2016年贵州省高考数学模拟试卷(文科)含答案解析

合集下载

高中高考数学3月模拟试卷 文(含解析)-人教版高三全册数学试题

高中高考数学3月模拟试卷 文(含解析)-人教版高三全册数学试题

2015年某某省黄冈市浠水县实验高中高考数学模拟试卷(文科)(3月)一、选择题015•浠水县校级模拟)已知集合A={x|x2=1},B={x|ax=1},若B⊆A,则a的取值组成的集合为()A.ΦB. {0} C. {﹣1,0,1} D. {﹣1,1}015•浠水县校级模拟)已知复数z与(z+2)2﹣8i是纯虚数,则z=()A.﹣2i B. 2i C.﹣i或i D. 2i或﹣2i015•浠水县校级模拟)a>1是函数y=log a(ax)(a>0,a≠1)在(0,+∞)上单调递增的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件015•某某模拟)已知变量x,y满足条件,则目标函数z=2x+y()A.有最小值3,最大值9 B.有最小值9,无最大值C.有最小值8,无最大值D.有最小值3,最大值8015•浠水县校级模拟)已知=﹣<α<0,则cosα=()A.B.C.D.015•浠水县校级模拟)已知=,与不共线,任意点M关于点A的对称点S,点S关于点B的对称点为N,则=()A.B.C.D.015•浠水县校级模拟)曲线y=在处的切线斜率为()A.B.﹣C.D.﹣008•某某)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为()A.B.C.D.015•浠水县校级模拟)过抛物线y2=2px的焦点F作直线交抛物线于A、B两点,再过A、B 分别作抛物线的切线l1,l2,设l1与l2的交点为P(x0,y0),则x0的值()A. 0 B.﹣p C.﹣D.不确定1015•浠水县校级模拟)已知a∈R,若f(x)=﹣|x﹣2a|有三个或四个零点,则g(x)=ax2+4x+1的零点个数为()A. 2 B. 1或2 C. 0或2 D. 0或1二、填空题1015•浠水县校级模拟)已知一个样本容量为100的样本数据的频率分布直方图如图所示,那么样本数据落在[40,60)内的样本的频数为;估计总体的众数为.1015•浠水县校级模拟)数据a1,a2,…,a n的方差为S2,平均数为μ,则数据ka1+b,ka2+b,…,ka n+b(k,b≠0)的标准差为;平均数为.1015•某某模拟)执行如下程序框图,输出的i=.1015•浠水县校级模拟)观察等式:=,=1,=,照此规律,对于一般的角α,β,有等式.1015•浠水县校级模拟)一条光线从A(﹣2,3)射出,经过x轴反射后与圆C:(x﹣3)2+(y﹣2)2=1相切,则反射后光线所在直线方程的斜率为.1015•某某模拟)某几何体是直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为.1015•浠水县校级模拟)设矩形ABCD(AB>AD)的周长为24,把△ABC沿AC向ADC折叠,AB折过去后交DC于P,设AB=x,则△ADP的最大面积为;相应的x=.三、解答题1015•某某二模)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.(Ⅰ)求角C的大小;(Ⅱ)当cosA+cosB取得最大值时,试判断△ABC的形状.1015•浠水县校级模拟)已知数列{a n}中,a1=5,a2=2,a n=2a n﹣1+3a n﹣2(n≥3),设b n=a n+1+a n,=a n+1﹣3a n.(1)证明{b n},{}为等比数列;(2)求{a n}的通项公式.2015•某某二模)如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AD=2,AB=1,AC=.(Ⅰ)证明:MN∥平面PCD;(Ⅱ)求直线MN与平面PAD所成角的正切值.2015•某某模拟)已知函数f(x)=xlnx,(1)求函数f(x)的单调区间和最小值.(2)若函数F(x)=在[1,e]上的最小值为,求a的值.2015•某某模拟)已知点A,B的坐标分别为(﹣2,0),(2,0).直线AT,BT交于点T,且它们的斜率之积为常数﹣λ(λ>0,λ≠1),点T的轨迹以及A,B两点构成曲线C.(1)求曲线C的方程,并求其焦点坐标;(2)若0<λ<1,且曲线C上的点到其焦点的最小距离为1.设直线l:x=my+1交曲线C 于M,N,直线AM,BN交于点P.(ⅰ)当m=0时,求点P的坐标;(ⅱ)求证:当m变化时,P总在直线x=4上.2015年某某省黄冈市浠水县实验高中高考数学模拟试卷(文科)(3)参考答案与试题解析一、选择题015•浠水县校级模拟)已知集合A={x|x2=1},B={x|ax=1},若B⊆A,则a的取值组成的集合为()A.ΦB. {0} C. {﹣1,0,1} D. {﹣1,1}考点:集合的包含关系判断及应用.专题:集合.分析:先求出集合A={﹣1,1},讨论a:a=0,显然满足B⊆A;a≠0时,便有B={x|x=},从而由B⊆A便可求出a=1,或﹣1,最后即可得到a的取值组成的集合.解答:解:A={﹣1,1};①若a=0,则B=∅,满足B⊆A;②若a≠0,则B={x|x=};∵B⊆A;∴,或;∴a=﹣1,或1;综上得a的取值组成的集合为{﹣1,0,1}.故选C.点评:考查描述法表示集合,列举法表示集合,以及空集和其它集合的关系,子集的概念,不要漏了a=0的情况.015•浠水县校级模拟)已知复数z与(z+2)2﹣8i是纯虚数,则z=()A.﹣2i B. 2i C.﹣i或i D. 2i或﹣2i考点:复数的基本概念.专题:数系的扩充和复数.分析:由两个复数都是纯虚数,可设z=ai,(a∈R,a≠0),化简(z+2)2﹣8i,可求出z.解答:解:设z=ai,(a∈R,a≠0),则(z+2)2﹣8i=(ai+2)2﹣8i=4+4ai﹣a2﹣8i=(4﹣a2)+(4a﹣8)i,∵复数z与(z+2)2﹣8i是纯虚数,∴4﹣a2=0,4a﹣8≠0.解得:a=﹣2.∴z=﹣2i.故选:A.点评:本题考查了复数的分类以及复数的运算,考查了复数的基本概念,是基础题.015•浠水县校级模拟)a>1是函数y=log a(ax)(a>0,a≠1)在(0,+∞)上单调递增的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据对数函数以及复合函数的单调性求出a的X围,结合充分必要条件的定义判断即可.解答:解:若函数y=log a(ax)(a>0,a≠1)在(0,+∞)上单调递增,则f(x)=ax是增函数,y=log a[f(x)]是增函数,∴a>1,故a>1是函数y=log a(ax)(a>0,a≠1)在(0,+∞)上单调递增的充分必要条件,故选:A.点评:本题考查了充分必要条件,考查对数函数的性质,是一道基础题.015•某某模拟)已知变量x,y满足条件,则目标函数z=2x+y()A.有最小值3,最大值9 B.有最小值9,无最大值C.有最小值8,无最大值D.有最小值3,最大值8考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最值.解答:解:作出不等式对应的平面区域(阴影部分),由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最小,此时z最小.无最大值.由,解得,即A(2,4).此时z的最小值为z=2×2+4=8,故选:C点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.015•浠水县校级模拟)已知=﹣<α<0,则cosα=()A.B.C.D.考点:两角和与差的余弦函数.专题:三角函数的求值.分析:由已知式子化简可得sin(α+)=﹣,进而由同角三角函数基本关系可得cos (α+)=,代入cosα=cos(α+)+sin(α+)计算可得.解答:解:∵=﹣<α<0,∴sinα+cosα+sinα=﹣,∴sinα+cosα=﹣,∴sinα+cosα=﹣,∴sin(α+)=﹣,∴cos(α+)=,∴cosα=cos[(α+)﹣]=cos(α+)+sin(α+)=+=故选:B点评:本题考查两角和与差的三角函数公式,涉及同角三角函数的基本关系,属基础题.015•浠水县校级模拟)已知=,与不共线,任意点M关于点A的对称点S,点S关于点B的对称点为N,则=()A.B.C.D.考点:平行向量与共线向量.专题:平面向量及应用.分析:根据点的对称关系,结合向量中点公式进行化简即可得到结论.解答:解:∵M关于点A的对称点S,点S关于点B的对称点为N,∴,.即+=2=2,+=2=2,两式相减得﹣=2﹣2即=﹣=2﹣2=,故选:A.点评:本题考查了向量的运算和三角形法则,根据对称关系得到向量的中点公式是解决本题的关键.015•浠水县校级模拟)曲线y=在处的切线斜率为()A.B.﹣C.D.﹣考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:求出曲线方程的导函数,把切点的横坐标代入导函数求出的函数值即为切线方程的斜率.解答:解:由y=,得到y′=,把x=代入得:y′|x===﹣,则曲线在处的切线斜率为﹣.故选D.点评:此题考查学生会利用导数求曲线上过某点切线方程的斜率,是一道基础题.008•某某)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为()A.B.C.D.考点:等可能事件的概率.专题:计算题;压轴题.分析:本题是一个古典概型,解题时要看清试验发生时的总事件数和一天中任一时刻的四个数字之和为23事件数,前者可以根据生活经验推出,后者需要列举得到事件数.解答:解:一天显示的时间总共有24×60=1440种,和为23有09:59,19:58,18:59,19:49总共有4种,故所求概率为P==.故选C点评:本题考查的是古典概型,如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数是解题的关键.015•浠水县校级模拟)过抛物线y2=2px的焦点F作直线交抛物线于A、B两点,再过A、B 分别作抛物线的切线l1,l2,设l1与l2的交点为P(x0,y0),则x0的值()A. 0 B.﹣p C.﹣D.不确定考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由抛物线方程求出抛物线的焦点坐标,由斜截式写出过焦点的直线方程,和抛物线方程联立求出A,B两点横坐标的积,再利用导数写出过A,B两点的切线方程,然后整体运算可求得两切线的交点的横坐标为定值﹣.解答:解:由抛物线y2=2px得其焦点坐标为F(,0).设A(y12,y1),B(y22,y2),直线l:x=my+,联立,得:y2﹣2pmy﹣p2=0.∴y1y2=﹣p2…①.又抛物线方程为:y2=2px,即x=y2,求导得x′=,∴抛物线过点A切线方程为x﹣y12=(y﹣y1)…②抛物线过点B的切线方程为x﹣y22=(y﹣y2)…③由①②③得:x=﹣.∴l1与l2的交点P的横坐标x0=﹣,故选:C点评:本题考查了轨迹方程,训练了利用导数研究曲线上某点处的切线方程,考查了整体运算思想方法,是中档题1015•浠水县校级模拟)已知a∈R,若f(x)=﹣|x﹣2a|有三个或四个零点,则g(x)=ax2+4x+1的零点个数为()A. 2 B. 1或2 C. 0或2 D. 0或1考点:函数零点的判定定理.专题:函数的性质及应用.分析:函数f(x)=x2﹣|x﹣2a|有三个或者四个零点可化为函数m(x)=x2与函数h(x)=|x﹣2a|有三个或者四个不同的交点,作图象确定a的取值X围,从而确定函数g(x)=ax2+4x+1的零点个数.解答:解:∵函数f(x)=x2﹣|x﹣2a|有三个或者四个零点,∴函数m(x)=x2与函数h(x)=|x﹣2a|有三个或者四个不同的交点,作函数m(x)=x2与函数h(x)=|x﹣2a|的图象如下,,结合图象可知,﹣0.5≤2a≤0.5,故﹣≤a≤,当a=0时,函数g(x)=ax2+4x+1有一个零点,当a≠0时,△=16﹣4a>0,故函数g(x)=ax2+4x+1有两个零点,故g(x)=ax2+4x+1的零点个数为1或2,故选:B点评:本题考查了数形结合的思想应用及函数的零点与方程的根的关系应用,属于基础题.二、填空题1015•浠水县校级模拟)已知一个样本容量为100的样本数据的频率分布直方图如图所示,那么样本数据落在[40,60)内的样本的频数为15 ;估计总体的众数为75 .考点:频率分布直方图.专题:概率与统计.分析:频率分布直方图中,频率=矩形的高×组距,先求出[40,60)内的样本频率,再乘以样本容量就可求出频数.再由众数为频率最高一组的组中得到众数.解答:解:[40,60)内的样本频数:100×(0.005+0.01)×10=15;总体的众数为频率最高一组的组中,即[70,80)的组中75,故答案为:15,75点评:本题考查频数,频率及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识.1015•浠水县校级模拟)数据a1,a2,…,a n的方差为S2,平均数为μ,则数据ka1+b,ka2+b,…,ka n+b(k,b≠0)的标准差为kS ;平均数为kμ+b.考点:极差、方差与标准差.专题:计算题;概率与统计.分析:根据数据的平均数与方差、标准差的公式,进行计算即可.解答:解:根据题意,得;=(a1+a2+…+a n)=μ,∴a1+a2+…+a n=nμ,∴ka1+b,ka2+b,ka3+b,…,ka n+b的平均数为=[(ka1+b)+(ka2+b)+(ka3+b)+…+(ka n+b)]=k•[a1+a2+…+a n]+b=kμ+b;∵数据a1,a2,a3,…,a n的标准差为S2,∴S2=[(a1﹣μ)2+(a2﹣μ)2+…+(a n﹣μ)2],∴数据ka1+b,ka2+b,ka3+b,…,ka n+b方差为S′2=[(ka1+b﹣kμ﹣b)2+(ka2+b﹣kμ﹣b)2+…+(ka n+b﹣kμ﹣b)2]=k2•[(a1﹣μ)2+(a2﹣μ)2+…+(a n﹣μ)2]=k2•S2,∴数据ka1+b,ka2+b,…,ka n+b(k,b≠0)的标准差为kS.故答案为:kS,kμ+b.点评:本题考查了数据的平均数与方差、标准差的计算问题,是基础题目.1015•某某模拟)执行如下程序框图,输出的i= 6 .考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的s,i的值,当s=57时,不满足条件s <30,退出循环,输出i的值为6.解答:解:模拟执行程序框图,可得s=0,i=1,s=1,i=2满足条件s<30,s=4,i=3满足条件s<30,s=11,i=4满足条件s<30,s=26,i=5满足条件s<30,s=57,i=6不满足条件s<30,退出循环,输出i的值为6.故答案为:6.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的s,i的值是解题的关键,属于基础题.1015•浠水县校级模拟)观察等式:=,=1,=,照此规律,对于一般的角α,β,有等式..考点:归纳推理.专题:推理和证明.分析:观察等式:==tan60°=tan(),=1=tan45°=tan(),==tan30°=tan (),据此,判断出对于一般的角α,β,有什么规律即可.解答:解:∵==tan60°=tan(),=1=tan45°=tan(),==tan30°=tan(),…∴对于一般的角α,β,有等式:.故答案为:.点评:本题主要考查了归纳推理的灵活运用,解答此题的关键是仔细观察已给等式,并从中找出规律.1015•浠水县校级模拟)一条光线从A(﹣2,3)射出,经过x轴反射后与圆C:(x﹣3)2+(y﹣2)2=1相切,则反射后光线所在直线方程的斜率为或.考点:与直线关于点、直线对称的直线方程.专题:直线与圆.分析:由题意可得,A(﹣2,3)关于x轴的对称点A′(﹣2,﹣3)在反射后光线所在直线上,设反射后光线所在直线的斜率为k,用点斜式求得反射后光线所在直线方程.再根据圆心(3,2)到反射光线所在直线的距离等于半径求得k的值,可得结论.解答:解:由题意可得,A(﹣2,3)关于x轴的对称点A′(﹣2,﹣3)在反射后光线所在直线上,设反射后光线所在直线的斜率为k,则反射后光线所在直线方程为y+3=k(x+2),即 kx﹣y+2k ﹣3=0.再根据圆心(3,2)到反射光线所在直线的距离等于半径1,即=1,求得k=,或k=,故答案为:或.点评:本题主要考查反射定理,直线和圆相切的性质,点到直线的距离公式的应用,属于基础题.1015•某某模拟)某几何体是直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据三视图的性质得到俯视图中椭圆的短轴长和长周长,再根据椭圆的性质a2﹣b2=c2,和离心率公式,计算即可.解答:解:设正视图正方形的边长为m,根据正视图与俯视图的长相等,得到俯视图中椭圆的短轴长2b=m,俯视图的宽就是圆锥底面圆的直径m,得到俯视图中椭圆的长轴长2a=m,则椭圆的焦距=m,根据离心率公式得,e==故答案为:.点评:本题主要考查了椭圆的离心率公式,以及三视图的问题,属于基础题.1015•浠水县校级模拟)设矩形ABCD(AB>AD)的周长为24,把△ABC沿AC向ADC折叠,AB折过去后交DC于P,设AB=x,则△ADP的最大面积为108﹣72;相应的x= 6.考点:解三角形.专题:解三角形.分析:设AB=x,则AD=12﹣x,利用勾股定理得打PD,再根据三角形的面积公式个基本不等式的性质,即可求出解答:解∵设AB=x,则AD=12﹣x,又DP=PB′,AP=AB′﹣PB′=AB﹣DP,即AP=x﹣DP,∴(12﹣x)2+PD2=(x﹣PD)2,得PD=12﹣,∵AB>AD,∴6<x<12,∴△ADP的面积S=AD•DP=(12﹣x)(12﹣)=108﹣6(x+)≤108﹣6•2=108﹣72,当且仅当x=即x=6时取等号,∴△ADP面积的最大值为108﹣72,此时x=6;故答案为:、.点评:本题主要考查了三角形面积公式和基本不等式的性质的运用.三、解答题1015•某某二模)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.(Ⅰ)求角C的大小;(Ⅱ)当cosA+cosB取得最大值时,试判断△ABC的形状.考点:正弦定理;三角函数中的恒等变换应用.专题:解三角形.分析:(Ⅰ)由正弦定理化简已知等式可得,结合角C的X围即可得解.(Ⅱ)由(1)知,则化简可得,结合A的X围可求取得最大值1时A,B,C的值,从而得解.解答:解:(Ⅰ)由结合正弦定理变形得:(3分)从而,,…(6分)∵0<C<π,∴;…(7分)(Ⅱ)由(1)知…(8分)则====(11分)∵,∴…(12分)当时,取得最大值1,…(13分)此时,,…(14分)故此时△ABC为等腰三角形.…(15分)点评:本题主要考查了正弦定理,三角函数中的恒等变换应用,解题时注意分析角的X 围,属于基本知识的考查.1015•浠水县校级模拟)已知数列{a n}中,a1=5,a2=2,a n=2a n﹣1+3a n﹣2(n≥3),设b n=a n+1+a n,=a n+1﹣3a n.(1)证明{b n},{}为等比数列;(2)求{a n}的通项公式.考点:数列递推式;等比关系的确定.专题:等差数列与等比数列.分析:(1)通过对a n+2=2a n+1+3a n(n≥1)变形可知a n+2+a n+1=3(a n+1+a n),进而b n+1=3b n;同理通过a n+2=2a n+1+3a n可知a n+2﹣3a n+1=﹣(a n+1﹣3a n),进而+1=﹣;(2)通过b n=a n+1+a n与=a n+1﹣3a n作差可知a n=(b n﹣),进而计算可得结论.解答:(1)证明:∵a n=2a n﹣1+3a n﹣2(n≥3),∴a n+2=2a n+1+3a n(n≥1),∴a n+2+a n+1=3(a n+1+a n),又∵b n=a n+1+a n,∴b n+1=3b n,又∵b1=a2+a1=7,∴数列{b n}是以7为首项、3为比的等比数列;∵a n+2=2a n+1+3a n,∴a n+2﹣3a n+1=﹣(a n+1﹣3a n),又∵=a n+1﹣3a n,∴+1=﹣;又∵C1=a2﹣3a1=﹣13,∴{}是以﹣13为首项、﹣1为公比的等比数列;(2)解:∵b n=a n+1+a n,=a n+1﹣3a n,∴a n=(b n﹣),由(1)知…①…②①﹣②得.点评:本题考查数列的递推式,考查等比数列的判定,考查数列的通项,注意解题方法的积累,属于中档题.2015•某某二模)如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AD=2,AB=1,AC=.(Ⅰ)证明:MN∥平面PCD;(Ⅱ)求直线MN与平面PAD所成角的正切值.考点:直线与平面所成的角;直线与平面平行的判定.专题:证明题;空间位置关系与距离.分析:(Ⅰ)取PD中点E,连结NE,CE,可证MNEC为平行四边形,由MN∥CE即可判定MN∥平面PCD.(其它证法酌情给分)(Ⅱ)方法一:可证平面PAD⊥平面ABCD,过M作MF⊥AD,则MF⊥平面PAD,连结NF.则∠MNF为直线MN与平面PAD所成的角,解三角形可得解;方法二:PA⊥AB,PA⊥AC,又可证AB⊥AC,分别以AB,AC,AP为x轴,y轴,z轴,建立空间直角坐标系A﹣xyz,设平面PAD的一个法向量为,则设MN与平面PAD 所成的角为θ,则由夹角公式即可求得MN与平面PAD所成角的正切值.解答:解:(Ⅰ)证明:取PD中点E,连结NE,CE.∵N为PA中点,∴NE,又M为BC中点,底面ABCD为平行四边形,∴MC.∴NE MC,即MNEC为平行四边形,…(4分)∴MN∥CE∵EC⊂平面PCD,且MN⊄平面PCD,∴MN∥平面PCD.…(7分)(其它证法酌情给分)(Ⅱ)方法一:∵PA⊥平面ABCD,PA⊂平面ABCD,∴平面PAD⊥平面ABCD,过M作MF⊥AD,则MF⊥平面PAD,连结NF.则∠MNF为直线MN与平面PAD所成的角,…(10分)由AB=1,,AD=2,得AC⊥CD,由AC•CD=AD•MF,得,在Rt△AMN中,AM=AN=1,得.在Rt△MNF中,,∴,直线MN与平面PAD所成角的正切值为.…(15分)方法二:∵PA⊥平面ABCD,PA⊥AB,PA⊥AC,又∵AB=1,,BC=AD=2,∴AB2+AC2=BC2,AB⊥AC.…(9分)如图,分别以AB,AC,AP为x轴,y轴,z轴,建立空间直角坐标系A﹣xyz,则,N(0,0,1),P(0,0,2),,∴,,,…(11分)设平面PAD的一个法向量为,则由,令y=1得,…(13分)设MN与平面PAD所成的角为θ,则,∴MN与平面PAD所成角的正切值为.…(15分)点评:本题主要考查了线与平面平行的判定,求直线MN与平面PAD所成角的正切值,关键在于熟练掌握平面垂直的性质与直线与平面平行的判定定理及其应用,考查了空间想象能力和转化思想,属于中档题.2015•某某模拟)已知函数f(x)=xlnx,(1)求函数f(x)的单调区间和最小值.(2)若函数F(x)=在[1,e]上的最小值为,求a的值.考点:利用导数研究函数的单调性;函数单调性的性质.专题:导数的综合应用.分析:(1)由已知得f′(x)=lnx+1(x>0),由此利用导数性质能求出函数f(x)的单调区间和最小值.(2)F′(x)=,由此根据实数a的取值X围进行分类讨论,结合导数性质能求出a的值.解答:解(本小题满分12分)(1)∵f′(x)=lnx+1(x>0),令f′(x)≥0,即lnx≥﹣1=lne﹣1.∴x≥e﹣1=,∴x∈[,+∞).同理,令f′(x)≤0,可得x∈(0,].∴f(x)单调递增区间为[,+∞),单调递减区间为(0,],由此可知y=f(x)min=f()=﹣.(2)F′(x)=,当a≥0时,F′(x)>0,F(x)在[1,e]上单调递增,F(x)min=F(1)=﹣a=,∴a=﹣∉[0,+∞),舍去.当a<0时,F(x)在(0,﹣a)上单调递减,在(﹣a,+∞)上单调递增,若a∈(﹣1,0),F(x)在[1,e]上单调递增,F(x)min=F(1)=﹣a=,∴a=﹣∉(﹣1,0),舍去;若a∈[﹣e,﹣1],F(x)在[1,﹣a]上单调递减,在[﹣a,e]上单调递增,∴F(x)min=F(﹣a)=ln(﹣a)+1=,a=﹣∈[﹣e,﹣1];若a∈(﹣∞,﹣e),F(x)在[1,e]上单调递减,F(x)min=F(e)=1﹣,∴a=﹣∉(﹣∞,﹣e),舍去.综上所述:a=﹣.点评:本题考查函数的单调区间的最小值的求法,考查实数值的求法,解题时要认真审题,注意导数性质和分类讨论思想的合理运用.2015•某某模拟)已知点A,B的坐标分别为(﹣2,0),(2,0).直线AT,BT交于点T,且它们的斜率之积为常数﹣λ(λ>0,λ≠1),点T的轨迹以及A,B两点构成曲线C.(1)求曲线C的方程,并求其焦点坐标;(2)若0<λ<1,且曲线C上的点到其焦点的最小距离为1.设直线l:x=my+1交曲线C 于M,N,直线AM,BN交于点P.(ⅰ)当m=0时,求点P的坐标;(ⅱ)求证:当m变化时,P总在直线x=4上.考点:直线与圆锥曲线的综合问题.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)设T(x,y),由直线的斜率公式,化简整理讨论即可得到曲线方程;(2)由于0<λ<1,曲线C是焦点在x轴上的椭圆,求得焦点和a﹣c为最小值,解得λ,进而得到椭圆方程,(ⅰ)当m=0时,由x=1代入椭圆方程,即可得到P的坐标;(ⅱ)设M(x1,y1),N(x2,y2),联立及x=my+1,运用韦达定理和恒成立思想,即可得到定直线x=4.解答:解:(1)设T(x,y),则,化简得,又A,B的坐标(﹣2,0),(2,0)也符合上式,故曲线C:;当0<λ<1时,曲线C是焦点在x轴上的椭圆,焦点为,当λ>1时,曲线C是焦点在y轴上的椭圆,焦点为;(2)由于0<λ<1,曲线C是焦点在x轴上的椭圆,其焦点为,椭圆的长轴端点到同侧焦点的距离,是椭圆上的点到焦点的最小距离,故,∴,曲线C的方程为;(ⅰ)联立解得或,当时,,解得P(4,3),当时,由对称性知,P(4,﹣3),所以点P坐标为(4,3)或(4,﹣3);(ⅱ)以下证明当m变化时,点P总在直线x=4上.设M(x1,y1),N(x2,y2),联立及x=my+1,消去x得:(3m2+4)y2+6my﹣9=0,,直线,消去y得,以下只需证明(※)对于m∈R恒成立.而所以(※)式恒成立,即点P横坐标总是4,点P总在直线x=4上,故存在直线l':x=4,使P总在直线l'上.点评:本题考查曲线方程的求法,主要考查椭圆的性质和方程的运用.联立直线方程运用韦达定理以及恒成立思想的运用,属于中档题.。

2016年全国统一高考数学试卷文科全国一附带答案解析

2016年全国统一高考数学试卷文科全国一附带答案解析

2016年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3B.﹣2C.2D.33.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.35.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a nb n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(文科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}【考点】1E:交集及其运算.【专题】11:计算题;29:规律型;5J:集合.【分析】直接利用交集的运算法则化简求解即可.【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},则A∩B={3,5}.故选:B.【点评】本题考查交集的求法,考查计算能力.2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3B.﹣2C.2D.3【考点】A5:复数的运算.【专题】11:计算题;29:规律型;35:转化思想;5N:数系的扩充和复数.【分析】利用复数的乘法运算法则,通过复数相等的充要条件求解即可.【解答】解:(1+2i)(a+i)=a﹣2+(2a+1)i的实部与虚部相等,可得:a﹣2=2a+1,解得a=﹣3.故选:A.【点评】本题考查复数的相等的充要条件的应用,复数的乘法的运算法则,考查计算能力.3.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【专题】12:应用题;34:方程思想;49:综合法;5I:概率与统计.【分析】确定基本事件的个数,利用古典概型的概率公式,可得结论.【解答】解:从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,有=6种方法,红色和紫色的花在同一花坛,有2种方法,红色和紫色的花不在同一花坛,有4种方法,所以所求的概率为=.另解:由列举法可得,红、黄、白、紫记为1,2,3,4,即有(12,34),(13,24),(14,23),(23,14),(24,13),(34,12),则P==.故选:C.【点评】本题考查等可能事件的概率计算与分步计数原理的应用,考查学生的计算能力,比较基础.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.3【考点】HR:余弦定理.【专题】11:计算题;35:转化思想;4R:转化法;58:解三角形.【分析】由余弦定理可得cosA=,利用已知整理可得3b2﹣8b﹣3=0,从而解得b的值.【解答】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b2﹣8b﹣3=0,∴解得:b=3或﹣(舍去).故选:D.【点评】本题主要考查了余弦定理,一元二次方程的解法在解三角形中的应用,考查了计算能力和转化思想,属于基础题.5.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题;29:规律型;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】设出椭圆的方程,求出直线的方程,利用已知条件列出方程,即可求解椭圆的离心率.【解答】解:设椭圆的方程为:,直线l经过椭圆的一个顶点和一个焦点,则直线方程为:,椭圆中心到l的距离为其短轴长的,可得:,4=b2(),∴,=3,∴e==.故选:B.【点评】本题考查椭圆的简单性质的应用,考查点到直线的距离公式,椭圆的离心率的求法,考查计算能力.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】33:函数思想;48:分析法;57:三角函数的图像与性质.【分析】求得函数y的最小正周期,即有所对的函数式为y=2sin[2(x﹣)+],化简整理即可得到所求函数式.【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.【点评】本题考查三角函数的图象平移变换,注意相位变换针对自变量x而言,考查运算能力,属于基础题和易错题.7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b【考点】4M:对数值大小的比较.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】根据指数函数,对数函数,幂函数的单调性结合换底公式,逐一分析四个结论的真假,可得答案.【解答】解:∵a>b>0,0<c<1,∴log c a<log c b,故B正确;∴当a>b>1时,0>log a c>log b c,故A错误;a c>b c,故C错误;c a<c b,故D错误;故选:B.【点评】本题考查的知识点是指数函数,对数函数,幂函数的单调性,难度中档.9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]【考点】6B:利用导数研究函数的单调性.【专题】35:转化思想;4C:分类法;53:导数的综合应用.【分析】求出f(x)的导数,由题意可得f′(x)≥0恒成立,设t=cosx(﹣1≤t ≤1),即有5﹣4t2+3at≥0,对t讨论,分t=0,0<t≤1,﹣1≤t<0,分离参数,运用函数的单调性可得最值,解不等式即可得到所求范围.【解答】解:函数f(x)=x﹣sin2x+asinx的导数为f′(x)=1﹣cos2x+acosx,由题意可得f′(x)≥0恒成立,即为1﹣cos2x+acosx≥0,即有﹣cos2x+acosx≥0,设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,当t=0时,不等式显然成立;当0<t≤1时,3a≥4t﹣,由4t﹣在(0,1]递增,可得t=1时,取得最大值﹣1,可得3a≥﹣1,即a≥﹣;当﹣1≤t<0时,3a≤4t﹣,由4t﹣在[﹣1,0)递增,可得t=﹣1时,取得最小值1,可得3a≤1,即a≤.综上可得a的范围是[﹣,].另解:设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,由题意可得5﹣4+3a≥0,且5﹣4﹣3a≥0,解得a的范围是[﹣,].故选:C.【点评】本题考查导数的运用:求单调性,考查不等式恒成立问题的解法,注意运用参数分离和换元法,考查函数的单调性的运用,属于中档题.二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.【考点】9T:数量积判断两个平面向量的垂直关系.【专题】11:计算题;41:向量法;49:综合法;5A:平面向量及应用.【分析】根据向量垂直的充要条件便可得出,进行向量数量积的坐标运算即可得出关于x的方程,解方程便可得出x的值.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.【点评】考查向量垂直的充要条件,以及向量数量积的坐标运算,清楚向量坐标的概念.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.【考点】GP:两角和与差的三角函数.【专题】11:计算题;35:转化思想;49:综合法;56:三角函数的求值.【分析】由θ得范围求得θ+的范围,结合已知求得cos(θ+),再由诱导公式求得sin()及cos(),进一步由诱导公式及同角三角函数基本关系式求得tan(θ﹣)的值.【解答】解:∵θ是第四象限角,∴,则,又sin(θ+)=,∴cos(θ+)=.∴cos()=sin(θ+)=,sin()=cos(θ+)=.则tan(θ﹣)=﹣tan()=﹣=.故答案为:﹣.【点评】本题考查两角和与差的正切,考查诱导公式及同角三角函数基本关系式的应用,是基础题.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为4π.【考点】J8:直线与圆相交的性质.【专题】11:计算题;35:转化思想;5B:直线与圆.【分析】圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,利用圆的弦长公式,求出a值,进而求出圆半径,可得圆的面积.【解答】解:圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,∵直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,且|AB|=2,∴圆心(0,a)到直线y=x+2a的距离d=,即+3=a2+2,解得:a2=2,故圆的半径r=2.故圆的面积S=4π,故答案为:4π【点评】本题考查的知识点是直线与圆相交的性质,点到直线的距离公式,难度中档.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【考点】7C:简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a nb n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【考点】8H:数列递推式.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】(Ⅰ)令n=1,可得a1=2,结合{a n}是公差为3的等差数列,可得{a n}的通项公式;(Ⅱ)由(1)可得:数列{b n}是以1为首项,以为公比的等比数列,进而可得:{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,+b n+1=nb n.(Ⅱ)由(I)知:(3n﹣1)b n+1即3b n=b n.+1即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.【点评】本题考查的知识点是数列的递推式,数列的通项公式,数列的前n项和公式,难度中档.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【考点】LF:棱柱、棱锥、棱台的体积;MK:点、线、面间的距离计算.【专题】11:计算题;35:转化思想;5F:空间位置关系与距离.【分析】(Ⅰ)根据题意分析可得PD⊥平面ABC,进而可得PD⊥AB,同理可得DE⊥AB,结合两者分析可得AB⊥平面PDE,进而分析可得AB⊥PG,又由PA=PB,由等腰三角形的性质可得证明;(Ⅱ)由线面垂直的判定方法可得EF⊥平面PAC,可得F为E在平面PAC内的正投影.由棱锥的体积公式计算可得答案.【解答】解:(Ⅰ)证明:∵P﹣ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;(Ⅱ)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC 内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(Ⅰ)知,G是AB的中点,所以D在CG上,故CD=CG.由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE=PG,DE=PC.由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PG=3,PE=2.在等腰直角三角形EFP中,可得EF=PF=2.所以四面体PDEF的体积V=×DE×S=×2××2×2=.△PEF【点评】本题考查几何体的体积计算以及线面垂直的性质、应用,解题的关键是正确分析几何体的各种位置、距离关系.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【考点】3H:函数的最值及其几何意义;5C:根据实际问题选择函数类型;B8:频率分布直方图.【专题】11:计算题;51:函数的性质及应用;5I:概率与统计.【分析】(Ⅰ)若n=19,结合题意,可得y与x的分段函数解析式;(Ⅱ)由柱状图分别求出各组的频率,结合“需更换的易损零件数不大于n”的频率不小于0.5,可得n的最小值;(Ⅲ)分别求出每台都购买19个易损零件,或每台都购买20个易损零件时的平均费用,比较后,可得答案.【解答】解:(Ⅰ)当n=19时,y==(Ⅱ)由柱状图知,更换的易损零件数为16个频率为0.06,更换的易损零件数为17个频率为0.16,更换的易损零件数为18个频率为0.24,更换的易损零件数为19个频率为0.24又∵更换易损零件不大于n的频率为不小于0.5.则n≥19∴n的最小值为19件;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,所须费用平均数为:(70×19×200+4300×20+4800×10)=4000(元)假设这100台机器在购机的同时每台都购买20个易损零件,所须费用平均数为(90×4000+10×4500)=4050(元)∵4000<4050∴购买1台机器的同时应购买19台易损零件.【点评】本题考查的知识点是分段函数的应用,频率分布条形图,方案选择,难度中档.20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.【考点】K8:抛物线的性质.【专题】15:综合题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求出P,N,H的坐标,利用=,求;(Ⅱ)直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,利用判别式可得结论.【解答】解:(Ⅰ)将直线l与抛物线方程联立,解得P(,t),∵M关于点P的对称点为N,∴=,=t,∴N(,t),∴ON的方程为y=x,与抛物线方程联立,解得H(,2t)∴==2;(Ⅱ)由(Ⅰ)知k MH=,∴直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,∴△=16t2﹣4×4t2=0,∴直线MH与C除点H外没有其它公共点.【点评】本题考查直线与抛物线的位置关系,考查学生的计算能力,正确联立方程是关键.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.【考点】52:函数零点的判定定理;6B:利用导数研究函数的单调性.【专题】35:转化思想;48:分析法;51:函数的性质及应用;53:导数的综合应用.【分析】(Ⅰ)求出f(x)的导数,讨论当a≥0时,a<﹣时,a=﹣时,﹣<a<0,由导数大于0,可得增区间;由导数小于0,可得减区间;(Ⅱ)由(Ⅰ)的单调区间,对a讨论,结合单调性和函数值的变化特点,即可得到所求范围.【解答】解:(Ⅰ)由f(x)=(x﹣2)e x+a(x﹣1)2,可得f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,即有f(x)在(﹣∞,1)递减;在(1,+∞)递增(如右上图);②当a<0时,(如右下图)若a=﹣,则f′(x)≥0恒成立,即有f(x)在R上递增;若a<﹣时,由f′(x)>0,可得x<1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)递增;在(1,ln(﹣2a))递减;若﹣<a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;由f′(x)<0,可得ln(﹣2a)<x<1.即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)递增;在(ln(﹣2a),1)递减;(Ⅱ)①由(Ⅰ)可得当a>0时,f(x)在(﹣∞,1)递减;在(1,+∞)递增,且f(1)=﹣e<0,x→+∞,f(x)→+∞;当x→﹣∞时f(x)>0或找到一个x<1使得f(x)>0对于a>0恒成立,f(x)有两个零点;②当a=0时,f(x)=(x﹣2)e x,所以f(x)只有一个零点x=2;③当a<0时,若a<﹣时,f(x)在(1,ln(﹣2a))递减,在(﹣∞,1),(ln(﹣2a),+∞)递增,又当x≤1时,f(x)<0,所以f(x)不存在两个零点;当a≥﹣时,在(﹣∞,ln(﹣2a))单调增,在(1,+∞)单调增,在(1n(﹣2a),1)单调减,只有f(ln(﹣2a))等于0才有两个零点,而当x≤1时,f(x)<0,所以只有一个零点不符题意.综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).【点评】本题考查导数的运用:求单调区间,考查函数零点的判断,注意运用分类讨论的思想方法和函数方程的转化思想,考查化简整理的运算能力,属于难题.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。

2024年高考数学模拟试题含答案(一)

2024年高考数学模拟试题含答案(一)

2024年高考数学模拟试题含答案(一)一、选择题(每题5分,共40分)1. 若函数f(x) = 2x - 1在区间(0,2)上是增函数,则实数a的取值范围是()A. a > 0B. a ≥ 1C. a ≤ 1D. a < 0【答案】C【解析】由题意知,f'(x) = 2 > 0,所以函数在区间(0,2)上是增函数。

又因为f(0) = -1,f(2) = 3,所以f(x)在区间(0,2)上的取值范围是(-1,3)。

要使得f(x)在区间(0,2)上是增函数,只需保证a ≤ 1。

2. 已知函数g(x) = x² - 2x + 1,则下列结论正确的是()A. 函数g(x)在区间(-∞,1)上是增函数B. 函数g(x)在区间(1,+∞)上是减函数C. 函数g(x)的对称轴为x = 1D. 函数g(x)的顶点坐标为(1,0)【答案】D【解析】函数g(x) = x² - 2x + 1 = (x - 1)²,所以函数的顶点坐标为(1,0),对称轴为x = 1。

根据二次函数的性质,当x > 1时,函数g(x)递增;当x < 1时,函数g(x)递减。

3. 已知数列{an}的前n项和为Sn,且满足Sn =2an - 1,则数列{an}的通项公式是()A. an = 2^n - 1B. an = 2^nC. an = 2^n + 1D. an = 2^(n-1)【答案】D【解析】由Sn = 2an - 1,得an = (Sn + 1) / 2。

当n = 1时,a1 = (S1 + 1) / 2 = 1。

当n ≥ 2时,an = (Sn + 1) / 2 = (2an - 1 + 1) / 2 = 2an-1。

所以数列{an}是首项为1,公比为2的等比数列,通项公式为an = 2^(n-1)。

4. 已知函数h(x) = |x - 2| - |x + 1|,则函数h(x)的图像是()A. 两条直线B. 两条射线C. 一个三角形D. 一个抛物线【答案】B【解析】函数h(x) = |x - 2| - |x + 1|表示数轴上点x到点2的距离减去点x到点-1的距离。

2023届贵州省贵阳市高考12月模拟性联考 数学(文)试题【含答案】

2023届贵州省贵阳市高考12月模拟性联考 数学(文)试题【含答案】

2023届贵州省贵阳市第一中学高考12月备考模拟性联考文科数学一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合,则表示的集合为(){}{}1,0,1,2,2xA B y y =-==A B ⋂A. B. C. D. {}1-{1,0}-{1,2}{0,1,2}2. 复数,则( )3i11i z -=-+||z =C. 2D. 53. 某医疗公司引进新技术设备后,销售收入(包含医疗产品收人和其他收入)逐年翻一番,据统计该公司销售收入情况如图所示,则下列说法错误的是()A. 该地区2021年的销售收入是2019年的4倍B. 该地区2021年的医疗产品收入比2019年和2020年的医疗产品收入总和还要多C. 该地区2021年其他收人是2020年的其他收入的3倍D. 该地区2021年的其他收入是2019年的其他收人的6倍4. 我国古代数学名著《九章算术》对立体几何有深入的研究,从其中一些数学用语可见,譬如“阳马”意指底面为矩形,一侧棱垂直于底面的四棱锥.某“阳马”的三视图如图所示,则它的最长侧棱与底面所成角的正切值为()A. B. 1125. 已知焦点在坐标轴上且中心在原点的双曲线的一条渐近线方程为,若该双曲线2y x =过点,则它的方程为()(1,1)A.B.C.D.2243y x -=2243x y -=2221y x -=2221x y -=6. 若不等式组所表示的平面区域被直线分成面积相等的两部分,0,2,35,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩(2)x m y =-则实数m 的值为()A. 1B. C. D. 1213147. 已知直线与圆,则下列(2)(1)210()m x m y m m ++---=∈R 22:40C x x y -+=说法错误的是( )A. 对,直线恒过一定点m ∀∈RB. ,使直线与圆相切m ∃∈R C. 对,直线与圆一定相交m ∀∈R D. 直线与圆相交且直线被圆所截得的最短弦长为8. 以下关于的命题,正确的是( )21()sin cos cos 2f x x x x =-+A. 函数在区间上单调递增()f x 2π0,3⎛⎫ ⎪⎝⎭B. 直线是函数图象的一条对称轴π8x =()y f x =C. 点是函数图象的一个对称中心π,04⎛⎫ ⎪⎝⎭()y f x =D. 将函数图象向左平移个单位,可得到的图象()y f x =π82y x=9. 在中,分别为角的对边,且满足,则的ABC ,,a b c ,,A B C 22sin 2Cb a b -=ABC 形状为()A. 直角三角形B. 等边三角形C 直角三角形或等腰三角形D. 等腰直角三角形10. 小明家订了一份牛奶,送奶人可能在早上6:30~7:00之间把牛奶送到小明家,小明出门去上学的时间在早上6:50~7:10之间,则小明在离开家之前能得到牛奶的概率是( )A. B. C. D. 1122378111211. 已知符号函数,函数满足1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩()f x ,当时,,则( )(1)(1),(2)()f x f x f x f x -=++=[0,1]x ∈π()sin 2f x x ⎛⎫= ⎪⎝⎭A. B. sgn(())0f x >404112f ⎛⎫= ⎪⎝⎭C. D. sgn((2))0(Z)f k k =∈sgn((2))|sgn |(Z)f k k k =∈12. 已知直线l 与曲线相切,切点为P ,直线l 与x 轴、y 轴分别交于点A ,B ,O 为e xy =坐标原点.若的面积为,则点P 的个数是( )OAB 1e A. 1B. 2C. 3D. 4二、填空题(本大题共4小题,每小题5分,共20分)13. 已知向量,若,则___________.(1,3),(3,4)a b == ()//()ma b a b -+ m =14. 153与119的最大公约数为__________.15. 若,则a 的值为___________.a =16. 如图,已知正方体的棱长为2,M ,N ,P 分别为棱1111ABCD A B C D -的中点,Q 为该正方体表面上的点,若M ,N ,P ,Q 四点共面,则点Q 的11,,AA CC AD 轨迹围成图形的面积为___________.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17. 随着人民生活水平的不断提高,“衣食住行”愈发被人们所重视,其中对饮食的要求也愈来愈高.某地区为了解当地餐饮情况,随机抽取了100人对该地区的餐饮情况进行了问卷调查.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图),解决下列问题.组别分组频数频率第1组[)50,60140.14第2组[)60,70m第3组[)70,80360.36第4组[)80,900.16第5组[)90,1004n合计(1)求m ,n ,x ,y 的值;(2)求中位数;(3)用分层抽样的方式从第四、第五组抽取5人,再从这5人中随机抽取2人参加某项美食体验活动,求抽到的2人均来自第四组的概率.18. 已知数列是递增的等比数列.设其公比为,前项和为,并且满足{}n a q n n S ,是与的等比中项.1534a a +=82a 4a (1)求数列的通项公式;{}n a (2)若,是的前项和,求使成立的最大正整数的n n b n a =⋅n T n b n 12100n n T n +-⋅>-n 值.19. 如图,在四棱锥中,底面是平行四边形,平面P ABCD -ABCD PD ⊥.,1,ABCD AD BD AB ===(1)求证:平面平面;PBD ⊥PBC (2)若二面角的大小为,求点D 到的距离.P BC D --60︒PBC 20. 已知椭圆过点.2222:1(0,0)x y C a b a b +=>>⎛ ⎝(1)求椭圆C 的方程;(2)已知直线与椭圆交于不同的两点P ,Q ,那么在x 轴上是否存在点M ,:2l y mx =+使且,若存在,求出该直线的方程;若不存在,请说明理由.MP MQ =MP MQ ⊥21. 已经函数.22e ()ln 2,()2()xf x a x xg x x ax a x =+=--∈R (1)求函数的单调性;()f x (2)若,求当时,a 的取值范围.()()()F x f x g x =+()0F x ≥请考生在第22、23两题中任选一题作答,并用2B 铅笔在答题卡上把所选题目的题号涂黑.注意所做题目的题号必须与所涂題题目的题号一致,在答题卡选答区城指定位置答题.如果多做,则按所做的第一题计分.22. 在平面直角坐标系中,曲线C 的参数方程为(为参数),xOy cos )cos )x y θθθθ⎧=-⎪⎨=+⎪⎩θ以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为O x l.πcos 4ρθ⎛⎫+=⎪⎝⎭(1)求直线和曲线的直角坐标方程;l C (2)从原点引一条射线分别交曲线和直线于两点,求的最O C l ,M N 22121||||OM ON +大值.23. 已知函数.()||2af x x a x =++-(1)当时,求不等式的解集;2a =()5f x ≤(2)设且的最小值为m ,若,求的最小值.0,0a b >>()f x 332m b +=32a b +2023届贵州省贵阳市第一中学高考12月备考模拟性联考文科数学一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合,则表示的集合为(){}{}1,0,1,2,2xA B y y =-==A B ⋂A. B. C. D. {}1-{1,0}-{1,2}{0,1,2}【答案】C 【解析】【分析】由指数函数值域得,再根据交集的含义即可得到答案.{0}B yy =>∣【详解】根据指数函数值域可知,{0}B y y =>∣表示的集合为,A B ∴ {}1,2故选:C.2. 复数,则( )3i11i z -=-+||z =C. 2D. 5【答案】C 【解析】【分析】根据复数运算规则计算即可.【详解】 ,()221i 3i 3i 1i 22i 12i 1i 1i 1i 2z ------=-====-+++ ;2z ∴=故选:C.3. 某医疗公司引进新技术设备后,销售收入(包含医疗产品收人和其他收入)逐年翻一番,据统计该公司销售收入情况如图所示,则下列说法错误的是()A. 该地区2021年的销售收入是2019年的4倍B. 该地区2021年的医疗产品收入比2019年和2020年的医疗产品收入总和还要多C. 该地区2021年其他收人是2020年的其他收入的3倍D. 该地区2021年的其他收入是2019年的其他收人的6倍【答案】D 【解析】【分析】设该地区2019年销售收入为,a 则由销售收入(包含医疗产品收人和其他收入)逐年翻一番,所以该地区2020年销售收入为,2a 该地区2021年销售收入为,4a 然后逐项分析即可.【详解】设该地区2019年销售收入为,a 则由销售收入(包含医疗产品收人和其他收入)逐年翻一番,所以该地区2020年销售收入为,2a 该地区2021年销售收入为,4a 选项A :该地区2021年的销售收入是2019年的4倍,故选项A 正确;选项B :由图可得该地区2021年的医疗产品收入为,40.7 2.8a a ⨯=该地区2019年的医疗产品收入为,0.90.9a a ⨯=该地区2020年的医疗产品收入为,20.8 1.6a a ⨯=由,0.9 1.6 2.5 2.8a a a a +=<故选项B 正确;选项C :该地区2021年的其他收入为,40.3 1.2a a ⨯=2020年的其他收入为,20.20.4a a ⨯=所以该地区2021年其他收人是2020年的其他收入的3倍,故选项C 正确;选项D :该地区2021年的其他收入为,40.3 1.2a a ⨯=2019年的其他收入为,0.10.1a a ⨯=所以该地区2021年的其他收入是2019年的其他收人的12倍,故选项D 不正确.故选:D.4. 我国古代数学名著《九章算术》对立体几何有深入的研究,从其中一些数学用语可见,譬如“阳马”意指底面为矩形,一侧棱垂直于底面的四棱锥.某“阳马”的三视图如图所示,则它的最长侧棱与底面所成角的正切值为()A. B. 112【答案】C 【解析】【分析】首先还原几何体,并得到最长侧棱,根据线面角的定义,求线面角的正切值.【详解】如下图,还原几何体,其中平面,底面为矩形,SA ⊥ABCD,,,,1AB =2BC =AC =1SA =SB ==, SD==SC===SC 与底面所成的角是,SC SCA∠tanSASCAAC∠===故选:C5. 已知焦点在坐标轴上且中心在原点的双曲线的一条渐近线方程为,若该双曲线2y x=过点,则它的方程为()(1,1)A. B. C. D.2243y x-=2243x y-=2221y x-=2221x y-=【答案】A【解析】【分析】根据渐近线设双曲线方程为,代入点坐标,计算得到答案.224y xλ-=【详解】双曲线的一条渐近线方程为,设双曲线方程为,2y x=224y xλ-=该双曲线过点,则,故双曲线方程为,(1,1)413λ-==2243y x-=故选:A6. 若不等式组所表示的平面区域被直线分成面积相等的两部分,0,2,35,xx yx y≥⎧⎪+≥⎨⎪+≤⎩(2)x m y=-则实数m的值为()A 1 B. C. D.121314【答案】A【解析】【分析】画出不等式组所表示的平面区域,利用三角形面积公式,选择同一条边为底,高为一半即可.【详解】如图所示,不等式组所表示的平面区域为,0,2,35,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩ABC 为的中点,M BC 解得:、、、()0,2A 31,22B ⎛⎫ ⎪⎝⎭()0,5C 311,44M ⎛⎫ ⎪⎝⎭,此直线过定点.(2)x m y =-∴A 只要直线过点,(2)x m y =-M 就可以将分成面积相等的两部分.ABC 设直线的斜率为,k 则,即,解得.1124134k -==11m =1m =故选:A.7. 已知直线与圆,则下列(2)(1)210()m x m y m m ++---=∈R 22:40C x x y -+=说法错误的是( )A. 对,直线恒过一定点m ∀∈RB. ,使直线与圆相切m ∃∈RC. 对,直线与圆一定相交m ∀∈R D.直线与圆相交且直线被圆所截得的最短弦长为【答案】B 【解析】【分析】首先求出直线过定点,则可判断A ,求出圆心,,则()1,1P ()2,0C 2r =,根据点在圆内,则直线与圆一定相交,故可判断B,C ,对D选项,||2PC =<()1,1P 分析出时弦长最短,则.PC l ⊥l =【详解】直线,即,(2)(1)210m x m y m ++---=(2)210m x y x y +-+--=令,解得,即直线恒过定点,故A 正确;20210x y x y +-=⎧⎨--=⎩11x y =⎧⎨=⎩()1,1P 圆,即圆,圆心,半径,22:40C x x y -+=22:(2)4C x y -+=()2,0C 2r =则,即点在圆内,所以直线与圆一定相交,故B错||2PC ==<()1,1P 误,故C 正确,当时直线与圆相交且直线被圆所截得的弦长最短,最短弦长PCl ⊥,故D正确,l ==故选:B.8. 以下关于的命题,正确的是( )21()sin cos cos 2f x x x x =-+A. 函数在区间上单调递增()f x 2π0,3⎛⎫ ⎪⎝⎭B. 直线是函数图象的一条对称轴π8x =()y f x =C. 点是函数图象的一个对称中心π,04⎛⎫ ⎪⎝⎭()y f x =D. 将函数图象向左平移个单位,可得到的图象()y f x=π82y x=【答案】D【分析】根据三角函数恒等变换化简为21()sin cos cos 2f x x x x =-+,计算出,根据正弦函数的单调性,可判断π())4f x x =-ππ13π2(,4412x -∈-A;采用代入验证的方法可判断;根据三角函数的平移变换可得平移后的函数解析式,判B,C 断D.【详解】由题意得,2111π()sin cos cos sin 2cos 2)2224f x x x x x x x =-+=-=-当时,,由于函数在不单调,2π0,3x ⎛⎫∈ ⎪⎝⎭ππ13π2(,4412x -∈-sin y x =π13π(,)412-故函数在区间上不是单调递增函数,A 错误;()f x 2π0,3⎛⎫⎪⎝⎭当时,,故直线不是函数图象的对称轴,π8x =ππ8(4)f x⨯-==π8x =()y f x =B 错误;当时,,故点不是函数图象的对称中心,π4x =ππ1)42()4f x ⨯-==π,04⎛⎫ ⎪⎝⎭()y f x =C 错误;将函数图象向左平移个单位,可得到的()y f x =π8ππ)284y x x=+-=图象,D 正确,故选:D9. 在中,分别为角的对边,且满足,则的ABC ,,a b c ,,A B C 22sin 2Cb a b -=ABC 形状为()A. 直角三角形B. 等边三角形C. 直角三角形或等腰三角形D. 等腰直角三角形【解析】【分析】根据三角恒等变换得,再由余弦定理解决即可.cos a b C =【详解】由题知,,22sin 2C b a b -=所以,21cos sin 222b a C Cb --==所以,得,cos b a b b C -=-cos a b C =所以,得,2222a b c a b ab +-=⋅222a cb +=所以的形状为直角三角形,ABC 故选:A10. 小明家订了一份牛奶,送奶人可能在早上6:30~7:00之间把牛奶送到小明家,小明出门去上学的时间在早上6:50~7:10之间,则小明在离开家之前能得到牛奶的概率是( )A. B. C. D. 11223781112【答案】D 【解析】【分析】根据题意,设送奶人到达时间为,小明出门去上学的时间为,则可以看x y (,)x y 成平面中的点,分析可得由试验的全部结果所构成的区域并求出其面积,同理可得事件所构成的区域及其面积,由几何概型公式,计算可得结果.A 【详解】设送奶人到达时间为,小明出门去上学的时间为,x y 记小明在离开家之前能得到牛奶为事件,A 以横坐标表示送奶人到达时间,以纵坐标表示小明出门去上学的时间,建立平面直角坐标系,小明在离开家之前能得到牛奶的事件构成的区域如图所示:由于随机试验落在长方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影 部分,就表示小明在离开家之前能得到牛奶,即事件发生,A所以,120301010112()203012P A ⨯-⨯⨯==⨯故选:.D 11. 已知符号函数,函数满足1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩()f x ,当时,,则( )(1)(1),(2)()f x f x f x f x -=++=[0,1]x ∈π()sin 2f x x ⎛⎫= ⎪⎝⎭A. B. sgn(())0f x >404112f ⎛⎫= ⎪⎝⎭C. D. sgn((2))0(Z)f k k =∈sgn((2))|sgn |(Z)f k k k =∈【答案】C 【解析】【分析】计算得到A 错误,根据周期计算B 错误,根sgn((0))0f =40412f ⎛⎫= ⎪⎝⎭据定义计算C 正确,取,得到D 不正确,得到答案.1k =【详解】对选项A :,错误;()sgn((0))sgn 00f ==对选项B :,函数周期为,,错误;(2)()f x f x +=240411πsin 224f f ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭对选项C :,正确;()()sgn((2))sgn sin πsgn 00(Z)f k k k ===∈对选项D :取,,,不正确.1k =()sgn((2))sgn((0))sgn 00f f ===|sgn1|1=故选:C12. 已知直线l 与曲线相切,切点为P ,直线l 与x 轴、y 轴分别交于点A ,B ,O 为e xy =坐标原点.若的面积为,则点P 的个数是( )OAB 1e A. 1 B. 2C. 3D. 4【答案】C 【解析】【分析】设出切点坐标,利用导数求切线斜率,写出切线方程,求出点A ,B 的坐标,表示的面积函数,求面积函数与直线有几个交点.OAB 1e y =【详解】设直线l 与曲线相切于,又,e xy =00(,)P x y e xy '=所以直线l 的斜率为,方程为,0e x k =000e e ()x x y x x -=-令,;令,,即,.0x =00(1)e xy x =-0y =01x x =-0(1,0)A x -00(0,(1)e )x B x -所以.0020001111(1)e (1)e 222x x OAB S OA OB x x x =⨯⨯=⨯-⨯-=-△设,则.21()(1)e 2x f x x =-[]211()2(1)(1)e (1)(1)e 22x xf x x x x x '⎡⎤=--+-=+-⎣⎦由,解得或;由,解得.()0f x '>1x <-1x >()0f x '<11x -<<所以在,上单调递增,在上单调递减.()f x ()1-∞-,()1+∞,()11-,,,,,且恒有21(1)e e f -=>43252511(4)2e 2e e e f -==⨯<(1)0f =2e 1(2)2e f =>成立,()0f x ≥如图,函数与直线有3个交点.()f x 1e y =所以点P 的个数为3.故选:C .二、填空题(本大题共4小题,每小题5分,共20分)13. 已知向量,若,则___________.(1,3),(3,4)a b == ()//()ma b a b -+m =【答案】1-【解析】【分析】根据平面向量的坐标运算以及向量平行的坐标表示可求出结果.【详解】因为,(1,3),(3,4)a b ==所以,,(3,34)ma b m m -=-- (4,7)a b +=因为,所以,解得.()//()ma b a b -+7(3)4(34)0m m ---=1m =-故答案为:.1-14. 153与119的最大公约数为__________.【答案】17【解析】【详解】因为,153119134,11934317,34172=⨯+=⨯+=⨯所以153与119的最大公约数为17.答案:1715. 若,则a 的值为___________.a =【答案】1【解析】【分析】利用对数的运算性质分别对分子分母化简即可得到结果.【详解】原式()()266666612log 3log 3log log 6332log 2-++⋅⨯=()()22666612log 3log 31log 32log 2-++-=.()666666621log 3log 6log 3log 212log 2log 2log 2--====故答案为:116. 如图,已知正方体的棱长为2,M ,N ,P 分别为棱1111ABCD A B C D -的中点,Q 为该正方体表面上的点,若M ,N ,P ,Q 四点共面,则点Q 的11,,AA CC AD轨迹围成图形的面积为___________.【答案】【解析】【分析】根据题意找出点Q 的轨迹围成图形为正六边形即可求解.PENFGM 【详解】如图,取的中点分别为,1111,,CD B C A B EFG 则点Q 的轨迹围成图形为正六边形,PENFGM,所以点Q的轨迹围成图形的面积为,6=故答案为:三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17. 随着人民生活水平的不断提高,“衣食住行”愈发被人们所重视,其中对饮食的要求也愈来愈高.某地区为了解当地餐饮情况,随机抽取了100人对该地区的餐饮情况进行了问卷调查.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图),解决下列问题.组别分组频数频率第1组[)50,60140.14第2组[) 60,70m第3组[)70,80360.36第4组[)80,900.16第5组[)90,1004n 合计(1)求m,n,x,y的值;(2)求中位数;(3)用分层抽样的方式从第四、第五组抽取5人,再从这5人中随机抽取2人参加某项美食体验活动,求抽到的2人均来自第四组的概率.【答案】(1)30;0.04;0.030;0.004(2)71.67(3)35【解析】【分析】(1)根据频率分布表可求得,根据频率分布直方图中的含义即可求得其,m n ,x y 值;(2)根据频率分布直方图,利用中位数的估计方法,可计算得答案;(3)用分层抽样的方式从第四、第五组抽取5人,确定每组中的人数,列举从这5人中随机抽取2人参加某项美食体验活动的所有基本事件,列举出抽到的2人均来自第四组的基本事件,根据古典概型的概率公式,即可求得答案.【小问1详解】由题意可知,第四组的人数为,1000.1616⨯=故,;100143616430m =----=40.04100n ==又内的频率为 ,∴;[)60,70300.30100=0.300.03010x ==∵内的频率为 ,∴.[)90,1000.040.040.00410y ==【小问2详解】由频率分布直方图可知第一、二组频率之和为,0.140.300.44+=前三组频率之和为,0.140.300.360.80++=故中位数为:.0.500.447071.670.036-+≈【小问3详解】由题意可知,第4组共有16人,第5组共有4人,用分层抽样的方式从第四、第五组抽取5人,则第四、第五组抽取人数为4人和1人,设第4组的4人分别为 ,第5组的1人分别为A,a b c d ,,,则从中任取2人,所有基本事件为:共10个,(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)a b a c a d a A b c b d b A c d c A d A又抽到的2人均来自第四组的基本事件有∶共6个,(,),(,),(,),(,),(,),(,)a b a c a d b c b d c d 故抽到的2人均来自第四组的的概率为.63105=18. 已知数列是递增的等比数列.设其公比为,前项和为,并且满足{}n a q n n S ,是与的等比中项.1534a a +=82a 4a (1)求数列的通项公式;{}n a (2)若,是的前项和,求使成立的最大正整数的n n b n a =⋅n T n b n 12100n n T n +-⋅>-n 值.【答案】(1)()2n n a =*n ∈N (2)5【解析】【分析】(1)根据等比数列的性质结合条件是与的等比中项得到,联立82a 4a 1564a a =条件得到和,根据题目条件和等比数列的通项公式即可求解.1532a a +=1a 5a (2)根据(1)求得,利用错位相减求和得到,从而得到,通过2nn b n =⋅n T 12n n T n +-⋅函数法判断出是单调递减数列,即可求解.12n n T n +-⋅【小问1详解】因为是与的等比中项,所以,82a 4a 224864a a ==则由题意得:,即,解得:或,15243464a a a a +=⎧⎨=⎩15153464a a a a +=⎧⎨=⎩15232a a =⎧⎨=⎩15322a a =⎧⎨=⎩因为数列是递增的等比数列,所以,即,,{}n a 1451232a a a q =⎧⎨==⎩12a =2q =所以,111222n n nn a a q --==⨯=故数列的通项公式为().{}n a 2n na=*n ∈N 【小问2详解】由(1)得:(),2n n n b n a n =⋅=⨯*n ∈N则123n nT b b b b =++++ ,①1231222322n n =⨯+⨯+⨯++⨯ 即,②234121222322n n T n +=⨯+⨯+⨯++⨯ 则得:-①②123122222n n nT n +-=++++-⨯ 即(),()11122212212n n n n T n n +++-=⨯-=-+-*n ∈N 所以(),()11112122222n n n n n T n n n ++++-⋅=-+-⋅=-*n ∈N 设,则(),12n n n C T n +=-⋅122n n C +=-*n ∈N 因为在上单调递减,122x y +=-()0,∞+所以是单调递减数列,122n n C +=-又有,,652262100C =-=->-7622126100C =-=-<-所以当且时,成立,5n ≤*n ∈N 12100n nT n +-⋅>-故使成立的最大正整数的值为.12100n n T n +-⋅>-n 519. 如图,在四棱锥中,底面是平行四边形,平面P ABCD -ABCD PD ⊥.,1,ABCD AD BD AB ===(1)求证:平面平面;PBD ⊥PBC (2)若二面角的大小为,求点D 到的距离.P BC D --60︒PBC 【答案】(1)证明见解析;(2【解析】【分析】(1)利用线面垂直及面面垂直的判定定理可得结果;(2)根据等体积法即可求得点到平面的距离.C PBD 【小问1详解】在中, ,ADB1,===AD BD AB ,∴,222AD BD AB ∴+=AD BD ⊥∵平面,平面,∴.PD ⊥ABCD AD ⊂ABCD PD AD ⊥又∵,平面,∴平面,PD BD D ⋂=,PD DB ⊂PBD AD ⊥PBD 又,∴平面,//AD BC BC⊥PBD 又平面,所以平面平面BC ⊂PBC PBD ⊥PBC 【小问2详解】由(1)知平面,,,BC⊥PBD PB BC ∴⊥DB BC ⊥∴为二面角的平面角,∴.PBD ∠P BC D --60PBD ∠=在中, ,Rt PDB1,2===PD BD PB 所以,,111122=⨯⨯= BDC S 11212=⨯⨯= PBC S 设点D 到的距离,PBC d 由,有,P BCDD PBC V V --=1133△△⋅⋅=⋅⋅BDC PBCSPD S d即,解得1111323⨯=⨯⨯d d =即点D 到PBC20. 已知椭圆过点.2222:1(0,0)x y C a b a b +=>>⎛ ⎝(1)求椭圆C 的方程;(2)已知直线与椭圆交于不同的两点P ,Q ,那么在x 轴上是否存在点M ,:2l y mx =+使且,若存在,求出该直线的方程;若不存在,请说明理由.MP MQ =MP MQ ⊥【答案】(1)22142x y +=(2)详见解析【解析】【分析】(1)根据条件得到关于的方程组,即可求得椭圆方程;,,a b c (2)首先直线与椭圆方程联立,利用韦达定理表示线段中点坐标PQ ,再根据,以及,转化为坐标表示,代入韦2242,1212mN m m -⎛⎫ ⎪++⎝⎭MN PQ ⊥MP MQ ⊥达定理后,即可求,m n 【小问1详解】由条件可知,,解得:,,222221312a b c a a b c ⎧+=⎪⎪⎪=⎨⎪=+⎪⎪⎩24a =222b c ==所以椭圆C 的方程是;22142x y +=【小问2详解】假设在轴上存在点,使且,x (),0M n MP MQ =MP MQ ⊥联立,设,,222142y mx x y =+⎧⎪⎨+=⎪⎩()11P x y ()22,Q x y 方程整理为,()2212840m xmx +++=,解得:或,()226416120m m∆=-+>m>m <,,122812m x x m -+=+122412x x m =+1224212x x mm +-=+则线段的中点的横坐标是,中点纵坐标,PQ 2412mx m -=+2224221212m y m m -=+=++即中点坐标,,2242,1212mN m m -⎛⎫ ⎪++⎝⎭(),0M n 则,即,化简为,①MN PQ ⊥222112412m m m n m +=---+2220m n m n ++=又,0MP MQ ⋅= 则,,()()12120x n x n y y --+=()()()()1212220x n x n mx mx --+++=整理为,()()()2212121240m x x m n x x n ++-+++=,()()22224812401212m mm n n m m -+⨯+-⨯++=++化简为②()222124880n m m mn +-++=由①得,即,代入②得()2212mn m+=-()22212m n mn+=-,整理得③,又由①得,代224880mn m mn --++=22340m mn -++=2221mn m -=+入③得,即,222234021mm m m --+⋅+=+()()()222221324210m m m m m -++⋅-++=整理得,即.41m =1m =±当时,,当时,,满足,1m =23n =-1m =-23n =0∆>所以存在定点,此时直线方程是,当定点,此时直线方程是2,03M ⎛⎫- ⎪⎝⎭l 2y x =+2,03M ⎛⎫⎪⎝⎭l .2y x =-+21. 已经函数.22e ()ln 2,()2()xf x a x xg x x ax a x =+=--∈R (1)求函数的单调性;()f x (2)若,求当时,a 的取值范围.()()()F x f xg x =+()0F x ≥【答案】(1)见解析 (2)ea ≤【解析】【分析】(1)根据两种情况讨论.()24x af x x +'=0,0a a ≤>(2)求出,首先证明()ln e ()ln ln e xx xF x a x ax a x x x -=+-=-+()ln e e ln x x x x -≥-只需要求即可.()()ln e ln 0a x x x x -+-≥【小问1详解】()()2440a x af x x x x x+'=+=> (1)时,,所以在单调递增.0a ≥()240x a f x x +'=>()f x ()0,∞+(2)时,a<0()0,f x x '===时,时x ⎛∈ ⎝()0f x '<x ∞⎫∈+⎪⎪⎭()0f x ¢>所以在单调递减,在单调递增.()f x ⎛⎝∞⎫+⎪⎪⎭综上:时在单调递增0a ≥()f x ()0,∞+时在单调递减,在单调递增a<0()f x ⎛⎝∞⎫+⎪⎪⎭【小问2详解】()()()22e e ln 22ln x x F xf xg x a x x x ax a x axx x=+=++--=+-,要求,即求()()ln ln e ln ln e e xx xx a x x a x x -=-+=-+()0F x ≥()ln ln e 0x x a x x --+≥设,则,当,ln 1t x x =-+1110,1xt x x x -'=-===()()0,10,1,0x t x t ∞'∈∈+'><,所以在上单调递增,在单调递减,所以即t ()0,1()1,+∞ln1110t ≤-+=ln 1x x -≥设,,()()()e e 1,e e 0x x h x x x h x '=-≤-=-=()10x h x x '∴=<∈(],1-∞,所以在单调递减,在单调递增()[)01,h x x ∞∈'>+()h x (],1-∞[)1,+∞,故当且仅当时成立.所以当且()()1e e 0h x h ∴≥=-=e e xx ≥1x =()ln e e ln x x x x -≥-仅当即当且仅当时等号成立,ln 1x x -=1x =,又因为()()()ln ln e ln e ln 0x x a x x a x x x x --+≥-+-≥ln 1x x -≤-所以,所以.e 0a -≤e a ≤请考生在第22、23两题中任选一题作答,并用2B 铅笔在答题卡上把所选题目的题号涂黑.注意所做题目的题号必须与所涂題题目的题号一致,在答题卡选答区城指定位置答题.如果多做,则按所做的第一题计分.22. 在平面直角坐标系中,曲线C 的参数方程为(为参数),xOy cos )cos )x y θθθθ⎧=-⎪⎨=+⎪⎩θ以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为O x l.πcos 4ρθ⎛⎫+=⎪⎝⎭(1)求直线和曲线的直角坐标方程;l C (2)从原点引一条射线分别交曲线和直线于两点,求的最O C l ,M N 22121||||OM ON +大值.【答案】(1)直线的直角坐标方程为:,曲线的直角坐标方程为:l 10x y --=C.22164x y +=(2【解析】【分析】(1)消去参数可得曲线的直角坐标方程;利用两角和的余弦公式和θC ,可得直线的直角坐标方程;cos x ρθ=sin y ρθ=l (2)设射线方程为(),将曲线的直角坐标方程化为极坐标方程,θα=0,0πρθ≥≤<C 并将代入可得,将代入可得,再利用辅助角θα=||OM θα=cos sin 10ρθρθ--=||ON 公式可求出的最大值.22121||||OM ON +【小问1详解】由,得,cos )cos )x y θθθθ⎧=-⎪⎨=+⎪⎩2222(sin cos )(sin cos )32x y θθθθ+=-++2=即,22164x y +=所以曲线的直角坐标方程为:.C 22164x y +=由,πcos 4ρθ⎛⎫+= ⎪⎝⎭ππcos cos sin sin 44ρθρθ-=,cos sin θθ=cos sin 10ρθρθ--=将,代入得,cos x ρθ=sin y ρθ=10x y --=所以直线的直角坐标方程为:.l 10x y --=综上所述:直线的直角坐标方程为:,曲线的直角坐标方程为:l 10x y --=C .22164x y +=【小问2详解】设射线方程为(),θα=0,0πρθ≥≤<将,代入,得,cos x ρθ=sin y ρθ=22164x y +=2222cos sin 164ρθρθ+=得,2221cos sin 64θθρ=+将代入,得,得θα=2221cos sin 64θθρ=+2221cos sin 64ααρ=+21||OM ,22cos sin64αα=+由,πcos 4ρθ⎛⎫+=⎪⎝⎭1π4θρ=+将代入,得(),,得θα=1π)4θρ=+1π4αρ=+π5π[0,)(,2π)44α∈ ,221π2cos (||4ON α=+所以22121||||OM ON +222π2cos 3sin 2cos ()4ααα=+++2222cos 3sin 2(cos sin αααα=++-2222cos 3sin (cos sin )αααα=++-22222cos 3sin cos 2sin cos sin αααααα=++-+23sin sin 2αα=+-1cos 23sin 22αα-=+-17cos 2sin 222αα=--+72sin 22αα=++(其中,),7)2αϕ=-+sin ϕ=cos ϕ=tan 2ϕ=因为,所以,π5π[0,)(,2π)44α∈ π5π2[0,)(,4π)22α∈ 又,所以,ϕπ(0,)2∈ππ2(,)(2π,4π)22αϕ-∈- 所以当时,即,即(其中cos(2)1αϕ-=-2αϕ-=3π3π22ϕα=+sin ϕ=,)时,.cos ϕ=tan 2ϕ=22121||||OM ON +23. 已知函数.()||2a f x x a x =++-(1)当时,求不等式的解集;2a =()5f x ≤(2)设且的最小值为m ,若,求的最小值.0,0a b >>()f x 332m b +=32a b +【答案】(1)[3,2]-(2【解析】【分析】(1)分段讨论求解,(2)由绝对值三角不等式求最小值,再由基本不等式求解,m 【小问1详解】当时,,2a =21,2()213,2121,1x x f x x x x x x --<-⎧⎪=++-=-≤≤⎨⎪+>⎩故即或或,()5f x ≤2215x x <-⎧⎨--≤⎩2135x -≤≤⎧⎨≤⎩1215x x >⎧⎨+≤⎩解得,即原不等式的解集为32x -≤≤[3,2]-【小问2详解】由题意得,3()||||222a a f x x a x a a =++-≥+=即,,即,32m a =3333222m b a b +=+=2a b +=而即3232()()55b a a b a b a b ++=++≥+32b ab a =时等号成立,64a b =-=故32a b +。

贵州省安顺市2024年数学(高考)统编版真题(评估卷)模拟试卷

贵州省安顺市2024年数学(高考)统编版真题(评估卷)模拟试卷

贵州省安顺市2024年数学(高考)统编版真题(评估卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题中国古代数学家用圆内接正边形的周长来近似计算圆周长,以估计圆周率的值.若据此证明,则正整数至少等于()A.B.C.D.第(2)题函数是定义在R上奇函数,且,,则()A.0B.C.2D.1第(3)题技术的数学原理之一是著名的香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度取决于信道带宽,信道内信号的平均功率,信道内部的高斯噪声功率的大小,其中叫做信噪比.当信噪比较大时,公式中真数中的可以忽略不计.假设目前信噪比为若不改变带宽,而将最大信息传播速度提升那么信噪比要扩大到原来的约()A.倍B.倍C.倍D.倍第(4)题在△ABC中,内角A,B,C所对的边分别是a,b,c,若a=4,A=,则该三角形面积的最大值是A .2B.3C.4D.4第(5)题欧拉恒等式(为虚数单位,为自然对数的底数)被称为数学中最奇妙的公式.它是复分析中欧拉公式的特例:当自变量时,.得.根据欧拉公式,复数在复平面上所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限第(6)题如图所示,单位圆中弧AB的长为x,f(x)表示弧AB与弦AB所围成的弓形面积的2倍,则函数y=f(x)的图像是()A.B.C.D.第(7)题设,已知直线与圆,则“”是“直线与圆相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第(8)题若(为虚数单位),则()A.5B.C.D.二、多项选择题(本题包含3小题,每小题6分,共18分。

在每小题给出的四个选项中,至少有两个选项正确。

全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题将函数的图象向右平移个单位,再把所得图象上各点的横坐标缩短为原来的一半,纵坐标不变,得到函数的图象,则关于的说法正确的是()A.最小正周期为B.奇函数C.在上单调递增D.关于中心对称第(2)题已知复数,,则下列结论中正确的是()A.若,则B.若,则或C.若且,则D.若,则第(3)题双曲线:,左、右顶点分别为,,为坐标原点,如图,已知动直线与双曲线左、右两支分别交于,两点,与其两条渐近线分别交于,两点,则下列命题正确的是()A.存在直线,使得B.在运动的过程中,始终有C.若直线的方程为,存在,使得取到最大值D.若直线的方程为,,则双曲线的离心率为三、填空(本题包含3个小题,每小题5分,共15分。

高考数学文科5年高考3年模拟精品课件全国卷1地区通用:1.1 集合

高考数学文科5年高考3年模拟精品课件全国卷1地区通用:1.1 集合

A.{1}
B.{3,5}
C.{1,2,4,6} D.{1,2,3,4,5}
答案 C ∵U={1,2,3,4,5,6},P={1,3,5}, ∴∁UP={2,4,6}, ∵Q={1,2,4}, ∴(∁UP)∪Q={1,2,4,6}. 2.(2015课标Ⅱ,1,5分)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B= ( ) A.(-1,3) B.(-1,0) C.(0,2) D.(2,3)
A.{0,2} B.{1,2}
C.{0}
D.{-2,-1,0,1,2}
答案 A 本题主要考查集合的基本运算. ∵A={0,2},B={-2,-1,0,1,2},∴A∩B={0,2},故选A.
2.(2018课标全国Ⅱ,2,5分)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B= ( )
答案 A 本题考查集合的并集. A∪B={1,2,3}∪{2,3,4}={1,2,3,4}.故选A. 5.(2017课标全国Ⅲ,1,5分)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为 ( ) A.1 B.2 C.3 D.4 答案 B 因为集合A和集合B有共同元素2,4,所以A∩B={2,4},所以A∩B中元素的个数为2.
12.(2017浙江,1,5分)已知集合P={x|-1<x<1},Q={x|0<x<2},则P∪Q= ( ) A.(-1,2) B.(0,1) C.(-1,0) D.(1,2) 答案 A 本题考查集合的概念和集合的运算. P∪Q={x|-1<x<2}.故选A. 易错警示 把求并集看成求交集,而错选B,因为平时做得最多的集合运算是求两集合的交集, 从而形成思维定势. 13.(2015四川,1,5分)设集合A={x|-1<x<2},集合B={x|1<x<3},则A∪B= ( ) A.{x|-1<x<3} B.{x|-1<x<1} C.{x|1<x<2} D.{x|2<x<3} 答案 A 把集合A、B表示在数轴上,如图.

2024年高考数学全真模拟试卷六(新高考、新结构)(全解全析)

2024年高考数学全真模拟试卷六(新高考、新结构)(全解全析)

2024年高考数学全真模拟试卷六(新高考、新结构)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a b ∈R ,,i (3i )i a b -=-(i 为虚数单位),则()A .1a =,3b =-B .1a =-,3b =C .1a =-,3b =-D .1a =,3b =【答案】A【解析】因为3i (i)i 1i a b b -=-=+,所以1,3a b ==-.故选A2.已知{}n a 为等差数列,n S 为其前n 项和.若122a a =,公差0,0m d S ≠=,则m 的值为()A .4B .5C .6D .7【答案】B【解析】由已知()12122a a a d ==+,得12a d =-,又()()1112022m m m m m S ma d md d --=+=-+=,又0d ≠,所以()1202m m m --+=,解得5m =或0m =(舍去),故选B.3.纯电动汽车是以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,它使用存储在电池中的电来发动.因其对环境影响较小,逐渐成为当今世界的乘用车的发展方向.研究发现电池的容量随放电电流的大小而改变,1898年Peukert 提出铅酸电池的容量C 、放电时间t 和放电电流I 之间关系的经验公式:C I t λ=,其中λ为与蓄电池结构有关的常数(称为Peukert 常数),在电池容量不变的条件下,当放电电流为7.5A 时,放电时间为60h ;当放电电流为25A 时,放电时间为15h ,则该蓄电池的Peukert 常数λ约为(参考数据:lg 20.301≈,lg 30.477≈)()A .1.12B .1.13C .1.14D .1.15【答案】D【解析】由题意知7.5602515C λλ=⨯=⨯,所以410325607.515λλ⎛⎫= ⎪⎝⎭⎛⎫== ⎪⎝⎭,两边取以10为底的对数,得10lg2lg 23λ=,所以2lg 220.301 1.151lg310.477λ⨯=≈≈--,故选D.4.已知向量,a b 满足||2,(2,0)a b ==,且||2a b += ,则,a b 〈〉= ()A .π6B .π3C .2π3D .5π6【答案】C【解析】由已知||2,2a b == ,所以()22224222cos ,44a ba b a b a b +=+⋅+=+⨯⨯⨯〈〉+=r r r r r r r r,得1cos ,2a b 〈〉=- ,又[],0,πa b 〈〉∈ ,所以2π,3a b 〈〉= .故选C.5.在平面直角坐标系xOy 中,已知()()3,0,1,0,A B P -为圆22:(3)(3)1C x y -+-=上动点,则22PA PB +的最小值为()A .34B .40C .44D .48【答案】B【解析】设(),P x y ,则()()222222223122410PA PB x y x y x y x +=+++-+=+++()22218x y ⎡⎤=+++⎣⎦,即22PA PB +等价于点P 到点()1,0Q -的距离的平方的两倍加8,又1PQ QC PC ≥-=514=-=,即22224840PA PB +≥⨯+=.故选B.6.如图,四棱锥A BCDE -是棱长均为2的正四棱锥,三棱锥A CDF -是正四面体,G 为BE 的中点,则下列结论错误的是()A .点,,,ABC F 共面B .平面ABE 平面CDF C .FG CD ⊥D .FG ⊥平面ACD【答案】D【解析】选项A :如图,取CD 中点H ,连接GH ,FH ,AG ,AH ,因为A BCDE -是正四棱锥,A CDF -是正四面体,G 为BE 的中点,所以CD GH ⊥,CD AH ⊥,CD FH ⊥,因为GH AH H = ,,GH AH ⊂平面AGH ,所以CD ⊥平面AGH ,因为AH FH H = ,,AH FH ⊂平面AFH ,所以CD ⊥平面AFH ,所以,,,A G H F 四点共面,由题意知3AG HF ==2GH AF ==,所以四边形AGHF是平行四边形,所以GH AF ∥,因为BC GH ∥,所以BC AF ∥,所以,,,A B C F 四点共面,故A 说法正确;选项B :由选项A 知AG FH ∥,又AG ⊄平面CDF ,FH ⊂平面CDF ,所以AG 平面CDF ,因为CD BE ∥,且BE ⊄平面CDF ,CD ⊂平面CDF ,所以BE 平面CDF ,又AG ⊂平面ABE ,BE ⊂平面ABE ,且AG BE G = ,所以平面ABE 平面CDF ,故B 说法正确;C 选项:由选项A 可得CD ⊥平面AGHF ,又FG ⊂平面AGHF ,所以FG CD ⊥,故C 说法正确;D 选项:假设FG ⊥平面ACD ,因为AH ⊂平面ACD ,则FG AH ⊥,由选项A 知四边形AGHF 是平行四边形,所以四边形AGHF 是菱形,与3AG =2GH =矛盾,故D 说法错误;故选D7.甲、乙两人进行一场友谊比赛,赛前每人记入3分.一局比赛后,若决出胜负,则胜的一方得1分,负的一方得1-分;若平局,则双方各得0分.若干局比赛后,当一方累计得分为6时比赛结束且该方最终获胜.令i P 表示在甲的累计得分为i 时,最终甲获胜的概率,若在一局中甲获胜的概率为0.5,乙获胜的概率为0.3,则1P =()A .555535-B .666535-C .5662553⨯-D .677553-【答案】C【解析】由题意可知:i 的取值集合为{}0,1,2,3,4,5,6,且060,1P P ==,在甲累计得分为1时,下局甲胜且最终甲获胜的概率为20.5P ,在甲累计得分为1时,下局平局且最终甲获胜的概率为10.2P ,在甲累计得分为1时,下局甲败且最终甲获胜的概率为00.3P ,根据全概率公式可得12100.50.20.3P P P P =++,整理得2108355P P P =-,变形得()211035P P P P -=-,因为100P P ->,则211035P P P P -=-,同理可得324354652132435435P P P P P P P P P P P P P P P P ----====----,所以{}()10,1,2,,5i i P P i +-= 是公比为35的等比数列,所以()()11030,1,2,,55i i i P P P P i +⎛⎫-=-= ⎪⎝⎭ ,各项求和得()()551101135i i i i i P P P P +==⎡⎤⎛⎫-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∑∑,则()661103355315P P P P ⎛⎫- ⎪⎝⎭-=-⋅-,即61133551315P P ⎛⎫- ⎪⎝⎭-=⋅-,解得51662553P ⨯=-.故选C.8.已知0,2a b c <<>,且12212,e (1),2ln2bab c c a==+=,则()A .b a c <-<B .a b c -<<C .c a b <-<D .b c a<<-【答案】B 【解析】令1t a=,则22t t =,令()22,0t f t t t =-<,则()2ln 220t f t t '=->在(),0t ∈-∞上恒成立,故()22t f t t =-在(),0t ∈-∞上单调递增,且()11102f -=-<,110224f ⎛⎫-=-> ⎪⎝⎭,故112t -<<-,故()1,2a -∈,令()()2e 1x g x x =-+,0x >,则()()e 21x g x x '=-+,令()()e 21x q x x =-+,则()e 2x q x '=-,令()0q x '>得ln 2x >,令()0q x '<得0ln 2x <<,故()()e 21xq x x =-+在()0,ln 2上单调递减,在()ln 2,+∞上单调递增,则()()ln 222ln 210q =-+<,()22e 60q =->,由零点存在性定理可得,存在()0ln 2,2x ∈,使得()00q x =,且()()2e 1x g x x =-+在()00,x 上单调递减,在()0,x +∞上单调递增,又()00g =,故()()000g x g <=,又()22e 90g =-<,()33e 160g =->,故()2,3b ∈,令()2ln 2,2h x x x x =->,则()21h x x'=-,当2x >时,()0h x '>,故()2ln 2h x x x =-在()2,+∞上单调递增,又因为()446ln 20h =-<,()552ln100h =->,故()4,5c ∈,综上,a b c -<<.故选B二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知()()1,1,2,1AB AC =-= ,则下列结论正确的是()A .()3,0BC =B .()25AB BC AC ⋅-=C.cos ,AB AC = D .若()3,1AB AC λμμλ+=+,则2μλ-=【答案】ACD【解析】对于A ,()3,0BC AC AB =-= ,故A 正确;对于B ,因为()24,1BC AC -=-,所以()25AB BC AC ⋅-=- ,故B 错误;对于C,因为1,AB AC AB AC ⋅=-==所以cos ,10AB AC ==,故C 正确;对于D ,()()2,3,1AB AC λμμλμλμλ+=-+=+ ,所以231μλμμλλ-=⎧⎨+=+⎩,解得1,1λμ=-=,则2μλ-=,故D 正确.故选ACD.10.关于方程[]()22cos 10,πx y αα+=∈表示的曲线Γ,下列说法正确的是()A .Γ可以表示两条平行的直线,且这两条直线的距离为2B .若Γ为双曲线,则α为钝角C .若α为锐角,则Γ为焦点在y 轴上的椭圆D .若Γ为椭圆,P 为椭圆Γ上不与长轴顶点,A B 重合的点,则cos PA PB k k α⋅=-【答案】AD【解析】对于A 项,当cos 0α=,即π2α=时,方程为21y =,解得1y =±,因此Γ可以表示两条平行的直线,且这两条直线的距离为2,故A 选项正确;对于B 项,若Γ为双曲线,则cos 0α<,即ππ2α<≤,故α为钝角或平角,故B 选项错误;对于C 项,若α为锐角,则0cos 1α<<,即11cos α>.将原方程化为标准方程为2211cos x y α+=⎛⎫⎪⎝⎭,因此Γ为焦点在x 轴上的椭圆,故C 选项错误;对于D 项,若Γ为椭圆,则α为锐角,设椭圆方程为()222210x y a b a b+=>>,则221,1cos a b α==,不妨设()()()00,0,,0,,A a B a P x y -,将点P 的坐标代入椭圆方程得2200cos 1x y α+=,即22001cos y x α=-,故22000022200001cos cos 1cos PA PBy y y x k k x a x a x a x ααα-⋅=⋅===-+---,故D 选项正确.故选AD .11.对于集合A 中的任意两个元素,x y ,若实数(),d x y 同时满足以下三个条件:①“(),0d x y =”的充要条件为“x y =”;②()(),,d x y d y x =;③z A ∀∈,都有()()(),,,d x y d x z d y z ≤+.则称(),d x y 为集合A 上的距离,记为A d .则下列说法正确的是()A .(),d x y x y =-为d RB .(),sin sin d x y x y =-为d RC .若()0,A =+∞,则(),ln ln d x y x y =-为Ad D .若d 为R d ,则1e d -也为R d (e 为自然对数的底数)【答案】AC【解析】对于A ,(),d x y x y =-,即x y =,①,(),0d x y =,即(),0d x y x y =-=,即x y =,若x y =,则(),0d x y x y x x =-=-=,所以“(),0d x y =”的充要条件为“x y =”.②,()(),,d x y x y y x d y x =-=-=,成立,③,,,R x y z ∀∈,()()x y x z z y x z z y -=-+-≤-+-,故A 正确;对于B ,(),sin sin d x y x y =-,①,(),0d x y =,即(),sin sin 0d x y x y =-=,即sin sin x y =,此时若0,πx y ==,则x y ≠,故B 错误;对于C ,(),ln ln d x y x y =-,①,(),0d x y =即ln ln ln0xx y y-==,即1x y =,得x y =,若x y =,则(),ln ln ln ln 0d x y x y x x =-=-=,所以“(),0d x y =”的充要条件为“x y =”.②,()(),ln ln ln ln ,d x y x y y x d y x =-=-=,成立;③,()()(),ln ln ln ln ln ln d x y x y x z z y =-=-+-()()ln ln ln ln ,,x z z y d x z d y z ≤-+-=+,故成立,故C 正确;对于D ,设,x y ∀∈R ,(),d x y x y =-,则()1,1e e x y d x y ---=,①,若(),0d x y =,则0x y -=,即x y =,111e e 0x y d e ----==≠,故D 错误.故选AC.三、填空题:本题共3小题,每小题5分,共15分.12.函数()()2312(2)log 22x f x x a +=+-+是偶函数,则=a .【答案】38【解析】因为()()2312(2)log 22x f x x a +=+-+是偶函数,可得()()()31231228log 83022x x f x f x ax a x +-++--=-=-=+,所以38a =.13.《九章算术》中记录的“羡除”是算学和建筑学术语,指的是一段类似隧道形状的几何体,如图,羡除ABCDEF 中,底面ABCD 是正方形,//EF 平面ABCD ,ADE V 和BCF △均为等边三角形,且26EF AB ==.则这个几何体的外接球的体积为.【答案】36π【解析】连接BD ,分别取EF 、BD 、AD 中点G 、H 、I ,连接GH 、HI 、EI ,由底面ABCD 是正方形,//EF 平面ABCD ,ADE V 和BCF △均为等边三角形,故//EG IH ,GH ⊥底面ABCD ,又26EF AB ==,故3EG AD AB ===,则22EI AD ==,故2GH ==,由H 为底面正方形中心,HG IH ⊥,故羡除ABCDEF 外接球球心O 在直线GH 上,连接OI 、OE 、OA ,设半径为r ,OH a =,则==OA OE r ,由GH ⊥底面ABCD ,AD ⊂平面ABCD ,故GH AD ⊥,又AD IH ⊥,IH 、GH Ì平面IOH ,故AD ⊥平面IOH ,又IO ⊂平面IOH ,故AD IO ⊥,故2222232IO r AI r ⎛⎫=-=- ⎪⎝⎭,又222223+2IO OH IH a ⎛⎫=+= ⎪⎝⎭,故有222233+22r a ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,即229+2r a =,又2222227322EO r a a ⎛⎫==-+=-+ ⎪ ⎪⎝⎭,故有22279+22a a -+=,解得2a =,故22999+9222r a ==+=,即3r =,则这个几何体的外接球的体积为34π36π3V r ==.14.已知函数π2cos (0)4y x ωω⎛⎫=-> ⎪⎝⎭在区间ππ,42⎛⎫⎪⎝⎭上有且仅有一个零点,则ω的取值范围为.【答案】371115(3)(][7]2222,,, 【解析】由题意知函数π2cos (0)4y x ωω⎛⎫=-> ⎪⎝⎭在区间ππ,42⎛⎫⎪⎝⎭上有且仅有一个零点,故函数的最小正周期πππ2ππ082444T ,,ωω≥-=∴≥∴<≤,又ππ,42x ⎛⎫∈ ⎪⎝⎭,则πππππ44424x ωωω-<-<-,而πππ7π4444ω-<-≤,当ππππ4442ω-<-<时,即03ω<<时,需有πππ3π2242ω<-≤,即3722ω<≤,此时3(3)2,ω∈;当πππ442ω-=时,即3ω=时,ππ5π244ω-=,此时函数在π5π(,24)上无零点,不合题意;当πππ3π2442ω<-<时,即37ω<<时,需有3πππ5π2242ω<-≤,即71122ω<≤,此时711(]22,ω∈;当ππ3π442ω-=时,即7ω=时,ππ13π244ω-=,此时函数在3π13π(,)24上有一零点5π2,符合题意;当3πππ7π2444ω<-≤时,即78ω<≤时,需有5πππ7π2242ω<-≤,即111522ω<≤,此时15(7]2,ω∈;综合上述,得ω的取值范围为371115(3)(][7]2222,,, 三、解答题:本题共5小题,共77分,解答应写出文字说明,证明过程和解题步骤.15.(13分)近年来“天宫课堂”受到广大中小学生欢迎,激发了同学们对科学知识的探索欲望和对我国航天事业成就的自豪.为领悟航天精神,感受中国梦想,某校组织了一次“寻梦天宫”航天知识竞赛(满分100分),各年级学生踊跃参加.校团委为了比较高一、高二学生这次竞赛的成绩,从两个年级的答卷中各随机选取了50份,将成绩进行统计得到以下频数分布表:成绩[)60,70[)70,80[)80,90[]90,100高一学生人数1551515高二学生人数10102010试利用样本估计总体的思想,解决下列问题:(1)从平均数与方差的角度分析哪个年级学生这次竞赛成绩更好(同一组中的数据用该组区间的中点值为代表)?(2)校后勤部决定对参与这次竞赛的学生给予一定的奖励,奖励方案有以下两种:方案一:记学生得分为x ,当70x <时,奖励该学生10元食堂代金券;当7090x ≤<时,奖励该学生25元食堂代金券;当90x ≥时,奖励该学生35元食堂代金券;方案二:得分低于样本中位数的每位学生奖励10元食堂代金券;得分不低于中位数的每位学生奖励30元食堂代金券.若高一年级组长希望本年级学生获得多于高二年级的奖励,则他应该选择哪种方案?解:(1)设高一年级学生竞赛成绩的平均数为x ,方差为21s .高二年级学生竞赛成绩的平均数为y ,方差为22s .则6515755851595158150x ⨯+⨯+⨯+⨯==,(1分)2222211[15(6581)5(7581)15(8581)15(9581)]144,50s =⨯-+⨯-+⨯-+⨯-=(3分)1(6510751085209510)8150y =⨯+⨯+⨯+⨯=,(4分)2222221[10(6581)10(7581)20(8581)10(9581)]161.650s =⨯-+⨯-+⨯-+⨯-=,(6分)因x y =2212s s <,故高一年级学生这次竞赛成绩比较稳定集中,成绩更好;(7分)(2)按照方案一,高一年级学生获得奖励为:1510(515)2515351175⨯++⨯+⨯=元,而高二年级学生获得奖励为:1010(1020)2510351200⨯++⨯+⨯=元,即按照方案一,高一年级获得奖励少于高二;(9分)按照方案二,依题意,所抽取的100名参加竞赛学生的成绩中位数为90806801082357-+⨯=,则样本中,高一年级学生成绩低于中位数的人数约为682807155152410-++⨯≈人,则高一年级获得奖励为:241026301020⨯+⨯=元;高二年级学生成绩低于中位数的人数约为6828071010202610-++⨯≈人,则高二年级获得奖励为:26102430980⨯+⨯=元.(11分)因1020980>,即按照方案二,高一年级获得奖励多于高二.故若高一年级组长希望本年级学生获得多于高二年级的奖励,则他应该选择方案二.(13分)16.(15分)已知在四边形ABCD 中,ABD △为锐角三角形,对角线AC 与BD 相交于点O,π2,4,4AD AC BD ABD ∠====.(1)求AB ;(2)求四边形ABCD 面积的最大值.解:(1)由余弦定理可得2222πcos 42AB BD AD AB BD +-=⋅,化简为220AB -+=,解得1AB =1,(4分)当1=AB时,因为2146cos 0BAD +-∠=<,与ABD △为锐角三角形不符合,故1AB =.(7分)(2)作,AE CF 垂直BD 于,E F ,设1AOB ∠=∠,(9分)则()1111sin 1sin 1sin 12222ABCD ABD CBD S S S BD AE BD CF BD AO CO BD AC =+=⋅+⋅=∠+∠=⋅∠ ,当sin 11190AC BD ∠=⇒∠=︒⇒⊥,四边形面积最大,最大面积为146262⨯=(15分)17.(15分)如图,在几何体111B C D ABCD -中,平面111//B C D 平面ABCD ,四边形ABCD 为正方形,四边形11BB D D 为平行四边形,四边形11D DCC 为菱形,112,22,120,DC AC D DC E ︒==∠=为棱11C D 的中点,点F 在棱1CC 上,//AE 平面BDF .(1)证明DE ⊥平面ABCD ;(2)求平面1AB D 与平面BDF 夹角的余弦值.解:(1)如图,连接DC 1,因为四边形11D DCC 为菱形,1120︒∠=D DC ,所以160DCC ︒∠=,所以12DC =,因为12,22AD DC AC ===22211AD DC AC +=,所以1AD DC ⊥,又11,,,AD DC DC DC D DC DC ⊂⊥= 平面11CDD C ,所以AD ⊥平面11CDD C ,所以,AD DE AD DC ⊥⊥,(3分)因为四边形11D DCC 为菱形,且1120︒∠=D DC ,所以1111DD DC D C ==,因为E 为棱11C D 的中点,所以11DE C D ⊥,又11//C D CD ,所以DE CD ⊥,(5分)因为,,,DE AD AD DC D AD DC ⊥=⊂ 平面ABCD ,所以DE ⊥平面ABCD .(7分)(2)以D 为坐标原点,,,DA DC DE分别为x 轴、y 轴、z 轴正方向,建立如图所示的空间直角坐标系D xyz -.易知3DE =所以()0,0,0,(2,0,0),(2,2,0),(0,2,0),3)D A B C E ,113),(0,3)C D -,所以1(0,3),(0,2,0),(2,0,3),(2,2,0),(2,0,0)CC DC AE DB DA =-==-== ,1(0,3)DD -= ,设()10,3(01)CF tCC t t t ==-≤≤ ,则(0,2,3)DF DC CF t t =+=- ,(9分)因为//AE 平面BDF ,所以存在唯一的,R λμ∈,使得(2,2,0)(0,2,3)(2,22,3)AE DB DF t t t λμλμλλμμμ=+=+-=+- .所以22,220,33t t λλμμμ=-+-==23t =,所以111114230,,,(2,1,3)33DF DB DD D B DD DB ⎛⎫==+=+= ⎪ ⎪⎝⎭,(11分)设平面BDF 的法向量为()111,,x n y z = ,则00DF n DB n ⎧⋅=⎪⎨⋅=⎪⎩ ,所以1111423033220y x y ⎧=⎪⎨⎪+=⎩,取13y =-,则113,23x z ==,故(3,3,23)n =- ,设平面1AB D 的法向量为()222,,m x y z = ,则100DA m DB m ⎧⋅=⎪⎨⋅=⎪⎩ ,所以222220230x x y z =⎧⎪⎨+=⎪⎩,取23y =,则220,3x z ==-(0,3,3)m =- ,(13分)设平面1AB D 与平面BDF 的夹角为θ,则10cos cos ,43023m n m n m nθ⋅=〈〉===⨯ ,故平面1AB D 与平面BDF 104(15分)18.(17分)已知抛物线C :()2205y px p =<<上一点M 的纵坐标为3,点M 到焦点距离为5.(1)求抛物线C 的方程:(2)过点()1,0作直线交C 于A ,B 两点,过点A ,B 分别作C 的切线1l 与2l ,1l 与2l 相交于点D ,过点A 作直线3l 垂直于1l ,过点B 作直线4l 垂直于2l ,3l 与4l 相交于点E ,1l 、2l 、3l 、4l 分别与x 轴交于点P 、Q 、R 、S .记DPQ V 、DAB 、ABE 、ERS △的面积分别为1S 、2S 、3S 、4S .若3412S S S S λ=,求实数λ的取值范围.解:(1)设(),3M t ,由题意可得9252pt p t =⎧⎪⎨+=⎪⎩,即9522p p +=,(2分)解得1p =或9p =(舍去),所以抛物线C 的方程为22y x =.(4分)(2)如图,设经过()11,A x y ,()22,B x y 两点的直线方程为AB l :1x my =+(m ∈R ,0m ≠),与抛物线方程22y x =联立可得222y my =+,即2220y my --=,2480m ∆=+>∴122y y m +=,122y y =-.∵22y x =,则y =∴'1y y=,(6分)∴过点A 作C 的切线1l 方程为()11111112y y x x y x y y =-+=+,令0y =,得212y x =-,即21,02y P ⎛⎫- ⎪⎝⎭.同理,过点B 作C 的切线2l 方程为2212y y x y =+,令0y =,得222y x =-,即22,02y Q ⎛⎫- ⎪⎝⎭.∴222122y y PQ =-.(8分)联立两直线方程11221212y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩,解得1212122y y x y y y m ⎧==-⎪⎪⎨+⎪==⎪⎩,即()1,D m -,则D 到直线AB l的距离2D AB d -==又∵过点A 作直线3l 垂直于1l ,直线3l 的方程为311111112y y y x x y y y x y =-++=-++,令0y =,得2112y x =+,即211,02y R ⎛⎫+ ⎪⎝⎭.(10分)同理,直线4l 的方程为32222y y y x y =-++,令0y =,得2212y x =+,即221,02y S ⎛⎫+ ⎪⎝⎭.∴222122y y RS =-.联立两直线方程3111322222y y y x y y y y x y ⎧=-++⎪⎪⎨⎪=-++⎪⎩,解得()2212121212122y y y y x y y y y y ⎧++=+⎪⎪⎨+⎪=-⎪⎩,整理后可得2222x m y m⎧=+⎨=⎩,即()222,2E m m +,则E 到直线AB l的距离E AB d -==.(13分)由上可得22211112222D y y S PQ y m =⋅=-,212d AB S AB d -=⋅=,312E AB S AB d -=⋅=,222141122222E y y S RS y m =⋅=-,(15分)∴2123422S S m S S +==,得2212m λ=<+,故λ的取值范围为()0,1.(17分)19.(17分)超越数得名于欧拉,它的存在是法国数学家刘维尔(Joseph Liouville )最早证明的.一个超越数不是任何一个如下形式的整系数多项式方程的根:11100n n n n a x a x a x a --++++= (0a ,1a ,…,n a ∈Z ,0n a ≠).数学家证明了自然对数的底数e 与圆周率π是超越数.回答下列问题:已知函数()e x n n n f x b x =-(*n ∈N )只有一个正零点.(1)求数列{}n b 的通项公式;(2)(ⅰ)构造整系数方程00n n a x a +=,证明:若N m ∈,则e m 为有理数当且仅当0m =.(ⅱ)数列{}n b 中是否存在不同的三项构成等比数列?若存在,求出这三项的值;否则说明理由.解:(1)若()e x n n n f x b x =-只有一个正零点,可得e ,e 1,x n n x n n b x b x -==(1分)令()e n x g x x -=,()11()e e e n x n x n x g x nx x x n x -----=-=-',令()0g x '<,(,)x n ∈+∞,令()0g x '>,(0,)x n ∈,故()g x 在(0,)n 上单调递增,在(,)n +∞上单调递减,可得()g x 在x n =处取得最大值,且最大值为()e n n g n x -=,(4分)而当0x →时,()0g x →,当x →+∞时,()0g x →,由题意得,当()g x 最大时,符合题意,故e 1n n n b n -=,即e n n n b n -=⋅.(6分)(2)(ⅰ)若0m =,则e 1m =为有理数;若m 正整数,假设e m 为有理数,则e ,,,0m p y p q q q==∈≠Z ,则方程0q y p ⋅-=的根中有有理数,又在方程0m q x p ⋅-=中,发现e x =是它的根,(8分)而已知e 是超越数,故e 不是方程的根,与0q y p ⋅-=矛盾,即e m 不为有理数;综上所述:m ∈N ,e m 为有理数当且仅当0m =;(10分)(ⅱ)若数列{}n b 中存在不同的三项构成等比数列,则()2e e e e m m n n l l m n ---⋅⋅⋅=⋅,可得22e m n l m n l m n l +--=⋅⋅,由方程右边是有理数知左边是有理数,由上问知当且仅当2m n l +=时成立,故2m n l m n m n l l l ⋅==⋅,则()()1m n m n l l ⋅=,设1m x l-=,则(1)m l x =-,(1)n l x =+,则()()111m n x x -⋅+=,将(1)m l x =-,(1)n l x =+代入进行化简,可得()()(1)111l x l x x x -+-⋅+=,故()()11111l x x x x -+⎡⎤-⋅+=⎣⎦,故()()11111x x x x -+-⋅+=,(14分)构造函数()()()()()1ln 11ln 1f x x x x x =--+++,而()()2ln 10f x x ='-<,知()f x 在其定义域内单调递减,又()00f =,故若()()11111x x x x -+-⋅+=,则有0x =,即2m n l m n l ⋅=成立,当且仅当m n l ==时成立.即数列{}n b 中不存在不同的三项构成等比数列.(17分)。

2016年贵州省贵阳市高考数学二模试卷(文科)(附答案解析)

2016年贵州省贵阳市高考数学二模试卷(文科)(附答案解析)

2016年贵州省贵阳市高考数学二模试卷(文科)一、选择题:本大题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合A={x|x<3},B={x|log2x>0},则A∩B=()A.{x|1<x<3}B.{x|1≤x<3}C.{x|x<3}D.{x|x≤1}2. 复数z=(2−i)2在复平面内对应的点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3. 二次函数f(x)=2x2+bx−3(b∈R)零点的个数是()A.0B.1C.2D.44. 圆x2+y2=1与直线y=kx+2没有公共点的充要条件是()A.k∈(−√2,√2)B.k∈(−∞,−√2)∪(√2,+∞)C.k∈(−√3,√3)D.k∈(−∞,−√3)∪(√3,+∞)5. △ABC的内角A、B、C对边分别为a,b,c且满足a6=b4=c3,则sin C−sin Asin A+sin B+sin C=()A.−313B.127C.313D.−7126. 如图,给出的是计算1+13+15+⋯+199+1101的值的一个程序框图,判断框内应填入的条件是()A.i<101?B.i>101?C.i≤101?D.i≥101?7. 若函数y=kx的图像上存在点(x,y)满足约束条件{x+y−3≤0,x−2y−3≤0,x≥1,则实数k的最大值为()A. 12B. 2C.32D. 18. 过点M(2, 0)作圆x2+y2=1的两条切线MA,MB(A,B为切点),则MA→⋅MB→=()A.5√32B.52C.3√32D.329. 将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()A. B. C. D.10. 函数f(x)=A sin(ωx+π6)(A>0, ω>0)的图象与x轴的交点的横坐标构成一个公差为π2的等差数列,要得到函数g(x)=A cosωx的图象,只需将f(x)的图象()A.向左平移π6个单位 B.向右平移π3个单位C.向左平移2π3个单位 D.向右平移2π3个单位11. 过点(−1, 0)作抛物线y=x2+x+1的切线,则其中一条切线为()A.2x+y+2=0B.3x−y+3=0C.x+y+1=0D.x−y+1=012. 抛物线y 2=2px(p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足∠AFB =90∘.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则|MN →||AB →|的最大值为( )A.√22B.√32C.1D.√3二、填空题:本大题共4小题,每小题5分。

2016年贵州省普通高等学校招生高考数学适应性试卷(文科)(附答案解析)

2016年贵州省普通高等学校招生高考数学适应性试卷(文科)(附答案解析)

2016年贵州省普通高等学校招生高考数学适应性试卷(文科)一、选择题1. 已知全集U={−2, 0, 1, 2},集合A={x|x2+x−2=0},则∁U A=()A.{−2, 1}B.{−2, 0}C.{0, 2}D.{0, 1}2. 设复数z满足(1+i)z=2i,其中i为虚数单位,则z的共轭复数z¯=()A.−1+iB.−1−iC.1+iD.1−i3. 幂函数y=f(x)的图象经过点(3, √3),则f(x)是()A.偶函数,且在(0, +∞)上是增函数B.偶函数,且在(0, +∞)上是减函数C.奇函数,且在(0, +∞)是减函数D.非奇非偶函数,且在(0, +∞)上是增函数4. 函数y=a x+2−1(a>0且a≠1)的图象恒过的点是()A.(0, 0)B.(0, −1)C.(−2, 0)D.(−2, −1)5. 已知α,β表示两个不同平面,a,b表示两条不同直线,对于下列两个命题:①若b⊂α,a⊄α,则“a // b”是“a // α”的充分不必要条件②若a⊂α,b⊂α,则“a // β”是“α // β且b // β”的充要条件.判断正确的是()A.①,②是真命题B.①是真命题,②是假命题C.①是假命题,②是真命题D.①,②都是假命题6. 一个几何体的三视图如图所示,则该几何体的表面积为()A.9+√3 B.18+2√3 C.9√3+3 D.18√3+27. 按如下程序框图,若输出的结果为170,试判断框内应补充的条件为()A.i>9B.i≥9C.i>11D.i≥118. 若单位向量e1→,e2→的夹角为π3,向量a→=e1→+λe2→(λ∈R),且|a→|=√32,则λ=()A.−12B.√32−1 C.12D.√329. 一组样本数据的频率分布直方图如图所示,试估计样本数据的中位数为( )A.1009B.11.52C.12D.1310. 若sin(π2+α)=−35,且α∈(π2, π),则sin(π−2α)=()A.2425B.1225C.−1225D.−242511. 设抛物线y2=2px(p>0)的焦点为F,过F且斜率为√3的直线交抛物线于A,B两点,若线段AB的垂直平分线与x轴交于点M(11, 0),则p=()A.2B.3C.6D.1212. 已知函数f(x)={1x−3,x∈(0,1]2x−1−1,x∈(1,2]且g(x)=f(x)−mx在(0, 2]内有且仅有两个不同的零点,则实数m 的取值范围是()A.(−94, −2]∪(0, 12]B.(−114, −2]∪(0, 12]C.(−94, −2]∪(0, 23] D.(−114, −2]∪(0, 23]二、填空题双曲线________.若x ,y 满足约束条件{x +y −2≥0x −2y +4≥02x −y −1≤0 ,则z =2x +y 的最小值为________.已知f(x)是奇函数,g(x)=2+f(x)f(x),若g(2)=3,则g(−2)=________.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,已知a 2+c 2=ac +b 2,b =√3,且a ≥c ,则2a −c 的最小值是________√3 . 三、解答题设数列{a n }的前n 项和为S n ,且2S n =3a n −1(n ∈N ∗). (1)求a 1,a 2及数列{a n ]的通项公式;(2)已知数列{b n }满足b n =log 3a 2n ,求{b n }的前n 项和T n .为了增强消防安全意识,某中学对全体学生做了一次消防知识讲座,从男生中随机抽取50人,从女生中随机抽取70人参加消防知识测试,统计数据得到如下列联表:附:K2=a(ad −bc)2(a +b)(c +d)(a +c)(b +d)(Ⅱ)为了宣传消防安全知识,从该校测试成绩获得优秀的同学中采用分层抽样的方法,随机选出6名组成宣传小组.现从这6人中随机抽取2名到校外宣传,求到校外宣传的同学中至少有1名是男生的概率.已知长方形ABCD 中,AB =3,AD =4,现将长方形沿对角线BD 折起,使AC =a ,得到一个四面体A −BCD ,如图所示.(1)试问:在折叠的过程中,直线AB 与CD 能否垂直?若能,求出相应的a 值;若不能,请说明理由.(2)求四面体A −BCD 体积的最大值.已知椭圆G:x 2a 2+y 2b 2=1(a >b >0)在y 轴上的一个顶点为M ,两个焦点分别是F 1,F 2,∠F 1MF 2=120∘,△MF 1F 2的面积为√3. (1)求椭圆G 的方程;(2)过椭圆G 长轴上的点P(t, 0)的直线l 与圆O:x 2+y 2=1相切于点Q (Q 与P 不重合),交椭圆G 于A ,B 两点,若|AQ|=|BP|,求实数t 的值.设函数f(x)=ln x +x 2−2ax +a 2,a ∈R .(1)当a =0时,曲线y =f(x)与直线y =3x +m 相切,求实数m 的值;(2)若函数f(x)在[1, 3]上存在单调递增区间,求a 的取值范围. [选修4-4:几何证明选讲]如图,圆内接四边形ABCD 的边BC 与AD 的延长线交于点E ,点F 在BA 的延长线上. (1)若EF // CD ,证明:EF 2=FA ⋅FB ;(2)若EB =3EC ,EA =2ED ,求DCAB 的值.[选修4-4:坐标系与参数方程选讲]在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=4cosθ,θ∈[0, π2].(I)求C的参数方程;(II)若半圆C与圆D:(x−5)2+(y−√3)2=m(m是常数,m>0)相切.试求切点的直角坐标.[4-5:不等式选讲]已知函数f(x)=2|x+1|+|x−2|.(1)求f(x)的最小值m;(2)若a,b,c均为正实数,且满足a+b+c=m,求证:b 2a +c2b+a2c≥3.参考答案与试题解析2016年贵州省普通高等学校招生高考数学适应性试卷(文科)一、选择题1.【答案】C【考点】补集及其运算【解析】由题意求出集合A,然后直接写出它的补集即可.【解答】全集U={−2, 0, 1, 2},集合A={x|x2+x−2=0}={−2, 1},则∁U A={0, 2}2.【答案】D【考点】复数的运算【解析】直接利用复数代数形式的乘除运算化简得答案.【解答】由(1+i)z=2i,得z=2i1+i =2i(1−i)(1+i)(1−i)=2i(1−i)2=1+i,∴z¯=1−i.3.【答案】D【考点】幂函数的单调性、奇偶性及其应用幂函数的概念、解析式、定义域、值域【解析】设出幂函数的解析式,求出自变量的指数,从而求出函数的性质即可.【解答】解:设幂函数的解析式为:y=xα,将(3, √3)代入解析式得:3α=√3,解得α=12,∴y=x12=√x是非奇非偶函数,且在(0,+∞)上是增函数.故选D. 4.【答案】C【考点】指数函数的图象与性质【解析】由题意令x+2=0,解得x的值,再代入函数解析式求出y的值,即得所求定点的坐标.【解答】令x+2=0,解得x=−2,所以当x=−2时,函数y=a0−1=0,即函数y=a x+2−1(a>0且a≠1)的图象恒过定点(−2, 0).5.【答案】B【考点】空间中直线与平面之间的位置关系【解析】在①中,若b⊂α,a⊄α,则“a // b”⇒“a // α”,反之,“a // α”推不出“a // b”;在②中,“α // β”是“α // β且b // β”的充分不必要条件.【解答】由α,β表示两个不同平面,a,b表示两条不同直线,知:①若b⊂α,a⊄α,则“a // b”⇒“a // α”,反之,“a // α”推不出“a // b”,∴ “a // b”是“a // α”的充分不必要条件,故①是真命题.②若a⊂α,b⊂α,则“α // β”⇒“α // β且b // β”,反之,“α // β且b // β”,推不出“α // β”,∴ “α // β”是“α // β且b // β”的充分不必要条件,故②是假命题.6.【答案】B【考点】由三视图求体积【解析】利用三视图判断几何体为三棱柱,求其面积即可.【解答】三棱柱的表面积为5个面的面积之和,又因为底面是正三角形,边长为2,棱柱的高为:3.所以S=2×12×2×√3+3×2×3=18+2√3.7.【答案】B【考点】程序框图【解析】按照程序框图的流程写出前四次循环的结果,直到第三次按照已知条件需要输出,根据第四次循环的i 的值得到判断框中的条件. 【解答】经过第一次循环得到S =2,i =3经过第二次循环得到S =2+23=10,i =5 经过第三次循环得到S =10+25=42,i =7经过第四次循环得到S =42+27=170,i =9此时,需要输出结果,此时的i 满足判断框中的条件 故判断框内应补充的条件为:i ≥9. 8.【答案】 A【考点】平面向量数量积的性质及其运算 【解析】根据向量的数量积的运算和向量的模的计算即可. 【解答】向量a →=e 1→+λe 2→(λ∈R),且|a →|=√32, ∴ |a →|2=|e 1→+λe 2→|2=|e 1→|2+|λe 2→|2+2λe 1→⋅e 2→=1+λ2+λ=34,解得λ=−12, 9.【答案】A【考点】频率分布直方图众数、中位数、平均数【解析】根据频率分布直方图中,中位数的两边频率相等,由此求出中位数的值. 【解答】解:根据频率分布直方图,得: 0.02×4+0.08×4=0.40<0.5, 设中位数为x ,即0.40+0.09×(x −10)=0.5, 解得x =1009,∴ 估计样本数据的中位数为1009.故选A .10. 【答案】 D【考点】运用诱导公式化简求值 二倍角的三角函数【解析】利用已知及诱导公式可求cos α,结合角的范围,利用同角三角函数基本关系式可求sin α,利用诱导公式,二倍角公式化简所求即可计算求值. 【解答】∵ sin (π2+α)=cos α=−35,α∈(π2, π),∴ $\sin\alpha = \sqrt{1 - cos^{2}1pha} = \sqrt{1 - ( - \frac{3}{5})^{2}} = \frac{4}{5}$, ∴ sin (π−2α)=sin 2α=2sin αcos α=2×(−35)×45=−2425.11.【答案】 C【考点】抛物线的标准方程 椭圆的定义【解析】由题意可知:抛物线y 2=2px(p >0)的焦点为F(p2, 0),直线AB 的斜率为√3,则垂直平分线的斜率为−√33,且与x 轴交于点M(11, 0),则y =−√33(x −11),则直线AB 的方程为y =√3(x −p2),代入抛物线方程,由韦达定理可知:x 1+x 2=5p 3,根据中点坐标公式求得中点P 坐标,代入AB 的垂直平分线方程,即可求得p 的值.【解答】解:由题意可知:抛物线y 2=2px(p >0)的焦点为F(p2, 0), 直线AB 的斜率为√3,则垂直平分线的斜率为−√33, 且与x 轴交于点M(11, 0),则y =−√33(x −11),设直线AB 的方程为:y =√3(x −p 2),A(x 1, y 1),B(x 2, y 2),AB 的中点为P(x 0, y 0), {y =√3(x −p2)y 2=2px ,整理得:3x 2−5px +3p 24=0,由韦达定理可知:x 1+x 2=5p 3,由中点坐标公式可知:x 0=5p6,则y 0=√3p3, 由P 在垂直平分线上,则y 0=−√33(x 0−11),即p =−(5p6−11),解得:p =6. 故选C .12.【答案】A【考点】分段函数的应用【解析】由g(x)=f(x)−mx=0,即f(x)=mx,作出两个函数的图象,利用数形结合即可得到结论.【解答】函数f(x)={1x−3,x∈(0,1]2x−1−1,x∈(1,2]的图象如图所示.m∈(0, 12]时,y=mx与图象两支有两个交点,m<0时,由0<x≤1,1x−3=mx,即mx2+3x−1=0,方程有两解时,{9+4m>00<−32m ≤1m+2≤0,∴−94<m≤−2,综上所述,(−94, −2]∪(0, 12].二、填空题【答案】x2−y2=1的顶点到其渐近线的距离等于√22【考点】双曲线的离心率【解析】求得双曲线的a=b=1,求得顶点坐标,渐近线方程,运用点到直线的距离公式计算即可得到所求值.【解答】双曲线x2−y2=1的a=b=1,可得顶点为(±1, 0),渐近线方程为y=±x,即有顶点到渐近线的距离为d=1+1=√22.【答案】2【考点】简单线性规划【解析】作出不等式组对应的平面区域,利用z的几何意义即可得到结论.【解答】由z=2x+y,得y=−2x+z作出不等式组对应的平面区域如图:由图象可知当直线y=−2x+z过点A时,直线y=−2x+z的在y轴的截距最小,此时z最小,由{x+y−2=0x−2y+4=0,得{x=0y=2,即A(0, 2),此时z=2×0+2=2,【答案】−1【考点】函数奇偶性的性质函数的求值【解析】求出f(2)的值,结合函数的奇偶性,从而求出g(−2)的值即可.【解答】∵g(2)=2+f(2)f(2)=3,解得:f(2)=1,∵f(x)是奇函数,∴f(−x=−f(x),∴g(−2)=2+f(−2)f(−2)=2−f(2)−f(2)=−1,【答案】√3【考点】余弦定理【解析】使用余弦定理求出B,由正弦定理用A,C表示出a,c根据A的范围和正弦函数的性质得出2a−c的范围.【解答】在△ABC中,∵a2+c2=ac+b2,∴cos B=a2+c2−b22ac=12,∴B=π3.∴A+C=2π3,由正弦定理得:asin A=csin C=bsin B=2.∴a=2sin A,c=2sin C=2sin(2π3−A)=√3cos A+sin A,∴2a−c=3sin A−√3cos A=2√3sin(A−π6).∵a≥c,∴π3≤A<2π3.∴当A=π3时,2a−c取得最小值2√3sinπ6=√3.三、解答题【答案】∵2S n=3a n−1,2S n−1=3a n−1−1(n≥2),两式相减得:2a n=3a n−3a n−1,即a n=3a n−1,又∵2S1=3a1−1,即a1=1,∴数列{a n]是首项为1、公比为3的等比数列,∴其通项公式a n=3n−1;由(1)可知b n=log3a2n=log332n−1=2n−1,于是数列{b n}是首项为1、公差为2的等差数列,∴T n=n(a1+a n)2=n(1+2n−1)2=n2.【考点】数列递推式数列的求和【解析】(1)通过2S n=3a n−1与2S n−1=3a n−1−1(n≥2)作差,进而整理可知数列{a n]是首项为1、公比为3的等比数列,计算即得结论;(2)通过(1)及对数性质可知b n=2n−1,从而数列{b n}是首项为1、公差为2的等差数列,利用等差数列的求和公式计算即得结论.【解答】∵2S n=3a n−1,2S n−1=3a n−1−1(n≥2),两式相减得:2a n=3a n−3a n−1,即a n=3a n−1,又∵2S1=3a1−1,即a1=1,∴数列{a n]是首项为1、公比为3的等比数列,∴其通项公式a n=3n−1;由(1)可知b n=log3a2n=log332n−1=2n−1,于是数列{b n}是首项为1、公差为2的等差数列,∴T n=n(a1+a n)2=n(1+2n−1)2=n2.【答案】(1)因为$K^{2} = \frac{120{\times (15 \times 40 - 35)}^{2}}{45 \times 75 \times 50 \times 70}pprox2.057$,且2.057<2.706,所以没有90%的把握认为,消防知识的测试成绩优秀与否与性别有关;(2)用分层抽样的方法抽取时,抽取比例是645=215,则抽取女生为30×215=4人,抽取男生为15×215=2人;抽取的分别记为a、b、c、d、E、F(其中E、F为男生),从中任取2人,共有15种情况:ab,ac,ad,aE,aF,bc,bd,bE,bF,cd,cE,cF,dE,dF,EF;其中至少有1名是男生的事件为aE,aF,bE,bF,cE,cF,dE,dF,EF,有9种;故所求的概率为P=915=35.【考点】独立性检验【解析】(Ⅰ)根据公式计算K2,对照数表即可得出概率结论;(Ⅱ)用分层抽样法求出抽取的男、女生数,利用列举法求出基本事件数,计算对应的概率值.【解答】(1)因为$K^{2} = \frac{120{\times (15 \times 40 - 35)}^{2}}{45 \times 75 \times 50 \times 70}pprox2.057$,且2.057<2.706,所以没有90%的把握认为,消防知识的测试成绩优秀与否与性别有关;(2)用分层抽样的方法抽取时,抽取比例是645=215,则抽取女生为30×215=4人,抽取男生为15×215=2人;抽取的分别记为a、b、c、d、E、F(其中E、F为男生),从中任取2人,共有15种情况:ab,ac,ad,aE,aF,bc,bd,bE,bF,cd,cE,cF,dE,dF,EF;其中至少有1名是男生的事件为aE,aF,bE,bF,cE,cF,dE,dF,EF,有9种;故所求的概率为P=915=35.【答案】直线AB与CD能垂直.∵AB⊥AD,AB⊥CD,AD∩CD=D,∴AB⊥平面ACD,∴AB⊥AC,此时a=√16−9=√7,∴a=√7时,直线AB与CD能垂直;由题意可得,△BCD面积12×3×4=6为定值,当点A到平面BCD的距离最大,即当平面CBD⊥平面ABD时,四面体A−BCD体积最大.过点A在平面ABD内作AH⊥BD,垂足为H,则AH⊥平面BCD,AH就是该四面体的高.在△ABD中,AH=AB⋅ADBD=125,∴四面体A−BCD体积的体积最大值为13⋅S△BCD⋅AH=245.【考点】柱体、锥体、台体的体积计算【解析】(1)利用AB⊥平面ACD,结结合勾股定理,即可得出结论;(2)将矩形折叠后得到三棱锥,四面体ABCD体积最大值为两个面互相垂直求三棱锥的底面积和高计算.【解答】直线AB与CD能垂直.∵AB⊥AD,AB⊥CD,AD∩CD=D,∴ AB ⊥平面ACD , ∴ AB ⊥AC ,此时a =√16−9=√7,∴ a =√7时,直线AB 与CD 能垂直;由题意可得,△BCD 面积12×3×4=6为定值,当点A 到平面BCD 的距离最大,即当平面CBD ⊥平面ABD 时,四面体A −BCD 体积最大.过点A 在平面ABD 内作AH ⊥BD ,垂足为H ,则AH ⊥平面BCD ,AH 就是该四面体的高. 在△ABD 中,AH =AB⋅AD BD=125,∴ 四面体A −BCD 体积的体积最大值为13⋅S △BCD ⋅AH =245.【答案】 由椭圆G:x 2a2+y 2b 2=1(a >b >0)焦点在x 轴上,M 为椭圆的上顶点,则|MF 1|=a ,由∠F 1MF 2=120∘, ∴ c =a sin 60∘=√32a ,b =a cos 60∘=12a ,由△MF 1F 2的面积为S =12⋅(2c)⋅b =12⋅√3a ⋅12a =√3. 解得:a =2,则b =1, ∴ 椭圆的标准方程为:x 24+y 2=1;如图,由题意可知,直线l 的斜率存在且不为0,设为k ,则l:y =k(x −t),则OQ 所在直线方程为y =−1k , 由O 到直线l 的距离d =√k 2+1=1,解得:k 2=1t 2−1,联立{y =k(x −t)y =−1k x,解得:Q(k 2t1+k 2, −kt1+k 2),∴ {y =k(x −t)x 24+y 2=1 ,得(1+4k 2)x 2−8k 2tx +4k 2t 2−4=0, ∴ x 1+x 2=8k 2t1+4k 2,由题意可知,AB 中点与PQ 中点重合, 则4k 2t1+4k 2=k 2t1+k 2+t 2,即k 2=12.由k 2=1t 2−1,得t =±√3.∴ 实数t 的值为±√3.【考点】椭圆的标准方程 椭圆的应用直线与椭圆的位置关系【解析】(1)由题意可知:焦点在x 轴上,M 为椭圆的上顶点,则|MF 1|=a ,∠F 1MF 2=120∘,则c =a sin 60∘=√32a ,b =a cos 60∘=12a ,根据三角形的面积公式可知:△MF 1F 2的面积为S =12⋅(2c)⋅b =12⋅√3a ⋅12a =√3.即可求得a 和b 的值,求得椭圆G 的方程;(2)由题意设出l:y =k(x −t),得到OQ 所在直线方程,求出Q 的坐标,由直线和圆相切得到k 2=1t 2−1,再联立直线方程和椭圆方程,由|AQ|=|BP|可得AB 中点与PQ 中点重合,由此列式求得k 值,代入k 2=1t 2−1,求得t 值.【解答】由椭圆G:x 2a 2+y 2b 2=1(a >b >0)焦点在x 轴上,M 为椭圆的上顶点,则|MF 1|=a , 由∠F 1MF 2=120∘, ∴c =a sin 60∘=√32a ,b =a cos 60∘=12a ,由△MF 1F 2的面积为S =12⋅(2c)⋅b =12⋅√3a ⋅12a =√3. 解得:a =2,则b =1, ∴ 椭圆的标准方程为:x 24+y 2=1;如图,由题意可知,直线l 的斜率存在且不为0,设为k , 则l:y =k(x −t),则OQ 所在直线方程为y =−1k , 由O 到直线l 的距离d =√k 2+1=1,解得:k 2=1t 2−1,联立{y=k(x−t)y=−1kx,解得:Q(k2t1+k2, −kt1+k2),∴{y=k(x−t)x24+y2=1,得(1+4k2)x2−8k2tx+4k2t2−4=0,∴x1+x2=8k2t1+4k2,由题意可知,AB中点与PQ中点重合,则4k2t1+4k2=k2t1+k2+t2,即k2=12.由k2=1t2−1,得t=±√3.∴实数t的值为±√3.【答案】当a=0时,f(x)=ln x+x2,x∈(0, +∞),f′(x)=1x+2x>0,令f′(x)=3,解得:x=1或x=12,代入f(x)得切点坐标为(1, 1),或(12, 14−ln2),将切点坐标代入直线y=3x+m,解得:m=−2或m=−54−ln2;f′(x)=1x+2x−2a=2x2−2ax+1x,x∈[1, 3],设g(x)=2x2−2ax+1,假设函数f(x)在[1, 3]上不存在单调递增区间,必有g(x)≤0,于是{g(1)=3−2a≤0g(3)=19−6a≤0,解得:a≥196,故要使函数f(x)在[1, 3]上存在单调递增区间,则a的范围是(−∞, 196).【考点】利用导数研究曲线上某点切线方程利用导数研究函数的单调性【解析】(1)将a=0代入f(x),求出f(x)的导数,得到f′(x)=3,解得x的值,求出切点坐标,代入求出m的值即可;(2)假设函数f(x)在[1, 3]上不存在单调递增区间,必有g(x)≤0,得到关于a的不等式组,解出即可.【解答】当a=0时,f(x)=ln x+x2,x∈(0, +∞),f′(x)=1x+2x>0,令f′(x)=3,解得:x=1或x=12,代入f(x)得切点坐标为(1, 1),或(12, 14−ln2),将切点坐标代入直线y=3x+m,解得:m=−2或m=−54−ln2;f′(x)=1x+2x−2a=2x2−2ax+1x,x∈[1, 3],设g(x)=2x2−2ax+1,假设函数f(x)在[1, 3]上不存在单调递增区间,必有g(x)≤0,于是{g(1)=3−2a≤0g(3)=19−6a≤0,解得:a≥196,故要使函数f(x)在[1, 3]上存在单调递增区间,则a的范围是(−∞, 196).[选修4-4:几何证明选讲]【答案】因为四边形ABCD内接于圆,有∠B=∠CDE,又EF // CD,所以∠CDE=∠FEA.因此,∠B=∠FEA.而∠F为公共角,所以△FAE∽△FEB,于是,FAFE=FEFB,即EF2=FA⋅FB.由割线定理,ED⋅EA=EC⋅EB,即ED⋅2ED=EC⋅3EC所以EC2ED2=23,即ECED=√63.因为∠B=∠CDE,∠CED时公共角,有△ECD∽△EAB.于是,DCAB=ECEA=EC2ED=√66.【考点】与圆有关的比例线段【解析】(1)求证出△FAE∽△FEB,从而有FAFE=FEFB,从而得出EF2=FA⋅FB;(2)根据割线定理得出ECED=√63,证出△ECD∽△EAB,根据三角形内线段的对应关系求出DCAB的值.【解答】因为四边形ABCD 内接于圆,有∠B =∠CDE , 又EF // CD ,所以∠CDE =∠FEA . 因此,∠B =∠FEA . 而∠F 为公共角,所以△FAE ∽△FEB , 于是,FA FE=FE FB,即EF 2=FA ⋅FB .由割线定理,ED ⋅EA =EC ⋅EB ,即ED ⋅2ED =EC ⋅3EC 所以EC 2ED2=23,即ECED=√63. 因为∠B =∠CDE ,∠CED 时公共角,有△ECD ∽△EAB . 于是,DCAB =ECEA =EC2ED =√66. [选修4-4:坐标系与参数方程选讲] 【答案】(1)由半圆C 的极坐标方程为ρ=4cos θ,θ∈[0, π2],即ρ2=4ρcos θ, 可得C的普通方程为(x −2)2+y 2=4(0≤y ≤2).可得C 的参数方程为 {x =2(1+cos t)y =2sin t (t 为参数,0≤t ≤π).(2)如图示:连接圆心AB ,则两圆切与P ,设P(x, y), 在RT △ABC 中,AB =√9+3=2√3, ∴√3=2√3,解得y =1, ∴ AD =√3,则x =2+√3, ∴ P(2+√3, 1). 【考点】圆的极坐标方程 【解析】(1)利用{ρ2=x 2+y 2x =ρcos θ即可得出直角坐标方程,利用cos 2t +sin 2t =1进而得出参数方程;(2)结合图象和圆的位置关系求出切点的坐标即可. 【解答】(1)由半圆C 的极坐标方程为ρ=4cos θ,θ∈[0, π2],即ρ2=4ρcos θ, 可得C 的普通方程为(x −2)2+y 2=4(0≤y ≤2).可得C 的参数方程为 {x =2(1+cos t)y =2sin t (t 为参数,0≤t ≤π).(2)如图示:连接圆心AB ,则两圆切与P ,设P(x, y), 在RT △ABC 中,AB =√9+3=2√3, ∴√3=2√3,解得y =1, ∴ AD =√3,则x =2+√3, ∴ P(2+√3, 1). [4-5:不等式选讲]【答案】∵ 函数f(x)=2|x +1|+|x −2|,当x <−1时,f(x)=−2(x +1)−(x −2)=−3x ∈(3, +∞); 当−1≤x <2时,f(x)=2(x +1)−(x −2)=x +4∈[3, 6); 当x ≥2时,f(x)=2(x +1)+(x −2)=3x ∈[6, +∞); 综上,f(x)的最小值为m =3;a ,b ,c 均为正实数,且满足a +b +c =m =3, 又因为b 2a +c 2b+a 2c +(a +b +c)=(b 2a +a)+(c 2b +b)+(a 2c +c)≥2(√b 2a ⋅a +√c 2b⋅b +√a 2c⋅c)=2(a +b +c),当且仅当a =b =c =1时,取“=”, 所以,b 2a +c 2b +a 2c≥a +b +c ,即b 2a +c 2b +a 2c≥3.【考点】分段函数的应用基本不等式及其应用【解析】(1)讨论x的取值,脱去函数f(x)的绝对值,求出f(x)的最小值m;(2)根据a+b+c=m=3,利用基本不等式求出b 2a +c2b+a2c+(a+b+c)的最小值,即可证明结论成立.【解答】∵函数f(x)=2|x+1|+|x−2|,当x<−1时,f(x)=−2(x+1)−(x−2)=−3x∈(3, +∞);当−1≤x<2时,f(x)=2(x+1)−(x−2)=x+4∈[3, 6);当x≥2时,f(x)=2(x+1)+(x−2)=3x∈[6, +∞);综上,f(x)的最小值为m=3;a,b,c均为正实数,且满足a+b+c=m=3,又因为b 2a +c2b+a2c+(a+b+c)=(b2a+a)+(c2b+b)+(a2c+c)≥2(√b2a ⋅a+√c2b⋅b+√a2c⋅c)=2(a+b+c),当且仅当a=b=c=1时,取“=”,所以,b 2a +c2b+a2c≥a+b+c,即b 2a +c2b+a2c≥3.第21页共22页◎第22页共22页。

2016年高考数学调研卷(第一模拟)文(含解析)

2016年高考数学调研卷(第一模拟)文(含解析)

2016年全国卷II高考《考试大纲》调研卷文科数学(第一模拟)一、选择题:共12题1.已知集合A={x|x2+x-2=0},B={x|-x2+x=0},则A∩B=A.{-1,0}B.{0,1}C.{1}D.{0}【答案】C【解析】本题考查一元二次方程的解、集合的交运算.先求出两个集合A,B,再利用集合知识求解即可.因为A={-2,1},B={0,1},所以A∩B={1}.选C.2.已知(a+b i)·(1-2i)=5(i为虚数单位,a,b∈R),则a+b的值为A.-1B.1C.2D.3【答案】D【解析】本题主要考查复数的乘法运算、复数相等的概念.解题时,先利用复数的乘法运算对已知条件进行运算,然后根据复数相等的概念求出a,b即可求解.因为(a+b i)(1-2i)=a+2b+(b-2a)i=5,故, 解得a=1,b=2,故a+b=3,选D.3.高三某班有学生56人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为A.13B.17C.19D.21【答案】C【解析】本题主要考查系统抽样在实际问题中的应用,考查考生对基础知识的掌握情况.因为47-33=14,所以由系统抽样的定义可知样本中的另一个学生的编号为5+14=19.4.“x>1”是“log2(x-1)<0”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】本题主要考查不等式的知识与充要关系的判断.分清条件和结论,根据充分条件、必要条件的定义判断是解题的关键.由log2(x-1)<0得0<x-1<1,即1<x<2,故“x>1”是“log2(x-1)<0”的必要不充分条件,选B.5.在约束条件下,目标函数z=x+2y的最大值为A.26B.24C.22D.20【答案】A【解析】本题主要考查线性规划的知识,数形结合是解决线性规划题目的常用方法.作出不等式组对应的平面区域如图中阴影部分所示,由z=x+2y得y=-x+,当y=-x+经过点C时,目标函数z=x+2y取得最大值,由得,即C(6,10),故目标函数z=x+2y的最大值为6+2×10=26,选A.6.已知角θ的终边经过点P(-1,-),则sin2θ+sin(3π-θ)cos(2π+θ)-cos2θ=A.-B.C.-D.【答案】D【解析】本题主要考查任意角的三角函数的定义、诱导公式、三角函数的求值等,考查考生的运算求解能力及转化思想.通解因为角θ的终边经过点P(-1,-),故tanθ=,故,由sin2θ+cos2θ=1可得cos2θ=,即cosθ=-,所以sinθ=-,sin2θ+sin(3π-θ)cos(2π+θ)-cos2θ=sin2θ+sinθcosθ-cos2θ=+(-)×(-)-,选D.优解因为角θ的终边经过点P(-1,-),故tanθ=,故sin2θ+sin(3π-θ)cos(2π+θ)-cos2θ=sin2θ+sinθcosθ-cos2θ==,选D.7.执行如图所示的程序框图,若输出的结果为43,则判断框内应填入的条件是A.z≤42?B.z≤20?C.z≤50?D.z≤52?【答案】A【解析】本题考查程序框图的知识,解题时,要注意z的值是否满足输出结果,何时终止循环.运行程序:x=0,y=1,因为z=1不满足输出结果,则x=1,y=1,因为z=2×1+1=3不满足输出结果,则x=1,y=3,因为z=2×1+3=5不满足输出结果,则x=3,y=5,因为z=2×3+5=11不满足输出结果,则x=5,y=11,因为z=2×5+11=21不满足输出结果,则x=11,y=21,因为z=2×11+21=43满足输出结果,此时需终止循环,结合选项可知,选A.8.设各项均为正数的等差数列{a n}的前n项和为S n,且a4a8=32,则S11的最小值为A.22B.44C.22D.44【答案】B【解析】本题主要考查等差数列的性质、前n项和公式,利用基本不等式求最值等知识.解答的关键是利用好基本不等式.因为数列{a n}为各项均为正数的等差数列,所以a4+a8≥2=8,S11=(a4+a8)≥×8=44,故S11的最小值为44,当且仅当a4=a8=4时取等号.选B.9.已知某空间几何体的三视图如图所示,则该几何体的体积为A.6+B.10+C.10+D.6+【答案】B【解析】本题考查三视图、几何体的体积,考查考生的计算能力、空间想象能力.由三视图还原出几何体是解题的关键.由三视图可知该几何体是由一个各棱长均为2的正四棱锥、一个棱长为2的正方体和一个直三棱柱构成的,正方体的体积为2×2×2=8,三棱柱的体积为×2×1×2=2,棱长为2的正四棱锥的高为,故其体积为×2×2×,故该几何体的体积为8+2+=10+,选B.10.将函数f(x)=sin(ωx+φ)(ω>0,-≤φ<)图象上每一点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移个单位长度得到y=sin x的图象,则函数f(x)的单调递增区间为A.[2kπ-,2kπ+],k∈ZB.[2kπ-,2kπ+],k∈ZC.[kπ-,kπ+],k∈ZD.[kπ-,kπ+],k∈Z【答案】C【解析】本题主要考查三角函数的图象与性质、三角函数的图象变换等知识.先根据三角函数图象变换求出ω,φ的值,再求其单调区间.通解将函数f(x)=sin(ωx+φ)图象上每一点的横坐标伸长为原来的2倍(纵坐标不变),则函数变为y=sin(ωx+φ),再向左平移个单位长度得到的函数为y=sin[ω(x+)+φ]=sin(ωx++φ)=sin x,又ω>0,所以,又-≤φ<,所以ω=2,φ=-,f(x)=sin(2x-),由2kπ-≤2x-≤2kπ+,k∈Z,可得kπ-≤x≤kπ+,k∈Z.选C.优解将y=sin x的图象向右平移个单位长度得到的函数为y=sin(x-),将函数y=sin(x-)的图象上每一点的横坐标缩短为原来的(纵坐标不变),则函数变为y=sin(2x-)=f(x),由2kπ-≤2x-≤2kπ+,k∈Z,可得kπ-≤x≤kπ+,k∈Z,选C.11.已知变量a,b满足b=-a2+3ln a(a>0),若点Q(m,n)在直线y=2x+上,则(a-m)2+(b-n)2的最小值为A. B. C.9 D.3【答案】A【解析】本题主要考查导数的几何意义、点到直线的距离公式,考查考生构造函数解决问题的意识、数据处理能力等,属于中上等难度题.将问题转化为函数图象上的动点与直线上的动点的距离问题,可用与已知直线平行的切线求解.由题意知,y=2x+表示斜率为2的直线,变量a,b满足b=-a2+3ln a,设函数f(x)=-x2+3ln x,则f'(x)=-x+,设当切线斜率为2时,函数f(x)图象的切点的横坐标为x0,则-x0+=2,∴x0=1,此时切点坐标为(1,-),切点到直线y=2x+的距离d=,∴(a-m)2+(b-n)2的最小值为d2=.12.已知双曲线C:-4y2=1(a>0)的右顶点到其一条渐近线的距离等于,抛物线E:y2=2px的焦点与双曲线C的右焦点重合,直线l的方程为x-y+4=0,在抛物线上有一动点M到y轴的距离为d1,到直线l的距离为d2,则d1+d2的最小值为A.+2B.+1C.-2D.-1【答案】D【解析】本题综合考查双曲线的方程、渐近线,抛物线的定义、性质等,考查考生分析问题、解决问题的能力.-4y2=1的右顶点坐标为(a,0),一条渐近线为x-2ay=0.由点到直线的距离公式得d=,解得a=或a=-(舍去),故双曲线的方程为-4y2=1.因为c==1,故双曲线的右焦点为(1,0),即抛物线的焦点为(1,0),所以p=2,x=-1是抛物线的准线,因为点M到y轴的距离为d1,所以到准线的距离为d1+1,设抛物线的焦点为F,则d1+1=|MF|,所以d1+d2=d1+1+d2-1=|MF|+d2-1,焦点到直线l的距离d3=,而|MF|+d2≥d3=,所以d1+d2=|MF|+d2-1≥-1,选D.二、填空题:共4题13.设向量a,b的夹角为60°,|a|=1,|b|=2,则(-3a+b)·(a+2b)=.【答案】0【解析】本题主要考查向量的模与夹角、向量的数量积等,考查考生的运算能力.因为向量a,b的夹角为60°,|a|=1,|b|=2,所以a·b=|a|·|b|cos 60°=1×2×=1,则(-3a+b)·(a+2b)=-3a2-6a·b+a·b+2b2=-3-5+8=0.14.已知在平面直角坐标系中,O(0,0),A(2,4),B(6,2),则三角形OAB的外接圆的方程是.【答案】x2+y2-6x-2y=0【解析】本题主要考查三角形的外接圆等知识.有两种方法解决,一是待定系数法,设出圆的一般方程,求出D,E,F即可,二是先判断出三角形OAB为直角三角形,再利用直角三角形的性质求出其外接圆的方程.解法一设三角形OAB的外接圆方程是x2+y2+Dx+Ey+F=0,依题意可得,解得,故三角形OAB的外接圆的方程是x2+y2-6x-2y=0.解法二因为直线OA的斜率k OA==2,直线AB的斜率k AB==-,k AB×k OA=2×(-)=-1,所以三角形OAB 是直角三角形,点A为直角顶点,OB为斜边,因为|OB|=,故外接圆的半径r=,又OB的中点坐标为(3,1),故三角形OAB的外接圆的标准方程为(x-3)2+(y-1)2=10,即x2+y2-6x-2y=0.15.已知棱长均为a的正三棱柱ABC-A1B1C1的六个顶点都在半径为的球面上,则a的值为.【答案】1【解析】本题主要考查球的内接三棱柱等,考查考生的空间想象能力与运算能力.设O是球心,D是等边三角形A1B1C1的中心,则OA1=,因为正三棱柱ABC-A1B1C1的所有棱长均为a,所以A1D=a×a,OD=,故A1D2+OD2=(a)2+()2=()2,得a2=,即a2=1,得a=1.16.已知正项等比数列{a n}的前n项和为S n,a1=2,且S1,S2+2,S3成等差数列,记数列{a n·(2n+1)}的前n项和为T n,则T n=.【答案】2-(1-2n)×2n+1【解析】本题主要考查等比数列的通项公式、错位相减法求和.利用已知条件可以求出{a n}的通项公式,再利用错位相减法求和即可.设数列{a n}的公比为q,由可得4+4q+4=2+2+2q+2q2,即q2-q-2=0,解得q=2或q=-1(舍去),∴a n=2n(n∈N*),a n·(2n+1)=(2n+1)×2n,故T n=3×2+5×22+…+(2n+1)×2n,则2T n=3×22+5×23+…+(2n+1)×2n+1,故-T n=3×2+2×22+2×23+…+2×2n-(2n+1)×2n+1=6+2×-(2n+1)×2n+1=-2+(1-2n)×2n+1,故T n=2-(1-2n)×2n+1.三、解答题:共8题17.已知△ABC的内角A,B,C所对的边分别为a,b,c,且a=2,.(1)求角A的大小;(2)求△ABC的面积的最大值.【答案】(1)根据正弦定理,由可得,,∴b2-a2=bc-c2,即b2+c2-a2=bc,由余弦定理可得cos A=,∵A∈(0,π),∴A=.(2)由a=2及余弦定理可得cos A=,故b2+c2=bc+4.又bc+4=b2+c2≥2bc,∴bc≤4+2,当且仅当b=c=时等号成立.故所求△ABC的面积的最大值为×(4+2)×+1.【解析】本题主要考查余弦定理、正弦定理的应用,基本不等式及三角形的面积公式等,考查了考生的计算能力,属于中档题.(1)利用正弦定理与余弦定理即可得出;(2)先利用余弦定理、基本不等式求出bc的最大值,再利用三角形的面积计算公式即可得出.【备注】解三角形的常见类型和方法:(1)已知两角和一边,首先根据内角和求出第三角,再用正弦定理、余弦定理求解相关问题;(2)已知两边和夹角,先用余弦定理求出第三边,再用正弦定理求另两角,必有一解;(3)已知三边可先应用余弦定理求对应的三个角,再求解相关问题.18.某县共有90个农村淘宝服务网点,随机抽取6个网点统计其元旦期间的网购金额(单位:万元)的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本数据的平均数;(2)若网购金额(单位:万元)不小于18的服务网点定义为优秀服务网点,其余为非优秀服务网点,根据茎叶图推断这90个服务网点中优秀服务网点的个数;(3)从随机抽取的6个服务网点中再任取2个作网购商品的调查,求恰有1个网点是优秀服务网点的概率.【答案】(1)由题意知,样本数据的平均数=12.(2)样本中优秀服务网点有2个,频率为,由此估计这90个服务网点中有90×=30个优秀服务网点.(3)由于样本中优秀服务网点有2个,分别记为a1,a2,非优秀服务网点有4个,分别记为b1,b2,b3,b4,从随机抽取的6个服务网点中再任取2个的可能情况有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4),(b1,b2),(b1,b3), (b1,b4),(b2,b3),(b2,b4),(b3,b4),共15种,记“恰有1个是优秀服务网点”为事件M,则事件M包含的可能情况有:(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4),共8种,故所求概率P(M)=.【解析】本题主要考查统计中的茎叶图、样本均值、用样本估计总体、古典概型等知识.(1)先根据茎叶图读出数据,再利用公式求解即可;(2)利用样本估计总体的知识即可得出;(3)先利用列举法将满足条件的情况逐一列出来,再利用古典概型的概率计算公式解答.【备注】概率与统计解答题是近几年新课标高考的热点考题,利用茎叶图解答实际问题是当今命题的热点与亮点.这类题往往借助于熟悉的知识点,结合实际生活中比较新颖的问题进行命题,在高考试卷中,概率与统计的内容每年都有所涉及,往往对分层抽样、系统抽样比较偏重,考生只有正确处理茎叶图,读准数据,掌握古典概型的概率的计算,考试时才不会失分.19.在多面体ABCDEF中,底面ABCD是梯形,四边形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=.(1)求证:平面EBC⊥平面EBD;(2)设M为线段EC上一点,且3EM=EC,试问在线段BC上是否存在一点T,使得MT∥平面BDE,若存在,试指出点T的位置;若不存在,请说明理由.【答案】(1)因为AD=1,CD=2,AC=,所以AD2+CD2=AC2,所以△ADC为直角三角形,且AD⊥D C.同理,因为ED=1,CD=2,EC=,所以ED2+CD2=EC2,所以△EDC为直角三角形,且ED⊥DC.又四边形ADEF是正方形,所以AD⊥DE,又AD∩DC=D,所以ED⊥平面ABCD.又BC⊂平面ABCD,所以ED⊥BC.在梯形ABCD中,过点B作BH⊥CD于点H,故四边形ABHD是正方形,所以∠ADB=45°,BD=.在Rt△BCH中,BH=CH=1,所以BC=,故BD2+BC2=DC2,所以BC⊥BD.因为BD∩ED=D,BD⊂平面EBD,ED⊂平面EBD,所以BC⊥平面EBD,又BC⊂平面EBC,所以平面EBC⊥平面EBD.(2)在线段BC上存在一点T,使得MT∥平面BDE,此时3BT=BC.连接MT,在△EBC中,因为,所以MT∥EB.又MT⊄平面BDE,EB⊂平面BDE,所以MT∥平面BDE.【解析】本题主要考查空间中直线与直线、直线与平面、平面与平面之间的位置关系等,考查考生的推理论证能力、空间想象能力及运算求解能力.(1)先利用勾股定理证明△ADC、△EDC 是直角三角形,最后证明平面EBC⊥平面EBD;(2)是探究性问题,先利用分析法找到点T,再进行证明.【备注】与平行、垂直有关的探究性问题是高考常考题型之一,解答的基本思路是先根据条件猜测点的位置,再给出证明.在探究点的存在性问题时,点多为中点、三等分点等特殊点,有时也需结合平面几何知识找点.20.设F1、F2分别是椭圆E:+=1(b>0)的左、右焦点,若P是该椭圆上的一个动点,且·的最大值为1.(1)求椭圆E的方程;(2)设直线l:x=ky-1与椭圆E交于不同的两点A、B,且∠AOB为锐角(O为坐标原点),求k的取值范围.【答案】(1)解法一易知a=2,c=,b2<4,所以F1(-,0),F2(,0),设P(x,y),则·=(--x,-y)·(-x,-y)=x2+y2-4+b2=x2+b2--4+b2=(1-)x2+2b2-4.因为x∈[-2,2],故当x=±2,即点P为椭圆长轴端点时,·有最大值1,即1=(1-)×4+2b2-4,解得b2=1.故所求椭圆E的方程为+y2=1.解法二由题意知a=2,c=,b2<4,所以F1(-,0),F2(,0),设P(x,y),则·=||·||·cos∠F1PF2=||·||·[+y2++y2-16+4b2]=(1-)x2+2b2-4.因为x∈[-2,2],故当x=±2,即点P为椭圆长轴端点时,·有最大值1,即1=(1-)×4+2b2-4,解得b2=1.故所求椭圆E的方程为+y2=1.(2)设A(x1,y1),B(x2,y2),由得(k2+4)y2-2ky-3=0,Δ=(-2k)2+12(4+k2)=16k2+48>0,故y1+y2=,y1·y2=.又∠AOB为锐角,故·=x1x2+y1y2>0,又x1x2=(ky1-1)(ky2-1)=k2y1y2-k(y1+y2)+1,所以x1x2+y1y2=(1+k2)y1y2-k(y1+y2)+1=(1+k2)·-+1=>0,所以k2<,解得-<k<,故k的取值范围是(-,).【解析】本题主要考查直线与椭圆的位置关系等基础知识,考查考生综合运用数学知识解决问题的能力.(1)先设P(x,y),表示出F1、F2的坐标,然后求出、,得到·关于x的表达式,利用·的最大值求得b2的值,进而可求出椭圆的方程;(2)将x=ky-1与椭圆方程联立消去x,利用根与系数的关系表示出y1+y2和y1y2,由∠AOB为锐角可得x1x2+y1y2>0,将x1=ky1-1,x2=ky2-1代入求得x1x2+y1y2关于k的表达式,解不等式求出k的取值范围.【备注】每年高考试题都有一道解析几何的解答题,此题难度中等偏上,综合考查圆锥曲线的定义、标准方程、几何性质,与圆锥曲线有关的定点、定值、最值、范围问题和直线与圆锥曲线的位置关系等知识.由于解析几何解答题的综合性较强,对考生的能力要求较高,所以解答这类问题时,要注意观察问题的个性特征,熟练运用圆锥曲线的几何性质,以减少解题过程中的运算量.21.已知函数f(x)=ax2-ln x+1(a∈R).(1)求函数f(x)的单调区间;(2)求证:当a=1时,f(x)>x2+在(1,+∞)上恒成立.【答案】(1)由于f(x)=ax2-ln x+1(a∈R),故f'(x)=2ax-(x>0).①当a≤0时,f'(x)<0在(0,+∞)上恒成立,∴f(x)在(0,+∞)上是单调递减函数.②当a>0时,令f'(x)=0,得x=.当x变化时,f'(x),f(x)随x的变化情况如下表:x(0,)(,+∞)f'(x) -0 +f(x) ↘极小值↗由表可知,f(x)在(0,)上是单调递减函数,在(,+∞)上是单调递增函数.综上所述,当a≤0时,f(x)的单调递减区间为(0,+∞),无单调递增区间;当a>0时,f(x)的单调递减区间为(0,),单调递增区间为(,+∞).(2)当a=1时,f(x)=x2-ln x+1,设F(x)=x2-ln x+1-x2-x2-ln x-,则F'(x)=x->0在(1,+∞)上恒成立,∴F(x)在(1,+∞)上为增函数,且F(1)=0,即F(x)>0在(1,+∞)上恒成立,∴当a=1时,f(x)>x2+在(1,+∞)上恒成立.【解析】本题考查运用导数知识求函数的单调区间及不等式的恒成立问题,涉及分类讨论、构造法等思想方法.第(1)问是求函数的单调区间问题,对f(x)求导,分a≤0和a>0进行讨论,进而求出单调区间;第(2)问通过构造函数,利用函数的单调性进行证明.【备注】函数的单调性、极值、最值是高考命题的重点与热点,函数与不等式等结合的题目往往成为考卷的压轴题,因而预计2016年高考对函数的单调性、极值、最值等问题还会继续考查,但已知条件中函数表达式的结构形式不会太复杂,因而本题试图在函数表达式较简单的基础上加大问题设置上的难度,在不增加考生题意理解难度的基础上,力争考查更多的知识.22.如图,四边形ABCD是☉O的内接四边形,延长BA和CD相交于点P,BD为☉O的直径,过点C 作CE⊥BD于点E,BE=,AD=,,.(1)求BC的值;(2)求sin∠BDC的值.【答案】(1)因为四边形ABCD是☉O的内接四边形,所以∠PAD=∠PCB,又∠P=∠P,所以△PAD∽△PC B.设PA=a,PD=b,则有,即,故b=a,所以.又AD=,所以BC=4.(2)由BD为☉O的直径可知,BC⊥CD,又CE⊥BD,所以在Rt△BCD中,由射影定理知,BC2=BE·BD,故42=·BD,解得BD=3.故sin∠BDC=.【解析】本题考查圆内接四边形的性质、三角形相似、射影定理等.对于第(1)问要先得到△PAD 与△PCB相似,再利用已知条件得到比例关系式,即可求出BC的值;对于第(2)问要充分利用射影定理求出BD的值,进而求解sin∠BDC的值.【备注】与圆有关的证明或计算问题是高考考查的重点内容,它主要以圆周角定理、圆内接四边形的对角互补等作为证明角相等的依据,以圆的切割线定理、相交弦定理作为证明线段成比例的依据,以圆内接四边形的有关性质作为证明四点共圆的依据.求解时要依据图形,合理推理,准确转化,必要时需要借助辅助线将问题转化.23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,直线l的极坐标方程为ρ(cosθ+k sinθ)=-2(k为实数).(1)判断曲线C1与直线l的位置关系,并说明理由;(2)若曲线C1和直线l相交于A,B两点,且|AB|=,求直线l的斜率.【答案】(1)由曲线C1的参数方程可得其普通方程为(x+1)2+y2=1.由ρ(cosθ+k sinθ)=-2可得直线l的直角坐标方程为x+ky+2=0.因为圆心(-1,0)到直线l的距离d=≤1,所以直线与圆相交或相切,当k=0时,直线l与曲线C1相切;当k≠0时,直线l与曲线C1相交.(2)由于曲线C1和直线l相交于A,B两点,且|AB|=,故圆心到直线l的距离d=,解得k=±1,所以直线l的斜率为±1.【解析】本题考查曲线的参数方程及直线的极坐标方程,考查直线与圆的位置关系、点到直线的距离公式等.【备注】化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消元法、加减消元法、恒等式(三角的或代数的)消元法;极坐标方程与直角坐标方程互化的关键是用好公式:.24.设函数f(x)=|x+3|-|x-1|.(1)解不等式f(x)≥0;(2)若f(x)+2|x-1|≥m对任意的实数x均成立,求m的取值范围.【答案】(1)通解f(x)≥0等价于|x+3|≥|x-1|,当x>1时,|x+3|≥|x-1|等价于x+3≥x-1,即3≥-1,不等式恒成立,故x>1;当-3≤x≤1时,|x+3|≥|x-1|等价于x+3≥1-x,解得x≥-1,故-1≤x≤1;当x<-3时,|x+3|≥|x-1|等价于-x-3≥1-x,即-3≥1,无解.综上,原不等式的解集为{x|x≥-1}.优解f(x)≥0等价于|x+3|≥|x-1|,即(x+3)2≥(x-1)2,化简得8x≥-8,解得x≥-1,即原不等式的解集为{x|x≥-1}.(2)f(x)+2|x-1|=|x+3|-|x-1|+2|x-1|=|x+3|+|x-1|≥|x+3-(x-1)|=4,要使f(x)+2|x-1|≥m 对任意的实数x均成立,则[f(x)+2|x-1|]min≥m,所以m≤4.【解析】第(1)问主要考查绝对值不等式的解法,可以利用分类讨论思想进行解答,也可以两边先平方然后化简求解;第(2)问主要考查绝对值不等式的恒成立问题,利用绝对值不等式的意义求出最小值即可解决.。

湖南省高考数学模拟试卷(三)理(含解析)-人教版高三全册数学试题

湖南省高考数学模拟试卷(三)理(含解析)-人教版高三全册数学试题

2016年某某省高考数学模拟试卷(理科)(三)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a为实数且(2+ai)(a﹣2i)=8,则a=()A.﹣1 B.0 C.1 D.22.已知集合A={x|﹣3<x<3},B={x|x(x﹣4)<0},则A∪B=()A.(0,4) B.(﹣3,4)C.(0,3) D.(3,4)3.“﹣1<x<2”是“|x﹣2|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.若某市8所中学参加中学生合唱比赛的得分用茎叶图表示(如图1),其中茎为十位数,叶为个位数,则这组数据的中位数和平均数分别是()A.91,91.5 B.91,92 C.91.5,91.5 D.91.5,925.设等差数列{a n}的前n项和为S n,已知a1=﹣9,a2+a8=﹣2,当S n取得最小值时,n=()A.5 B.6 C.7 D.86.执行如图所示的程序框图,输出S的值为时,k是()A.5 B.3 C.4 D.27.函数y=sin(2x+φ),的部分图象如图,则φ的值为()A.或 B.C.D.8.如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.9.某几何体的三视图如图所示,图中的四边形都是边长为1的正方形,其中正视图、侧视图中的两条虚线互相垂直,则该几何体的体积是()A.B.C.D.10.设G是△ABC的重心,a,b,c分别是角A,B,C的对边,若a+b+c=,则角A=()A.90° B.60° C.45° D.30°11.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC 体积的最大值为36,则球O的表面积为()A.36π B.64π C.144πD.256π12.已知A、B为双曲线E的左右顶点,点M在E上,AB=BM,三角形ABM有一个角为120°,则E的离心率为()A.B.C.D.2二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.(x3+)5的展开式中x8的二项式系数是(用数字作答)14.已知函数f(x)=,且f(a)=﹣3,则f(6﹣a)=.15.若变量x,y满足约束条件,则z=2x+3y的最大值为.16.已知函数f(x)是定义在R上的可导函数,其导函数记为f′(x),若对于任意的实数x,有f(x)>f′(x),且y=f(x)﹣1是奇函数,则不等式f(x)<e x的解集为.三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知△ABC的面积.(Ⅰ)求sinA与cosA的值;(Ⅱ)设,若tanC=2,求λ的值.18.为了解甲、乙两个班级某次考试的数学成绩(单位:分),从甲、乙两个班级中分别随机抽取5名学生的成绩作标本,如图是样本的茎叶图,规定:成绩不低于120分时为优秀成绩.(1)从甲班的样本中有放回的随机抽取 2 个数据,求其中只有一个优秀成绩的概率;(2)从甲、乙两个班级的样本中分别抽取2名同学的成绩,记获优秀成绩的人数为X,求X 的分布列和数学期望E(X)19.已知在四棱锥P﹣ABCD中,底面ABCD是直角梯形,平面PAB⊥平面ABCD,R、S分别是棱AB、PC的中点,AD∥BC,AD⊥AB,PD⊥CD,PD⊥PB,AB=BC=2AD=2.(Ⅰ)求证:①平面PAD⊥平面PBC;②RS∥平面PAD;(Ⅱ)若点Q在线段AB上,且CD⊥平面PDQ,求二面角C﹣PQ﹣D的余弦值.20.已知函数f(x)=2lnx﹣ax+a(a∈R).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)≤0恒成立,证明:当0<x1<x2时,.21.已知椭圆C1: +x2=1(a>1)与抛物线C:x2=4y有相同焦点F1.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知直线l1过椭圆C1的另一焦点F2,且与抛物线C2相切于第一象限的点A,设平行l1的直线l交椭圆C1于B,C两点,当△OBC面积最大时,求直线l的方程.选修4-1几何证明选讲22.如图,AB为圆O的直径,CB是圆O的切线,弦AD∥OC.(Ⅰ)证明:CD是圆O的切线;(Ⅱ)AD与BC的延长线相交于点E,若DE=3OA,求∠AEB 的大小.选修4-4坐标系与参数方程23.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:(t为参数),C2:(θ为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ﹣2sinθ)=7距离的最小值.选修4-5不等式选讲24.已知函数f(x)=|x﹣2|,g(x)=﹣|x+3|+m.(1)解关于x的不等式f(x)+a﹣1>0(a∈R);(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值X围.2016年某某省高考数学模拟试卷(理科)(三)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a为实数且(2+ai)(a﹣2i)=8,则a=()A.﹣1 B.0 C.1 D.2【考点】复数代数形式的乘除运算.【专题】计算题;方程思想;数学模型法;数系的扩充和复数.【分析】利用复数代数形式的乘除运算化简,由复数相等的条件列式求得a值.【解答】解:由(2+ai)(a﹣2i)=8,得4a+(a2﹣4)i=8,∴,解得a=2.故选:D.【点评】本题考查复数代数形式的乘除运算,考查了复数相等的条件,是基础题.2.已知集合A={x|﹣3<x<3},B={x|x(x﹣4)<0},则A∪B=()A.(0,4) B.(﹣3,4)C.(0,3) D.(3,4)【考点】并集及其运算.【专题】集合.【分析】利用并集的性质求解.【解答】解:∵集合A={x|﹣3<x<3},B={x|x(x﹣4)<0}={x|0<x<4},∴A∪B={x|﹣3<x<4}=(﹣3,4).故选:B.【点评】本题考查并集的求法,是基础题,解题时要认真审题.3.“﹣1<x<2”是“|x﹣2|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】计算题;综合法;不等式的解法及应用;简易逻辑.【分析】由|x﹣2|<1,解得1<x<3,即可判断出结论.【解答】解:由|x﹣2|<1,解得1<x<3,∴“﹣1<x<2”是“|x﹣2|<1”的既不充分也不必要条件.故选:D.【点评】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.4.若某市8所中学参加中学生合唱比赛的得分用茎叶图表示(如图1),其中茎为十位数,叶为个位数,则这组数据的中位数和平均数分别是()A.91,91.5 B.91,92 C.91.5,91.5 D.91.5,92【考点】茎叶图.【专题】计算题;概率与统计.【分析】根据茎叶图中的数据,计算这组数据的中位数与平均数即可.【解答】解:把茎叶图中的数据按大小顺序排列,如下;87、88、90、91、92、93、94、97;∴这组数据的中位数为=91.5,平均数是(87+88+90+91+92+93+94+97)=91.5.故选:C.【点评】本题考查了利用茎叶图中的数据求中位数与平均数的应用问题,是基础题目.5.设等差数列{a n}的前n项和为S n,已知a1=﹣9,a2+a8=﹣2,当S n取得最小值时,n=()A.5 B.6 C.7 D.8【考点】等差数列的性质.【专题】等差数列与等比数列.【分析】利用等差数列的通项公式,可求得公差d=2,从而可得其前n项和为S n的表达式,配方即可求得答案.【解答】解:等差数列{a n}中,a1=﹣9,a2+a8=2a1+8d=﹣18+8d=﹣2,解得d=2,所以,S n=﹣9n+=n2﹣10n=(n﹣5)2﹣25,故当n=5时,S n取得最小值,故选:A.【点评】本题考查等差数列的性质,考查其通项公式与求和公式的应用,考查运算求解能力,属于基础题.6.执行如图所示的程序框图,输出S的值为时,k是()A.5 B.3 C.4 D.2【考点】循环结构.【专题】计算题;图表型;试验法;算法和程序框图.【分析】模拟执行程序,依次写出每次循环k的值,当k=5时,大于4,计算输出S的值为,从而得解.【解答】解:模拟执行程序,可得每次循环的结果依次为:k=2,k=3,k=4,k=5,大于4,可得S=sin=,输出S的值为.故选:A.【点评】本题主要考查了循环结果的程序框图,模拟执行程序正确得到k的值是解题的关键,属于基础题.7.函数y=sin(2x+φ),的部分图象如图,则φ的值为()A.或 B.C.D.【考点】y=Asin(ωx+φ)中参数的物理意义;由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】计算题;三角函数的图像与性质.【分析】由已知中函数的图象,通过坐标(,0)代入解析式,结合φ求出φ值,得到答案.【解答】解:由已知中函数y=sin(2x+φ)(φ)的图象过(,0)点代入解析式,结合五点法作图,sin(+φ)=0,+φ=π+2kπ,k∈Z,∵φ,∴k=0,∴φ=,故选:B.【点评】本题考查的知识点是由y=Asin(ωx+φ)的部分图象确定其解析式,特殊点是解答本题的关键.8.如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【考点】函数的图象.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故应选C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.9.某几何体的三视图如图所示,图中的四边形都是边长为1的正方形,其中正视图、侧视图中的两条虚线互相垂直,则该几何体的体积是()A.B.C.D.【考点】由三视图求面积、体积.【专题】空间位置关系与距离.【分析】由三视图可知:该几何体是一个正方体,挖去一个四棱锥所得的组合体,分别计算正方体和四棱锥的体积,相减可得答案.【解答】解:由三视图可知:该几何体是一个正方体,挖去一个四棱锥所得的组合体,正方体的体积为1,四棱锥的体积为:×1×1×=,故组合体的体积V=1﹣=,故选:A【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.10.设G是△ABC的重心,a,b,c分别是角A,B,C的对边,若a+b+c=,则角A=()A.90° B.60° C.45° D.30°【考点】余弦定理;平面向量的基本定理及其意义.【专题】计算题;平面向量及应用.【分析】根据三角形重心的性质得到,可得.由已知向量等式移项化简,可得=,根据平面向量基本定理得到,从而可得a=b=c,最后根据余弦定理加以计算,可得角A的大小.【解答】解:∵G是△ABC的重心,∴,可得.又∵,∴移项化简,得.由平面向量基本定理,得,可得a=b=c,设c=,可得a=b=1,由余弦定理得cosA===,∵A为三角形的内角,得0°<A<180°,∴A=30°.故选:D【点评】本题给出三角形中的向量等式,求角A的大小,着重考查了三角形重心的性质、平面向量基本定理和利用余弦定理解三角形等知识,属于中档题.11.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC 体积的最大值为36,则球O的表面积为()A.36π B.64π C.144πD.256π【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.12.已知A、B为双曲线E的左右顶点,点M在E上,AB=BM,三角形ABM有一个角为120°,则E的离心率为()A.B.C.D.2【考点】双曲线的简单性质.【专题】计算题;方程思想;数形结合法;圆锥曲线的定义、性质与方程.【分析】由题意画出图形,过点M作MN⊥x轴,得到Rt△BNM,通过求解直角三角形得到M 坐标,代入双曲线方程可得a与b的关系,结合隐含条件求得双曲线的离心率.【解答】解:设双曲线方程为(a>0,b>0),如图所示,|AB|=|BM|,∠AMB=120°,过点M作MN⊥x轴,垂足为N,则∠MBN=60°,在Rt△BMN中,∵BM=AB=2a,∠MBN=60°,∴|BN|=a,,故点M的坐标为M(2a,),代入双曲线方程得a2=b2,即c2=2a2,∴.故选:B.【点评】本题考查双曲线的简单性质,考查数形结合的解题思想方法,是中档题.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.(x3+)5的展开式中x8的二项式系数是10 (用数字作答)【考点】二项式定理.【专题】计算题;转化思想;二项式定理.【分析】由展开式的通项公式T r+1==2﹣r,令=8,解得r即可得出.【解答】解:展开式的通项公式T r+1==2﹣r,令=8,解得r=2,∴(x3+)5的展开式中x8的二项式系数是=10.故答案为:10.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.14.已知函数f(x)=,且f(a)=﹣3,则f(6﹣a)= ﹣.【考点】分段函数的应用.【专题】计算题;分类讨论;方程思想;分类法.【分析】由函数f(x)=且f(a)=﹣3,求出a值,可得答案.【解答】解:∵函数f(x)=,∴当a≤1时,2a﹣2﹣2=﹣3,无解;当a>1时,﹣log2(a+1)=﹣3,解得a=7,∴f(6﹣a)=f(﹣1)=2﹣1﹣2﹣2=﹣,故答案为:﹣【点评】本题考查的知识点是分段函数的应用,函数求值,分类讨论思想,方程思想,难度中档.15.若变量x,y满足约束条件,则z=2x+3y的最大值为 1 .【考点】简单线性规划.【专题】数形结合;数形结合法;不等式的解法及应用.【分析】作出可行域,变形目标函数,平移直线y=﹣x数形结合可得结论.【解答】解:作出约束条件所对应的可行域(如图阴影),变形目标函数可得y=﹣x+z,平移直线y=﹣x可知,当直线经过点A(4,﹣1)时,目标函数取最大值,代值计算可得z的最大值为:2×4﹣3=1,故答案为:1.【点评】本题考查简单线性规划,准确作图是解决问题的关键,属中档题.16.已知函数f(x)是定义在R上的可导函数,其导函数记为f′(x),若对于任意的实数x,有f(x)>f′(x),且y=f(x)﹣1是奇函数,则不等式f(x)<e x的解集为(0,+∞).【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】根据条件构造函数令g(x)=,由求导公式和法则求出g′(x),根据条件判断出g′(x)的符号,得到函数g(x)的单调性,再由奇函数的结论:f(0)=0求出g(0)的值,将不等式进行转化后,利用g(x)的单调性可求出不等式的解集.【解答】解:由题意令g(x)=,则=,∵f(x)>f′(x),∴g′(x)<0,即g(x)在R上是单调递减函数,∵y=f(x)﹣1为奇函数,∴f(0)﹣1=0,即f(0)=1,g(0)=1,则不等式f(x)<e x等价为<1=g(0),即g(x)<g(0),解得x>0,∴不等式的解集为(0,+∞),故答案为:(0,+∞).【点评】本题主要考查导数与函数的单调性关系,奇函数的结论的灵活应用,以及利用条件构造函数,利用函数的单调性解不等式是解决本题的关键,考查学生的解题构造能力和转化思想.三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知△ABC的面积.(Ⅰ)求sinA与cosA的值;(Ⅱ)设,若tanC=2,求λ的值.【考点】余弦定理;两角和与差的余弦函数.【专题】计算题;转化思想;分析法;解三角形.【分析】(Ⅰ)由三角形面积公式及余弦定理化简已知等式可得,解得:sinA+2cosA=2,又sin2A+cos2A=1,从而解方程组即可得解.(Ⅱ)由tanC=2,可得sinC,cosC的值,可得,从而由正弦定理即可解得.【解答】(本题满分为14分)解:(Ⅰ)由题意可得:,…所以解得:sinA+2cosA=2,又因为sin2A+cos2A=1,解方程组可得.…(Ⅱ)∵tanC=2,C为三角形的内角,∴易得,…∴…∴.…【点评】本题主要考查了正弦定理,余弦定理,三角形面积公式,三角形内角和定理,同角三角函数关系式的应用,考查了三角函数恒等变换的应用,属于中档题.18.为了解甲、乙两个班级某次考试的数学成绩(单位:分),从甲、乙两个班级中分别随机抽取5名学生的成绩作标本,如图是样本的茎叶图,规定:成绩不低于120分时为优秀成绩.(1)从甲班的样本中有放回的随机抽取 2 个数据,求其中只有一个优秀成绩的概率;(2)从甲、乙两个班级的样本中分别抽取2名同学的成绩,记获优秀成绩的人数为X,求X 的分布列和数学期望E(X)【考点】离散型随机变量的期望与方差;茎叶图.【专题】概率与统计.【分析】(1)甲班抽取的5名学生的成绩为102,112,117,124,136,从中有放回地抽取两个数据,基本事件总数n=52=25,其中只有一个优秀成绩,包含的基本事件个数m=2×3+3×2=12,由此利用等可能事件概率计算公式能求出其中只有一个优秀成绩的概率.(2)由茎叶图知甲班抽取的5名学生中有2名学生成绩优秀,乙班抽取的5名学生中有1名学生成绩优秀,由此得X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X 的分布列和数学期望E(X).【解答】解:(1)甲班抽取的5名学生的成绩为102,112,117,124,136,从中有放回地抽取两个数据,基本事件总数n=52=25,其中只有一个优秀成绩,包含的基本事件个数m=2×3+3×2=12,∴其中只有一个优秀成绩的概率p==.(2)由茎叶图知甲班抽取的5名学生中有2名学生成绩优秀,乙班抽取的5名学生中有1名学生成绩优秀,由此得X的可能取值为0,1,2,3,P(X=0)==,P(X=1)=+=,P(X=2)=+=,P(X=3)==,∴X的分布列为:X 0 1 2 3PEX==.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题,注意排列组合知识的合理运用.19.已知在四棱锥P﹣ABCD中,底面ABCD是直角梯形,平面PAB⊥平面ABCD,R、S分别是棱AB、PC的中点,AD∥BC,AD⊥AB,PD⊥CD,PD⊥PB,AB=BC=2AD=2.(Ⅰ)求证:①平面PAD⊥平面PBC;②RS∥平面PAD;(Ⅱ)若点Q在线段AB上,且CD⊥平面PDQ,求二面角C﹣PQ﹣D的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定;平面与平面垂直的判定.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)①由已知得AD⊥平面APB,从而PB⊥AD,由此能证明平面PAD⊥平面PBC.②取PB中点M,连结RM,SM,由已知推导出平面PAD∥平面SMR,由此能证明RS∥平面PAD.(Ⅱ)由已知得AP=1,BP=,PQ=,AQ=,BQ=,以Q为原点,QP为x轴,QB为y 轴,建立如图所示的空间直角坐标系,利用向量法能求出二面角C﹣PQ﹣D的余弦值.【解答】(Ⅰ)①证明:∵在四棱锥P﹣ABCD中,底面ABCD是直角梯形,平面PAB⊥平面ABCD,AD⊥AB,∴AD⊥平面APB,又PB⊂平面APB,∴PB⊥AD,∵PD⊥PB,AD∩PD=D,∴PB⊥平面PAD,∵PB⊂平面PBC,∴平面PAD⊥平面PBC.②证明:取PB中点M,连结RM,SM,∵R、S分别是棱AB、PC的中点,AD∥BC,∴SM∥CB∥AD,RM∥AP,又AD∩AP=A,∴平面PAD∥平面SMR,∵RS⊂平面SMR,∴RS∥平面PAD.(Ⅱ)解:由已知得,解得AP=1,BP=,PQ=,AQ=,BQ=,以Q为原点,QP为x轴,QB为y轴,建立如图所示的空间直角坐标系,则Q(0,0,0),P(),D(0,﹣,1),C(0,,2),∴,, =(0,,2),设平面PDQ的法向量,则,取y=2,得,设平面PCQ的法向量,则,取b=4,得=(0,4,﹣3),设二面角C﹣PQ﹣D的平面角为θ,∴cosθ=|cos<>|=||=,∴二面角C﹣PQ﹣D的余弦值为.【点评】本题考查平面与平面垂直的证明,考查直线与平面平行的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养.20.已知函数f(x)=2lnx﹣ax+a(a∈R).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)≤0恒成立,证明:当0<x1<x2时,.【考点】利用导数研究函数的单调性;函数单调性的性质.【专题】导数的综合应用.【分析】(I)利用导数的运算法则可得f′(x),对a分类讨论即可得出其单调性;(II)通过对a分类讨论,得到当a=2,满足条件且lnx≤x﹣1(当且仅当x=1时取“=”).利用此结论即可证明.【解答】解:(Ⅰ)求导得f′(x)=,x>0.若a≤0,f′(x)>0,f(x)在(0,+∞)上递增;若a>0,当x∈(0,)时,f′(x)>0,f(x)单调递增;当x∈(,+∞)时,f′(x)<0,f(x)单调递减.(Ⅱ)由(Ⅰ)知,若a≤0,f(x)在(0,+∞)上递增,又f(1)=0,故f(x)≤0不恒成立.若a>2,当x∈(,1)时,f(x)递减,f(x)>f(1)=0,不合题意.若0<a<2,当x∈(1,)时,f(x)递增,f(x)>f(1)=0,不合题意.若a=2,f(x)在(0,1)上递增,在(1,+∞)上递减,f(x)≤f(1)=0,合题意.故a=2,且lnx≤x﹣1(当且仅当x=1时取“=”).当0<x1<x2时,f(x2)﹣f(x1)=2ln﹣2(x2﹣x1)<2(﹣1)﹣2(x2﹣x1)=2(﹣1)(x2﹣x1),∴<2(﹣1).【点评】熟练掌握利用导数研究函数的单调性、极值、等价转化、分类讨论的思想方法等是解题的关键.21.已知椭圆C1: +x2=1(a>1)与抛物线C:x2=4y有相同焦点F1.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知直线l1过椭圆C1的另一焦点F2,且与抛物线C2相切于第一象限的点A,设平行l1的直线l交椭圆C1于B,C两点,当△OBC面积最大时,求直线l的方程.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程;直线与圆锥曲线的关系.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求出抛物线的F1(0,1),利用椭圆的离心率,求出a、b即可求解椭圆方程.(Ⅱ)F2(0,﹣1),由已知可知直线l1的斜率必存在,联立方程组,利用相切求出k,然后利用直线的平行,设直线l的方程为y=x+m联立方程组,通过弦长公式点到直线的距离求解三角形的面积,然后得到所求直线l的方程.【解答】解:(Ⅰ)∵抛物线x2=4y的焦点为F1(0,1),∴c=1,又b2=1,∴∴椭圆方程为: +x2=1.…(Ⅱ)F2(0,﹣1),由已知可知直线l1的斜率必存在,设直线l1:y=kx﹣1由消去y并化简得x2﹣4kx+4=0∵直线l1与抛物线C2相切于点A.∴△=(﹣4k)2﹣4×4=0,得k=±1.…∵切点A在第一象限.∴k=1…∵l∥l1∴设直线l的方程为y=x+m由,消去y整理得3x2+2mx+m2﹣2=0,…△=(2m)2﹣12(m2﹣2)>0,解得.设B(x1,y1),C(x2,y2),则,.…又直线l交y轴于D(0,m)∴…=当,即时,.…所以,所求直线l的方程为.…【点评】本题主要考查椭圆、抛物线的有关计算、性质,考查直线与圆锥曲线的位置关系,考查运算求解能力及数形结合和化归与转化思想.选修4-1几何证明选讲22.如图,AB为圆O的直径,CB是圆O的切线,弦AD∥OC.(Ⅰ)证明:CD是圆O的切线;(Ⅱ)AD与BC的延长线相交于点E,若DE=3OA,求∠AEB 的大小.【考点】与圆有关的比例线段;圆的切线的判定定理的证明.【专题】选作题;推理和证明.【分析】(Ⅰ)连接OD,由弦AD∥OC,易证得∠COB=∠COD,继而证得△COB≌△COD(SAS),即可得∠ODC=∠OBC,然后由BC与⊙O相切于点B,可得∠ODC=90°,即可证得CD是⊙O的切线.(Ⅱ)利用射影定理,求出AD,即可求∠AEB 的大小.【解答】(Ⅰ)证明:连接OD∵AD∥OC,∴∠A=∠COB,∠ADO=∠COD,∵OA=OD,∴∠A=∠ADO,∴∠COB=∠COD,在△COB和△COD中,OB=OD,∠COB=∠COD,OC=OC,∴△COB≌△COD(SAS),∴∠ODC=∠OBC,∵BC与⊙O相切于点B,∴OB⊥BC,∴∠OBC=90°,∴∠ODC=90°,即OD⊥CD,∴CD是⊙O的切线;(Ⅱ)解:设OA=1,AD=x,则AB=2,AE=x+3,由AB2=AD•AE得x(x+3)=4,∴x=1,∴∠OAD=60°,∠AEB=30°.【点评】此题考查了切线的判定与性质、全等三角形的判定与性质以及射影定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.选修4-4坐标系与参数方程23.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:(t为参数),C2:(θ为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ﹣2sinθ)=7距离的最小值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【专题】坐标系和参数方程.【分析】(Ⅰ)曲线C1:(t为参数),利用sin2t+cos2t=1即可化为普通方程;C2:(θ为参数),利用cos2θ+sin2θ=1化为普通方程.(Ⅱ)当t=时,P(﹣4,4),Q(8cosθ,3sinθ),故M,直线C3:ρ(cosθ﹣2sinθ)=7化为x﹣2y=7,利用点到直线的距离公式与三角函数的单调性即可得出.【解答】解:(Ⅰ)曲线C1:(t为参数),化为(x+4)2+(y﹣3)2=1,∴C1为圆心是(﹣4,3),半径是1的圆.C2:(θ为参数),化为.C2为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当t=时,P(﹣4,4),Q(8cosθ,3sinθ),故M,直线C3:ρ(cosθ﹣2sinθ)=7化为x﹣2y=7,M到C3的距离d==|5sin(θ+φ)+13|,从而当cossinθ=,sinθ=﹣时,d取得最小值.【点评】本题考查了参数方程化为普通方程、点到直线的距离公式公式、三角函数的单调性、椭圆与圆的参数与标准方程,考查了推理能力与计算能力,属于中档题.选修4-5不等式选讲24.已知函数f(x)=|x﹣2|,g(x)=﹣|x+3|+m.(1)解关于x的不等式f(x)+a﹣1>0(a∈R);(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值X围.【考点】绝对值不等式的解法;函数恒成立问题.【专题】计算题;压轴题.【分析】(1)不等式转化为|x﹣2|+|a﹣1>0,对参数a进行分类讨论,分类解不等式;(2)函数f(x)的图象恒在函数g(x)图象的上方,可转化为不等式|x﹣2|+|x+3|>m恒成立,利用不等式的性质求出|x﹣2|+|x+3|的最小值,就可以求出m的X围.【解答】解:(Ⅰ)不等式f(x)+a﹣1>0即为|x﹣2|+a﹣1>0,当a=1时,解集为x≠2,即(﹣∞,2)∪(2,+∞);当a>1时,解集为全体实数R;当a<1时,解集为(﹣∞,a+1)∪(3﹣a,+∞).(Ⅱ)f(x)的图象恒在函数g(x)图象的上方,即为|x﹣2|>﹣|x+3|+m对任意实数x恒成立,即|x﹣2|+|x+3|>m恒成立,又由不等式的性质,对任意实数x恒有|x﹣2|+|x+3|≥|(x﹣2)﹣(x+3)|=5,于是得m <5,故m的取值X围是(﹣∞,5).【点评】本题考查绝对值不等式的解法,分类讨论的方法,以及不等式的性质,涉及面较广,知识性较强.。

2024-2025学年贵州省部分学校高三上学期联考数学模拟试题(适合新高考2卷使用)含解析

2024-2025学年贵州省部分学校高三上学期联考数学模拟试题(适合新高考2卷使用)含解析

2024-2025学年贵州省部分学校高三上学期联考数学模拟试题(适合新高考2卷使用)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知线段是圆的一条长为的弦,则( )AB O 4⃗AO ⋅⃗AB =A. B. C. D. 468162.已知双曲线的焦距为,则该双曲线经过一、三象限的渐近线的斜率为( )x 23−y 2m 2=14A. B. C. D.333633933.贵州省的安顺黄果树瀑布、荔波小七孔、西江千户苗寨、赤水丹霞、兴义万峰林、铜仁梵净山组成了贵州文旅的拳头产品“黄小西吃晚饭”,也是水乡风貌最具代表的城镇,它们也拥有着历史文化底蕴、清丽婉约的水乡古镇风貌、古朴的吴侬软语民俗风情,在世界上独树一帜,驰名在外这六大景区中,其中在贵阳市周围有处小吴和家人计划今年暑假从这个景.3.6点中挑选个去旅游,则只选一个贵阳市周围的概率为( )2A. B. C. D. 253515454.形如我们称为“二阶行列式”,规定运算,若在复平面上的一个点对∣a b c d ∣∣a b c d ∣=ad−bc A 应复数为,其中复数满足,则点在复平面内对应坐标为( )z z ∣z 1−i 1+2i 1∣=i A A. B. C. D. (3,2)(2,3)(−2,3)(3,−2)5.已知等差数列的前项和为,命题:“,”,命题:“”,则命题{a n }n S n p a 5>0a 6>0q S 7>0是命题的( )p q A. 充要条件 B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件6.函数是定义在上的奇函数,且在区间上单调递增,若关于实数的不y =xf(x)R f(x)[0,+∞)t 等式恒成立,则的取值范围是( )f(log 3t)+f(log 13t)>2f(2)t A.B.C. D.(0,19)∪(9,+∞)(0,13)∪(3,+∞)(9,+∞)(0,19)7.九章算术中将四个面都是直角三角形的四面体称为鳖臑如图,在鳖臑中,《》.P−ABC 平面,,,以为球心,为半径的球面与侧面的PA ⊥ABC AB ⊥BC PA =AB =2BC =2C 3PAB 交线长为( )A.3π4B.2π4C.3π2D.2π28.已知函数,若在区间内恰好有个零ℎ(x)=cos 2x +asinx−12(a ≥12)ℎ(x)(0,nπ)(n ∈N ∗)2022点,则的取值可以为( )n A. B. C. D. 2025202410111348二、多选题:本题共3小题,共18分。

高三数学模拟试卷(八)文(含解析)-人教版高三全册数学试题

高三数学模拟试卷(八)文(含解析)-人教版高三全册数学试题

2016年某某省某某市东北育才学校高考数学模拟试卷(文科)(八)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.为了解某高级中学学生的体重状况,打算抽取一个容量为n的样本,已知该校高一、高二、高三学生的数量之比依次为4:3:2,现用分层抽样的方法抽出的样本中高三学生有10人,那么样本容量n为()A.50 B.45 C.40 D.202.若命题p:∃x0∈R,x02+1>3x0,则¬p是()A.∃x0∈R,x02+1≤3x0B.∀x∈R,x2+1≤3xC.∀x∈R,x2+1<3x D.∀x∈R,x2+1>3x3.设z=1+i(是虚数单位),则+=()A.1 B.﹣1 C.i D.﹣i4.已知集合A={﹣2,﹣1,0,1,2},B={x|x=(﹣1)n+n,n∈N},则A∩B=()A.{0,2} B.{0,1,2} C.{﹣2,0,1,2} D.{﹣2,﹣1,0,1,2}5.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一.”就是说:圆堡瑽(圆柱体)的体积为:V=×(底面的圆周长的平方×高).则由此可推得圆周率π的取值为()A.3 B.3.14 C.3.2 D.3.36.执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是()A.k≤6 B.k≤7 C.k≤8 D.k≤97.已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数 D.f(x)的值域为[﹣1,+∞)8.如图,在一个不规则多边形内随机撒入200粒芝麻(芝麻落到任何位置的可能性相等),恰有40粒落入半径为1的圆内,则该多边形的面积约为()A.4πB.5πC.6πD.7π9.已知不等式组的解集记为D,则对∀(x,y)∈D使得2x﹣y取最大值时的最优解是()A.(2,1)B.(2,2)C.3 D.410.若等比数列的各项均为正数,前4项的和为9,积为,则前4项倒数的和为()A.B.C.1 D.211.tan20°+4sin20°的值为()A.B.C.D.12.已知A,B分别为椭圆的左、右顶点,不同两点P,Q在椭圆C上,且关于x轴对称,设直线AP,BQ的斜率分别为m,n,则当取最小值时,椭圆C的离心率为()A.B.C.D.二.填空题:本大题共4小题,每小题5分.13.过原点作曲线y=e x的切线,则切线方程为.14.某一简单几何体的三视图如图,则该几何体的外接球的表面积为.15.在△ABC中,内角A、B、C的对边分别为a、b、c,且a=4,b=3,c=2,若点D为线段BC上靠近B的一个三等分点,则AD=.16.已知函数F(x)=e x满足F(x)=g(x)+h(x),且g(x),h(x)分别是R上的偶函数和奇函数,若∀x∈(0,2]使得不等式g(2x)﹣ah(x)≥0恒成立,则实数a的取值X 围是.三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程和演算步骤17.设数列{a n}的前n项和为S n,且2a n=S n+2.(Ⅰ)求{a n}的通项公式;(Ⅱ)设数列b n=,其前n项和为T n,求T n.18.在某学校一次考试的语文与历史成绩中,随机抽取了25位考生的成绩进行分析,25位考生的语文成绩已经统计在茎叶图中,历史成绩如下:(Ⅰ)请根据数据在茎叶图中完成历史成绩统计;(Ⅱ)请根据数据完成语文成绩的频数分布表及语文成绩的频率分布直方图;语文成绩的频数分布表:语文成绩分组[50,60)[60,70)[70,80)[80,90)[90,100)[100,110)[110,120]频数(Ⅲ)设上述样本中第i位考生的语文、历史成绩分别为x i,y i(i=1,2,…,25).通过对样本数据进行初步处理发现:语文、历史成绩具有线性相关关系,得到:=x i=86, =y i =64,(x i﹣)(y i ﹣)=4698,(x i﹣)2=5524,≈0.85.①求y关于x的线性回归方程;②并据此预测,当某考生的语文成绩为100分时,该生历史成绩.(精确到0.1分)附:回归直线方程的斜率和截距的最小二乘法估计公式分别为:==, =﹣.19.如图,在四棱锥P ﹣ABCD中,底面ABCD为矩形,PD⊥底面ABCD,E是AB上一点.已知PD=,CD=4,AD=.(Ⅰ)若∠ADE=,求证:CE⊥平面PDE;(Ⅱ)当点A到平面PDE的距离为时,求三棱锥A﹣PDE的侧面积.20.已知椭圆C: =1(a>b>0)的两焦点与短轴的一个端点的连线构成等边三角形,直线x+y+2﹣1=0与以椭圆C的右焦点为圆心,椭圆的长半轴为半径的圆相切.(1)求椭圆C的方程;(2)设点B,C,D是椭圆上不同于椭圆顶点的三点,点B与点D关于原点O对称,设直线CD,CB,OB,OC的斜率分别为k1,k2,k3,k4,且k1k2=k3k4.(i)求k1k2的值;(ii)求OB2+OC2的值.21.设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值X围.请从下面所给的22、23、24三题中选定一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.[选修4-1:几何证明选讲]22.如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,切点为A,PB交AC于点E,交⊙O于点D,PA=PE,∠ABC=45°,PD=1,DB=8.(1)求△ABP的面积;(2)求弦AC的长.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.[选修4-5:不等式选讲]24.已知函数f(x)=|x+2|﹣|x﹣1|.(Ⅰ)试求f(x)的值域;(Ⅱ)设若对∀s∈(0,+∞),∀t∈(﹣∞,+∞),恒有g(s)≥f(t)成立,试某某数a的取值X围.2016年某某省某某市东北育才学校高考数学模拟试卷(文科)(八)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.为了解某高级中学学生的体重状况,打算抽取一个容量为n的样本,已知该校高一、高二、高三学生的数量之比依次为4:3:2,现用分层抽样的方法抽出的样本中高三学生有10人,那么样本容量n为()A.50 B.45 C.40 D.20【考点】分层抽样方法.【分析】利用分层抽样性质求解.【解答】解:∵高一、高二、高三学生的数量之比依次为4:3:2,现用分层抽样的方法抽出的样本中高三学生有10人,∴由分层抽样性质,得:,解得n=45.故选:B.2.若命题p:∃x0∈R,x02+1>3x0,则¬p是()A.∃x0∈R,x02+1≤3x0B.∀x∈R,x2+1≤3xC.∀x∈R,x2+1<3x D.∀x∈R,x2+1>3x【考点】命题的否定.【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题.所以,命题p:∃x0∈R,x02+1>3x0,则¬p 是∀x∈R,x2+1≤3x,故选B.3.设z=1+i(是虚数单位),则+=()A.1 B.﹣1 C.i D.﹣i【考点】复数代数形式的乘除运算.【分析】利用复数的除法运算法则化简复数为a+bi的形式即可.【解答】解:z=1+i(是虚数单位),则+===1.故选:A.4.已知集合A={﹣2,﹣1,0,1,2},B={x|x=(﹣1)n+n,n∈N},则A∩B=()A.{0,2} B.{0,1,2} C.{﹣2,0,1,2} D.{﹣2,﹣1,0,1,2}【考点】交集及其运算.【分析】求出B中x的值确定出B,找出A与B的交集即可.【解答】解:∵A={﹣2,﹣1,0,1,2},B={x|x=(﹣1)n+n,n∈N}={0,1,2,…},∴A∩B={0,1,2},故选:B.5.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一.”就是说:圆堡瑽(圆柱体)的体积为:V=×(底面的圆周长的平方×高).则由此可推得圆周率π的取值为()A.3 B.3.14 C.3.2 D.3.3【考点】排序问题与算法的多样性.【分析】由题意,圆柱体底面的圆周长20尺,高4尺,利用圆堡瑽(圆柱体)的体积V=×(底面的圆周长的平方×高),求出V,再建立方程组,即可求出圆周率π的取值.【解答】解:由题意,圆柱体底面的圆周长20尺,高4尺,∵圆堡瑽(圆柱体)的体积V=×(底面的圆周长的平方×高),∴V=×=,∴∴π=3,R=,故选:A.6.执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是()A.k≤6 B.k≤7 C.k≤8 D.k≤9【考点】程序框图.【分析】根据程序框图,写出运行结果,根据程序输出的结果是S=3,可得判断框内应填入的条件.【解答】解:根据程序框图,运行结果如下:S k第一次循环 log23 3第二次循环 log23•log34 4第三次循环 log23•log34•log45 5第四次循环 log23•log34•log45•log56 6第五次循环 log23•log34•log45•log56•log67 7第六次循环 log23•log34•log45•log56•log67•log78=log28=3 8故如果输出S=3,那么只能进行六次循环,故判断框内应填入的条件是k≤7.故选B.7.已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数 D.f(x)的值域为[﹣1,+∞)【考点】函数的值域;函数单调性的判断与证明;函数奇偶性的判断.【分析】根据函数的性质分别进行判断即可.【解答】解:当x≤0时,f(x)=cos2x不是单调函数,此时﹣1≤cos2x≤1,当x>0时,f(x)=x4+1>1,综上f(x)≥﹣1,即函数的值域为[﹣1,+∞),故选:D8.如图,在一个不规则多边形内随机撒入200粒芝麻(芝麻落到任何位置的可能性相等),恰有40粒落入半径为1的圆内,则该多边形的面积约为()A.4πB.5πC.6πD.7π【考点】几何概型.【分析】由几何概型概率计算公式,以面积为测度,可求该阴影部分的面积.【解答】解:设该多边形的面积为S,则,∴S=5π,故选B.9.已知不等式组的解集记为D,则对∀(x,y)∈D使得2x﹣y取最大值时的最优解是()A.(2,1)B.(2,2)C.3 D.4【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).设z=2x﹣y,则y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.即,即C(2,1),故使得2x﹣y取最大值时的最优解是(2,1),故选:A.10.若等比数列的各项均为正数,前4项的和为9,积为,则前4项倒数的和为()A.B.C.1 D.2【考点】等比数列的前n项和.【分析】设此等比数列的首项为a1,公比为q,前4项之和为S,前4项之积为P,前4项倒数之和为M,由等比数列性质推导出P2=()4,由此能求出前4项倒数的和.【解答】解:∵等比数列的各项均为正数,前4项的和为9,积为,∴设此等比数列的首项为a1,公比为q前4项之和为S,前4项之积为P,前4项倒数之和为M,若q=1,则,无解;若q≠1,则S=,M==,P=a14q6,∴()4=(a12q3)4=a18q12,P2=a18q12,∴P2=()4,∵,∴前4项倒数的和M===2.故选:D.11.tan20°+4sin20°的值为()A.B.C.D.【考点】三角函数的化简求值.【分析】首先利用弦切互化公式及正弦的倍角公式对原式进行变形,再两次运用和差化积公式,同时结合正余弦互化公式,转化为特殊角的三角函数值,则问题解决.【解答】解:tan20°+4sin20°========2sin60°=.故选B.12.已知A,B分别为椭圆的左、右顶点,不同两点P,Q在椭圆C上,且关于x轴对称,设直线AP,BQ的斜率分别为m,n,则当取最小值时,椭圆C的离心率为()A.B.C.D.【考点】椭圆的简单性质.【分析】设P(x0,y0),则Q(x0,﹣y0),=.A(﹣a,0),B(a,0),利用斜率计算公式肯定:mn=,=++=,令=t>1,则f(t)=+﹣2lnt.利用导数研究其单调性即可得出.【解答】解:设P(x0,y0),则Q(x0,﹣y0),=.A(﹣a,0),B(a,0),则m=,n=,∴mn==,∴=++=,令=t>1,则f(t)=+﹣2lnt.f′(t)=+1+t﹣=,可知:当t=时,函数f(t)取得最小值=++﹣2ln=2+1﹣ln2.∴=.∴=.故选:D.二.填空题:本大题共4小题,每小题5分.13.过原点作曲线y=e x的切线,则切线方程为y=ex .【考点】利用导数研究曲线上某点切线方程.【分析】欲求切点的坐标,先设切点的坐标为( x0,e x0),再求出在点切点( x0,e x0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=x0处的导函数值,再结合导数的几何意义即可求出切线的斜率.最后利用切线过原点即可解决问题.【解答】解:y′=e x设切点的坐标为(x0,e x0),切线的斜率为k,则k=e x0,故切线方程为y﹣e x0=e x0(x﹣x0)又切线过原点,∴﹣e x0=e x0(﹣x0),∴x0=1,y0=e,k=e.则切线方程为y=ex故答案为y=ex.14.某一简单几何体的三视图如图,则该几何体的外接球的表面积为25π.【考点】由三视图求面积、体积.【分析】几何体为底面为正方形的长方体,底面对角线为4,高为3.则长方体的对角线为外接球的直径.【解答】解:几何体为底面为正方形的长方体,底面对角线为4,高为3,∴长方体底面边长为2.则长方体外接球半径为r,则2r==5.∴r=.∴长方体外接球的表面积S=4πr2=25π.故答案为:25π.15.在△ABC中,内角A、B、C的对边分别为a、b、c,且a=4,b=3,c=2,若点D为线段BC上靠近B的一个三等分点,则AD=.【考点】解三角形.【分析】利用余弦定理求出cosB,再利用余弦定理解出AD.【解答】解:在△ABC中,由余弦定理得cosB==.在△ABD中,BD==.由余弦定理得:AD2=BD2+AB2﹣2BD•AB•cosB=.∴AD=.故答案为:.16.已知函数F(x)=e x满足F(x)=g(x)+h(x),且g(x),h(x)分别是R上的偶函数和奇函数,若∀x∈(0,2]使得不等式g(2x)﹣ah(x)≥0恒成立,则实数a的取值X 围是.【考点】函数奇偶性的性质.【分析】根据函数的奇偶性求出g(x),h(x)的表达式,然后将不等式恒成立进行参数分离,利用基本不等式进行求解即可得到结论.【解答】解:∵函数F(x)=e x满足F(x)=g(x)+h(x),且g(x),h(x)分别是R上的偶函数和奇函数,∴e x=g(x)+h(x),e﹣x=g(x)﹣h(x),∴g(x)=,h(x)=.∵∀x∈(0,2]使得不等式g(2x)﹣ah(x)≥0恒成立,即﹣a•≥0恒成立,∴a≤==(e x﹣e﹣x)+,设t=e x﹣e﹣x,则函数t=e x﹣e﹣x在(0,2]上单调递增,∴0<t≤e2﹣e﹣2,此时不等式t+≥2,当且仅当t=,即t=时,取等号,∴a≤2,故答案为:.三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程和演算步骤17.设数列{a n}的前n项和为S n,且2a n=S n+2.(Ⅰ)求{a n}的通项公式;(Ⅱ)设数列b n=,其前n项和为T n,求T n.【考点】数列的求和;数列递推式.【分析】(Ⅰ)运用n=1时,a1=S1,当n≥2时,a n=S n﹣S n﹣1,结合等比数列的通项公式,计算即可得到所求;(Ⅱ)求得b n=﹣,运用数列的求和方法:裂项相消求和,化简整理即可得到所求和.【解答】解:(Ⅰ)当n=1时,由2a1=S1+2=a1+2,得a1=2.当n≥2时,由,以及a n=S n﹣S n﹣1,两式相减可得,则数列{a n}是首项为2,公比为2的等比数列,故;(Ⅱ)由(Ⅰ)可得,故其前n项和化简可得T n =﹣.18.在某学校一次考试的语文与历史成绩中,随机抽取了25位考生的成绩进行分析,25位考生的语文成绩已经统计在茎叶图中,历史成绩如下:(Ⅰ)请根据数据在茎叶图中完成历史成绩统计;(Ⅱ)请根据数据完成语文成绩的频数分布表及语文成绩的频率分布直方图;语文成绩的频数分布表:语文成绩分组[50,60)[60,70)[70,80)[80,90)[90,100)[100,110)[110,120]频数(Ⅲ)设上述样本中第i位考生的语文、历史成绩分别为x i,y i(i=1,2,…,25).通过对样本数据进行初步处理发现:语文、历史成绩具有线性相关关系,得到:=x i=86, =y i=64,(x i ﹣)(y i ﹣)=4698,(x i ﹣)2=5524,≈0.85.①求y关于x的线性回归方程;②并据此预测,当某考生的语文成绩为100分时,该生历史成绩.(精确到0.1分)附:回归直线方程的斜率和截距的最小二乘法估计公式分别为:==, =﹣.【考点】线性回归方程;茎叶图.【分析】(Ⅰ)根据所给数据,可得历史成绩的茎叶图;(Ⅱ)根据所给数据,可得语文成绩的频数分布表及语文成绩的频率分布直方图;(Ⅲ)求出a,b,可得y关于x的线性回归方程,并据此预测当某考生的语文成绩为100分时,该考生的历史成绩.【解答】解:(Ⅰ)根据题意,在茎叶图中完成历史成绩统计,如图所示;(Ⅱ)语文成绩的频数分布表;语文成绩分组[50,60﹚[60,70﹚[70,80﹚[80,90﹚[90,100﹚[100,110﹚[110,120]频数 1 2 3 7 6 5 1 语文成绩的频率分布直方图:;(Ⅲ)由已知得b=0.85,a=64﹣0.85×86=﹣9.1,∴y=0.85x﹣9.1,∴x=100时,y=75.9≈76,预测当某考生的语文成绩为100分时,该考生的历史成绩为76分.19.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,PD⊥底面ABCD,E是AB上一点.已知PD=,CD=4,AD=.(Ⅰ)若∠ADE=,求证:CE⊥平面PDE;(Ⅱ)当点A到平面PDE的距离为时,求三棱锥A﹣PDE的侧面积.【考点】直线与平面垂直的判定;棱柱、棱锥、棱台的体积.【分析】(Ⅰ)在Rt△DAE中,求出BE=3.在Rt△EBC中,求出∠CEB=.证明CE⊥DE.PD ⊥CE.即可证明CE⊥平面PDE.(Ⅱ)证明平面PDE⊥平面ABCD.过A作AF⊥DE于F,求出AF.证明BA⊥平面PAD,BA⊥PA.然后求出三棱锥A﹣PDE的侧面积S侧=++.【解答】(本小题满分12分)解:(Ⅰ)在Rt△DAE中,AD=,∠ADE=,∴AE=AD•tan∠ADE=•=1.又AB=CD=4,∴BE=3.在Rt△EBC中,BC=AD=,∴tan∠CEB==,∴∠CEB=.又∠AED=,∴∠DEC=,即CE⊥DE.∵PD⊥底面ABCD,CE⊂底面ABCD,∴PD⊥CE.∴CE⊥平面PDE.…(Ⅱ)∵PD⊥底面ABCD,PD⊂平面PDE,∴平面PDE⊥平面ABCD.如图,过A作AF⊥DE于F,∴AF⊥平面PDE,∴AF就是点A到平面PDE的距离,即AF=.在Rt△DAE中,由AD•AE=AF•DE,得AE=•,解得AE=2.∴S△APD=PD•AD=××=,S△ADE=AD•AE=××2=,∵BA⊥AD,BA⊥PD,∴BA⊥平面PAD,∵PA⊂平面PAD,∴BA⊥PA.在Rt△PAE中,AE=2,PA===,∴S△APE=PA•AE=××2=.∴三棱锥A﹣PDE的侧面积S侧=++.…20.已知椭圆C: =1(a>b>0)的两焦点与短轴的一个端点的连线构成等边三角形,直线x+y+2﹣1=0与以椭圆C的右焦点为圆心,椭圆的长半轴为半径的圆相切.(1)求椭圆C的方程;(2)设点B,C,D是椭圆上不同于椭圆顶点的三点,点B与点D关于原点O对称,设直线CD,CB,OB,OC的斜率分别为k1,k2,k3,k4,且k1k2=k3k4.(i)求k1k2的值;(ii)求OB2+OC2的值.【考点】直线与圆锥曲线的综合问题.【分析】(1)设出椭圆右焦点坐标,由题意可知,椭圆右焦点F2到直线x+y+2﹣1=0的距离为a,再由椭圆C的两焦点与短轴的一个端点的连线构成等边三角形得到a,b,c的关系,结合焦点F2到直线x+y+2﹣1=0的距离为a可解得a,b,c的值,则椭圆方程可求;(2)(i)由题意设B(x1,y1),C(x2,y2),则D(﹣x1,﹣y1),由两点求斜率公式可得是,把纵坐标用横坐标替换可得答案;(ii)由k1k2=k3k4.得到.两边平方后用x替换y可得.结合点B,C在椭圆上得到.则OB2+OC2的值可求.【解答】解:(1)设椭圆C的右焦点F2(c,0),则c2=a2﹣b2(c>0),由题意,以椭圆C的右焦点为圆心,以椭圆的长半轴长为半径的圆的方程为(x﹣c)2+y2=a2,∴圆心到直线x+y+2﹣1=0的距离①,∵椭圆C的两焦点与短轴的一个端点的连线构成等边三角形,∴,a=2c,代入①式得,,故所求椭圆方程为;(2)(i)设B(x1,y1),C(x2,y2),则D(﹣x1,﹣y1),于是=;(ii)由(i)知,,故.∴,即,∴.又=,故.∴OB2+OC2=.21.设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值X围.【考点】利用导数研究函数的极值;函数恒成立问题;函数的零点.【分析】(Ⅰ)m=e时,f(x)=lnx+,利用f′(x)判定f(x)的增减性并求出f(x)的极小值;(Ⅱ)由函数g(x)=f′(x)﹣,令g(x)=0,求出m;设φ(x)=m,求出φ(x)的值域,讨论m的取值,对应g(x)的零点情况;(Ⅲ)由b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;即h (x)=f(x)﹣x在(0,+∞)上单调递减;h′(x)≤0,求出m的取值X围.【解答】解:(Ⅰ)当m=e时,f(x)=lnx+,∴f′(x)=;∴当x∈(0,e)时,f′(x)<0,f(x)在(0,e)上是减函数;当x∈(e,+∞)时,f′(x)>0,f(x)在(e,+∞)上是增函数;∴x=e时,f(x)取得极小值为f(e)=lne+=2;(Ⅱ)∵函数g(x)=f′(x)﹣=﹣﹣(x>0),令g(x)=0,得m=﹣x3+x(x>0);设φ(x)=﹣x3+x(x>0),∴φ′(x)=﹣x2+1=﹣(x﹣1)(x+1);当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上是增函数,当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上是减函数;∴x=1是φ(x)的极值点,且是极大值点,∴x=1是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=;又φ(0)=0,结合y=φ(x)的图象,如图;可知:①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点;综上,当m>时,函数g(x)无零点;当m=或m≤0时,函数g(x)有且只有一个零点;当0<m<时,函数g(x)有两个零点;(Ⅲ)对任意b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;设h(x)=f(x)﹣x=lnx+﹣x(x>0),则h(b)<h(a).∴h(x)在(0,+∞)上单调递减;∵h′(x)=﹣﹣1≤0在(0,+∞)上恒成立,∴m≥﹣x2+x=﹣+(x>0),∴m≥;对于m=,h′(x)=0仅在x=时成立;∴m的取值X围是[,+∞).请从下面所给的22、23、24三题中选定一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.[选修4-1:几何证明选讲]22.如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,切点为A,PB交AC于点E,交⊙O于点D,PA=PE,∠ABC=45°,PD=1,DB=8.(1)求△ABP的面积;(2)求弦AC的长.【考点】与圆有关的比例线段.【分析】(1)利用圆的切线的性质,结合切割线定理,求出PA,即可求△ABP的面积;(2)由勾股定理得AE,由相交弦定理得EC,即可求弦AC的长.【解答】解:(1)因为PA是⊙O的切线,切点为A,所以∠PAE=∠ABC=45°,…又PA=PE,所以∠PEA=45°,∠APE=90°…因为PD=1,DB=8,所以由切割线定理有PA2=PD•PB=9,所以EP=PA=3,…所以△ABP的面积为BP•PA=…(2)在Rt△APE中,由勾股定理得AE=3…又ED=EP﹣PD=2,EB=DB﹣DE=8﹣2=6,所以由相交弦定理得EC•EA=EB•ED=12 …所以EC==2,故AC=5…[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.【考点】简单曲线的极坐标方程;直线与圆的位置关系.【分析】(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简即可得到此圆的极坐标方程.(II)由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.分别与圆的方程联立解得交点,再利用两点间的距离公式即可得出.【解答】解:(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.(II)如图所示,由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.联立,解得,即Q.联立,解得或.∴P.∴|PQ|==2.[选修4-5:不等式选讲]24.已知函数f(x)=|x+2|﹣|x﹣1|.(Ⅰ)试求f(x)的值域;(Ⅱ)设若对∀s∈(0,+∞),∀t∈(﹣∞,+∞),恒有g(s)≥f(t)成立,试某某数a的取值X围.【考点】函数恒成立问题;函数的值域.【分析】(1)将含有绝对值的函数转化为分段函数,再求分段函数的值域;(2)恒成立问题转化成最小值最大值问题,即g(x)min≥f(x)max.【解答】解:(Ⅰ)函数可化为,∴f(x)∈[﹣3,3](Ⅱ)若x>0,则,即当ax2=3时,,又由(Ⅰ)知∴f(x)max=3若对∀s∈(0,+∞),∀t∈(﹣∞,+∞),恒有g(s)≥f(t)成立,即g(x)min≥f(x)max,∴,∴a≥3,即a的取值X围是[3,+∞).。

贵州省贵阳市2024年数学(高考)统编版模拟(预测卷)模拟试卷

贵州省贵阳市2024年数学(高考)统编版模拟(预测卷)模拟试卷

贵州省贵阳市2024年数学(高考)统编版模拟(预测卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题已知集合,则为()A.B.C.D.第(2)题设是定义在R上的偶函数,且当时,.若对任意的,不等式恒成立,则实数a的最大值是()A.B.C.D.2第(3)题在等差数列中,若=4,=2,则=A.-1B.0C.1D.6第(4)题已知函数的图象关于点对称,则()A .在单调递增B .直线是曲线的一条对称轴C.曲线在点处的切线方程为D .是一个极值点第(5)题已知球是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)的外接球,,,点在线段上,且,过点作圆的截面,则所得截面圆面积的取值范围是A.B.C.D.第(6)题某学校举办作文比赛,共5个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为()A.B.C.D.第(7)题向量在正方形网格中的位置如图所示.若向量与共线,则实数()A.-2B.-1C.1D.2第(8)题已知直线分别于半径为1的圆O相切于点若点在圆O的内部(不包括边界),则实数的取值范围是A.B.C.D.二、多项选择题(本题包含3小题,每小题6分,共18分。

在每小题给出的四个选项中,至少有两个选项正确。

全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题已知函数,则()A.的定义域为B.是偶函数C.函数的零点为0D.当时,的最大值为第(2)题已知正方体的边长为2,点P,Q分别在正方形的内切圆,正方形的外接圆上运动,则()A.B.C.D.第(3)题已知,,且,则下列结论正确的是()A.的取值范围是B.的取值范围是C.的最小值是D.的最小值是3三、填空(本题包含3个小题,每小题5分,共15分。

请按题目要求作答,并将答案填写在答题纸上对应位置) (共3题)第(1)题牛顿选代法又称牛顿—拉夫逊方法,它是牛顿在世纪提出的一种在实数集上近似求解方程根的一种方法.具体步骤如下:设是函数的一个零点,任意选取作为的初始近似值,过点作曲线的切线,设与轴交点的横坐标为,并称为的次近似值;过点作曲线的切线,设与轴交点的横坐标为,称为的次近似值.一般的,过点作曲线的切线,记与轴交点的横坐标为,并称为的次近似值.设的零点为,取,则的次近似值为_____;设,数列的前项积为.若任意恒成立,则整数的最小值为_____.第(2)题已知双曲线的左、右焦点分别为,是双曲线一条渐近线上位于第二象限的一点,(为坐标原点),若线段交双曲线于点,且,则双曲线的离心率为___________.第(3)题能说明“若,的定义域上是增函数,则在上是增函数”为假命题的一组函数:______,______.四、解答题(本题包含5小题,共77分。

2020年贵州省高考数学(文科)模拟试卷(2) 含详细答案解析

2020年贵州省高考数学(文科)模拟试卷(2) 含详细答案解析

结论正确的是(

A .这 15 天日平均温度的极差为 15℃
B .连续三天日平均温度的方差最大的是 7 日, 8 日, 9 日三天
C.由折线图能预测 16 日温度要低于 19℃
D .由折线图能预测本月温度小于 25℃的天数少于温度大于 25℃的天数
6.( 5 分)已知 Sn 为等比数列 { an} 的前 n 项和, a5= 16,a3a4=﹣ 32,则 S8=(
??+ ??- 4 ≤ 0
13.( 5 分)设实数 x、y 满足条件 { ??- ??≥ 0 ,则 z=( x﹣ 3)2+(y ﹣2)2 的最小值为

??≥ 1
14.(5 分)已知函数 (f x)= lnx+x2,则曲线 y=(f x)在点( 1,(f 1))处的切线方程为

15.( 5 分)数列 { an} 通项公式为
C.(﹣∞, 1)∪( 3,+∞)
D.( 1, 3)
??
2.( 5 分)已知复数 z 在复平面内对应的点的坐标为(﹣ 1, 2),则
=( )
1+??
A .-
3 2
+
3 2
??
B.-
3 2
+
1 2
??
C. -
1 2
+
3 2
??
13 D. + ??
22
3.( 5
分)已知
?→?,

??是平面向量,满足


2020 年贵州省高考数学(文科)模拟试卷( 2)
一.选择题(共 12 小题,满分 60 分,每小题 5 分)
1.( 5 分)已知集合 A= { x|x2﹣2x﹣ 3< 0} ,集合 B= { x|x﹣1≥ 0} ,则 ?R( A∩B)=(

2023年贵州省天之王教育高考数学模拟试卷(二)(理科)+答案解析(附后)

2023年贵州省天之王教育高考数学模拟试卷(二)(理科)+答案解析(附后)

2023年贵州省天之王教育高考数学模拟试卷(二)(理科)1. 已知集合,,则( )A. B. C. D.2. 若复数在复平面内对应的点位于第一象限,则实数a的取值范围是( )A. B. C. D.3. 已知在平行四边形ABCD中,E,F分别是边CD,BC的中点,则( )A. B. C. D.4. 若,则( )A. B. C. D.5. 设,,,则a,b,c的大小关系是( )A. B. C. D.6. 已知偶函数在上单调递增,则的解集是( )A. B. C. D.7. 如图,在直三棱柱中,,,,则异面直线BD与AE所成角的余弦值为( )A. B. C. D.8. 数学竞赛小组有4位同学,指导老师布置了4道综合题,要求每位同学只做其中1道题,则“每位同学所做题目各不相同”的概率为( )A. B. C. D.9. 一个空间几何体的三视图如图所示,则该几何体的体积是( )A. B. C. D.10. 函数在上零点的个数为( )A. 3B. 4C. 5D. 611. 已知抛物线C:的焦点为F,过F的直线l与抛物线C交于A,B两点,若,则( )A. 9B. 7C. 6D. 512. 如图,为了在两座山之间的一条河流上面修建一座桥,勘测部门使用无人机测量得到如下数据:无人机P距离水平地面的高度为h,A,B两点的俯角分别为,则下列求A,B 两点间的距离的表达式中,错误的是( )A. B.C. D.13. 半径为2且与x轴y轴都相切的圆的标准方程为______ 写出一个符合题意的方程即可14. 若实数x,y满足则的最小值是______ .15. 若不等式对任意恒成立,则实数a的取值范围是______ .16. 双曲线的右焦点为F,过点F的直线与双曲线C的右支交于A,B两点,点A关于原点O的对称点为P,,且,则双曲线C 的离心率为______ .17. 已知在等差数列中,,求数列的通项公式;设是数列的前n项和,求18. 近年我国新能源产业的发展取得了有目共睹的巨大成果年国务院在正式发布的《新能源汽车产业发展规划年》中提出,到2025年,新能源汽车新车销售量达到汽车新车销售总量的左右.力争经过15年的持续努力,使纯电动汽车成为新销售车辆的主流.在此大背景下,某市新能源汽车保有量持续增加,有关部门将该市从2018年到2022年新能源汽车保有量单位:万辆作了统计,得到y与年份代码如代表2018年的统计表如下所示.t12345y46请通过计算相关系数r说明y与t具有较强的线性相关性;若,则变量间具有较强的线性相关性求出线性回归方程,并预测2023年新能源汽车的保有量.参考公式:相关系数;回归方程中斜率和截距的最小二乘估计公式分别为,参考数据:,,,19. 在三棱台中,平面ABC,,,,M为AC的中点.证明:平面;求平面与平面所成锐二面角的余弦值.20. 已知椭圆的一个焦点为,且点F到C的左、右顶点的距离之积为求椭圆C的标准方程;过点F作斜率乘积为的两条直线,,与C交于A,B两点,与C交于D,E 两点,线段AB,DE的中点分别为M,证明:直线MN与x轴交于定点,并求出定点坐标.21. 已知函数,,若曲线与曲线在上有一个公共点P,且存在以P为切点的公共切线,求a的值;若曲线与曲线在上有两个公共点,求a的取值范围.22. 在平面直角坐标系xOy中,直线l的参数方程为为参数以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为求圆C的普通方程与直线l的直角坐标方程;已知点,直线l与圆C交于A,B两点,求的值.23. 已知函数若对,恒成立,求实数k的取值范围;当时,记的最小值为m,且正数a,b满足,求的最小值.答案和解析1.【答案】A【解析】解:集合,,则故选:求出集合A,利用交集定义能求出本题考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.【答案】C【解析】解:若复数在复平面内对应的点位于第一象限,则,解得,故实数a的取值范围是故选:根据已知条件,结合复数的几何意义,即可求解.本题主要考查复数的几何意义,属于基础题.3.【答案】D【解析】解:在平行四边形ABCD中,E,F分别是边CD,BC的中点,,错误,D正确.故选:利用平面向量的线性运算,平面向量基本定理求解即可.本题考查平面向量的线性运算,平面向量基本定理,属于基础题.4.【答案】D【解析】解:若,则故选:由已知结合二倍角的正切公式即可求解.本题主要考查了二倍角的正切公式,属于基础题.5.【答案】B【解析】解:,,故故选:由已知先分别确定a,b,c的范围即可比较a,b,c的大小.本题主要考查了函数的单调性在函数值大小比较中的应用,属于基础题.6.【答案】D【解析】解:因为偶函数在上单调递增,故函数在上单调递减,由可得,解得故选:由已知结合函数的奇偶性及单调性即可求解不等式.本题主要考查了函数的单调性及奇偶性在不等式求解中的应用,属于基础题.7.【答案】C【解析】解:如图,连接BF,,或其补角为异面直线BD与AE所成的角,根据题意知,,,且,,,且,在中,根据余弦定理得:故选:可连接BF,从而可得出或其补角为异面直线BD与AE所成的角,然后根据三棱柱为直三棱柱可得出,,然后可求出BD和EF,DF的值,然后根据余弦定理即可求出的值.本题考查了直三棱柱的定义,勾股定理,余弦定理,异面直线所成角的定义,考查了计算能力,属于基础题.8.【答案】B【解析】解:数学竞赛小组有4位同学,指导老师布置了4道综合题,要求每位同学只做其中1道题,基本事件总数,“每位同学所做题目各不相同”包含的基本事件个数,则“每位同学所做题目各不相同”的概率为故选:基本事件总数,“每位同学所做题目各不相同”包含的基本事件个数,由此能求出“每位同学所做题目各不相同”的概率.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.9.【答案】D【解析】解:由三视图知,该几何体是上底面直径为2,下底面直径为4,高为3的圆台,截去部分的组合体,则该几何体的体积是故选:由三视图知该几何体是圆台,截去部分的剩余组合体,由此求出该几何体的体积.本题考查了空间几何体三视图应用问题,是基础题.10.【答案】C【解析】解:函数,可得,可得或,,可得,或,,因为,所以,,可得,0,;,,可得,,故函数在上零点的个数为5,故选:通过求解三角方程,推出x的解,结合x的范围,求解方程解的个数,可得结论.本题主要考查函数的零点的定义,正弦函数的图象,属于中档题.11.【答案】A【解析】解:由题意直线l的斜率必存在,抛物线C:的焦点为,设直线l:,则,得,设,,则,,又,则,,,故选:由题意直线l的斜率必存在,设直线l:,直线与抛物线联立后利用韦达定理得到,,,代入弦长公式即可求解.本题考查了直线与抛物线的综合应用,属于中档题.12.【答案】C【解析】解:如图所示:设点P在AB上的射影为C,设,A,B两点的俯角分别为,故,,所以,故,故A正确;由于,故B正确;在中,由于,,,利用余弦定理:,整理得:,故C错误,D正确.故选:直接利用解三角形知识中的三角函数关系式的变换及余弦定理判断A、B、C、D的结论.本题考查的知识要点:三角函数的关系式的变换,余弦定理,主要考查学生的理解能力和计算能力,属于中档题.13.【答案】【解析】解:半径为2且与x轴y轴都相切的一个圆的标准方程为故答案为:由已知可得圆的圆心坐标与半径,则圆的标准方程可求.本题考查圆的标准方程,是基础题.14.【答案】1【解析】解:由约束条件作出可行域,如图所示:由可得,,由图可知,当直线平移到与直线重合时,在y轴上的截距最小,此时z的值最小,所以z的最小值为故答案为:作出不等式组对应的平面区域,由可得,利用数形结合即可得到结论.本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.15.【答案】【解析】解:因为,所以,令,则,故不等式对任意恒成立,可以转化为:对任意恒成立,即在上恒成立,令,则,故时,,函数递减,时,,函数递增,所以:实数a的取值范围是:故答案为:根据已知条件转化为对任意恒成立,进而转化求解的最大值即可.本题考查了导数的综合应用及恒成立问题,属于中档题.16.【答案】【解析】解:设左焦点为,,易知四边形为矩形,设AB直线的倾斜角为,则根据双曲线倾斜角的焦半径公式可得:,又,,,又,,,,,又,在中,由勾股定理可得:,,故答案为:设左焦点为,则易知四边形为矩形,设AB直线的倾斜角为,则根据双曲线倾斜角的焦半径公式可得,又,从而可得,,再在中,由勾股定理,即可求解.本题考查双曲线的几何性质,双曲线倾斜角的焦半径公式的应用,勾股定理的应用,化归转化思想,属中档题.17.【答案】解:由题意,设等差数列的公差为d,则,化简整理,得,解得,,由题意及可得,当,即时,解得,当,即时,解得,则,【解析】先设等差数列的公差为d,再根据题干已知条件列出关于首项与公差d的方程组,解出与d的值,即可计算出等差数列的通项公式;先根据第题的结果将等差数列的通项公式与0比较大小,判断数列各项的正负性,在求数列的前30项和时先逐项代入,然后根据分组求和法,以及等差数列的求和公式即可推导出数列的前30项和.本题主要考查等差数列的基本运算,以及绝对值数列的求和问题.考查了方程思想,整体思想,转化与化归思想,不等式的运算,差数列求和公式的运用,以及逻辑推理能力和数学运算能力,属中档题.18.【答案】解:,,,,与t具有较强的线性相关性;,,,关于t的线性回归方程为,取,可得预测2023年新能源汽车的保有量为万辆.【解析】由已知结合相关系数公式求得r值,结合题意得结论;求出线性回归方程,取求得的值即可.本题考查相关系数与线性回归方程的求法,考查运算求解能力,是基础题.19.【答案】证明:平面ABC,平面,平面平面ABC,,M为AC的中点,,平面平面,平面,平面,,,由三棱台可得,又,M为AC的中点,,四边形是正方形,,又,平面;解:由题意可得AC,BM,两两垂直,以M为坐标原点,MA,MB,为坐标轴建立空间直角坐标系,设,则,,,,,则,,,,设平面的一个法向量为,,令,则,平面的一个法向量为,设平面的一个法向量为,,令,则,平面的一个法向量为,,平面与平面所成锐二面角的余弦值为【解析】由已知可证平面,进而再证四边形是正方形,进而可证平面;以M为坐标原点,MA,MB,为坐标轴建立空间直角坐标系,求得平面与平面的一个法向量,可求平面与平面所成锐二面角的余弦值.本题考查线面垂直的证明,考查面面角的求法,属中档题.20.【答案】解:由题意,且,即,可得,所以椭圆的标准方程为:;证明:由题意可得直线,互相垂直,且斜率存在又不为0,设直线的方程为,设,,联立,整理可得:,可得,,所以AB的中点,同理可得,即,当时,M,N的横坐标相同,则M,N的横坐标为,这时直线MN与x轴的交点为,当时,则直线MN的斜率,所以直线MN的方程为:,令,因为,可得,综上所述:可证得直线MN恒过定点【解析】由椭圆的焦点可知c的值,再由焦点到左右顶点的距离之积可得b的值,进而求出a 的值,求出椭圆的方程;由题意可得直线,互相垂直,且斜率存在又不为0,设直线的方程,与椭圆的方程联立,可得两根之和,求出AB的中点M的坐标,同理可得N的坐标,当M,N的横坐标相等时,可得它们的横坐标,即求出与x轴的坐标,当M,N的横坐标不相等时,求出直线MN的方程,令,可得直线MN与x轴的交点为定值,即证得结论成立.本题考查椭圆方程的求法及直线与椭圆的综合应用,直线恒过定点的求法,属于中档题.21.【答案】解:设,则,所以,所以存在,使得,因为,存在以点P为切点的公切线,所以,又,,所以,所以,由可得或,当时,,当时,代入,可得,所以,所以,所以,若,则,所以,令,,,令得,所以在上,单调递减,在上,单调递增,所以,所以方程,无解,所以舍去,所以,因为曲线与曲线在上有两个公共点,所以方程在上有两个根,即在上有两个根,设,,则有两个零点,函数,,令,则,令,,则有两个零点,,当时,令,得,所以只有一个零点,不合题意,当时,,当时,,单调递增,当时,,单调递减,所以在处取得极小值也是最小值,所以,要使得有两个零点,则,所以,所以,当时,令得,,所以当时,,单调递增,当时,,单调递减,当时,,单调递增,,,所以,所以,由知方程无解,当时,,所以在上单调递增,所以至多有一个零点,当时,,所以,所以,所以无解,综上所述,a 的取值范围为【解析】设,则,即存在,使得,由,存在以点P 为切点的公切线,得,则,解方程组,即可得出答案.因为曲线与曲线在上有两个公共点,则在上有两个根,设,,则有两个零点,进而可得答案.本题考查导数的综合应用,解题中需要理清思路,属于难题.22.【答案】解:圆C 的极坐标方程为,根据,转换为直角坐标方程为:,由消去t 得直线l 的直角坐标方程为:;将直线l 的参数方程为参数代入圆的直角坐标方程,整理得,设,是方程的两根,由韦达定理可知,,,,设,【解析】将代入圆的极坐标方程即可得出圆的普通方程为:,由直线的参数方程消去t即可得出直线的直角坐标方程;将直线的参数方程代入到圆的普通方程可得出,然后根据韦达定理可得出,然后设,然后根据两点间距离公式即可求出的值.本题考查了圆的极坐标方程和普通方程的转化,两点间的距离公式,韦达定理,考查了计算能力,属于中档题.23.【答案】解:对,恒成立,即,所以或,解得或,所以实数k的取值范围是;当时,,所以的最小值为,所以,所以,当且仅当,即,时取“=”,所以的最小值是【解析】利用绝对值不等式求出函数,再列不等式求出实数k的取值范围;求出时的最小值,代入利用基本不等式求解即可.本题考查了基本不等式与绝对值不等式的应用问题,是中档题.。

2016届贵州省贵阳市高考数学二模试卷(文科)(解析版

2016届贵州省贵阳市高考数学二模试卷(文科)(解析版

2016届贵州省贵阳市高考数学二模试卷(文科)(解析版贵州省贵阳市2016年高考数学二模试卷(文科)(解析版)参考答案与试题解析一、选择题:本大题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x<3},B={x|log2x>0},则A∩B=()A.{x|1<x<3}B.{x|1≤x<3}C.{x|x<3}D.{x|x≤1}【分析】由对数的运算性质及对数函数的单调性求出集合B中x的范围,确定出集合B,找出A与B的公共部分,即可求出两集合的交集.【解答】解:由集合B中的log2x>0=log21,得到x>1,∴B={x|x>1},又A={x|x<3},∴A∩B={x|1<x<3}.故选A【点评】此题考查了交集及其运算,对数的运算性质,以及对数函数的单调性,比较简单,是一道基本题型.2.复数z=(2﹣i)2在复平面内对应的点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】利用复数的运算、几何意义即可得出.【解答】解:复数z=(2﹣i)2=3﹣4i在复平面内对应的点(3,﹣4)所在的象限是第四象限.故选:D.【点评】本题考查了复数的运算、几何意义,属于基础题.3.二次函数f(x)=2x2+bx﹣3(b∈R)零点的个数是()A.0B.1C.2D.4【分析】根据二次函数的判别式大于零,可得函数零点的个数.【解答】解:∵二次函数f(x)=2x2+bx﹣3的判别式△=b2+24>0,故二次函数f(x)=2x2+bx﹣3的零点个数为2,故选:C.【点评】本题主要考查二次函数的性质,函数的零点的定义,属于基础题.4.圆x2+y2=1与直线y=kx+2没有公共点的充要条件是()A.B.C.D.【分析】当圆心到直线的距离大于半径时,直线与圆没有公共点,这是充要条件.【解答】解:依题圆x2+y2=1与直线y=kx+2没有公共点故选C.【点评】本小题主要考查直线和圆的位置关系;也可以用联立方程组,△<0来解;是基础题.5.△ABC的内角A、B、C对边分别为a,b,c且满足==,则=()A.﹣B.C.D.﹣【分析】直接利用正弦定理化简求解即可.【解答】解:△ABC的内角A、B、C对边分别为a,b,c,令===t,可得a=6t,b=4t,c=3t.由正弦定理可知:===﹣.故选:A.【点评】本题考查正弦定理的应用,考查计算能力.6.如图,给出的是计算1+++…++的值的一个程序框图,判断框内应填入的条件是()【解答】解:约束条件的可行域如图阴影部分:函数y=kx中,k的几何意义是经过坐标原点的直线的斜率,由题意可知:直线经过可行域的A时,k取得最大值,由解得A(1,2).K的最大值为:2.故选:B.【点评】本题考查线性规划的简单应用,直线的斜率的最值,考查计算能力.8.过点M(2,0)作圆x2+y2=1的两条切线MA,MB(A,B为切点),则=()A.B.C.D.【分析】根据直角三角形中的边角关系,求得MA、MB的值以及∠AMO=∠BMO的值,再利用两个向量的数量积的定义求得的值.【解答】解:由圆的切线性质可得,OA⊥MA,OB⊥MB.直角三角形OAM、OBM中,由sin∠AMO=sin∠BMO==,可得∠AMO=∠BMO=,MA=MB===,∴=×cos=,故选D.【点评】本题主要考查直角三角形中的边角关系,两个向量的数量积的定义,属于中档题.9.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()A.B.C.D.【分析】根据三视图的特点,知道左视图从图形的左边向右边看,看到一个正方形的面,在面上有一条对角线,对角线是由左下角都右上角的线,得到结果.【解答】解:被截去的四棱锥的三条可见棱中,在两条为长方体的两条对角线,它们在右侧面上的投影与右侧面(长方形)的两条边重合,另一条为体对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图,只有D符合.故选D.【点评】本题考查空间图形的三视图,考查侧视图的做法,本题是一个基础题,考查的内容比较简单,可能出现的错误是对角线的方向可能出错.10.函数f(x)=Asin(ωx+)(A>0,ω>0)的图象与x轴的交点的横坐标构成一个公差为的等差数列,要得到函数g(x)=Acosωx的图象,只需将f(x)的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【分析】由题意可得可得函数的周期为π,即=π,求得ω=2,可得f(x)=Asin(2x+).再根据函数y=Asin(ωx+φ)的图象变换规律得出结论.【解答】解:根据函数f(x)=Asin(ωx+)(ω>0)的图象与x轴的交点的横坐标构成一个公差为的等差数列,可得函数的周期为π,即:=π,∴ω=2,∴f(x)=Asin(2x+).再由函数g(x)=Acos2x=Asin(2x+)=Asin[2(x+)+],故把f(x)=Asin(2x+)的图象向左平移个单位,可得函数g(x)=Acos2x=Asin[2(x+)+]的图象,故选:A.【点评】本题主要考查等差数列的定义和性质,函数y=Asin(ωx+φ)的图象变换规律,属于中档题.11.过点(﹣1,0)作抛物线y=x2+x+1的切线,则其中一条切线为()A.2x+y+2=0B.3x﹣y+3=0C.x+y+1=0D.x﹣y+1=0【分析】这类题首先判断某点是否在曲线上,(1)若在,直接利用导数的几何意义,求函数在此点处的斜率,利用点斜式求出直线方程(2)若不在,应首先利用曲线与切线的关系求出切点坐标,进而求出切线方程.此题属于第二种.【解答】解:y'=2x+1,设切点坐标为(x0,y0),则切线的斜率为2x0+1,且y0=x02+x0+1于是切线方程为y﹣x02﹣x0﹣1=(2x0+1)(x﹣x0),因为点(﹣1,0)在切线上,可解得x0=0或﹣2,当x0=0时,y0=1;x0=﹣2时,y0=3,这时可以得到两条直线方程,验正D正确.故选D【点评】函数y=f(x)在x=x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,y0)处的切线的斜率,过点P的切线方程为:y﹣y0=f′(x0)(x﹣x0)12.抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=90°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最大值为()A.B.C.1D.【分析】设|AF|=a,|BF|=b,由抛物线定义,2|MN|=a+b.再由勾股定理可得|AB|2=a2+b2,进而根据基本不等式,求得|AB|的范围,即可得到答案.【解答】解:设|AF|=a,|BF|=b,由抛物线定义,得AF|=|AQ|,|BF|=|BP|在梯形ABPQ中,∴2|MN|=|AQ|+|BP|=a+b.由勾股定理得,|AB|2=a2+b2配方得,|AB|2=(a+b)2﹣2ab,又ab≤,∴(a+b)2﹣2ab≥(a+b)2﹣2,得到|AB|≥(a+b).∴≤=,即的最大值为.故选A.【点评】本题主要考查抛物线的应用和解三角形的应用,考查基本不等式,考查了计算能力、分析问题和解决问题的能力.二、填空题:本大题共4小题,每小题5分。

湖南省高考数学模拟试卷(四)文(含解析)-人教版高三全册数学试题

湖南省高考数学模拟试卷(四)文(含解析)-人教版高三全册数学试题

2016年某某省高考数学模拟试卷(文科)(四)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设复数z满足1+z=(1﹣z)i,则|z|=()A.B.1 C.D.22.设全集为R,集合A={x|x2﹣9<0},B={x|﹣1<x≤5},则A∩(∁R B)=()A.(﹣3,0)B.(﹣3,﹣1) C.(﹣3,﹣1] D.(﹣3,3)3.已知,则a,b,c的大小关系是()A.a>c>b B.c>a>b C.a>b>c D.c>b>a4.阅读如图的程序框图,运行相应的程序,则输出S的值为()A.﹣10 B.6 C.14 D.185.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,86.已知等差数列{a n}前四项中第二项为606,前四项和S n为3834,则该数列第4项为()A.2004 B.3005 C.2424 D.20167.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.88.已知向量满足,,,则与的夹角为()A.B.C.D.9.已知圆C:x2+y2﹣4x﹣4y=0与x轴相交于A,B两点,则弦AB所对的圆心角的大小()A.B.C.D.10.将的图象上各点的横坐标缩短到原来的一半,纵坐标不变,再将图象上所有点向左平移个单位,则所得函数图象的一条对称轴为()A.B.C.D.11.已知四面体P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=AB,若四面体P﹣ABC的体积为,则该球的体积为()A.B.2πC.D.12.已知双曲线﹣=1 (a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.曲线y=e﹣x+1在点(0,2)处的切线与直线y=0和x=0围成三角形的面积为.14.已知等比数列{a n}中,a3+a5=8,a1a5=4,则=.15.若不等式组表示的平面区域为三角形,且其面积等于,则m的值为.16.已知函数,若|f(x)|≥ax,则a的取值X围是.三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.18.某城市100户居民的月平均用电量(单位:度)以[160,180),[180,200),[200,220),[220,240)[240,260),[260,280),[280,300]分组的频率分布直方图如图(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则越平均用电量在[220,240)的用户中应抽取多少户?19.在边长为5的菱形ABCD中,AC=8,现沿对角线BD把△ABD折起,折起后使∠ADC的余弦值为.(1)求证:平面ABD⊥平面CBD;(2)若M是AB的中点,求三棱锥A﹣MCD的体积.20.已知抛物线C1:x2=4y的焦点F也是椭圆C2: +=1(a>b>0)的一个焦点,C1与C2的公共弦的长为2,过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且与同向.(Ⅰ)求C2的方程;(Ⅱ)若|AC|=|BD|,求直线l的斜率.21.已知函数f(x)=lnx﹣.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)证明;当x>1时,f(x)<x﹣1;(Ⅲ)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x0)时,恒有f(x)>k (x﹣1).四.请考生在第(22)、(23)(24)三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.[选修4-1几何证明选讲]22.如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.(Ⅰ)求证:AD∥EC;(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.[选修4-4坐标系与参数方程]23.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)若圆C的参数方程为(α为参数),试判断直线l与圆C的位置关系.[选修4-5不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣3|+|x﹣a|.(Ⅰ)当a=1时,求不等式f(x)<4的解集;(Ⅱ)设函数f(x)的最小值为g(a),求g(a)的最小值.2016年某某省高考数学模拟试卷(文科)(四)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设复数z满足1+z=(1﹣z)i,则|z|=()A.B.1 C.D.2【考点】复数求模.【专题】转化思想;综合法;数系的扩充和复数.【分析】由1+z=(1﹣z)i,可得z=,再利用复数的运算法则、共轭复数的定义、模的计算公式即可得出.【解答】解:∵1+z=(1﹣z)i,∴z====i,则|z|=1.故选:B.【点评】本题考查了复数的运算法则、共轭复数的定义、模的计算公式,考查了推理能力与技能数列,属于基础题.2.设全集为R,集合A={x|x2﹣9<0},B={x|﹣1<x≤5},则A∩(∁R B)=()A.(﹣3,0)B.(﹣3,﹣1) C.(﹣3,﹣1] D.(﹣3,3)【考点】交、并、补集的混合运算.【专题】集合.【分析】根据补集的定义求得∁R B,再根据两个集合的交集的定义,求得A∩(∁R B).【解答】解:∵集合A={x|x2﹣9<0}={x|﹣3<x<3},B={x|﹣1<x≤5},∴∁R B={x|x≤﹣1,或 x>5},则A∩(∁R B)={x|﹣3<x≤﹣1},故选:C.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.3.已知,则a,b,c的大小关系是()A.a>c>b B.c>a>b C.a>b>c D.c>b>a【考点】对数值大小的比较.【专题】转化思想;综合法;函数的性质及应用.【分析】根据指数的运算求出a的X围,根据对数的运算性质得到b,c的X围,比较即可.【解答】解: ==>2,<0,0<<1,即a>2,b<0,0<c<1,即a>c>b,故选:A.【点评】本题考查了指数以及对数的运算性质,是一道基础题.4.阅读如图的程序框图,运行相应的程序,则输出S的值为()A.﹣10 B.6 C.14 D.18【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的i,S的值,当i=8时满足条件i>5,退出循环,输出S的值为6.【解答】解:模拟执行程序框图,可得S=20,i=1i=2,S=18不满足条件i>5,i=4,S=14不满足条件i>5,i=8,S=6满足条件i>5,退出循环,输出S的值为6.故选:B.【点评】本题主要考查了循环结构的程序框图,正确写出每次循环得到的i,S的值是解题的关键,属于基础题.5.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,8【考点】茎叶图.【专题】概率与统计.【分析】求乙组数据的平均数就是把所有乙组数据加起来,再除以5.找甲组数据的中位数要把甲组数据按从小到大的顺序排列,位于最中间的一个数为中位数.据此列式求解即可.【解答】解:乙组数据平均数=(9+15+18+24+10+y)÷5=16.8;∴y=8;甲组数据可排列成:9,12,10+x,24,27.所以中位数为:10+x=15,∴x=5.故选:C.【点评】本题考查了中位数和平均数的计算.平均数是指在一组数据中所有数据之和再除以数据的个数.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.6.已知等差数列{a n}前四项中第二项为606,前四项和S n为3834,则该数列第4项为()A.2004 B.3005 C.2424 D.2016【考点】等差数列的前n项和;等差数列的通项公式.【专题】等差数列与等比数列.【分析】根据等差数列前n项和公式和通项公式之间的关系进行推导即可.【解答】解:已知a2=606,S4=3834,则S3=a1+a2+a3=3a2=1818即a4=S4﹣S3=3834﹣1818=2016,故选:D【点评】本题主要考查等差数列的前n项和公式和通项公式的应用,比较基础.7.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.8【考点】由三视图求面积、体积.【专题】立体几何.【分析】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.【点评】本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题.8.已知向量满足,,,则与的夹角为()A.B.C.D.【考点】数量积表示两个向量的夹角.【专题】平面向量及应用.【分析】设与的夹角为θ,由数量积的定义代入已知可得cosθ,进而可得θ【解答】解:设与的夹角为θ,∵,,,∴=||||cosθ=1×2×cosθ=,∴cosθ=﹣,∴θ=故选:D【点评】本题考查数量积与向量的夹角,属基础题.9.已知圆C:x2+y2﹣4x﹣4y=0与x轴相交于A,B两点,则弦AB所对的圆心角的大小()A.B.C.D.【考点】直线与圆的位置关系.【专题】综合题;直线与圆.【分析】根据条件令x=0,求出AB的长度,结合三角形的勾股定理求出三角形ACB是直角三角形即可得到结论.【解答】解:当y=0时,得x2﹣4x=0,解得x=0或x=4,则AB=4﹣0=4,半径R=2,∵CA2+CB2=(2)2+(2)2=8+8=16=(AB)2,∴△ACB是直角三角形,∴∠ACB=90°,即弦AB所对的圆心角的大小为90°,故选:C.【点评】本题主要考查圆心角的求解,根据条件求出先AB的长度是解决本题的关键.10.将的图象上各点的横坐标缩短到原来的一半,纵坐标不变,再将图象上所有点向左平移个单位,则所得函数图象的一条对称轴为()A.B.C.D.【考点】正弦函数的图象.【专题】三角函数的图像与性质.【分析】由条件利用y=Asin(ωx+φ)的图象变换规律,可得所得图象对应的函数解析式,再根据正弦函数的图象的对称性,求得所得函数图象的一条对称轴.【解答】解:将的图象上各点的横坐标缩短到原来的一半,纵坐标不变,可得函数y=sin(2x+)的图象;再把所得图象象左平移个单位,则所得函数图象对应的解析式为y=sin[2(x+)+]=sin(2x+),令2x+=kπ+,求得 x=﹣,k∈z,故所得函数的图象的对称轴方程为 x=﹣,k∈z.结合所给的选项,故选:A.【点评】本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.11.已知四面体P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=AB,若四面体P﹣ABC的体积为,则该球的体积为()A.B.2πC.D.【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】设该球的半径为R,则AB=2R,2AC=AB=,故AC=R,由于AB是球的直径,所以△ABC在大圆所在平面内且有AC⊥BC,由此能求出球的体积.【解答】解:设该球的半径为R,则AB=2R,2AC=AB=,∴AC=R,由于AB是球的直径,所以△ABC在大圆所在平面内且有AC⊥BC,在Rt△ABC中,由勾股定理,得:BC2=AB2﹣AC2=R2,所以Rt△ABC面积S=×BC×AC=,又PO⊥平面ABC,且PO=R,四面体P﹣ABC的体积为,∴V P﹣ABC==,即R3=9,R3=3,所以:球的体积V球=×πR3=×π×3=4π.故选D.【点评】本题考查四面体的外接球的体积的求法,解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题.12.已知双曲线﹣=1 (a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【考点】双曲线的标准方程.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】由抛物线标准方程易得其准线方程,从而可得双曲线的左焦点,再根据焦点在x轴上的双曲线的渐近线方程渐近线方程,得a、b的另一个方程,求出a、b,即可得到双曲线的标准方程.【解答】解:由题意, =,∵抛物线y2=4x的准线方程为x=﹣,双曲线的一个焦点在抛物线y2=4x的准线上,∴c=,∴a2+b2=c2=7,∴a=2,b=,∴双曲线的方程为.故选:D.【点评】本题主要考查双曲线和抛物线的标准方程与几何性质,考查学生的计算能力,属于基础题.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.曲线y=e﹣x+1在点(0,2)处的切线与直线y=0和x=0围成三角形的面积为 2 .【考点】利用导数研究曲线上某点切线方程.【专题】计算题;方程思想;转化法;导数的概念及应用.【分析】求函数的导数,利用导数求出函数的切线方程,结合三角形的面积公式进行求解即可.【解答】解:函数的导数f′(x)=﹣e﹣x,则f′(0)=﹣1,则切线方程为y﹣2=﹣x,即y=﹣x+2,切线与x轴的交点为(2,0),与y轴的交点为(0,2),∴切线与直线y=0和x=0围成三角形的面积S=,故答案为:2【点评】本题主要考查三角形面积的计算,求函数的导数,利用导数的几何意义求出切线方程是解决本题的关键.14.已知等比数列{a n}中,a3+a5=8,a1a5=4,则= 9 .【考点】等比数列的性质.【专题】等差数列与等比数列.【分析】由等比数列的性质可得a1a5=a32=4,解出a3,分别可得q2,而=q4,代入可得答案.【解答】解:由等比数列的性质可得a1a5=a32=4,解得a3=2,或a3=﹣2,当a3=2时,可得a5=8﹣a3=6,q2==3当a3=﹣2,可得a5=8﹣a3=10,q2==﹣5,(舍去)∴=q4=32=9故答案为:9【点评】本题考查等比数列的性质,涉及分类讨论的思想,属基础题.15.若不等式组表示的平面区域为三角形,且其面积等于,则m的值为 1 .【考点】二元一次不等式(组)与平面区域.【专题】数形结合;综合法;不等式的解法及应用.【分析】作出不等式组对应的平面区域,求出三角形各顶点的坐标,利用三角形的面积公式进行求解即可.【解答】解:作出不等式组对应的平面区域如图:若表示的平面区域为三角形,由,得,即A(2,0),则A(2,0)在直线x﹣y+2m=0的下方,即2+2m>0,则m>﹣1,则A(2,0),D(﹣2m,0),由,解得,即B(1﹣m,1+m),由,解得,即C(,).则三角形ABC的面积S△ABC=S△ADB﹣S△ADC=|AD||y B﹣y C|=(2+2m)(1+m﹣)=(1+m)(1+m﹣)=,即(1+m)×=,即(1+m)2=4解得m=1或m=﹣3(舍).【点评】本题主要考查线性规划以及三角形面积的计算,求出交点坐标,结合三角形的面积公式是解决本题的关键.16.已知函数,若|f(x)|≥ax,则a的取值X围是[﹣2,0].【考点】绝对值不等式的解法;指、对数不等式的解法.【专题】不等式的解法及应用.【分析】由题意可得,当x>0时,log2(x+1)>0恒成立,则此时应有a≤0.当x≤0时,|f(x)|=x2﹣2x≥ax,再分x=0、x<0两种情况,分别求得a的X围,综合可得结论.【解答】解:由于函数,且|f(x)|≥ax,①当x>0时,log2(x+1)>0恒成立,不等式即log2(x+1)≥ax,则此时应有a≤0.②当x≤0时,由于﹣x2+2x 的取值为(﹣∞,0],故不等式即|f(x)|=x2﹣2x≥ax.若x=0时,|f(x)|=ax,a取任意值.若x<0时,有a≥x﹣2,即a≥﹣2.综上,a的取值为[﹣2,0],故答案为[﹣2,0].【点评】本题主要考查绝对值不等式的解法,对数不等式的解法,体现了分类讨论的数学思想,属于中档题.三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.【考点】正弦定理.【专题】解三角形.【分析】(Ⅰ)由正弦定理及已知可得=,由sinA≠0,即可证明sinB=cosA.(Ⅱ)由两角和的正弦函数公式化简已知可得sinC﹣sinAcosB=cosAsinB=,由(1)sinB=cosA,可得sin2B=,结合X围可求B,由sinB=cosA及A的X围可求A,由三角形内角和定理可求C.【解答】解:(Ⅰ)证明:∵a=btanA.∴=tanA,∵由正弦定理:,又tanA=,∴=,∵sinA≠0,∴sinB=cosA.得证.(Ⅱ)∵sinC=sin[π﹣(A+B)]=sin(A+B)=sinAcosB+cosAsinB,∴sinC﹣sinAcosB=cosAsinB=,由(1)sinB=cosA,∴sin2B=,∵0<B<π,∴sinB=,∵B为钝角,∴B=,又∵cosA=sinB=,∴A=,∴C=π﹣A﹣B=,综上,A=C=,B=.【点评】本题主要考查了正弦定理,三角形内角和定理,两角和的正弦函数公式的应用,属于基础题.18.某城市100户居民的月平均用电量(单位:度)以[160,180),[180,200),[200,220),[220,240)[240,260),[260,280),[280,300]分组的频率分布直方图如图(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则越平均用电量在[220,240)的用户中应抽取多少户?【考点】用样本的数字特征估计总体的数字特征.【专题】计算题;数形结合;整体思想;定义法;概率与统计.【分析】(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095++0.011)×20+0.0125×(a﹣220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数.【解答】解:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得x=0.0075,∴直方图中x的值为0.0075;(2)月平均用电量的众数是=230,∵(0.002+0.0095+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a﹣220)=0.5可得a=224,∴月平均用电量的中位数为224;(3)月平均用电量为[220,240)的用户有0.0125×20×100=25,月平均用电量为[240,260)的用户有0.0075×20×100=15,月平均用电量为[260,280)的用户有0.005×20×100=10,月平均用电量为[280,300)的用户有0.0025×20×100=5,∴抽取比例为=,∴月平均用电量在[220,240)的用户中应抽取25×=5户【点评】本题考查频率分布直方图,涉及众数和中位数以及分层抽样,属基础题.19.在边长为5的菱形ABCD中,AC=8,现沿对角线BD把△ABD折起,折起后使∠ADC的余弦值为.(1)求证:平面ABD⊥平面CBD;(2)若M是AB的中点,求三棱锥A﹣MCD的体积.【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积.【专题】空间位置关系与距离.【分析】(Ⅰ)由已知条件推导出AO⊥平面BCD,由此能证明平面ABD⊥平面CBD.(Ⅱ)分别以OA,OC,OD所在直线为坐标轴建系,利用向量法能求出三棱锥A﹣MCD的体积.【解答】(Ⅰ)证明:菱形ABCD中,记AC,BD交点为O,AD=5,∴OA=4,OD=3,翻折后变成三棱椎A﹣BCD,在△ACD中,AC2=AD2+CD2﹣2AD•CD•cos∠ADC=25+25﹣2×,在△AOC中,OA2+OC2=32=AC2,∴∠AOC=90°,即AO⊥OC,又AO⊥BD,OC∩BD=O,∴AO⊥平面BCD,又AO⊂平面ABD,∴平面ABD⊥平面CBD.(Ⅱ)解:由(Ⅰ)知OA,OC,OD两两互相垂直,分别以OA,OC,OD所在直线为坐标轴建系,则A (0,0,4),B(0,﹣3,0),C(4,0,0),D(0,3,0),M(0,﹣,2),=(4,,﹣2),=(4,0,﹣4),=(4,﹣3,0),设平面ACD的一个法向量=(x,y,z),则由,得,令y=4,得=(3,4,3),∵=(),∴A到平面ACD的距离d===.∵在边长为5的菱形ABCD中,AC=8,∴S△ACD==12,∴三棱锥A﹣MCD的体积V===.【点评】本题考查平面与平面垂直的证明,考查三棱锥的体积的求法,解题时要认真审题,注意向量法的合理运用.20.已知抛物线C1:x2=4y的焦点F也是椭圆C2: +=1(a>b>0)的一个焦点,C1与C2的公共弦的长为2,过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且与同向.(Ⅰ)求C2的方程;(Ⅱ)若|AC|=|BD|,求直线l的斜率.【考点】直线与圆锥曲线的关系;椭圆的标准方程.【专题】开放型;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)通过C1方程可知a2﹣b2=1,通过C1与C2的公共弦的长为2且C1与C2的图象都关于y轴对称可得,计算即得结论;(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),通过=可得(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,设直线l方程为y=kx+1,分别联立直线与抛物线、直线与椭圆方程,利用韦达定理计算即可.【解答】解:(Ⅰ)由C1方程可知F(0,1),∵F也是椭圆C2的一个焦点,∴a2﹣b2=1,又∵C1与C2的公共弦的长为2,C1与C2的图象都关于y轴对称,∴易得C1与C2的公共点的坐标为(±,),∴,又∵a2﹣b2=1,∴a2=9,b2=8,∴C2的方程为+=1;(Ⅱ)如图,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),∵与同向,且|AC|=|BD|,∴=,∴x1﹣x2=x3﹣x4,∴(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,设直线l的斜率为k,则l方程:y=kx+1,由,可得x2﹣4kx﹣4=0,由韦达定理可得x1+x2=4k,x1x2=﹣4,由,得(9+8k2)x2+16kx﹣64=0,由韦达定理可得x3+x4=﹣,x3x4=﹣,又∵(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,∴16(k2+1)=+,化简得16(k2+1)=,∴(9+8k2)2=16×9,解得k=±,即直线l的斜率为±.【点评】本题是一道直线与圆锥曲线的综合题,考查求椭圆方程以及直线的斜率,涉及到韦达定理等知识,考查计算能力,注意解题方法的积累,属于中档题.21.已知函数f(x)=lnx﹣.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)证明;当x>1时,f(x)<x﹣1;(Ⅲ)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x0)时,恒有f(x)>k (x﹣1).【考点】导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.【专题】综合题;开放型;导数的综合应用.【分析】(Ⅰ)求导数,利用导数大于0,可求函数f(x)的单调增区间;(Ⅱ)令F(x)=f(x)﹣(x﹣1),证明F(x)在[1,+∞)上单调递减,可得结论;(Ⅲ)分类讨论,令G(x)=f(x)﹣k(x﹣1)(x>0),利用函数的单调性,可得实数k 的所有可能取值.【解答】解:(Ⅰ)∵f(x)=lnx﹣,∴f′(x)=>0(x>0),∴0<x<,∴函数f(x)的单调增区间是(0,);(Ⅱ)令F(x)=f(x)﹣(x﹣1),则F′(x)=当x>1时,F′(x)<0,∴F(x)在[1,+∞)上单调递减,∴x>1时,F(x)<F(1)=0,即当x>1时,f(x)<x﹣1;(Ⅲ)由(Ⅱ)知,k=1时,不存在x0>1满足题意;当k>1时,对于x>1,有f(x)<x﹣1<k(x﹣1),则f(x)<k(x﹣1),从而不存在x0>1满足题意;当k<1时,令G(x)=f(x)﹣k(x﹣1)(x>0),则G′(x)==0,可得x1=<0,x2=>1,当x∈(1,x2)时,G′(x)>0,故G(x)在(1,x2)上单调递增,从而x∈(1,x2)时,G(x)>G(1)=0,即f(x)>k(x﹣1),综上,k的取值X围为(﹣∞,1).【点评】本题考查导数知识的综合运用,考查函数的单调性,考查不等式的证明,正确构造函数是关键.四.请考生在第(22)、(23)(24)三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.[选修4-1几何证明选讲]22.如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.(Ⅰ)求证:AD∥EC;(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.【考点】圆的切线的性质定理的证明;直线与圆相交的性质;直线与圆的位置关系;与圆有关的比例线段.【专题】计算题;证明题.【分析】(I)连接AB,根据弦切角等于所夹弧所对的圆周角得到∠BAC=∠D,又根据同弧所对的圆周角相等得到∠BAC=∠E,等量代换得到∠D=∠E,根据内错角相等得到两直线平行即可;(II)根据切割线定理得到PA2=PB•PD,求出PB的长,然后再根据相交弦定理得PA•PC=BP•PE,求出PE,再根据切割线定理得AD2=DB•DE=DB•(PB+PE),代入求出即可.【解答】解:(I)证明:连接AB,∵AC是⊙O1的切线,∴∠BAC=∠D,又∵∠BAC=∠E,∴∠D=∠E,∴AD∥EC.(II)∵PA是⊙O1的切线,PD是⊙O1的割线,∴PA2=PB•PD,∴62=PB•(PB+9)∴PB=3,在⊙O2中由相交弦定理,得PA•PC=BP•PE,∴PE=4,∵AD是⊙O2的切线,DE是⊙O2的割线,∴AD2=DB•DE=9×16,∴AD=12【点评】此题是一道综合题,要求学生灵活运用直线与圆相切和相交时的性质解决实际问题.本题的突破点是辅助线的连接.[选修4-4坐标系与参数方程]23.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)若圆C的参数方程为(α为参数),试判断直线l与圆C的位置关系.【考点】参数方程化成普通方程.【专题】计算题;规律型;转化思想;直线与圆.【分析】(1)利用点在直线上,代入方程求出a,利用极坐标与直角坐标的互化,求出直线的直角坐标方程.(2)化简圆的参数方程与直角坐标方程,求出圆心与半径,利用圆心到直线的距离与半径比较即可得到直线与圆的位置关系.【解答】解:(1)点A的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a,且点A在直线l上.可得: cos(﹣)=a,解得a=.直线l的极坐标方程为ρcos(θ﹣)=,即:ρcosθ+ρsinθ=2,直线l的直角坐标方程为:x+y﹣2=0.(2)圆C的参数方程为(α为参数),可得圆的直角坐标方程为:(x﹣1)2+y2=1.圆心(1,0),半径为:1.因为圆心到直线的距离d==<1,所以直线与圆相交.【点评】本题考查参数方程与极坐标方程与直角坐标方程的互化,直线与圆的位置关系的应用,考查计算能力.[选修4-5不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣3|+|x﹣a|.(Ⅰ)当a=1时,求不等式f(x)<4的解集;(Ⅱ)设函数f(x)的最小值为g(a),求g(a)的最小值.【考点】绝对值不等式的解法;分段函数的应用.【专题】函数的性质及应用.【分析】(1)化简函数f(x)的解析式,画出函数的f(x)的图象,数形结合求得不等式f(x)<4的解集.(2)由条件利用绝对值的意义求得g(a)的最小值.【解答】解:(1)当a=1时,f(x)=2|x﹣1|+|x﹣3|=,由图可得,不等式f(x)<4的解集为(,3).(2)函数f(x)=|x﹣1|+|x﹣3|+|x﹣a|表示数轴上的x对应点到a、1、3对应点的距离之和,可得f(x)的最小值为g(a)=,故g(a)的最小值为2.【点评】本题主要考查绝对值的意义,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。

高考数学模拟试卷附答案解析

高考数学模拟试卷附答案解析

高考数学模拟试卷附答案解析请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数f(x)是定义域为R的偶函数,且满足f(x)=f(2一x),当x e[0,1]时,f(x)=x,则函数F(x)=f(x)+x+4在区间[一9,10]上零点的个数为() 1一2xA.9B.10C.18D.202.如图,ABC中经A=2经B=60。

,点D在BC上,经BAD=30。

,将△ABD沿AD旋转得到三棱锥B,一ADC,分别记B,A,B,D与平面ADC所成角为C,β,则C,β的大小关系是()A.C<β<2C B.2C<β<3CC.β<2C,2C<β<3C两种情况都存在D.存在某一位置使得β>3a3.为计算S=1一2x2+3x22一4x23+...+100x(一2)99,设计了如图所示的程序框图,则空白框中应填入()A.i<100B.i>100C.i<100D.i之1004.已知定义在[1,+伪)上的函数f(x)满足f(3x)=3f(x),且当1<x<3时,f(x)=1一x一2,则方程f (x )=f (2019)的最小实根的值为()A .168B .249C .411D .5615.已知抛物线C :x 2=4y ,过抛物线C 上两点A ,B 分别作抛物线的两条切线PA ,PB ,P 为两切线的交点O 为坐标原点若PA .PB =0,则直线OA 与OB 的斜率之积为()11A .—-B .—3C .—-486.在复平面内,复数z =a +bi (a ,b e R )对应向量OZ (O 为坐标原点),设OZ =r ,以射线Ox 为始边,OZ 为终边旋转的角为θ,则z =r (cos θ+isin θ),法国数学家棣莫弗发现了棣莫弗定理:z 1=r (cos θ+isin θ),111z 2=r 2(cos θ2+isin θ2),则z 1z 2=r 2cos r (cos θ+isin θ)n =r n (cos n θ+isinn θ)(θ+θ)+isin (θ+121,已知z =(3+i )4θ2),由棣莫弗定理可以导出复数乘方公式:,则z =()A .23B .4C .83D .167.已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取30%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A .240,18C .240,208.直角坐标系xOy 中,双曲线边三角形,则该双曲线的离心率x 2y 2—a 2b 2e =()A .43B .54B .200,20D .200,18=1(a ,b >0)与抛物线y 2=2bx?相交于A 、B 两点,若ΔOAB 是等C .65D .76119.在平行四边形ABCD 中,AB =3,AD =2,AP =AB,AQ =AD,若CP .CQ =12,则经ADC =()32A .5π6B .3π4C .2π3D .π210.在ABC 中,角A ,B,C 的对边分别为a ,b,c ,若c —a cos B =(2a —b)cos A ,则ABC 的形状为()D .—4A .直角三角形C .等腰或直角三角形B .等腰非等边三角形D .钝角三角形11.若复数z =21+i,其中i 为虚数单位,则下列结论正确的是()A .z 的虚部为-iB .z =2C .z 的共轭复数为-1-iD .z 2为纯虚数12.下图为一个正四面体的侧面展开图,G 为BF 的中点,则在原正四面体中,直线EG 与直线BC 所成角的余弦值为()A .C .3336B .D .63336二、填空题:本题共4小题,每小题5分,共20分。

2016年高考文科数学全国卷1(含详细答案)

2016年高考文科数学全国卷1(含详细答案)

数学试卷 第1页(共39页) 数学试卷 第2页(共39页)数学试卷 第3页(共39页)绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:山西、河南、河北、湖南、湖北、江西、安徽、福建、广东本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷4至6页,满分150分. 考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3. 考试结束,监考员将本试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B = ( )A. {1,3}B. {3,5}C. {5,7}D. {1,7}2. 设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则=a( )A. 3-B. 2-C. 2D. 33. 为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是 ( )A.13 B.12 C. 23D. 564. ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知a =,2c =,2cos 3A =,则b =( )A.B.C. 2D. 35. 直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13 B.12 C. 23D. 346. 将函数2sin(2)6y x π=+的图象向右平移14个周期后,所得图象对应的函数为( )A. 2sin(2)4y x π=+ B. 2sin(2)3y x π=+ C. 2sin(2)4y x π=-D. 2sin(2)3y x π=-7. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是 ( )A. 17πB. 18πC. 20πD. 28π 8. 若0a b >>,01c <<,则( )A. log log a b c c <B. log log c c a b <C. cca b <D. ab c c>9. 函数2|x|2y x e =-在[2,2]-的图象大致为( )ABC D10. 执行如图的程序框图,如果输入的0x =,1y =,1n =,则输出x ,y 的值满足 ( )A. 2y x =B. 3y x =C. 4y x =D. 5y x =11. 平面α过正方体1111ABCD A B C D -的顶点A ,//α平面11CB D ,α平面=ABCD m ,α平面11=ABB A n ,则m ,n 所成角的正弦值为( )A.B.C.D.1312. 若函数1()sin 2sin 3f x x x a x =-+在(,)-∞+∞单调递增,则a 的取值范围是( )A. []1,1-B. 11,3⎡⎤-⎢⎥⎣⎦C. 11,33⎡⎤-⎢⎥⎣⎦D. 11,3⎡⎤--⎢⎥⎣⎦姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)第II 卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.13. 设向量a 1(),x x =+,b (1,2)=,且a ⊥b ,则x = .14. 已知θ是第四象限角,且3sin()45πθ+=,则tan()4πθ-= . 15. 设直线2y x a =+与圆22:220C x y ay +--=相交于,A B 两点,若||AB =则圆C的面积为 .16. 某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知{}n a 是公差为3的等差数列,数列{}n b 满足11b =,213b =,11n n n n a b b nb +++=. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求{}n b 的前n 项和. 18.(本小题满分12分)如图,已知正三棱锥P ABC -的侧面是直角三角形,6PA =.顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连接PE 并延长交AB 于点G . (Ⅰ)证明:G 是AB 的中点;(Ⅱ)在图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.19.(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (Ⅰ)若19n =,求y 与x 的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值; (Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(本小题满分12分)在直角坐标系xOy 中,直线:(0)l y t t =≠交y 轴于点M ,交抛物线2:2C y px =(0)p >于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(Ⅰ)求||||OH ON ;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.21.(本小题满分12分)已知函数2()(2)(1)x f x x e a x =-+-. (Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求a 的取值范围.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修41-:几何证明选讲如图,OAB △是等腰三角形,120AOB ∠=.以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与⊙O 相切;(Ⅱ)点,C D 在⊙O 上,且,,,A B C D 四点共圆,证明:AB CD ∥.23.(本小题满分10分)选修44-:坐标系与参数方程在直线坐标系xOy 中,曲线1C 的参数方程为cos ,1sin ,x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .24.(本小题满分10分),选修45-:不等式选讲已知函数()|1||23|f x x x =+--. (Ⅰ)画出()y f x =的图象; (Ⅱ)求不等式|()|1f x >的解集.{3,5}A B=a-=,由已知,得213/ 13数学试卷 第10页(共39页)数学试卷 第11页(共39页) 数学试卷 第12页(共39页)平面ABB1D平面1n所成角等于所成角的正弦值为5/ 13数学试卷 第16页(共39页)数学试卷 第17页(共39页) 数学试卷 第18页(共39页)【解析】由题意,0a b x =+,3【提示】根据向量垂直的充要条件便可得出0a b =,进行向量数量积的坐标运算即可得出关于的值.【考点】向量的数量积,坐标运算7/ 13作出二元一次不等式组①表示的平面区域,即可行域,如图中阴影部分所示.7z77z数学试卷第22页(共39页)数学试卷第23页(共39页)数学试卷第24页(共39页)18.【答案】(Ⅰ)因为P在平面ABC内的正投影为D,所以AB PD⊥.9/ 13数学试卷第29页(共39页)数学试卷第30页(共39页)11 / 13))(1,)+∞时,(,ln(2)),1,+a -,1)(ln(2),)a -+∞时,单调递增,在1,ln((2))a -单调递减)在(,1)-∞ln 2a ,则f数学试卷 第34页(共39页)数学试卷 第35页(共39页) 数学试卷 第36页(共39页)同理可证,'OO CD ⊥,所以//AB CD .13/ 13。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.若m⊂α,n⊂α,m∥β,n∥β,则α∥βD.若m∥α,m⊥β,则α⊥β
8.已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是( )
A.﹣2B.﹣4C.﹣6D.﹣8
9.阅读如图所示的程序框图,若输出的结果是63,则判断框内n的值可为( )
A.8B.7C.6D.5
15.已知命题p:∃x∈R,ax2+2x+1≤0是假命题,则实数a的取值范围是.
16.数列{an}中,已知对任意n∈N*,a1+a2+a3+…+an=3n﹣1,则 =.
三、简答题:解答应写出文字说明,证明过程或演算步骤)
17.在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA=(2c+a)cos(A+C).
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)若点P(x,y)是直线l上位于圆内的动点(含端点),求 x+y的最大值和最小值.
[选修4-5:不等式选讲].
24.已知函数f(x)=m﹣|x﹣2|(m>0),且f(x+2)≥0的解集为[﹣3,3]
(Ⅰ)求m的值;
(Ⅱ)若a>0,b>0,c>0且 + + = ,求证:2a+3b+4c≥9.
12.若函数f(x)=﹣ lnx﹣ (a>0,b>0)的图象在x=1处的切线与圆x2+y2=1相切,则a+b的最大值是( )
A.4B.2 C.2D.
二、填空题:(本题共4小题,每题5分,共20分)
13.设函数f(x)= ,则f(f(﹣1))的值为.
14.已知平面向量 , 满足| |=3,| |=2, 与 的夹角为60°,若( ﹣m )⊥ ,则实数m=.
2016年贵州省普通高等学校高考数学模拟试卷(文科)
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|x=2k﹣1,k∈Z},B={﹣1,0,1,2,3,4},则集合A∩B中元素的个数为( )
A.1B.2C.3D.4
2.已知复数z满足(z﹣2)i=1+i(i是虚数单位),则z=( )
2016年贵州省普通高等学校高考数学模拟试卷(文科)
参考答案与试题解析
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|x=2k﹣1,k∈Z},B={﹣1,0,1,2,3,4},则集合A∩B中元素的个数为( )
A.1B.2C.3D.4
10.如图,圆与两坐标轴分别切于A,B两点,圆上一动点P从A开始沿圆周按逆时针方向匀速旋转回到A点,则△OBP的面积随时间变化的图象符合( )
A. B. C. D.
11.经过双曲线 ﹣y2=1右焦点的直线与双曲线交于A,B两点,若|AB|=4,则这样的直线的条数为( )
A.4条B.3条C.2条D.1条
20.设椭圆C: + =1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且F1恰是QF2的中点.若过A、Q、F2三点的圆恰好与直线l:x﹣ y﹣3=0相切.
(1)求椭பைடு நூலகம்C的方程;
(2)设直线l1:y=x+2与椭圆C交于G、H两点.在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形是菱形.如果存在,求出m的取值范围,如果不存在,请说明理由.
A.50B.60C.70D.80
5.不等式组 所表示的平面区域的面积为( )
A.1B.2C.3D.4
6.一个几何体的三视图如图所示,其中正视图是正三角形,则该几何体的体积为( )
A. B.8C. D.
7.设α、β是两个不重合的平面,m、n是两条不重合的直线,则以下结论错误的是( )
A.若α∥β,m⊂α,则m∥βB.若m∥α,m∥β,α∩β=n,则m∥n
22.已知BC为圆O的直径,点A为圆周上一点,AD⊥BC于点D,过点A作圆O的切线交BC的延长线于点P,过点B作BE垂直PA的延长线于点E.求证:
(1)PA•PD=PE•PC;
(2)AD=AE.
[选修4-4:坐标系与参数方程]
23.已知直线l的参数方程为 (t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cos(θ﹣ )
19.在某次考试中,全部考生参加了“科目一”和“科目二”两个科目的考试,每科成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩数据统计如图所示,其中“科目一”成绩为D的考生恰有4人.
(1)分别求该考场的考生中“科目一”和“科目二”成绩为A的考生人数;
(2)已知在该考场的考生中,恰有2人的两科成绩均为A,在至少一科成绩为A的考生中,随机抽取2人进行访谈,求这2人的两科成绩均为A的概率.
(Ⅰ)求角B的大小;
(Ⅱ)求函数f(x)=2sin2x+sin(2x﹣B)(x∈R)的最大值.
18.如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD= AB=2.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到如图2所示的几何体D﹣ABC
(Ⅰ)求证:AD⊥平面BCD;
(Ⅱ)求点C到平面ABD的距离.
A.3﹣iB.﹣3+iC.﹣3﹣iD.3+i
3.在等差数列{an}中,a3﹣a2=﹣2,a7=﹣2,则a9=( )
A.2B.﹣2C.﹣4D.﹣6
4.某工厂生产A、B、C三种不同型号的产品,其数量之比依次是3:4:7,现在用分层抽样的方法抽出样本容量为n的样本,样本中A型号产品有15件,那么n等于( )
21.已知函数f(x)= x2﹣mlnx,g(x)= x2﹣2x,F(x)=f(x)﹣g(x)
(Ⅰ)当m>0,求函数f(x)的单调区间;
(Ⅱ)当m=﹣1时,试问过点(2,5)可作多少条直线与曲线y=F(x)相切?说明理由.
请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]
【考点】交集及其运算.
【分析】列举出A中的元素,求出两集合的交集,即可作出判断.
【解答】解:∵A={x|x=2k﹣1,k∈Z}={…,﹣3,﹣1,1,3,5,…},B={﹣1,0,1,2,3,4},
∴A∩B={﹣1,1,3},
则集合A∩B中元素的个数为3,
故选:C.
相关文档
最新文档