数学建模案例分析第8讲最短路问题PPT课件

合集下载

最短路径问题PPT课件

最短路径问题PPT课件

故 (AC+CD+DB)min
• 问题 5:如图,A,B两地在一条河的两岸,现要
在河上建一座桥MN,桥造在何处才能使从A到B的
路径最短?(假设河的两岸是平行的直线,桥要
与河垂直)
.A M
作法: 1、将点B沿垂直与河岸的方
向平移一个河宽到E
N
. E 2、连接AE交河对岸与点M,

.B
点M为建桥的位置,MN为
b
河 草地
. Pa
河 草地
• 作法:
1、作点P关于直线a的对称点
P2
b
P1,关于直线b对称点P2
B
2、连接P1P2,分别交直线
.P
a,b于点A,B 3、连接PA,PB,由对称轴的
A
a 性质知,PA= P1A,PB=P2B ∴先到点A处吃草,再到点B
P1
处饮水,最后回到营地,
这时的放牧路线总路程最
短,即 (PB+BA+AP)min
圆柱侧面展开图的宽1m处和长 24m的中点处,即AB长为最短
AB2 由AC勾2 股 B定C理2 得169
路线.(如图)
∴AB=13(m)
问题 7:如图,是一个三级台阶,它的每一级的长、
宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两
个相对的端点,A点上有一只蚂蚁,想到B点去吃可口
的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶
处,它要沿着木块侧面爬到点D处,则
蚂蚁爬行的最短路径是
74 。
D
4
C
A
5
B3
• 2、现要在如图所示的圆柱体侧面A点与
B点之间缠一条金丝带(金丝带的宽度

最短路问题Dijkstra Floyd 算法PPT学习教案

最短路问题Dijkstra Floyd 算法PPT学习教案
∴ 点v3得永久标号, 3=1 ,X2={v1,v4 ,v3}, X2={v2, v5,v6 ,v7,v8 ,v9},
在所有vj∈X2中, ∵ u2= 6 ,u3+w32=3+2=5, 即 u3+w32< u2
∴ 修改临时标号u2= 5 ,2=3 ,其余标号不变。
第21页/共58页
k=2 +1=3 ∵ min{u5,u6,u7,u8,u9} =min{6,11, ,,}
=6= u5
∴ 点v5得永久标号, 5=2 ,
X4={v1,v4 ,v3 ,v2, v5}, X4={v6 ,v7,v8 ,v9}, 在所有vj∈X4中, ∵ u6= 11 ,u5+w56=6+4=10, 即 u5+w56< u6 u7= ,u5+w57=6+3=9, 即 u5+w57< u7 u8= ,u5+w58=6+6=12, 即 u5+w58< u8
1, ∞
v8
第13页/共58页
图上标号法:
v2
3,5
1
v1
0,0
6 2
3
1,3
v3
6
1
2
10
v4
1,1
2,6
v5
2
6
3
4 10
4
v6 2 v7
1,∞
4,11
1, ∞
v9
3
1, ∞
v8
第14页/共58页
图上标号法:
v2
3,5
1
v1
0,0
6 2
3
1,3
v3
6
1
2
10

图论模型(最优连线问题最短路问题)PPT课件

图论模型(最优连线问题最短路问题)PPT课件
择的边组成图为无圈图,②新选边是满足①的尽可能 小的权。
(3)当(2)不能继续执行时停止。
(其思想是:在剩余边集中找边权最小的边添加到生成树中,同时又 不能产生回路即以局部的最优谋求全局的最优。)
上述的描述实际上是最小生成树的逐 步生长过程,上例的最小生成树如下:
A 5
1 3
D
8 E
水厂
9
B 7
6 10
著名数学家欧拉
七桥问题
图的基本概念
无 向 图
1 定义:由顶点和边组成的图形称为图。 有 向 图



2 边e与顶点u、v相关联。顶点u与v相邻。
e
u
边e1与e2相邻。
e1
v
e2
u=v时,边e称为环。
3度
定义:与顶点v关联的边的数目称为顶点的度数, 记为d(v)。(注:环算2度。)
对于有向图的顶点的度数,还可分为出度 d ( v ) 和 入度 d ( v ) 。
u3
u6
0 8
1
6
u8
5
10
5
2
6
1
1
u4
10
u7
第五步:min{8,11,11,9,8,12,7,11,11},u3。
u2
1
2
u5
3
2
7
5
3
9
u1
u3
u6
0
8
7
1
6
u8
5
10
5
2
6
1
1
u4
10
u7
第六步:min{11,12,11,11,9},u7。
u2
1
2

《最短路径问题》PPT

《最短路径问题》PPT

距离是 C
米. D 河
A
B
4.如图,边长为1的正方形组成的网格中, △AOB的顶点均在格点上,点A、B的坐标分别 是A(3,2),B(1,3).点P在x轴上,当 PA+PB的值最小时,在y 图中画出点P.
B A
OP
x
B'
拓展提升
5.(1)如图①,在AP,使C、D、P三点组成的三角形的
当堂练习
1.如图,直线m同侧有A、B两点,A、 A′关于直线m对称,A、B关于直线n对 称,直线m与A′B和n分别交A于P、Q, 下A.面P的是说m法上正到确A、的B是距(离之 ) 和最短的
点,Q是m上到A、B距 离相等的点 B.Q是m上到A、B距离之 和最短的
点,P是m上到A、B距 离相等的点
2.如图,∠AOB=30°,∠AOB内有一
方法总结:此类求线段和的最小值 问题,找准对称点是关键,而后将 求线段长的和转化为求某一线段的 长,而再根据已知条件求解.
例2 如图,在直角坐标系中,点A,
B的坐标分别为(1,4)和(3,0),
点C是y轴上的一个动点,且A,B,C
三点不在同一条直线上A ,当△ABC的
周长最小时点C的坐标是( )C′
A.(0,3)
B.(0,2)
C.(0,1)
D.(0,B0′ )
解析:作B点关于y轴对称点B′,
E
连接AB′,交y轴于点C′,此时
△ABC的周长最小,然后依据点
A与点B′的坐标可得到BE、AE的
长,然后证明△B′C′O为等腰直
方法总结:求三角形周长的最小值, 先确定动点所在的直线和固定点, 而后作某一固定点关于动点所在直 线的对称点,而后将其与另一固定 点连线,连线与动点所在直线的交 点即为三角形周长最小时动点的位 置.

最短路应用问题课件 15页PPT文档

最短路应用问题课件 15页PPT文档
按照最短路算法可得最短路 {v1, v2, v3, v5},即计划 期内机器更新最优计划为第 1 年、第 3 年初各购进 一台新机器,4 年总的支付费用为 6.8万元。
选址问题。选址问题是指为一个或几个服
务设施在一定区域内选定它的位置,使某一指 标达到最优值。选址问题的数学模型依赖于设 施可能的区域和评判位置优劣的标准,有许多 不同类型的选址问题。比较简单的两类选址问 题是中心问题和重心问题。
某生产厂家年初要制定生产策略,已预知其产品在年初 的需求量为a=6万单位,并以b=1万单位/月速度递增。若生 产产品过剩,则需付单位产品单位时间(月)的库存保管 费C2=0.2元;若产品短缺,则单位产品单位时间的短期损 失费C3=0.4元。假定生产率每调整一次带有固定的调整费 C1=1万元,试问工厂如何制定当年的生产策略,使工厂的 总损失最小?
S(vi)m 1ja{dxij},i = 1, 2, …, v 有:S(v1) = 10,S(v2) = 7,S(v3) = 6,S(v4) = 8.5, S(v5) = 7,S(v6) = 7,S(v7) = 8.5。
(3) 求出顶点 vk,使 S(vk)m 1i{iSn(vi)},则 vk 就是要求的建立消防站的地点。因为 S(v3) = 6 最小,故应将消防站设在 v3 处。此点称为图的 中心点。



25
20 10
0
55


10
25

25 55
0

实验作业
生产策略问题:现代化生产过程中,生产部门面临的突出 问题之一,便是如何选取合理的生产率。生产率过高,导致 产品大量积压,使流动资金不能及时回笼;生产率过低,产 品不能满足市场需要,使生产部门失去获利的机会。可见, 生产部门在生产过程中必须时刻注意市场需求的变化,以便 适时调整生产率,获取最大收益。

数学建模案例分析第8讲最短路问题精品PPT课件

数学建模案例分析第8讲最短路问题精品PPT课件

21.10.2020
图论的基本概念
一、 图 的 概 念 1.图的定义 2.顶点的次数 3.子图
二、 图 的 矩 阵 表 示 1. 关联矩阵
2. 邻接矩阵
数学建模
返回
图的定义
定义 有序三元组G=(V,E, )称为一个图,如果:
[1] V={v1, v2 ,, vn }是有限非空集,V 称为顶点集,
21.10.2020
数学建模
21.10.2020
数学建模
返回
顶点的次数
定义 (1)在无向图中,与顶点 v 关联的边的数目(环算两次)称 为 v 的次数,记为 d (v) .
(2)在有向图中,从顶点 v 引出的边的数目称为 v 的出度, 记为 d+(v) ,从顶点 v 引入的边的数目称为 v 的入度,记为 d-(v) ,
0 0
0 1
1 1
1 0
0 1
v3 v4
对有向图G,其关联矩阵M= (mij ) ,其中:
1 mij 1
0
若vi
是e
的起点
j
若vi
是e
的终点
j
若vi与e j不关联
21.10.2020
数学建模
返回
邻接矩阵
对无向图G,其邻接矩阵 A (aij ) ,其中:
aij 10
若vi与v j相邻 若vi与v j不相邻
称为相邻的边. (4)边和它的端点称为互相关联的. (5)既没有环也没有平行边的图,称为简单图. (6)任意两顶点都相邻的简单图,称为完备图,记为 Kn,其中 n
为顶点的数目.
( 7)若 V=X Y,X Y= ,且 X 中任两顶点不相邻,Y 中任两顶
点不相邻,则称 G 为二元图;若 X 中每一顶点皆与 Y 中一切顶点 相邻,则 G 称为完备二元图,记为 Km,n,其中 m,n 分别为 X 与 Y 的顶 点数目.

最短路算法上课ppt

最短路算法上课ppt

优点
缺点
优点
优点
效率低,需要遍历所有点(特别是有时候不需要最优解)、运算中占用空间大
缺点
算法简明易懂、并且一定能得到最优解
优点
Dijkstra算法可能不是最优先使用的方法,因为算法的运算速度效率,往往要比精确度更加重要
实际运用
但似乎在实际运行时效果并不理想! 这样利用Dijkstra算法设计一个属于我们自己的导航系统啦。
最佳优先搜索简介
这个算法的运算流程跟Dijkstra的流程类似,只不过它考察的是选取点到终点的距离,并且这个距离的权值是评估出来的,这也就是启发式的思想。举例说明,如果说目标的终点在北面,那么越靠近北面的点权值就越小,那么算法在搜索过程中,所加入点集的点就会倾向于北面,因此不用搜索全图东南西北,更多的是搜索北面的点,速度来说会优于Dijkstra算法很多。
01
A*算法能够解决有固定障碍物的路径规划问题,并且能很快地给出解,但是当障碍物是移动的时候,我们又应该如何对算法进行改从而给出解呢?
02
一个典型问题:AGV小车线路规划!
智能码头:AGV
AGV中文名:自动导引小车
是自动化码头水平运输系统中用于搬运集装箱的搬运设备。
其主要职责:就是在规定的时间窗口范围内完成堆场和岸桥之间实现集装箱的传送。

算法的描述上看去相当复杂,我们给出下面例子来具体说明整个算法的运行流程!
首先我们要有如下概念:
假设P:v→km是从顶点v到km的一条最短路径,那对这条路径上任意其他一点ki,都有 P上关于v→ ki的子路径为v到点ki的最短路径。
即最短路径的子路径仍然是最短路径,最短路算法本质上上基于这种思想展开的。
最短路问题及相关算法介绍

教师培训课件:数学建模中的最短路

教师培训课件:数学建模中的最短路
在网络通信中,寻找最短 路径,提高数据传输的稳 定性和速度。
本课程的目标和内容
掌握最短路问题的基 本概念和求解方法。
通过实际操作和案例 分析,提高解决实际 问题的能力。
理解最短路问题在现 实生活中的应用和案 例分析。
最短路问题的数学
02
模型
图论基础
图论是研究图的结构、性质和应用的数学分支。 图由节点和边组成,节点表示事物,边表示事物之间的关系。
概念讲解
详细解释最短路的概念、 定义和特点,确保学生理 解最短路的数学基础。
互动讨论
鼓励学生提问和发表观点 ,通过讨论加深学生对最 短路问题的理解。
如何使用图论和算法解决最短路问题
图论基础
介绍图论的基本概念,如节点、 边和权重,为解决最短路问题奠
定基础。
算法讲解
详细讲解Dijkstra算法和BellmanFord算法等常用解决最短路问题的 算法,让学生掌握核心思想。
Bellman-Ford算法
Bellman-Ford算法是一种用于 查找带权图中单源最短路径的算
法。
该算法由美国数学家理查德·贝尔 曼和莱曼·福特共同提出。
Bellman-Ford算法的基本思想是 利用松弛操作来更新路径上的节 点距离,并检查是否存在负权环

Floyd-Warshall算法
Floyd-Warshall算法是一种用于查找 所有节点对之间的最短路径的算法。
详细描述
在城市交通路线规划中,最短路问题是一个关键问题。通过应用最短路径算法, 可以找到城市中两点之间的最短路径,从而优化交通路线的布局和设计。这有助 于提高交通效率,减少出行时间和成本,缓解城市交通拥堵问题。
物流配送路径优化
总结词

最短路问题(课堂PPT)

最短路问题(课堂PPT)
5
5
0
5
V2
3
6 5 5 V6
V1 4
7 2
V4 7
1
6
8
V5 4
V3
V7
4
6
(4)找出所有与v1,v2,v3相邻的未标记的点v4,v5,v6,求出
从v1直接到这些点的距离(v1->v4:7)以及经过v2到这些点 的距离(v1->v2->v4:11;v1->v2->v5:10;v1->v2->v6:8)以及 经过v3到这些点的距离(v1->v3->v4:6;v1->v3->v5:12)找出 这些距离中最短的路径为v1->v3->v4,最短距离为L14=6, 将v4标记为6
3 2 4 1
时间
2 3 3 2
25
0
5
V2
3
6 5 5 V6
V1 4
7 2
V4 7
1
6
8
V5 4
V3
V7
4
(2)找出同v1相邻的未标号的点有v2,v3,v4,求出从
v1到其所有相邻点的距离(v1->v2:5;v1->v3:4;v1>v4:7),距离最短路径为v1->v3,最短距离为L13=4, 将v3标记为4
0
5
V2
3
6 5 5 V6
5
0
5
V2
3
6 6 5 5 V6
V1 4
7 2
V4 7
1
6
8
V5 4
V3
V7
4
7
(5)找出所有与v1,v2,v3,v4相邻的未标记的点v5,v6,求出
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模与数学实验 最短路问题
21.11.2020
数学建模
实验目的 实验内容
1.了解最短路的算法及其应用 2.会用MATLAB软件求最短路
1.图 论 的 基 本 概 念
2.最 短 路 问 题 及 其 算 法
3.最 短 路 的 应 用 4.建模案例:最优截断切割问题
5.实验作业
21.11.2020
数学建模
G
21.11.2020
G[{v1,v4,v5}]
数学建模
G[{e1,e2,e3}]
返回
关联矩阵
对无向图G,其关联矩阵M= (mij ) ,其中:
1 mij 0
若vi与e
相关联
j
若vi与e
不关联
j
注:假设图为简单图
e1 e2 e3 e4 e5
1 0 0 0 1 v1
M= 1 1 0 1 0 v2
注:假设图为简单图
v1
0 A= 1
0 1
v2 v3 v4
1 0 1 v1 0 1 1 v2
1 1
0 1
1 0
v3 v4
对有向图G=(V,E),其邻接矩阵 A (aij ) ,其中:
aij 10
若(vi,v j) E 若(vi,v j) E
21.11.Biblioteka 020数学建模对有向赋权图G,其邻接矩阵 A (aij ) ,其中:
0 0
0 1
1 1
1 0
0 1
v3 v4
对有向图G,其关联矩阵M= (mij ) ,其中:
1 mij 1
0
若vi
是e
的起点
j
若vi
是e
的终点
j
若vi与e j不关联
21.11.2020
数学建模
返回
邻接矩阵
对无向图G,其邻接矩阵 A (aij ) ,其中:
aij 10
若vi与v j相邻 若vi与v j不相邻
21.11.2020
数学建模
21.11.2020
数学建模
返回
顶点的次数
定义 (1)在无向图中,与顶点 v 关联的边的数目(环算两次)称 为 v 的次数,记为 d (v) .
(2)在有向图中,从顶点 v 引出的边的数目称为 v 的出度, 记为 d+(v) ,从顶点 v 引入的边的数目称为 v 的入度,记为 d-(v) ,
21.11.2020
图论的基本概念
一、 图 的 概 念 1.图的定义 2.顶点的次数 3.子图
二、 图 的 矩 阵 表 示 1. 关联矩阵
2. 邻接矩阵
数学建模
返回
图的定义
定义 有序三元组G=(V,E, )称为一个图,如果:
[1] V={v1, v2 ,, vn }是有限非空集,V 称为顶点集,
(2) 设 V1 V,且 V1 ,以 V1 为顶点集、两个端点都在 V1 中的
图 G 的边为边集的图 G 的子图,称为 G 的由 V1 导出的子图,记为 G[V1].
(3)设 E1 E,且 E1 ,以 E1 为边集,E1 的端点集为顶点集的图 G 的子图,
称为 G 的由 E1 导出的子图,记为 G[E1].
称为相邻的边. (4)边和它的端点称为互相关联的. (5)既没有环也没有平行边的图,称为简单图. (6)任意两顶点都相邻的简单图,称为完备图,记为 Kn,其中 n
为顶点的数目.
( 7)若 V=X Y,X Y= ,且 X 中任两顶点不相邻,Y 中任两顶
点不相邻,则称 G 为二元图;若 X 中每一顶点皆与 Y 中一切顶点 相邻,则 G 称为完备二元图,记为 Km,n,其中 m,n 分别为 X 与 Y 的顶 点数目.
wij aij 0
若(vi , v j ) E,且wij为其权 若i j
若(vi , v j ) E
21.11.2020
v1
0
A= 2
7
v2 v3 v4
2 7 v1 0 8 3 v2
8 3
0 5
5 0
v3 v4
数学建模
返回
最短路问题及其算法
一、 基 本 概 念 二、固 定 起 点 的 最 短 路 三、每 对 顶 点 之 间 的 最 短 路
例 在一次聚会中,认识奇数个人的人数一定是偶数.
21.11.2020
数学建模
返回
子图
定义 设图 G=(V,E, ),G1=(V1,E1, 1 )
(1) 若 V1 V,E1 E,且当 e E1 时, 1 ( e )= ( e ),则称 G1 是 G 的子图.
特别的,若 V1=V,则 G1 称为 G 的生成子图.
其中的元素叫图 G 的顶点. [2] E 称为边集,其中的元素叫图 G 的边.
[3] 是从边集 E 到顶点集 V 中的有序或无序的元素
偶对构成集合的映射,称为关联函数.
例1 设 G=(V,E, ),其中
V={v1 ,v2 , v3 , v4}, E={e1, e2 , e3, e4, e5},
(e1) v1v2 , (e2 ) v1v3, (e3) v1v4, (e4 ) v1v4, (e5 ) v4v4 .
G 的图解如图
21.11.2020
数学建模
定义 在图 G 中,与 V 中的有序偶(vi, vj)对应的边 e ,称为图的有向边 (或弧),而与 V 中顶点的无序偶 vivj 相对应的边 e ,称为图的无
向边.每一条边都是无向边的图,叫无向图;每一条边都是有向
边的图,称为有向图;既有无向边又有有向边的图称为混合图.
d (v) = d+(v) + d-(v) 称为 v 的次数.
d(v4 ) 4
21.11.2020
数学建模
d (v4 ) 2 d (v4 ) 3 d (v4 ) 5
定 理 1 d ( v ) 2 ( G ) v V ( G )
推 论 1 任 何 图 中 奇 次 顶 点 的 总 数 必 为 偶 数 .
定义 若将图 G 的每一条边e 都对应一个实数 w (e ),则称 w (e )为边的 权,并称图 G 为赋权图. 规 定 用 记 号 和 分 别 表 示 图 的 顶 点 数 和 边 数 .
21.11.2020
数学建模
常用术语: (1)端点相同的边称为环. (2)若一对顶点之间有两条以上的边联结,则这些边称为重边. (3)有边联结的两个顶点称为相邻的顶点,有一个公共端点的边
21.11.2020
数学建模
返回
基本概念
定义1 在无向图 G=(V,E, )中:
(1)顶点与边相互交错且 (ei ) vi1vi (i=1,2,…,k)的有限非空序列 w (v0e1v1e2 vk1ek vk ) 称为一条从 v0 到 vk 的通路,记为Wv0vk (2)边不重复但顶点可重复的通路称为道路,记为 Tv0vk (3)边与顶点均不重复的通路称为路径,记为 Pv0 vk
相关文档
最新文档