《数学模型》第四版第三章简单的优化模型
简单的优化模型
整数规划模型的基本概念
整数规划定义
整数规划是一类要求决策变量取整数值的数学优化问题。在 实际应用中,由于某些决策变量可能要求取整数值,如设备 数量、人员分配等,因此整数规划具有广泛的应用背景。
整数规划分类
根据决策变量的限制条件,整数规划可分为纯整数规划(所 有决策变量均取整数值)和混合整数规划(部分决策变量取 整数值)。
多目标优化模型的求解方法
权重法
通过给每个目标函数分配一个权 重,将多目标问题转化为单目标 问题进行求解。权重的确定可以
根据实际情况或专家经验。
ε约束法
将多个目标中的一个作为主目标, 其他目标作为约束条件,通过不断 调整约束条件的参数ε来求解多目 标问题。
遗传算法
通过模拟生物进化过程中的选择、 交叉和变异等操作,搜索帕累托最 优解集。遗传算法适用于复杂非线 性多目标问题的求解。
线性规划模型的应用案例
生产计划优化
利用线性规划模型确定各 种产品的生产数量,以最 大化利润或最小化成本。
资源分配问题
在有限资源的条件下,通 过线性规划模型实现资源 的最优分配,满足需求并 最大化效益。
投资组合优化
投资者可以通过线性规划 模型,根据预期收益和风 险约束,求解最优投资组 合。
03
整数规划模型
多目标优化模型的应用案例
水资源分配问题
在水资源规划中,需要同时考虑供水、灌溉、发电、防洪等多个目标。通过构建多目标优 化模型,可以寻求水资源分配方案,使得各个目标在整体上达到最优。
投资组合优化问题
在金融领域,投资者需要在多个投资项目中选择合适的投资组合,以最大化收益并最小化 风险。这是一个典型的多目标优化问题,可以通过多目标优化模型求解得到帕累托最优解 集,供投资者决策参考。
简单的优化模型
分析问题中的约束条 件
从问题中分析出各种约束条件,如资 源限制、时间限制、物理条件等。
02
将约束条件转化为数 学表达式
将上述约束条件转化为数学表达式, 如不等式、等式等。
03
将约束条件加入目标 函数中
将上述数学表达式加入目标函数中, 作为目标函数的约束条件。
选择适当的变量类型和范围
确定变量的类型和范围
03
优化算法的选择
梯度下降法
1 2
基本概念
梯度下降法是一种基于梯度下降的优化算法, 通过迭代计算函数梯度,逐步逼近函数的最小 值点。
应用场景
适用于凸函数或非凸函数,尤其在大数据处理 和机器学习领域,用于优化损失函数。
3
注意事项
在处理非凸函数时,可能会陷入局部最小值点 ,需要结合全局优化算法使用。
简单的优化模型
xx年xx月xx日
contents
目录
• 引言 • 优化模型的分类 • 优化算法的选择 • 优化模型的建立 • 应用案例展示
01
引言
定义和重要性
定义
优化模型是一套用于描述、分析和解决特定问题的数学 模型,通过采用数学方法和算法,寻找最优解决方案。
重要性
优化模型在各行各业都有广泛的应用,如制造业、物流 、金融等。通过优化模型,可以提高效率、降低成本、 增加效益,为企业和社会创造价值。
金融投资优化模型
要点一
总结词
提高投资收益、降低投资风险
要点二
详细描述
金融投资优化模型是针对金融投资领域的一种优化模型 。它通过优化投资组合,提高投资收益、降低投资风险 。该模型考虑了多种资产价格波动、相关性等因素,并 利用统计学习或机器学习算法计算出最优的投资组合方 案。应用该模型可以帮助投资者在保证本金安全的前提 下获得更高的投资收益。
数学建模简单的优化模型
q T1 时, t 0, 故有 Q rT1 . 在 T1 到 T 这段缺货时间内需求率
量,当 t
⑻
q
q 不变, t 按原斜率继续下降,
Q
由于规定缺货量需补足,所以在
R A r
T1
t T 时数量为 R 的产品立即达,
B
T
t
使下周期初的存储量恢复到Q. 与不容许缺货的模型相似,一个周期内的存储费是c2 乘以图中三角形 A 的面积,缺货损失费是 c3乘以三角形 面积B, 加上准备费,得一周期内的总费用为
2
⑷
而
2c1r Q rT . c2
将⑷代入到⑶式,得最小的平均费用为
⑸
C 2c1c2 r .
⑷,⑸被称为经济订货批量公式(EOQ公式).
⑹
结果解释 由⑷,⑸式可以看到,当 c1(准备费用)提高时,生 产周期和产量都变大;当 c2存储费增加时,生产周期和 产量都变小;当需求量 r 增加时,生产周期变小而产量 变大。这些结果都是符合常识的。
从而赢得竞争上的优势。
模型假设 为处理上的方便,假设模型是连续型的,即周期 T , 产量Q 均为连续变量. 1.每天的需求量为常数 r; 2.每次生产的准备费用为 c1 ,每天每件的存储费为 c2 ,
Q 3.生产能力无限大,即当存储量为零时, 件产品可以
立即生产出来.
建模 设存储量为 q t , q 0 Q. q t 以 r 递减,直到
0.1不变,研究 r 变化
40r 60 t r
r 1.5
⑶
t 是 r 的增函数,下图反映了t 与 r 的关系。
t 20
15
10
5
1.5
简单优化模型.ppt
已知某产品日需求量100件,生产准备费5000元,贮存费 每日每件1元。试安排该产品的生产计划,即多少天生产 一次(生产周期),每次产量多少,使总费用最小。
要 不只是回答问题,而且要建立生产周期、产量与 求 需求量、准备费、贮存费之间的关系。
问题分析与思考
日需求100件,准备费5000元,贮存费每日每件1元。
优化模型分类
优
化模
型离
散
优
化模型 线性规划模型 第四章数学规 连续优化模型 第三章简单优化模型
划模
型
离散优化模型:目标函数和约束函数非连续 连续优化模型:目标函数和约束函数连续
线性规划模型:如果一个优化问题满足以下性质,该优化问 题成为线性规划
1)有唯一的目标函数 2)当一个决策变量出现在目标函数和任何约束函数中时,
Q(10)=660 > 640 10天后出售,可多得利润20元
敏感性分析
t 4r 40 g 2 rg
研究 r, g变化时对模型结果的影响 估计r=2, g=0.1
• 设g=0.1不变
t 40r 60 , r 1.5 r
t 对r 的(相对)敏感度
20
t
15
S(t, r)
Δt Δr
• 每天生产一次,每次100件,无贮存费,准备费5000元。
每天费用5000元
• 10天生产一次,每次1000件,贮存费900+800+…+100 =4500 元,准备费5000元,总计9500元。
平均每天费用950元
• 50天生产一次,每次5000件,贮存费4900+4800+…+100 =122500元,准备费5000元,总计127500元。
第3章简单的优化模型
模型2 允许缺货的存储模型 模型建立
一个周期 T 内的储存费是
c2 q(t )dt c2QT 1 2
0 T1
一个周期 T 内的缺货损失费是
c3 q (t ) dt c3r T T1 2
T 2 T1
模型2 允许缺货的存储模型 模型建立
一个周期 T 内的总费用是 2 C c1 c2QT1 2 c3rT T1 2 利用(8)式,得到每天的平均费用是
第3章 简单的优化模型 3.1 存储模型
建立数学模型来优化存储 量,使总费用最小
模型1 不允许缺货的存储模型 问题的提出
配件厂为装配线生产若干种部件。 轮换生产不同的部件时,因更换设备要付生 产准备费(与生产数量无关)。 同一部件的产量大于需求时,因积压资金、 占用仓库要付储存费。 今已知某一部件的日需求量100件,生产准备 费5000元,储存费每日每件1元。 如果生产能力远大于需求,并且不允许出现 缺货,试安排该产品的生产计划,即多少天 生产一次(称为生产周期),每次产量多少, 可使总费用最小。
模型1 不允许缺货的存储模型 模型假设
设生产周期 T 和产量 Q 均为连续量, 1.产品每天的需求量为常数 r; 2.每次生产准备费为 c1 , 每天每件产品存储 费为 c2 ; 3.生产能力为无限大(相对于需求量) ,不 允许缺货,即当存储量降到零时,Q 件产 品立即生产出来供给需求。
模型1 不允许缺货的存储模型 模型建立
求得最优生产周期为
2c1 c2 c3 T c2c3r
模型2 允许缺货的存储模型 模型求解
每周期初的最优存储量为
Q 2c1c3 r c2 c2 c3
每周期的最优供货量为
第三章简单的优化模型
第 三 章 简 单 的 优 化 模 型§1 存贮问题模型[问题的提出]工厂要定期地订购各种原料,存放在仓库中供生产之用;商店里要成批地购进各种商品,放在货柜中以备零售,原料、商品存贮太多,贮存费用高;存得太少则无法满足需求或缺货造成损失.订货时需付一次性订货费,进货时要付商品(原料)费,货物贮存要贮存费.如果允许缺货,缺货时因失去销售机会而使利润减少,减少的利润可以视为因缺货而付出的费用,称为缺货费.在单位时间内货物的需求量为常数的条件下,试制定出存贮策略(多长时间订一次货,每次订货量多少),使总费用最小. [模型的假设]1.为方便起见,时间以天为单位,货物以吨为单位,每隔T 天订一次货(T 称为订货周期),每次订货量为Q 吨;2.每次订货费为1c (元)(一次性的),每吨货物的价格为k (元),每天每吨货物的贮存费为2c (元);3.每天的货物需要量为r 吨;4.每隔T 天订货Q 吨,且订货可以瞬时完成,不允许缺货时,贮存量降到零时订货立即到达.5.允许缺货时,货物在1T t 时售完,有一段时间缺货,每天每吨货物缺货费为3c (元).[模型的建立]1rT Q =,T t =T =1设货物在任意时刻t 的贮存量为()t q (单位时间), 其变化规律为总费用=订货费++缺货费+① 订货费=1c ② 贮存费 =()()rQ c QT c QT c dt t q c tq c ni T iit 2221lim22121212021==⋅==∆∑⎰=→∆ξ ③ 缺货费=()()()r Q rT c T T r c S c dt t q c B TT 2223213331-=-==⎰ ④ 购货费=kQ ,即总费用()kQ rQ rT c r Q c c c +-++=2223221 由于T 是可变的,因此我们的目标函数应该是每天的平均费用最小.目标函数是T 、Q 的二元函数,记作()Q T C ,,即()()TkQrT Q rT c rT Q c T c Q T C +-++=22,23221 问题就是要确定()+∞<<+∞<<Q T Q T 0,0、,使二元函数()Q T C ,取最小值. [模型的求解]2223322221222T kQ rT Q c r c rT Q c T c T C--+--=∂∂,T k rT Q c c rT Q c Q C ++-=∂∂332 0t这里()rTQ c Q c rT c rT Q rT c 222233323+-=- 令0=∂∂T C ,0=∂∂Q C .得到驻点:()⎪⎪⎩⎪⎪⎨⎧+-+-+=-+=3232222332321*32233221*22c c kr c c c r k c c c c c r c Q c c k c c c rc c T 故当允许缺货时,每*T 天订一次货,每次订货*Q 吨,总费用将最少. [模型的讨论]1. 当不允许缺货时,T T =1而rT Q =,此时()kr rT c T c T C ++=2121,221r c T c dT dC +-= 令0=dTdC,解得21*12rc c T =,从而21*1*12c rc rT Q == 结果表明:① 最佳订货周期和订货量与货物本身的价格无关.② 订货费1c 越高,需求量r 越大,订货量Q 就越大;贮存费2c 越高,订货量Q 就越小.2. 若不考虑购货费,则此时模型中可视0=k得到最佳订货周期*2T ,最佳订货量*2Q⎪⎪⎩⎪⎪⎨⎧+=+=32321*233221*222c c c c r c Q c c c rc c T 记()1332>+=c c c μ,于是*1*2T T μ=,μ*1*2Q Q =,结果表明:① 当考虑购货费时,*2T 、*2Q 都比*T 、*Q 增大了. ② *1*2*1*2,Q Q T T <>.③ 当+∞→3c 时,1→μ.此时*1*2T T →,*1*2Q Q →.④ 这个结果是合理的,因为+∞→3c ,即缺货造成的损失无限变大相当于不允许缺货.3. 考虑生产销售存贮问题设生产速率为常数k ,销售速率为常数r ,r k >. 则生产量()1b kt t p +=,销售量()2b rt t q +-= 4. 考虑一般的生产销售存贮问题允许与不允许缺货,函数()t p 、()t q 更一般化.此时要应用函数逼近论理论.。
数学模型姜启源第四版答案
数学模型姜启源第四版答案【篇一:姜启源数学模型课后答案(3版)】t>第二章(1)(2008年9月16日)1.学校共1000名学生,235人住在a宿舍,333人住在b宿舍,432人住在c宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). 1中的q值方法;(3).d’hondt方法:将a、b、c各宿舍的人数用正整数n=1,2,3,??相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中a、b、c行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑n=10的分配方案,3p1?235,p2?333,p3?432, ?pi?1000.i?1方法一(按比例分配)q1?p1n3?2.35,q2?p2n3?3.33, q3?p3n3?4.32?i?1pi?i?1pii?1pi分配结果为: n1?3, n2?3, n3?4 方法二(q值方法)9个席位的分配结果(可用按比例分配)为:n1?2,n2?3, n3?4第10个席位:计算q值为 q1?23522?3?9204.17, q2?33323?4?9240.75, q3?43224?5?9331.2q3最大,第10个席位应给c.分配结果为 n1?2,n2?3,n3?5方法三(d’hondt方法)此方法的分配结果为:n1?2,n2?3,n3?5此方法的道理是:记pi和ni为各宿舍的人数和席位(i=1,2,3代表a、b、c宿舍).pinipinipini是每席位代表的人数,取ni?1,2,?,从而得到的近.中选较大者,可使对所有的i,尽量接再考虑n?15的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2.试用微积分方法,建立录像带记数器读数n与转过时间的数学模型. 解:设录像带记数器读数为n时,录像带转过时间为t.其模型的假设见课本.考虑t到t??t时间内录像带缠绕在右轮盘上的长度,可得vdt?(r?wkn)2?kdn,两边积分,得 ?vdt?2?k?(r?wkn)dntn22) ?t?2?rkvn??wkv2n.2第二章(2)(2008年10月9日)15.速度为v的风吹在迎风面积为s的风车上,空气密度是? ,用量纲分析方法确定风车获得的功率p与v、s、?的关系.解: 设p、v、s、?的关系为f(p,v,s,?)?0,其量纲表达式为: [p]=ml2t?3, [v]=lt量纲矩阵为:?2?1????3(p)10?1(v)200(s)?3?(l)?1(m)? ?0?(t)(??1,[s]=l2,[?]=ml?3,这里l,m,t是基本量纲.a=齐次线性方程组为:?2y1?y2?2y3?3y4?0??0 ?y1?y4??3y?y?012?它的基本解为y?(?1,3,1,1)由量纲pi定理得 ??p?1v3s1?1,?p??v3s1?1 ,其中?是无量纲常数. 16.雨滴的速度v与空气密度?、粘滞系数?和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v的表达式.解:设v,?,?,g 的关系为f(v,?,?,g)=0.其量纲表达式为[v]=lm0t-1,[?]=l-3mt0,[?]=mlt-2(lt-1l-1)-1l-2=mll-2t-2t=l-1mt-1,[g]=lm0t-2,其中l,m,t是基本量纲.量纲矩阵为?1?0?a=???1(v)?310(?)?11?1(?)1?(l)?0(m)? ?2?(t)?(g)齐次线性方程组ay=0 ,即? y1-3y2-y3?y4?0??0 ?y2?y3?-y-y-2y?034?1的基本解为y=(-3 ,-1 ,1 ,1) 由量纲pi定理得 ??v?*?3?1?g. ?v???g?,其中?是无量纲常数.16.雨滴的速度v与空气密度?、粘滞系数?、特征尺寸?和重力加速度g有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v的表达式.解:设v,?,?,?,g 的关系为f(v,?,?,?,g)?0.其量纲表达式为[v]=lmt,[?]=lmt,[?]=mlt(ltl)l=mlltt=lmt,[?]=lmt ,[g]=lmt 其中l,m,t是基本量纲. 量纲矩阵为?1?0a=????1(v)100(?)?310(?)?11?1(?)1?(l)?0(m)? ?2?(t)?(g)-1-3-2-1-1-1-2-2-2-1-1000-2齐次线性方程组ay=0 即 ?y1?y2?3y3?y4?y5?0?y3?y4?0 ???y1?y4?2y5?0?的基本解为??y1?(1,???y2?(0,??)2 1,?1,1,?)22231,0,0,?1得到两个相互独立的无量纲量 ??1?v??1/2g?1/2??3/2?1?1/2??g??2??即 v??g?1,?3/2?g1/2??1??2. 由?(?1,?2)?0 , 得 ?1??(?2)3/2?1?1? ??g?(??g1/2??1) , 其中?是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t,摆长l, 质量m,重力加速度g,阻力系数k的关系为f(t,l,m,g,k)?0其量纲表达式为:[t]?lmt,[l]?lmt,[m]?lmt,[g]?lmt?2,[k]?[f][v]?1?mlt?2(lt?1)?1?lmt0?1,其中l,m,t是基本量纲.量纲矩阵为?0?0a=???110001010?20?(l)?1(m)? ??1?(t)(t)(l)(m)(g)(k)齐次线性方程组y2?y4?0??y3?y5?0 ??y?2y?y?045?1的基本解为11?y?(1,?,0,,0)?122 ?11?y2?(0,,?1,?,1)22?得到两个相互独立的无量纲量?tl?1/2g1/2??1?1/2?1?1/2k??2?lmg∴t?lg?1, ?1??(?2), ?2?klmg1/21/2klmg1/21/2∴t?lg() ,其中?是未定函数 .考虑物理模拟的比例模型,设g和k不变,记模型和原型摆的周期、摆长、质量分别为l?gkl?1/21/2t,t;l,l;m,m. 又t??(m?g)当无量纲量?l?l时,就有t?t?l?g?gl?l?l.《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.【篇二:数学建模陈东彦版课后答案】t>2.9-3.7 3.6-5.144.1-7.14.4-7.35.9-11.1 5.1-9.1 6.5-4.7 6.10-4.14第1章建立数学模型1.1 在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?(稳定的椅子问题见姜启源《数学模型》第6页)1.2 在商人们安全过河问题中,若商人和随从各四人,怎样才能安全过河呢?一般地,有n名商人带n名随从过河,船每次能渡k人过河,试讨论商人们能安全过河时,n与k应满足什么关系。
简单的优化模型
整数规划模型的求解方法
穷举法
通过列举所有可能的解来找出最优解。适用于小规模问题,但对于 大规模问题效率低下。
分支定界法
通过不断分割问题空间并排除不可能的解来逼近最优解。适用于大 规模问题,但需要较高的计算复杂度。
启发式算法
通过设计一些启发式规则来加速搜索过程,如贪心算法、遗传算法等 。适用于一些特定类型的问题,但可能无法保证找到全局最优解。
通过动态规划可以求解资源分配问题 ,如任务调度、生产计划等,以实现 资源利用的最优化。
背包问题
通过动态规划可以求解0/1背包问题 、完全背包问题等,避免重复计算物 品的价值和重量。
05
模拟退火算法
模拟退火算法的定义与特点
定义
模拟退火算法是一种启发式搜索算法 ,通过模拟物理退火过程来寻找问题 的最优解。
运输问题
线性规划模型可以用于解决运输问题,如货 物运输、车辆调度等。
投资组合优化
线性规划模型可以用于优化投资组合,降低 风险并提高收益。
03
整数规划模型
整数规划模型的定义与特点
定义
整数规划是一种特殊类型的线性规划,其中一部分或全部变量被约束为整数。
特点
整数规划的变量取值范围受到限制,通常用于解决资源分配、组合优化等问题 。
特点
遗传算法具有全局搜索能力,能够处理多维、非线性、非凸问题;同时,它还具有很好的鲁棒性和自适应性,能 够处理大规模、复杂的问题。
遗传算法的求解方法
编码方式
遗传算法需要对问题 进行编码,通常采用 二进制编码、实数编 码等。
适应度函数
适应度函数用于评估 个体的优劣,根据问 题的不同,适应度函 数也会有所不同。
简单优化模型的特点
简单的优化模型
04
模拟退火模型
定义和概述
1
模拟退火是一种优化算法,它通过引入类似于 物理中的退火过程来尝试找到问题的全局最优 解。
2
在模拟退火中,我们开始从一个初始解,并在 每一步都随机选择一个邻域内的解,然后比较 新旧解的优劣。
3
如果新解更好,我们接受新解;如果新解更差 ,我们以一个小的概率接受新解,这个概率随 着时间的推移而逐渐降低。
在定义了状态和状态转移方程之 后,需要确定边界条件。边界条 件是问题的初始条件或结束条件
04
计算最优解
在确定了边界条件之后,就可以使 用递归或迭代的方法来计算最优解 。递归方法是从问题的最后一步开 始向前推导,直到找到最优解。迭 代方法是通过多次迭代来逐渐逼近 最优解。
动态规划的应用案例
背包问题
背包问题是动态规划中最经典的问题之一。在这个问题中,给定一组物品,每个物品都有自己的重量 和价值。目标是选择一些物品,使得背包的总重量不超过背包的容量,同时最大化背包中物品的总价 值。通过使用动态规划,可以找到最优解,避免陷入局部最优解的陷阱。
模拟退火的应用案例
在旅行商问题(TSP)中,模 拟退火可以找到最优路径,避 免陷入局部最优解。
在生产调度问题中,模拟退火 可以优化生产计划,降低生产 成本。
在图像处理中,模拟退火可以 应用于图像恢复和去噪等问题 。
感谢您的观看
THANKS
概述
线性规划模型在管理科学、社会科学、生物科学等领域都有 广泛的应用,它可以帮助决策者解决资源分配、生产计划、 物流调度等问题。
线性规划的求解方法
定义
线性规划的求解方法包括图解法、 单纯形法、对偶单纯形法等。
图解法
图解法是一种直观的线性规划求解 方法,它通过在坐标系中绘制可行 域和目标函数来求解最优解。
第3章简单的优化模型
第3章简单的优化模型第3章简单的优化模型优化问题可以说是⼈们在⼯程技术、经济管理和科学研究等领域中最常⽤的⼀类问题。
其要求就是在已给定的能够满⾜的条件下,设计⼀个具体可⾏的策略,使我们能得到最为满意的结果。
⽐如公司经理要根据⽣产成本和市场需求确定产品价格,使所获利润最⾼;投资者要选择⼀些股票、债券下注,使收益最⼤,风险最⼩。
这些问题都属于优化问题,本节我们要介绍的优化模型就是⽤来模拟解决这样的问题。
本节我们介绍⼀些⽐较简单的优化模型,归结为微积分中的函数极值问题,可以直接⽤微分法求解。
3.1存储模型⼯⼚定期订购原料,存⼊仓库供⽣产之⽤;车间⼀次加⼯出⼀批零件,供装配线每天⽣产之需;商店成批购进各种商品,放在货柜⾥以备零售;显然这些情况下都有⼀个贮存量多⼤才合适的问题。
贮存量过⼤,贮存费⽤太⾼;贮存量太⼩,会导致⼀次性订购费⽤增加,或不能及时满⾜需求。
本⼩节在需求量稳定的前提下讨论两个简单的贮存模型:不允许缺货模型和允许缺货模型。
前者适⽤于⼀旦出现缺货会造成重⼤损失的情况(如炼铁⼚对原料的需求),后者适⽤于像商店购货之类的情况,缺货造成的损失可以允许和估计。
不允许缺货的存储模型先考察这样的问题:配件⼚为装配线⽣产若⼲种部件,轮换⽣产不同的部件时因更换设备要付⽣产准备费(与⽣产数量⽆关),同⼀部件的产量⼤于需求时因积压资⾦、占⽤仓库要付储存费。
今已知某⼀部件的⽇需求量100件,⽣产准备费5000元,储存费每⽇每件1元。
如果⽣产能⼒远⼤于需求,并且不允许出现缺货,是安排该产品的⽣产计划,即多少天⽣产⼀次(称为⽣产周期),每次产量多少,可使总费⽤最⼩。
问题分析让我们试算⼀下:若每天⽣产⼀次,每次⼀百件,⽆储存费,⽣产准备费5000元,每天费⽤5000元;若10天⽣产⼀次,每次1000件,储存费900+800+…100=4500元,⽣产准备费5000元,总计9500元,平均每天费⽤950元;若50天⽣产⼀次,每次5000件,储存费4900+4800+…100=122500元,⽣产准备费5000元,总计127500元,平均每天费⽤2550元。
简单的优化模型
智能优化算法
对于难以用数学规划方法求解的混合 型优化问题,可以考虑采用智能优化 算法,如遗传算法、粒子群算法、模 拟退火算法等。这些算法通过模拟自 然界的演化过程,利用群体搜索的方 式寻找最优解。
05
应用案例:简单的生产计 划问题
问题描述
01
02
03
生产计划问题
某制造企业需要制定一周 的生产计划,以满足客户 需求并最大化利润。
客户需求限制
每天的生产量需满足客户需求,超过需求会造成库存 积压,低于需求会损失销售机会。
库存水平限制
周一至周日每天的库存水平不能低于设定的最低库存 水平,也不能高于设定的最高库存水平。
建立数学模型
原材料供应限制
每天的生产量需考虑原材料的供应情况 ,超过供应量会造成原材料短缺,低于 供应量会影响生产计划。
在线性优化模型中,我们通常用线性不等式、等式约束以及线性目标函数来表示问 题。
线性优化模型在现实生活中的许多场景中都有广泛的应用,如资源分配、成本效益 分析等。
线性优化模型的特点
线性优化模型的一个显著特点是它的严格性,即所有的约束条件和目标函数都是 线性的。
线性优化模型的另一个特点是它的可解性,即对于给定的线性优化问题,我们可 以通过特定的算法在有限的时间内找到最优解。
02
简单整数优化模型
定义与概念
定义
简单整数优化模型是指在约束条件下,求解整数变量的最优化问题。整数变量是指取值只能为整数的 变量。
概念
整数优化模型是数学优化领域的一个重要分支,其主要目标是找到满足一定约束条件下,整数变量的 最优解。这个最优解通常是一个或多个整数变量的组合,可以最大化或最小化某个目标函数。
深度学习是一种基于神经网络 的机器学习方法,具有强大的 表示能力。它可以用于许多复 杂的优化问题,如图像识别、 自然语言处理等。
姜启源编《数学模型》第四版第三章简单的优化模型
C C 0, 0 T Q
为与不允许缺货的存贮模型 相比,T记作T´, Q记作Q´.
T
2c1 c2 c3 rc2 c3
Q
2c1r c3 c2 c2 c3
允许 T ' 2c1 c2 c3 rc2 c3 缺货 2c1r c3 模型
Q'
不允许 缺货 模型
T
要 求
不只是回答问题,而且要建立生产周期、产量与 需求量、准备费、贮存费之间的关系.
问题分析与思考
日需求100件,准备费5000元,贮存费每日每件1元. • 每天生产一次, 每次100件,无贮存费,准备费5000元. 每天费用5000元 • 10天生产一次, 每次1000件,贮存费900+800+…+100 =4500元,准备费5000元,总计9500元. 平均每天费用950元 • 50天生产一次,每次5000件, 贮存费4900+4800+…+100 =122500元,准备费5000元,总计127500元. 平均每天费用2550元
Δ t / t dt r S (t , r ) Δ r / r dr t
60 S (t , r ) 3 40 r 60
2
2.5
r
3
生猪每天增加的体重 r 变大1%,出售时间推迟3%.
敏感性分析
4r 40g 2 t 估计r=2, g=0.1 rg
研究 r, g微小变化时对模型结果的影响. 3 20g • 设r=2不变 t , 0 g 0.15 g t 对g的(相对)敏感度
r B
模型建立
b b t1 , t 2 t1 x
b
假设1)
数学建模 第三章 优化模型
gi ( x) 0( gi ( x) 0),i 1,2,..., p.
下的最大值或最小值,其中
x f ( x)
x
设计变量(决策变量) 目标函数 可行域
min(or max)u f ( x) x
s. t. hi ( x) 0, i 1,2,...,m.
gi ( x) 0( gi ( x) 0),i 1,2,..., p.
T 对c1 的敏感程度记为
2 1 c2 r c1 1 T T dT c1 S (T , c1 ) 2 2c1 T 2 c1 c1 dc1 T c2 r 1 1 S (T , c2 ) S (T , r ) 2 2
S (T , c1 )
1 S (T , c1 ) 2
min u f ( x) x
s. t. hi ( x) 0, i 1,2,...,m.
gi ( x) 0( gi ( x) 0),i 1,2,..., p.
(2)线性规划(LP)
目标函数和所有的约束条件都是设计变量
的线性函数。
min u ci xi
i 1
n
结果解释
2c1 T c2 r
2c1r Q rT c2
C 2c1c2 r
当准备费 c1 增加时,生产周期和产量都变大; 当存贮费 c2 增加时,生产周期和产量都变小; 当日需求费 r 增加时,生产周期变小而产量变大。
这些定性结果符合常识,而定量关系(平方根,系
数2 等)凭常识是无法得出的,只能由数学建模得到。
1 S (T , c2 ) 2
1 S (T , r ) 2
意义是当准备费增加1%时,生产周期增加0.5% ; 而存贮费增加1%时,生产周期减少0.5% ;
数学建模第3章 简单的优化模型
数学建模第3章 简单的优化模型3.1 在存贮模型的总费用中增加购买货物本身的费用。
重新确定最优订货周期和订货批量。
证明在不允许缺货模型中结果与原来的一样。
而在允许缺货模型中最优订货周期和定货批量都比原来结果减少。
(1)不允许缺货模型:模型假设:考虑连续模型,即设生产周期T 和产量Q 均为连续量。
作如下假设:1、 产品每天的需求量为常数r ;2、 每次生产准备费为1c ,每天每件产品贮存费为2c ;3、 生产力为无限大(相对于需求量),当贮存量降到0时,Q 件产品立即生产出来供给需求,即不允许缺货。
模型建立:设购买单位种类货物的费用为k ,将贮存量表示为时间t 的函数()q t ,0t =生产Q 件,贮存量(0)q Q =,()q t 以需求速率r 递减,直到()0q T =。
如图1,显然有Q rT =。
图1一个周期内的贮存费为2/2c QT ⨯,准备费为1c ,购买费用为kQ 。
所以一周期的总费用为:21212/2/2C c c QT kQ c c rT krT =++=++,则每天的平均费用为:12()//2c T c T c rT kr =++。
模型求解:求T 使得每天平均费用最小,由2221r c Tc dT dC +-=,令0=dT dC ,可以得到122c T c r =,122c r Q c =,结果不变.(2)允许缺货模型:模型假设 与不允许缺货的1、2一样,但3、生产力为无限大(相对于需求量),允许缺货,每天每件产品缺货损失费为3c ,但缺货数量需在下次生产时补足。
模型建立 同上,设购买单位种类货物的费用为k ,将贮存量表示为时间t 的函数()q t ,0t =生产Q 件,贮存量(0)q Q =,()q t 以需求速率r 递减。
但是当1t T =时,有()0q t =,显然有1Q rT =,在1T 到T 这段时间内需求率不变,在t T =时数量立即恢复到Q 。
图2一个周期内的准备费为1c ,贮存费为21/2c QT ,缺货损失费为231()/2c r T T -,购买费用为kQ 。
简单的优化模型
提高产品质量
通过合理的生产计划安排,可以减 少生产过程中的缺陷和错误,提高 产品质量。
缩短交货期
合理安排生产计划,可以按时完成 生产任务,缩短交货周期。
运输优化
总结词
降低运输成本
选择合适的运输方式
根据实际情况选择最合适的运输方式,可以 降低运输成本。
优化运输路径
合理安排装载
通过优化运输路径,可以减少运输里程,从 而降低运输成本。
结果分析
通过求解,得到最优解:x1 = 20,x2 = 60。
即产品A的最优生产量为20单位,产品B的最优 生产量为60单位。 最大利润为20 × 10 + 60 × 15 = 1100元。
THANKS
动态规划模型
动态规划模型是一类特殊的优 化模型,通常用于求解多阶段 决策过程的最优解。
动态规划模型的基本思想是将 多阶段决策过程划分为多个单 阶段决策过程,并保存中间结 果,避免重复计算。
动态规划模型通常用于求解如 背包问题、最长公共子序列、 0/1 背包问题等经典问题。
整数规划模型
整数规划模型是一类特殊的优化模型 ,其要求决策变量为整数。
简单的优化模型
汇报人:文小库 xx年xx月xx日
目录
• 引言 • 常见的优化模型 • 优化模型的数学基础 • 优化模型的应用 • 优化模型的软件实现 • 简单的优化模型案例分析
01
引言
定义和背景
优化模型
指在一组约束条件下,通过改变决策变量的取值,使目标函 数达到最优解的问题。
简单优化模型
指只涉及一个或少数几个决策变量,约束条件比较简单,求 解方法相对直观的优化问题。
Gurobi
高效求解
01
简单的优化模型ppt
混合优化
将不同方法和技术结合起来,形成混合优 化算法,以应对更复杂的问题。
多目标优化
研究如何处理多个相互冲突的目标,寻求 整体最优解。
鲁棒优化
针对不确定性因素,研究如何设计具有鲁 棒性的优化模型,提高决策的稳健性。
约束优化
在满足一定约束条件下,寻找最优解决方 案。
THANKS
调度优化
针对不同的生产或服务场景,优化 各项任务的执行顺序和时间安排, 提高生产效率和服务质量。
路径规划
在地图或网络上规划最优路径,使 得行驶时间、距离或成本等指标最 优。
金融优化
运用数学方法和计算机技术,对金 融投资组合进行优化,以实现最大 收益或最小风险。
最优化的前景展望
算法改进
不断探索新的优化算法,提高求解大规模 或复杂问题的能力。
投资组合优化
03
整数规划模型可以用于优化投资组合,以实现最小化风险或最
大化收益的目标。
04
简单的非线性规划模型
非线性规划模型概述
定义
非线性规划模型是一类在目标函数或者约 束条件中含有非线性关系的优化问题,通 常可以用来解决一些较为复杂的优化问题 。
VS
分类
根据不同的分类标准,非线性规划可以分 为多种类型,如多极值问题、有约束和无 约束问题等。
共轭梯度法是一种利用共轭方向进行迭代的 求解方法,具有较好的收敛性能。
非线性规划模型的实际应用
电力系统规划
生产计划问题
投资组合问题
信号处理问题
非线性规划模型可以应用于电力 系统规划中,求解最优潮流、最 优调度等问题。
非线性规划模型可以应用于生产 计划问题中,求解资源分配、生 产调度等问题。
非线性规划模型可以应用于投资 组合问题中,求解最优资产配置 、最大收益等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一周期
贮存费
c2
T1 q (t )dt
0
c2 A
一周期
缺货费
c3
T T1
q (t ) dt
c3B
一周期总费用
Cc1c2Q 21T c3r(T 2T1)2
允许缺货的存贮模型
一周期总费用 Cc11 2c2Q1 T 1 2c3r(TT 1)2
每天总费用 平均值
C(T,Q) C c1c2Q2c3(rTQ)2 T T 2rT 2rT
建模目的
设 r, c1, c2 已知,求T, Q 使每天总费用的平均值最小.
模 型 建 立 离散问题连续化
q
贮存量表示为时间的函数 q(t)
t=0生产Q件,q(0)=Q, q(t)以 需求速率r递减,q(T)=0.
Q r
A
=QT/2
Q rT
0
T
t
一周期贮存费为
c2
T 0
q(t)dt
c2
QT 2
要 不只是回答问题,而且要建立生产周期、产量与 求 需求量、准备费、贮存费之间的关系.
问题分析与思考
日需求100件,准备费5000元,贮存费每日每件1元. • 每天生产一次, 每次100件,无贮存费,准备费5000元.
每天费用5000元 • 10天生产一次, 每次1000件,贮存费 900+800+…+100 =4500元,准备费5000元,总计 9500元. 平均每天费用950元
市场价格目前为8元/kg,但是预测每天会降低 0.1元,问生猪应何时出售?
一周期 总费用
C~c1 c2
QT 2
c1
c2
rT 2 2
每天总费用平均 值(目标函数)
C(T)C ~c1c2rT TT 2
模型求解 求 T 使C(T)c1c2rTmin
T2
dC 0 dT
T 2 c1 rc 2
模型解释
Q rT 2c1r c2
定性分析 c1T,Q c2T,Q rT,Q
问题
3.1 存贮模型
配件厂为装配线生产若干种产品,轮换产品时因更换设 备要付生产准备费,产量大于需求时要付贮存费. 该厂 生产能力非常大,即所需数量可在很短时间内产出.
已知某产品日需求量100件,生产准备费5000元,贮存费 每日每件1元. 试安排该产品的生产计划,即多少天生产 一次(生产周期),每次产量多少,使总费用最小.
敏感性分析 参数c1,c2, r的微小变化对T,Q的影
T对c1的 (相对)敏感
响
ΔT/T S(T,T c1 d c1 T
1 2
c1增加1%, T增加0.5%
度 S(T,c2)=–1/2, S(T,r)=– 1/2
c2或r增加1%, T减少0.5%
模型应用
• 回答原问题
• 这是一个优化问题,关键在建立目标函数.
显然不能用一个周期的总费用作为目标函数.
目标函数——每天总费用的平均值.
模型假设
1. 产品每天的需求量为常数 r; 2. 每次生产准备费为 c1, 每天每件产品贮存费为 c2; 3. T天生产一次(周期), 每次生产Q件,当贮存量
为零时,Q件产品立即到来(生产时间不计); 4. 为方便起见,时间和产量都作为连续量处理.
(目标函数)
求 T ,Q 使 C(T,Q) m in
C 0, C 0 为与不允许缺货的存贮模型
T Q
相比,T记作T´, Q记作Q´.
T 2c1 c2 c3 rc2 c3
Q 2c1r c3 c2 c2 c3
允许 缺货 模型
T'
Q'
2c 1
c2
c3
rc2 c3
2c1r c3 c2 c2 c3
• 建模中未考虑生产费用, 为什么?在什么条件 下可以不考虑(习题1)?
• 建模中假设生产能力为无限大(生产时间不计), 如果生产能力有限(大于需求量的常数), 应作怎 样的改动(习题2)?
3.2 生猪的出售时机
问 饲养场每天投入4元资金,用于饲料、人力、设 题 备,估计可使80kg重的生猪体重增加2kg.
不允许 缺货 模型
T 2c1 rc 2
Q rT 2c1r c2
记 c2 c3
c3
T T, Q Q
不 允
1 TT, Q Q c3
许
缺 货
c3 1 T T,Q Q
允许 缺货
T 2c1 c2 c3 rc2 c3
经济批量订货公式(EOQ公式)
不允许缺货的存贮模型
允许缺货的存贮模型
q
Q
当贮存量降到零时仍有需求r,
出现缺货,造成损失.
r
原模型假设:贮存量降到零时 A
Q rT1
Q件立即生产出来(或立即到货). O
T1 B T
t
现假设:允许缺货, 每天每件缺货损失费 c3 , 缺货需补足.
周期T, t=T1贮存量降到零
章简单的优化模型
--静态优化模型
3.1存贮模型
3.2生猪的出售时机
3.3森林救火
3.4消费者的选择
简单的优化模型(静态优化)
• 现实世界中普遍存在着优化问题. • 静态优化问题指最优解是数(不是函数). • 建立静态优化模型的关键之一是根据
建模目的确定恰当的目标函数. • 求解静态优化模型一般用微分法.
T 2 c1 rc 2
Q rT 2c1r c2
c1=5000, c2=1,r=100
T=10(天), Q=1000(件), C=1000(元)
思考: 为什么与前面计算的C=950元有差别?
• 用于订货供应情况: 每天需求量 r,每次订货费 c1, 每天每件贮存费 c2 , T天订货一次(周期), 每次订 货Q件,当贮存量降到零时,Q件立即到货.
• 50天生产一次,每次5000件, 贮存费 4900+4800+…+100 =122500元,准备费5000元,总 计127500元. 平均每天费用2550元
10天生产一次,平均每天费用最小吗?
问题分析与思考
• 周期短,产量小 • 周期长,产量大
贮存费少,准备费多 准备费少,贮存费多
存在最佳的周期和产量,使总费用(二者之和)最小.
q Q
模型 Q 2c1r c3 c2 c2 c3
r R
注意:缺货需补足
O
T1 T
t
Q~每周期初的存贮量
每周期的生产量
RrT
2cr 1
c2
c3
R (或订货量)
cc
2
3
RQQ Q~不允许缺货时的产量(或订货量)
存贮模型
• 存贮模型(EOQ公式)是研究批量生产计划的 重要理论基础, 也有实际应用.