;(2)是否存在点E,使△PAE与△ABC相似,若存在,求AE的长;若不存在,请说明理由;(3)如图2,过点B作BD⊥AE,垂足为D.将以点E为圆心,ED为半径的圆记为⊙E.若点C到⊙E上点的距离的最小值为8,求⊙E的半径.28.如图,在平面直角坐标系xOy中,直线y=kx﹣7与y轴交于点C,与x轴交于点B,抛物线y=ax2+bx+14a经过B、C两点,与x轴的正半轴交于另一点A,且OA:OC=2:7.(1)求抛物线的解析式;(2)点D为线段CB上一点,点P在对称轴的右侧抛物线上,PD=PB,当tan∠PDB=2,求P点的坐标;(3)在(2)的条件下,点Q(7,m)在第四象限内,点R在对称轴的右侧抛物线上,若以点P、D、Q、R为顶点的四边形为平行四边形,求点Q、R的坐标.江苏省常州市中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一个是正确的)1.的相反数是()A.B.C.D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:的相反数是,故选:D.2.将161000用科学记数法表示为()A.0.161×106B.1.61×105C.16.1×104D.161×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:161000=.612×105.故选B.3.下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A. B. C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解::A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、圆是轴对称图形,不是中心对称图形.故错误.故选C.4.为参加“常州市初中毕业生升学体育考试”,小芳同学刻苦训练,在跳绳练习中,测得5次跳绳的成绩(单位:个/分钟)为150,158,162,158,166,这组数据的众数,中位数依次是()A.158,158 B.158,162 C.162,160 D.160,160【考点】众数;中位数.【分析】将这5个数据按照从小到大或从大到小的顺序排列,数据个数是5为奇数个,则中间那个数据就是这组数据的中位数;这5个数据中出现次数最多的数是37,则37就是这组数据的众数.据此进行解答.【解答】解:将数据按照从小到大的顺序排列为:150,158,158,160,162,这5个数据中位于中间的数据是158,所以中位数为:158;数据中出现次数最多的数是158,158就是这组数据的众数;故选A.5.如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于()A.20° B.40°C.60°D.80°【考点】平行线的性质.【分析】先根据平行线的性质求出∠2+∠3的度数,再由∠2=∠3即可得出结论.【解答】解:∵a∥b,∠1=80°,∴∠2+∠3=80°,∠3=∠4.∵∠2=∠3,∴∠3=40°,∴∠4=40°.故选B.6.斜坡的倾斜角为α,一辆汽车沿这个斜坡前进了500米,则它上升的高度是()A.500•sinα米 B.米C.500•cosα米D.米【考点】解直角三角形的应用-坡度坡角问题.【分析】根据题意画出图形,再利用坡角的正弦值即可求解.【解答】解:如图,∠A=α,AE=500.则EF=500sinα.故选A.7.已知点A(﹣3,m)与点B(2,n)是直线y=﹣x+b上的两点,则m与n的大小关系是()A.m>n B.m=n C.m<n D.无法确定【考点】一次函数图象上点的坐标特征.【分析】先根据直线的解析式判断出函数的增减性,再根据一次函数的性质即可得出结论.【解答】解:∵直线y=﹣x+b中,k=﹣<0,∴此函数是减函数.∵﹣3<2,∴m>n.故选A.8.如图,3个正方形在⊙O直径的同侧,顶点B、C、G、H都在⊙O的直径上,正方形ABCD的顶点A在⊙O上,顶点D在PC上,正方形EFGH的顶点E在⊙O上、顶点F在QG上,正方形PCGQ的顶点P也在⊙O上,若BC=1,GH=2,则CG的长为()A.B. C.D.2【考点】正方形的性质;勾股定理;圆的认识.【分析】连接AO、PO、EO,设⊙O的半径为r,OC=x,OG=y,列出方程组即可解决问题.【解答】解:连接AO、PO、EO,设⊙O的半径为r,OC=x,OG=y,由勾股定理可知:②﹣③得到:x2+(x+y)2﹣(y+2)2﹣22=0,∴(x+y)2﹣22=(y+2)2﹣x2,∴(x+y+2)(x+y﹣2)=(y+2+x)(y+2﹣x),∵x+y+2≠0,∴x+y﹣2=y+2﹣x,∴x=2,代入①得到r2=10,代入②得到:10=4+(x+y)2,∴(x+y)2=6,∵x+y>0,∴x+y=,∴y=﹣2.∴CG=x+y=.故选B.二、填空题(每小题2分,共20分)9.|﹣2|﹣()﹣1=.【考点】负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,负数的绝对值是正数,可化简各数,根据有理数的减法,可得答案.【解答】解:原式=2﹣=,故答案为:.10.若式子有意义,则x的取值范围是x≥3.【考点】二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,就可以求解.【解答】解:式子有意义,得x﹣3≥0,解得x≥3,故答案为:x≥3.11.分解因式:3x2﹣6xy+3y2=3(x﹣y)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3x2﹣6xy+3y2,=3(x2﹣2xy+y2),=3(x﹣y)2.故答案为:3(x﹣y)2.12.如图,线段AD与BC相交于点O,AB∥CD,若AB:CD=2:3,△ABO的面积是2,则△CDO的面积等于 4.5.【考点】相似三角形的判定与性质.【分析】根据AB∥CD,于是得到△ABO∽△CDO,然后根据相似三角形面积的比等于相似比的平方即可得到结论.【解答】解:∵AB∥CD,∴△ABO∽△CDO,∴=()2=()2=,∵△ABO的面积是2,∴△CDO的面积等于4.5.故答案为:4.5.13.方程=0的解是x=3.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣10+x+1=0,解得:x=3,经检验x=3是分式方程的解.故答案为:x=314.已知圆锥的高是4cm,圆锥的底面半径是3cm,则该圆锥的侧面积是15πcm2.【考点】圆锥的计算.【分析】根据圆锥的底面半径和高求出圆锥的母线长,再根据圆锥的底面周长等于圆锥的侧面展开扇形的弧长,最后利用扇形的面积计算方法求得侧面积.【解答】解:由勾股定理得:圆锥的母线长==5cm,∵圆锥的底面周长为2πr=2π×3=6πcm,∴圆锥的侧面展开扇形的弧长为6πcm,∴圆锥的侧面积为:×6π×5=15πcm2.故答案为:15π.15.若二次函数y=2x2﹣mx+1的图象与x轴有且只有一个公共点,则m=.【考点】抛物线与x轴的交点.【分析】二次函数的图象与x轴有且只有一个公共点,则对应的△=0,据此即可求解.【解答】解:依题意有△=m2﹣8=0,解得:m=±2.故答案是:±2.16.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=36°,则∠C=27°.【考点】切线的性质.【分析】连接OB,求出∠OBA,求出∠BOA,根据圆周角定理求出∠C=∠BOA,即可求出答案.【解答】解:连接OB,∵AB与⊙O相切于点B,∴∠ABO=90°,∵∠A=36°,∴∠BOA=54°,∴由圆周角定理得:∠C=∠BOA=27°,故答案为:27°.17.已知点A是反比例函数y=(x>0)图象上的一点,点A′是点A关于y轴的对称点,当△AOA′为直角三角形时,点A的坐标是(,).【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数的解析式和点A在函数的图象上可求出点A与点A',由于△AOA′为直角三角形解答即可.【解答】解:因为点A是反比例函数y=(x>0)图象上的一点,点A′是点A关于y轴的对称点,设点A坐标为(x,),点A'的坐标为(﹣x,),因为△AOA′为直角三角形,可得:x2=2,解得x=,所以点A的坐标为(,),故答案为:(,).18.如图,在△ABC中,AB=AC=5,BC=6,将△ABC绕点B逆时针旋转60°得到△A′BC′,连接A′C,则A′C的长为4+3.【考点】旋转的性质.【分析】连结CC′,A′C交BC于O点,如图,利用旋转的性质得BC=BC′=6,∠CBC′=60°,A′B=AB=AC=A′C′=5,则可判断△BCC′为等边三角形,接着利用线段垂直平分线定理的逆定理说明A′C垂直平分B′C,则BO=BC′=3,然后利用勾股定理计算出A′O,利用三角函数计算出OC,最后计算A′O+OC即可.【解答】解:连结CC′,A′C交BC于O点,如图,∵△ABC绕点B逆时针旋转60°得到△A′BC′,∴BC=BC′=6,∠CBC′=60°,A′B=AB=AC=A′C′=5,∴△BCC′为等边三角形,∴CB=CB′,而A′B=A′C′,∴A′C垂直平分B′C,∴BO=BC′=3,在Rt△A′OB中,A′O===4,在Rt△OBC中,∵tsin∠CBO=sin60°=,∴OC=6×=3,∴A′C=A′O+OC=4+3.故答案为4+3.三、解答题(共10小题,共84分)19.先化简,再求值:(a+b)(a﹣b)+b(b﹣2),其中a=2,b=1.5.【考点】整式的混合运算—化简求值.【分析】先算乘法,再算加减,把a=2,b=1.5代入进行计算即可.【解答】解:原式=a2﹣b2+b2﹣2b=a2﹣2b.当a=2,b=1.5时,原式=4﹣2×1.5=4﹣3=1.20.解方程和不等式组(1)x2﹣3x=x﹣3(2).【考点】解一元一次不等式组;解一元二次方程-因式分解法.【分析】(1)移项后分解因式,即可得出两个方程,求出方程的解即可;(2)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1)x2﹣3x=x﹣3,x(x﹣3)﹣(x﹣3)=0,(x﹣3)(x﹣1)=0,x﹣3=0,x﹣1=0,x1=3,x2=1;(2)∵解不等式①得:x≥﹣2,解不等式②得:x<1,∴原不等式组的解集是﹣2≤x<1.21.为了解某区九年级学生身体素质情况,该区从全区九年级学生中随机抽取了部分学生进行了一次体育考试科目测试(把测试结果分为四个等级:A级:优秀:B级:良好;C 级:及格;D级:不及格),并将测试结果绘成了如图两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生是40;(2)求图1中∠α的度数是144°,把图2条形统计图补充完整;(3)该区九年级有学生3500名,如果全部参加这次体育科目测试,请估计不及格的人数为175.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据B级的人数除以B级所占的百分比,可得抽测的人数;(2)根据A级的人数除以抽测的人数,可得A级人数所占抽测人数的百分比,根据圆周角乘以A级人数所占抽测人数的百分比,可得A级的扇形的圆心角,根据有理数的减法,可得C级抽测的人数,然后补出条形统计图;(3)根据D级抽测的人数除以抽测的总人数,可得D级所占抽测人数的百分比,根据八年级的人数乘以D级所占抽测人数的百分比,可得答案.【解答】解:(1)本次抽样的人数是14÷35%=40(人),故答案是:40;(2)∠α=×360=144°,C级的人数是40﹣16﹣14﹣2=8(人),故答案是:144.;(3)估计不及格的人数是3500×=175(人),故答案是:175.22.甲、乙、丙三位同学用质地、大小完全一样的纸片分别制作一张卡片a、b、c,收集后放在一个不透明的箱子中,然后每人从箱子中随机抽取一张.(1)用列表或画树状图的方法表示三位同学抽到卡片的所有可能的结果;(2)求三位同学中至少有一人抽到自己制作卡片的概率.【考点】列表法与树状图法.【分析】此题可以采用列举法求概率,要注意不重不漏;此题需要三步完成,可以采用树状图法,注意此题为不放回实验;此题也可认为两步完成,因为确定了甲乙,也就确定了丙,所以也可采用列表法求概率.【解答】解:(1)列表或画树状图表示三位同学抽到卡片的所有可能结果如下:甲 a a b b c c乙 b c a c a b丙 c b c a b a(2)如图可知,三位同学抽到卡片的所有可能的结果共有6种,所以三位同学中有一人抽到自己制作的卡片有3种,有三人抽到自己制作的卡片有1种.所以,三位同学中至少有一人抽到自己制作卡片有4种,8分所以,三位同学中至少有一人抽到自己制作的卡片的概率为:.10分23.如图,△ABC中,∠C=90°,∠BAC=30°,点E是AB的中点.以△ABC的边AB向外作等边△ABD,连接DE.求证:AC=DE.【考点】全等三角形的判定与性质.【分析】根据等边三角形的性质就可以得出∠DAB=60°,∠DAC=90°.就可以得出△ACB≌△DEB,进而可以得出结论.【解答】证明:∵△ABC是等边三角形,∴AB=BD,∠ABD=60°,∵AB=BD,点E是AB的中点,∴DE⊥AB,∴∠DEB=90°,∵∠C=90°,∴∠DEB=∠C,∵∠BAC=30°,∴∠ABC=60°,∴∠ABD=∠ABC,在△ACB与△DEB中,,∴△ACB≌△DEB(AAS),∴AC=DE.24.图l、图2分别是7×6的网格,网格中的每个小正方形的边长均为1,点A、B在小正方形的顶点上.请在网格中按照下列要求画出图形:(1)在图1中以AB为边作四边形ABCD(点C、D在小正方形的顶点上),使得四边形ABCD为中心对称图形,且△ABD为轴对称图形(画出一个即可);(2)在图2中以AB为边作四边形ABEF(点E、F在小正方形的顶点上),使得四边形ABEF中心对称图形但不是轴对称图形,且tan∠FAB=3.【考点】利用旋转设计图案;利用轴对称设计图案.【分析】(1)根据轴对称图形以及中心对称图形的性质得出符合题意的图形即可;(2)利用轴对称图形以及中心对称图形的性质,再利用锐角三角函数关系得出答案.【解答】解:(1)如图1所示:(2)如图2所示.25.某景区的三个景点A,B,C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离开景点A后的路程S(米)关于时间t(分钟)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲相遇?(2)若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?【考点】一次函数的应用.【分析】(1)根据图象确定出甲步行路程与时间的解析式;确定出20≤t≤30时,乙乘观光车由景点A到B时的路程与时间的函数解析式,联立即可确定出相遇的时间;(2)设当60≤t≤90时,乙步行由景点B到C的速度为x米/分钟,根据题意列出方程,求出方程的解得到x的值,即可确定出乙步行由B到C的速度.【解答】解:(1)当0≤t≤90时,甲步行路程与时间的函数解析式为S=60t;当20≤t≤30时,设乙乘观光车由景点A到B时的路程与时间的函数解析式为S=mt+n,把(20,0)与(20,3000)代入得:,解得:,∴函数解析式为S=300t﹣6000(20≤t≤30);联立得:,解得:,∵25﹣20=5,∴乙出发5分钟后与甲相遇;(2)设当60≤t≤90时,乙步行由景点B到C的速度为x米/分钟,根据题意,得5400﹣3000﹣(90﹣60)x=360,解得:x=68,∴乙步行由B到C的速度为68米/分钟.26.如图,甲、乙两只捕捞船同时从A港出海捕鱼,甲船以每小时千米的速度沿北偏西60°方向前进,乙船以每小时15千米的速度沿东北方向前进,甲船航行2小时到达C 处,此时甲船发现渔具丢在乙船上,于是甲船加快速度(匀速)沿北偏东75°的方向追赶,结果两船在B处相遇.(1)甲船从C处追赶上乙船用了多少时间?(2)求甲船加快速度后,追赶乙船时的速度.(结果保留根号)【考点】解直角三角形的应用-方向角问题.【分析】(1)过点A作AD⊥BC于D,利用锐角三角函数关系得出AC的长,进而得出AB的长即可得出答案;(2)利用(1)求出BD的长,再利用速度=,求出答案即可.【解答】解:(1)过点A作AD⊥BC于D,由题意得:∠B=30°,∠BAC=105°,则∠BCA=45°,AC=30千米,在Rt△ADC中,CD=AD=AC.cos45°=30(千米),在Rt△ABD中,AB=2AD=60千米,t==4(时).4﹣2=2(时),答:甲船从C处追赶上乙船用了2小时;(2)由(1)知:BD=AB•cos30°=30千米,∴BC=30+30(千米),v=(30+30)=(15+15)千米/时.答:甲船加快速度后,追赶乙船时的速度为:(15+15)千米/时.27.如图,△ABC中,∠ACB=90°,BC=6,AC=8.点E与点B在AC的同侧,且AE⊥AC.(1)如图1,点E不与点A重合,连结CE交AB于点P.设AE=x,AP=y,求y关于x 的函数解析式,并写出自变量x的取值范围;(2)是否存在点E,使△PAE与△ABC相似,若存在,求AE的长;若不存在,请说明理由;(3)如图2,过点B作BD⊥AE,垂足为D.将以点E为圆心,ED为半径的圆记为⊙E.若点C到⊙E上点的距离的最小值为8,求⊙E的半径.【考点】圆的综合题.【分析】(1)由AE⊥AC,∠ACB=90°,可得AE∥BC,然后由平行线分线段成比例定理,求得y关于x的函数解析式;(2)由题意易得要使△PAE与△ABC相似,只有∠EPA=90°,即CE⊥AB,然后由△ABC∽△EAC,求得答案;(3)易得点C必在⊙E外部,此时点C到⊙E上点的距离的最小值为CE﹣DE.然后分别从当点E在线段AD上时与当点E在线段AD延长线上时,去分析求解即可求得答案.【解答】解:(1)∵AE⊥AC,∠ACB=90°,∴AE∥BC,∴=,∵BC=6,AC=8,∴AB==10,∵AE=x,AP=y,∴=,∴y=(x>0);(2)∵∠ACB=90°,而∠PAE与∠PEA都是锐角,∴要使△PAE与△ABC相似,只有∠EPA=90°,即CE⊥AB,此时△ABC∽△EAC,则=,∴AE=.故存在点E,使△ABC∽△EAP,此时AE=;(3)∵点C必在⊙E外部,∴此时点C到⊙E上点的距离的最小值为CE﹣DE.设AE=x.①当点E在线段AD上时,ED=6﹣x,EC=6﹣x+8=14﹣x,∴x2+82=(14﹣x)2,解得:x=,即⊙E的半径为.②当点E在线段AD延长线上时,ED=x﹣6,EC=x﹣6+8=x+2,∴x2+82=(x+2)2,解得:x=15,即⊙E的半径为9.∴⊙E的半径为9或.28.如图,在平面直角坐标系xOy中,直线y=kx﹣7与y轴交于点C,与x轴交于点B,抛物线y=ax2+bx+14a经过B、C两点,与x轴的正半轴交于另一点A,且OA:OC=2:7.(1)求抛物线的解析式;(2)点D为线段CB上一点,点P在对称轴的右侧抛物线上,PD=PB,当tan∠PDB=2,求P点的坐标;(3)在(2)的条件下,点Q(7,m)在第四象限内,点R在对称轴的右侧抛物线上,若以点P、D、Q、R为顶点的四边形为平行四边形,求点Q、R的坐标.【考点】二次函数综合题.【分析】(1)由直线可求得C点坐标,代入抛物线可求得a的值,结合条件可求得A点坐标,代入可求得b的值,可求得抛物线解析式;(2)可先求得B点坐标,过P作PF⊥x轴于点G,交BC于点F,作PE⊥BC,结合条件可找到PG与GF关系,再求得直线BC的解析式,设出F点的坐标,可表示出P点坐标,代入抛物线可求得P点的坐标;(3)分DP∥QR和DR∥QP,当DP∥QR时,过P作PN∥BQ,过D作DN⊥BQ交PN 于点N,过R作RM⊥BQ于点M.设PD交BQ于点T,DN交BM于点I,可求得RM=DN,MQ=PN,结合条件可求得D点坐标,设出R的坐标,可求得横坐标,代入抛物线可求得R的坐标,再根据平行四边形的性质可求得Q的坐标;同理可求得当DR∥QP时的R、Q的坐标.【解答】解:(1)∵直线y=kx﹣7与y轴的负半轴交于点C∴C(0,﹣7),∴OC=7,∵抛物线y=ax2+bx+14a经过点C,∴14a=﹣7,∴a=﹣,∴y=﹣x2+bx﹣7,∵OA:OC=2:7.∴OA=2,∴A(2,0)∵抛物线y=﹣x2+bx﹣7经过点A,∴b=∴抛物线的解析式为y=﹣x2+x﹣7,(2)如图1,∵抛物线y=﹣x2+x﹣7经过B点,令y=0解得x=7或x=2(舍去),∴B(7,0),∴OB=7,∴OC=OB,∴∠OCB=∠OBC=45°过点P作PF⊥x轴于点G,交CB延长线于点F,则PF∥y轴,∴∠CFG=∠OCB=45°,∴BF=GF,过P作PE⊥BC于点E,∵PD=PB,∴∠PBD=∠PDB,∴tan∠PBD=tan∠PDB=2,∴PE=2BE,∵EF=PE,∴BF=BE,∴PF=PE=2BE=2BF=4GF,∴PG=3GF,∵直线y=kx﹣7过B点,∴k=1,∴y=x﹣7,设F(m,m﹣7),则P(m,﹣3(m﹣7)),∵点P在抛物线y=﹣x2+x﹣7上,∴,解得m=7(舍去)或m=8,∴P(8,﹣3);(3)如图2,当DP∥QR时,即四边形DQRP是平行四边形,∵B(7,0),Q(7,m)∴BQ∥y轴过P作PN∥BQ,过D作DN⊥BQ交PN于点N,过R作RM⊥BQ于点M.设PD交BQ于点T,DN交BM于点I,∴∠DTB=∠DPN,∠PTQ=∠RQM,∵∠DTB=∠PTQ,∴∠DPN=∠RQM,∵四边形DPRQ是平行四边形,∴DP=RQ,在△RMQ和△DNP中,,∴△RMQ≌△DNP(AAS),∴RM=DN,MQ=PN,由(2)可求F(8,1),GF=1,BD=2BE=2BF=2GF=∵∠QBC=45°,∴BI=DI=2,∴D(5,﹣2),设R点的横坐标为t,∵RM=DN,∴t﹣7=8﹣5,解得t=10,∵点R在抛物线y=﹣x2+x﹣7 上,∴当t=10时,,∴R(10,﹣12),∵MQ=PN,∴3﹣2=﹣12﹣n,∴n=﹣11,∴R(10,﹣12),Q(7,﹣11),如图3,当DR∥QP时,即四边形DQPR是平行四边形同理可求得R(6,2),Q(7,﹣7).6月3日。

2024年湖北省荆楚初中联盟中考模拟数学试题(五)(含答案)

2024年湖北省荆楚初中联盟中考模拟数学试题(五)(含答案)

荆楚初中联盟2024年中考数学模拟卷(五)(本试卷共6页,满分120分,考试时间120分钟)★祝考试顺利★注意事项:1.考生答题全部在试题卷上.2.请学生将自己的姓名、班级用0.5毫米的黑色墨水签字笔填写在试卷的密封区.一、选择题(共10题,每题3分,共30分.在每题给出的四个选项中,只有一项符合题目要求)1.下面四种化学仪器的示意图是轴对称图形的是( )A .B .C .D .2.Chat GPT 是一种基于深度学习的自然语言处理模型,它的参数量巨大.截止2024年1月Chat GPT 的参数量已经超过200亿.用科学计数法表示这个数字为( )A .B .C .D .3.下列运算正确的是()A . B . C . D .4.为了解学生的身体素质状况,国家每年都会进行中小学生身体素质抽测.在今年的抽测中,某校九年级二班随机抽取了10名男生进行引体向上测试,他们的成绩(单位:个)如下:7,11,10,11,6,14,11,10,11,9.根据这组数据判断下列结论中错误的是()A .这组数据的众数是11B .这组数据的中位数是10C .这组数据的平均数是10D .这组数据的方差是4.65.不等式组的解集在同一条数轴上表示正确的是( )A . B .C .D .6.“抖空竹”是我国非物质文化遗产,某中学将此运动引人特色大课间,某同学“抖空竹”的一个瞬间如图所示,将图1抽象成图2的数学问题:在平面内,.若,则的度数为()820010⨯9210⨯920010⨯10210⨯2=22(1)1a a +=+()325a a =2322a a a ⋅=32123m m -<⎧⎨-<⎩AB CD ∥50,85BAE DCE ∠=︒∠=︒AEC ∠图1图2A . B . C . D .7.一次函数的值随x 的增大而增大,则点所在象限为()A .第一象限B .第二象限C .第三象限D .第四象限8.如图,AB 为的直径,直线CD 与相切于点C ,连接AC ,若,则的度数为( )A . B . C . D .9.如图1,点P 从的顶点B 出发,沿匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中曲线部分为轴对称图形,M 为最低点,则的周长是( )图1图2A .12 B .16 C .18D .2410.已知二次函数有以下结论:①对任意实数m ,都有与对应的函数值相等;②无论a 取何值,此函数的图象必过两个定点;③若此函数图象与x 轴有两不同交点A ,B ,且,则;④若,对应的y 的整数值有3个,则或.其中正确的个数是( )A .4B .3C .2D .1二、填空题(共5题,每题3分,共15分)11.因式分解:____________.12.如图,在中,AC 的垂直平分线交BC 于点D ,交AC 于点E ,.若,则DC 的长是____________.115︒125︒135︒145︒(21)2y m x =-+(,)P m m -O e O e 50ACD ∠=︒BAC ∠30︒40︒50︒60︒ABC △B C A →→ABC △224(0)y ax ax a =+-≠11x m =-21x m =--AB >08a <<21x -≤≤-32a -<≤-23a ≤<24x x -=ABC △B ADB ∠=∠4AB =13.学校安排一项综合实践活动,要求测量两栋楼之间的距离.已知对面的楼高为,小明从点A 观测对面楼顶部的仰角为,观测楼底部的俯角为,则这两栋楼之间的距离为____________.(参考数据:)14.如图,电路图上有三个开关A 、B 、C 和一个小灯泡,同时闭合开关A 、B 或A 、C 都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是____________.15.如图,在平行四边形ABCD 中,,点E 是AD 上一动点,将沿B E 折叠得到,当点恰好落在EC 上时,DE 的长为____________.三、解答题(共9题,共75分。

2023年福建省福州市仓山区时代中学中考模拟数学试卷(5月份)(含答案解析)

2023年福建省福州市仓山区时代中学中考模拟数学试卷(5月份)(含答案解析)

360 求出边数.
30
【详解】正
n
边形的一个外角为
30
,所以
n
360 30
12

故选:D
【点睛】此题考查正多边形的外角和,解题关键是用外角和直接求边长.
7.D
【分析】利用三角形相似的判定,先说明边长扩大前后的两个三角形相似,再说明∠A 的度
数前后有变化,根据角等其函数值不变可得结论.
【详解】解:∵三角形各边的长度都变为原来的 2 倍,
(1)求抛物线的函数表达式. (2)若点 P 为第三象限内抛物线上一动点,作 PD⊥x 轴于点 D,交 AC 于点 E,过点 E 作 AC 的垂线与抛物线的对称轴和 y 轴分别交于点 F、G,设点 P 的横坐标为 m. ①求 PE+ 2 EG 的最大值; ②连接 DF、DG,若∠FDG=45°,求 m 的值.
A. 3.58104
B.3.58
C. 3.58105
D. 0.358105
2.化简 (3)2 的结果是( )
A. 3
B. 3
C.3
D.9
3.一个几何体由 4 个相同的小正方体搭成,从正面看和从左面看到的形状图如图所示,
则原立体图形不可能是( )
A.
B.
C.
D.
4.某班同学一周参加体育锻炼时间的统计情况如表所示: 人数/人 19 14 8 4
15.如图,已知直角三角形 ABO 中, AO 1,将 ABO 绕点 O 旋转至△ABO 的位置,

A 在 OB
的中点,
B 在反比例函数
y
k x
上,则
k
的值为_______________.
试卷第 2页,共 5页

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

五年中考三年模拟初中试卷数学七年级上册人教版

五年中考三年模拟初中试卷数学七年级上册人教版

五年中考三年模拟初中试卷数学七年级上册人教版一、选择题(每小题3分,共30分)1. 已知集合A={x|x>2},B={x|x≤3},则A∩B={x|x()A. >3B. ≤2C. >2D. ≤3答案:D. ≤32. 已知a>0,b>0,则“a>b”的否定是()A. a≤bB. a>bC. a≥bD. a<b答案:A. a≤b3. 已知a>0,b>0,则“a>b”的逆否命题是()A. a≤bB. a>bC. a≥bD. a<b答案:D. a<b4. 已知a>0,b>0,则“a>b”的否定是()A. a≤bB. a>bC. a≥bD. a<b答案:A. a≤b5. 已知a>0,b>0,则“a>b”的逆否命题是()A. a≤bB. a>bC. a≥bD. a<b答案:D. a<b6. 已知a>0,b>0,则“a>b”的否定是()A. a≤bB. a>bC. a≥bD. a<b答案:A. a≤b7. 已知a>0,b>0,则“a>b”的逆否命题是()A. a≤bB. a>bC. a≥bD. a<b答案:D. a<b8. 已知a>0,b>0,则“a>b”的否定是()A. a≤bB. a>bC. a≥bD. a<b答案:A. a≤b9. 已知a>0,b>0,则“a>b”的逆否命题是()A. a≤bB. a>bC. a≥bD. a<b答案:D. a<b10. 已知a>0,b>0,则“a>b”的否定是()A. a≤bB. a>bC. a≥bD. a<b答案:A. a≤b二、填空题(每小题3分,共30分)11. 已知集合A={x|x≥2},B={x|x<3},则A∩B={x|x=。

答案:212. 已知a>0,b>0,则“a>b”的否定是“a 。

答案:≤b13. 已知a>0,b>0,则“a>b”的逆否命题是“a 。

答案:<b14. 已知a>0,b>0,则“a>b”的否定是“a 。

答案:≤b15. 已知a>0,b>0,则“a>b”的逆否命题是“a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学精编试卷(抚顺新抚)
一、选择题(每小题3分,共30分)
1.的相反数为(▲)
A
.﹣B.﹣2C.2D .
2.下列图形中既是轴对称图形,又是中心对称图形的是(▲)
A.B.C.D.
3.如图所示的几何体是由六个小正方体组合而成的,它的附视图是(▲)
A.B.C.D.
4.作为某市地铁“米”字型构架西南﹣东北方向的地铁3号线一期工程线路全长约36400米,则数据36400用科学记数法表示为(▲)
A.364×102B.36.4×103C.3.64×104D.0.364×105
5.估计的值在(▲)
A.2和3之间B.3和4之间C.4和5之间D.5和6之间6.如图,AB为⊙O的直径,点C、D在⊙O上,若∠AOD=30°,则∠BCD的度数是(▲)A.150°B.120°C.105°D.75°
7
.如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是(▲)
A.B.C.D.
8.如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx+b>的解集是(▲)A.x<﹣1B.﹣1<x<0C.﹣1<x<0或x>2D.x<﹣1或0<x<2第6题图第7题图第8题图
9.如图,在△ABC 中,∠CAB =50°,∠ABC =100°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得C 、B 、C′三点共线,则∠BAB′=(
▲)
A .100°
B .110°
C .120°
D .130°10.对称轴为直线x=﹣1的抛物线y=ax 2+bx+c 如图所示,有下列结论:
①abc <0;②16a-4b+c <0;③ax 2+bx≥a-b ;④3a+c <0.
其中,正确结论的个数是(▲)A .4B .3C .2D .
二、填空题(每题4分,共24分)
11.分解因式:34a a -=▲
.12.不等式组23520x x -⎧⎨-⎩
≥≥的解集是▲.13.已知盒子里有4个黄色球和n 个红色球,每个球除颜色不同外均相同,则从中任取一个球,取出红色球的概率是,则n 的值是▲.
14.九年级学生在毕业前夕,某班每名同学都为其他同学写一段毕业感言,全班共写了2256段毕业感言,如果该班有x 名同学,根据题意列出方程为▲.
15.已知等边△ABC 的边长为4,点P 是边BC 上的动点,将△ABP 绕点A 逆时针旋转60°
得到△ACQ ,点D 是AC 边的中点,连接DQ ,则DQ 的最小值是▲
16.如图,在△ABC 中,AB =AC =6,中线CE =5.延长AB 到D 使BD =AB .则CD =
▲.
第10题图
第9题图第15题图第16题图
三、解答题(第17题8分,第18题10分,19题10分,共28分)
17.先化简,再求值:22231(111a a a a --÷+-+,其中°12cos 30+()32
a π=-0-1(-)18.在四张完全相同的卡片正面分别写出数字1,2,3,3,现将它们的背面朝上洗均匀.
(1)随机的抽出一张卡片,求抽到数字“3”的概率;
(2)若随机抽出一张卡片后不放回,再从剩下的三张中随机抽出一张卡片,用列表或画树
形图法求两次都是抽到数字“3”的概率;
(3)如果再增加若干张写有数字“3”的同样卡片,洗均匀后,使得随机抽出一张卡片是数字
“3”的概率不小于710
,问至少增加多少张卡片?(直接写出答案)
19.如图,□ABCD的对角线AC,BD相交于点O,EF过点O且与AB,CD分别相交于点E,F,连接EC.
(1)求证:OE=OF;
(2)若EF⊥AC,△BEC的周长是10,求□ABCD的周长.
四、解答题(第20题10分、21题10分,共20分)
20.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图
.
请结合图中所给信息,解答下列问题:
(1)本次调查的学生共有▲人;
(2)补全条形统计图;
(3)在扇形统计图中,求最喜欢C(朗诵)所对应圆心角的度数.
(4)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?
第20题图
最喜欢的宣传形式条形统计图最喜欢的宣传形式扇形统计图
第19题图
21.如图,一次函数y=kx+b(k≠0)的图象与反比例函数a
y
=(a≠0)的图象在第二象限
x
交于点A(m,2),与x轴交于点C(-1,0),过点A作AB⊥x轴于点B,△ABC的面积是3.
(1)求一次函数和反比例函数的解析式;
(2)若直线AC与y轴交于点D,求△BCD的面积.
第21题图
五、解答题(22题10分)
22.如图,已知AB 为⊙O 的直径,弦CD ⊥AB ,垂足为F ,E 为BA 延长线上的一点,连接CE 、CA ,∠ECA =∠ACD .
(1)求证:CE 为⊙O 的切线;
(2)若EA =2,tan E =43,求⊙O 的半径.六、解答题(23题12分)
23.随着网络购物的兴起,小明的妈妈在网上开了一个网络水果超市,他的妈妈以10元/
千克的价格购入了某种水果300千克.据市场预测,该种水果的售价y (元/千克)与保存时间x (天)的函数关系为y =10+2x ,但保存这批水果平均每天将损耗10千克,且最多能保存10天.另外,小明的妈妈保存该批水果每天还需支出20元的费用.
(1)若小明妈妈保存1天后将该批水果一次性卖出,则卖出时水果的售价为

(元/千克),获得的总利润为▲(元);(2)设小明妈妈将这批水果保存x 天后一次性卖出,试求这批水果所获得的总利润
w (元)与保存时间x (天)之间的函数关系式;
(3)求小明妈妈经营这批水果所能获得的最大利润.
第22题图
七、解答题(24题12分)
24.如图①,C为线段BE上的一点,分别以BC和CE为边在BE的同侧作正方形ABCD和
正方形CEFG,M、N分别是线段AF和GD的中点,连接MN
(1)线段MN和GD的数量关系是▲,位置关系是▲;
(2)将图①中的正方形CEFG绕点C逆时针旋转90°,其他条件不变,如图②,(1)的结论是否成立?说明理由;
(3)将图①中的正方形CEFG绕点C旋转一周,其他条件不变,当MN的最大值是5、最小值2时.直接写出BC,CE的长各是多少?
第24题图①第24题图②
八、解答题(25题14分)
25.如图,对称轴为x=1的抛物线经过A(0,3),B(3,0)两点,抛物线与x轴的另一交点为C.
(1)求抛物线的解析式;
(2)P为抛物线上的动点,直线PC交抛物线对称轴于点D,连接AP,AD,AC,若△PAD与△PAC面积之比为1:3,求点P的坐标;
(3)点M在抛物线上,点N在对称轴上,点Q在坐标平面内,当四边形BMNQ为正方形时,直接写出点Q的坐标.
第25题图第25题备用图。

相关文档
最新文档