波导传输线理论优秀课件
电磁场与微波技术第4章1-2传输线理论.ppt
z
A2e z
I
I
z
§1.1 传输线方程
c)电压、电流的定解
始端
终端
上面两个解中的两项分别代表向+z方向和-z方向传播的电 磁波,+z方向的为入射波,-z方向的为反射波。
式中的积分常数由传输线的边界条件确定。
三种边界条件: • 已知终端电压VL和电流IL; • 已知始端的电压V0和电流I0; • 已知电源电动势EG、电源阻抗ZG 与负载阻抗ZL。
EG I0ZG V (z)
ILZL
I (z)
A1e z
1 Z0
A1e
联立求解,可得:
A2e z z A2e z
A1
EG Z0 Z G Z 0 1 G L e 2l
A2
EG Z 0L e 2l Z G Z 0 1 G L e 2l
§1.1 传输线方程
代入式中,并令d = l - z,则解为:
l
而传输线的长度一般都在几米甚至是几十米之长。 因此在传输线上的等效电压和等效电流是沿线变化的。 ——→与低频状态完全不同。
§1.1 传输线方程
传输线理论 长线理论
传输线是以TEM导模方式传 输电磁波能量。
其截面尺寸远小于线的长度, 而其轴向尺寸远比工作波长大 时,此时线上电压只沿传输线 方向变化。
Gl v(z,t) Cl
v( z, t ) t
代入传输线方程,消 去时间因子,可得:
dV z dz
dI z dz
Rl I z j Ll I z GlV z j ClV z
§1.1 传输线方程
整理,可得复有效值的均匀传输线方程:
dV z dz
dI z dz
即
(Rl j Ll )I z Zl I z
第3章 波导传输线理论
3.2 波导传输线的常用分析方法及一般特性
• 在双线传输线理论中所讨论的是沿双线传输线
传输的TEM波,而在金属波导中是不存在TEM
波的。这是因为若金属波导管中存在TEM波,
那么磁力线应在横截面上,而磁力线应是闭合
的。根据右手螺旋规则,必有电场的纵向分量
Ez,即位移电流
Ez
t
支持磁场。若沿此闭合
磁力回线对H做线积分,积分后应等于轴向电
流(即 Hd i(z) 移位电流)。但是,在空心
波导管中根本无法形成轴向电流。因此波导管
内不可能存在TEM波。
3.2.1 波导传输线的常用分析方法
• 对波导传输线常用分析方法研究,不仅适用于金属波 导也适用介质波导。波导是引导电磁波沿一定方向传 输的系统,故又称导波系统。研究波导中导行电磁波 场的分布规律和传播规律,实质上就是求解满足波导 内壁边界条件的麦克斯韦方程。其方法之一,就是先 如何求出电磁场中的纵向分量,然后利用纵向分量直 接求出其他的横向分量,从而得到电磁场的全解。
表3-2 国产圆波导电参数表(第1位B为波导,第2位Y为圆形截面)
型号
主模频率 范围/GHz
内截面尺寸/mm 直径 壁厚t
主模衰减/(dB/m)
频率/GHz
理论值/最大值
BY22 2.07~2.83 97.87 3.30
2.154
0.0115/0.015
BY30 2.83~3.88 71.42 3.30
• 凡是用来引导电磁波的单导体结构的传输线都可以称 为波导。波导是由空心金属管构成的传输系统,根据 其截面形状不同,可以分为矩形波导、圆波导、脊形 波导和椭圆波导等,如图3-1所示。这类传输线上传 输的波型是TE波和TM波,传输的频率是微波段的电 磁波,例如厘米波和毫米波,且传输功率也比较大。 由于波导横截面的尺寸与传输信号载波波长有关,因 此,在微波的低频波段不采用波导来传输能量,否则 波导尺寸太大。
第10章 波导----TE波、TM波传输系统 ppt课件
kx
m
a
,m
0,1, 2...
3,y 0,0 x a, Hz 0, 底璧 y
D0
4,y b,0 x a, Hz 0, 顶璧 y
ky
n
b
,n
0,1, 2...
Hz
H0
cos( m
a
x) cos( n y)e jt z , m, n
b ppt课件
2E k2E 0 2H k2H 0
----赫姆霍兹方程
ppt课件
6
2E k2E 0 2H k2H 0
可以分解为三个标量方程
2Ex k2Ex 0
2Hx k2Hx 0
2Ey k2Ey 0
2Hy k2Hy 0
2Ez k2Ez 0
k
2 x
X
0,
2Y y 2
ky2Y
0
其中:
kc2 kx2 ky2
令: H z (x, y, z, t) X (x) Y ( y) e jt z
可以得到类似的结果
根据纵向分量的存在与否,对电磁波进行分类
1、TEM波,2、TE波pp,t课件3、TM波
10
1、横电波----TE波 (Ez=0)
Ez x
j
H z y
]
Hy
1 kc2
[
j
Ez x
H z y
]
Ey
1 kc2
[
Ez y
j
H z x
]
用电磁场的纵 向分量可以完 全表示横向分 量-----只要求出 纵向分量,就 可以得出电磁 场的全部分量
微波工程 第2章 传输线理论-1 PPT课件
移项,取Δz→0时极限
Microwave Technique
电报方程(传输线方程)
传输线方程(电报方程)
v ( z , t ) i ( z , t ) Ri ( z , t ) L z t 时域形式 i ( z , t ) v ( z , t ) Gv( z , t ) C z t
Microwave Technique
特性阻抗
根据式(2.3a)和(2.6a)可得线上电流:
I( z )
R
V jL
0
e z V0 e z
R jL G jC
(2.7)
定义特性阻抗
Z0
R jL
与传输线上电压、 电流的关系
V0 V0 Z0 I0 I0
量或信号的导行系统。
特点:横向尺寸<< 工作波长λ。 结构:平行双导线 同轴线 带状线 微带线(准TEM模) 广义传输线:各种传输TE模TM模或其混合模的波导都可以认为
是广义传输线。
Microwave Technique
Microwave Technique
常用的传输线
同轴线:由同轴的管状外导体和柱状内导体构成。
Z0
R j L G j C
Microwave Technique
电报方程解的讨论
2、低频大损耗情况(工频传输线)
j
R jLG jC
RG ,
R 0, Z 0 G
L R, C G
传输线上不呈现波动过程,只带来一定衰减,衰减 α为常数。
§ 2 传输线理论
传输线的集总元件电路模型
第三章-传输线和波导
3.1.1 TEM波
横电磁波(Transverse Electromagnetic Wave)
Ez H z 0
z j E j H y x y H z j E j H x y x
E
(3.3a) (3.4b)
Ez H z 0
内导体的空心金属管内不能传播电磁波的错误理论。
40年后的1936年,索思沃思和巴罗等人发表了有关波导传播模式的激励和测量
方面的文章后,波导才有了重大的发展。
早期的微波系统主要使用波导和同轴线作为传输线,波导功率容量高,损耗低,
但体积大,价格昂贵;同轴线工作频带宽,但难于制作微波元件。
于是有了第二次世界大战中带状同轴线和1952年微带线的出现以及后来更多平
y j H
j E
j H x j E
x y
消去Hx
2 E y 2 E y
k
Microwave Technique
TEM波截止波数 kc k 2 2 为零。
对于Ex的亥姆霍兹方程而言:
(3.9)
对于 的依赖关系:
(3.9)式简化为:
ez 和hz 是 纵 向 电 场 和 磁 场 分 。 量
Microwave Technique
对于无源传输线或波导而言,麦克斯韦方程可写为:
E jH H jE
z j E jH y x y E z jH j E x y x E E y x jH z x y H z j H jE y x y H z jE j H x y x H H y x jE z x y
(3.2a) (3.2b)
波导传输线理论
31
§3.3 金属矩形波导及其传输特性
金属矩形波导的场分量
TE、TM
矩形波导中的导波 的传输特性
截止波长、单模传输条件、相速度、群速度
32
3.3.1金属矩形波导的场分量
矩形波导管
Y
b
με a
X
Z
33
求解思路
1. 2.
3.
用分离变量法将偏微分方程变为两个常 微分方程 求解常微分方程 待定系数的确定
34
TM 波(Hz=0)
此时Hz=0,
z
Ez ( x, y, z) A1Ez ( x, y)e
0
考察上式知Ez(x,y)尚未求出,故分析(3.7)
Ez ( x, y) K Ez ( x, y) 0
2 t 2 c
35
分离变量-1
令
Ez ( x, y) X ( x)Y ( y) XY
10
导体传送电磁能的实质
由电磁场理论发现,理想导体内部是 不存在电磁场的。由导体传送电磁能,实 质上传输的电磁能流的电场和磁场,只是 在导体周围有限空间内被导体引导着传输, 而不是在导体内部,导体起着引导方向和 限制的作用。
11
常用波导电参数 波导在微波天馈线系统中的应用 波导在微波器件上的应用
8
自由空间和波导的不同
在均匀无限大的空间中,电磁波是自由地 向各个方向传播的。 当电磁波向理想导体斜入射时,在理想导 体的上半平面,出现由入射波与反射波叠 加形成的沿Z方向的行驻波。
20150929 卓越
9
波导中波的特点
在与导体相平行的Z方向(即沿着理想的导 体边界)呈行波状态; 在与导体相垂直的方向上是驻波状态。
波导传输线理论课件
新型材料与工艺在波导传输线中的应用
要点一
新材料
要点二
新工艺
采用新型材料如碳纳米管、石墨烯等可以改善波导传输线 的性能,提高传输效率、减小损耗等。未来需要研究如何 实现新材料在波导传输线中的稳定制备和性能优化。
采用新型工艺如纳米压印、微纳加工等可以减小波导传输 线的尺寸、降低成本,提高集成度。未来需要研究如何实 现新工艺的稳定性和可重复性,以及在波导传输线制作中 的广泛应用。
矩形波导具有全封闭的结构, 能够提供良好的电磁场隔离, 减少外部干扰和辐射损耗。
在矩形波导中,电磁波的能量 主要集中在波导内部,传输过 程中能量损失较小。此外,矩 形波导的截止频率和传播常数 等参数可以通过调节其尺寸来 控制。
圆波导
总结词
圆波导是一种特殊类型的波导,其横截面呈圆形。
总结词
圆波导的优点在于其封闭性和均匀性,能够提供 较好的电磁场隔离和传输稳定性。
波导传输线理论课件
目录
PART 01
波导传输线概述
定义与特点
定义
波导传输线是一种用于传输电磁 波的结构,通常由两个平行的金 属板或导电壁构成。
特点
具有定向传播电磁波的特性,能 够控制电磁波的传播方向和模式, 常用于微波和毫米波频段的信号 传输和能量传输。
波导传输线的历史与发展
历史
波导传输线最早可以追溯到19世纪 末,随着无线电和雷达技术的发展, 波导传输线逐渐得到广泛应用。
• 总结词:光纤波导的优点在于其传输速度快、带宽大、抗电磁干扰性能好和保密性强。 • 详细描述:光纤波导的尺寸通常用纤芯直径d来表示,其截止频率和传播常数等参数与纤芯直径、折射率和涂覆层厚度有关。在某些应用中,光纤波导还可以通过弯曲来改变传输方向。
精品课件-微波电路基础-第3章
行进的(见图3-1-1),故当电磁波以光速由A走到B时,对应的等
相位面在z方向由A′走到B′,A′B′=
AB
cos
vp大于光速,同时能量中心在z方向只前进到B″点处,AB″=
AB cosθ且小于光速。相速和群速都随频率变化,所以波导波
是色散波(见图3-1-2)。
19
第3章 波 导 传 输 线
图3-1-1 相速、群速与光速的关系
25
第3章 波 导 传 输 线
(6) 波导中的坡印亭矢量和传输功率。由于传输波的波阻 抗为实数,Et和Ht同相,因此平均坡印亭矢量和传输功率分别为
26
第3章 波 导 传 输 线
式中,积分限为波导横截面。该式说明,波导传输功率可 由横向电场或磁场直接算出。
13
第3章 波 导 传 输 线
(2) 波导的传播条件。要求电磁波在z方向传播,在理想导 电和媒质无耗的假定前提下,必有γ=±jβ。由式(3-1-6(b)) 的关系有:
式中,kc是一个由边界条件决定的实常数,β为实数的条件是
k>kc。临界关系为
所以传播条件为
即
14
第3章 波 导 传 输 线
其中: 是可传播的频率下限,称为截止频率,对应的传输波长上限称 为截止波长λc:
这是一个矢量微分方程。数学上直接求解矢量微分方程有 困难。 但矢量的直线坐标分量的微分方程与矢量微分方程是 相同的。在波导中,坐标z为直线,故有
8
第3章 波 导 传 输 线
式(3-1-7)是波导电磁场的定解问题,可以完全确定Ez和Hz。为 了求出其他电磁场分量,可利用旋度关系: 即
9
第3章 波 导 传 输 线
5
第3章 波 导 传 输 线
电信传输原理第3章 波导传输线理论
长短路线)作支架以固定导线,当频率很高时,介质损耗或 金属绝缘子的热损耗也很大。 随着频率的升高,辐射损耗急剧增加,介质损耗和热损耗也有 所增加,但没有辐射损耗严重。由于以上现象,平行双导线 只能用于米波及其以上波长范围。
17
3.2 波导传输线的常用分析方法及一般特性
双线传输线理论讨论沿双线传输线传输的TEM波,而 在金属波导中不存在TEM波。
金属波导可传输Ez≠0,Hz=0的TM波及Ez=0,Hz≠0的TE 波。
传输线方程的局限性:单根导线、空心金属管、光纤等 无法用电路方法解决。
电磁场理论的有效性:任何电器问题都可以用麦氏方程 表示。
(3)损耗小。一般波导内填充的是干燥的空气,因此 介质损耗很小。
(4)结构简单,均匀性好。
3.1.2圆波导定向耦合器在高功率微波测 量中的应用
基于多孔耦合技术的圆波导耦合器,在微波取样处具有较 低的电场强度,因此可以显著提高在线测量系统的功率容 量。对X波段在线测量系统的标定、大功率考核、高功率 比对以及高功率微波实验表明,该在线测量系统测量结果 稳定可靠,可以应用于HPM 源功率测量和状态监测。
不变,以及填充于波导管内介质参数(、、)沿纵向
均匀分布。
对规则金属波导,作如下假设(理想波导的定义 ) : ①波导管的内壁电导率为无穷大,即认为波导管壁是理想 导体。 ②波导内为各向同性、线性、无损耗的均匀介质。 ③波导内为无源区域,波导中远离信号波源和接收设备。 ④波导为无限长。 ⑤波导内的场随时间作简谐变化。
2Exk2Ex 0 2Hxk2Hx 0
2Ey k2Ey 0 2Hy k2Hy 0
电信传输原理第3章 波导传输线理论
3.1.5常用波导的电参数
矩形波导和圆波导的电参数表如表3-1和表3-2所示:
表3-1 国内矩形波导电参数表
3.1.5常用波导的电参数
矩形波导和圆波导的电参数表如表3-1和表3-2所示:
表3-2 国内圆波导电参数表
内容提要
波导传输线及应用
波导传输线的常用分析方法及一般特性
矩形波导及其传输特性 圆波导及其传输特性
波导中为何没有TEM波
原因:若金属波导管中存在TEM波,电力线分 布于波导横截面上,则它必为闭合的磁力线包围; 磁力线正交于电场,必有磁场强度H的纵向分量Hz 如图所示。
3.2.1 波导传输线的常用分析方法
采用“场”分析方法,研究波导中导行电磁波场的分布规
3.1.2圆波导定向耦合器在高功率微波测 量中的应用
基于多孔耦合技术的圆波导耦合器,在微波取样处具有较
低的电场强度,因此可以显著提高在线测量系统的功率容 量。对X波段在线测量系统的标定、大功率考核、高功率 比对以及高功率微波实验表明,该在线测量系统测量结果 稳定可靠,可以应用于HPM 源功率测量和状态监测。 在高功率容量在线测量系统的研制过程中,已经建立了一 套在线测量系统的设计规范,完善了相应的标定系统和考 核方法。在此基础上,建立了不同频段的在线测量装置。 同时,针对可调谐HPM 源的需求,目前已经研制了具有 大带宽的圆波导耦合器,其耦合度在9.2~10.2 GHz 带 宽范围内变化小于± 0.1 dB;针对大尺寸过模波导输出 的HPM源,研制了高功率选模定向耦合器。这些耦合器 构建的在线测量系统在HPM 源的研制中正发挥着重要作
同轴线可用于较高频率,因为电磁场被屏蔽在内外导体之间
,没有辐射损耗。同轴线可用在分米波及厘米波波段。当频 率更高时,同轴线存在以下问题: 1.损耗大。由于内外导体是靠介质支撑的,有介质损耗,频 率很高时,介质损耗会很大,集肤效应使得金属的热效应急 剧增加。 2.为了保证同轴线传输横电磁波(TEM波),必须满足条件
传输线理论详解ppt课件
.
4传输线理论的内容
➢ 简单传输线的纵向问题,
可以用场的方法来分析:根据边界和初始条件求 电磁场波动方程的解,得出电磁场随时间和空间 的变化规律;
A1ez
A2ez
特性阻抗
Z0
R jL G jC
u(z,t)A 1ezco tszA 2ezco tsz
i(z,t)Z A 1 0e zc
o tszA 2e zc
Z0
o tsz
解的物理含义: 传输线上电流、电压以波的形式传播; 存在朝相反方向传播的波
.
28
第一部分 U(z,t),I(z,t)
计及 JE
I JS Er02
同时考虑Ohm定律
V Edl
R0V IE E d rl02lr025.81071(2103)2
1.37103/m
代入铜材料 5.8107
.
微波传输线 当频率升高出现的第一个问题是导体的集肤效应 (Skin Effect)。导体的电流、电荷和场都集中在导体 表面
型的组合和发展。
.
2 对传输线的基本要求
➢ 工作频带宽(或满足一定的要求);功率容量大(或满 足一定的要求);工作稳定性好;损耗小;尺寸小和 成本低等。
➢ 实际应用中,从减少损耗和结构工艺上的可实现性 等方面来考虑:在米波或分米波中的低频段范围内 ,可采用双导线或同轴线;在厘米波范围内可采用 空心金属波导管以及带状线和微带线等;在毫米波 范围可采用空心金属波导管、介质波导、介质镜像 线和微带线;在光频波段则采用光波导(光纤)。
新版第二章-传输线理论课件.ppt
Zin(z)
=
U(z) I(z)
均匀无耗传输线
传输线的输入阻抗
Zin (z)=U j2c U 2s o βZ izβ 0 s+ n zj+I2 IZ 2c 0so β iβz n zs=Z0Z Z0 L+ +jjZ Z L 0ttg g β βz z
λp
=vpT=vfp
ωβ 2π
= f
=β
2021/4/9
11
第二章 传输线理论
三、特性阻抗
传输线的特性阻抗定义为传输线上入射波电压Ui (z) 与入射波电流Ii (z)之比,或反射波电压Ur (z)与反射波 电流Ir (z)之比的负值,即
Z0=U Iii((zz))=-U Irr((zz))=
R0+jωL1 G0+jωC1
对于无耗传输线( R0=0,G0=0 ),则
Z0 =
L1 C1
对于微波传输线 ,也符合。
平行双线 同轴线 特性阻抗
在无耗或低耗情况下,传输线的特性阻抗为一实数,
它仅决定于分布参数L1和C1,与频率无关。
2021/4/9
12
第二章 传输线理论
四、输入阻抗
传输线终端接负载阻抗ZL时,距离终端z处向负载方向看 去的输入阻抗定义为该处的电压U (z)与电流I (z)之比,即
Z0
2021/4/9
8
第二章 传输线理论
三、入射波和反射波
根据复数振幅与瞬时值间的关系,可求得传输线上电压和电流的瞬时值表达式
u(z),= tR[U e (z)ejω t] =A 1co (ωs+βt)+ zA 2co (ωs-βt)= zi(uz,)+ tur(z,)t
第三章波导传输线1
第三章波导传输线1微波传输线第3章微波传输线おオ返回主目录微波传输线第3章微波传输线おオ第3章微波传输线金属传输线:一种将高频(或微波)能量从一处传输到另一处的装置。
金属传输线的分类――电磁波型/模式的分类微波传输线第3章微波传输线おオTEM TE TM 波导波系统中的电磁波按纵向场分量的有无,可分为以下三种波型(或模): (1) 横磁波(TM波),又称电波(E波): H z = 0, E z ≠ 0 (2) 横电波(TE波),又称磁波(H波): (3) 横电磁波(TEM波):E z = 0, H z ≠ 0E z = 0, H z = 0其中横电磁波只存在于多导体系统中,而横磁波和横电波一般存在于单导体系统中,它们是色散波。
微波传输线第3章微波传输线おオ金属传输线的分类TEM或准TEM传输线:微波传输线第3章微波传输线おオ金属传输线的分类封闭金属波导(TE、TM波)微波传输线第3章微波传输线おオ第3 章微波传输线3.1导波原理导波原理1. 规则金属管内电磁波规则金属管内电磁波对由均匀填充介质的金属波导管建立如图2 - 1 所示坐标系, 设z轴与波导的轴线相重合。
由于波导的边界和尺寸沿轴向不变, 故称为规则金属波导。
为了简化起见, 我们作如下假设: ① 波导管内填充的介质是均匀、线性、各向同性的; ② 波导管内无自由电荷和传导电流的存在;图3 C 1 金属波导管结构图微波传输线第3章微波传输线おオ③ 波导管内的场是时谐场。
由电磁场理论, 对无源自由空间电场E和磁场H满足以下矢量亥姆霍茨方程:2 E + K 2 E = 0 2 H + K 2 H = 0式中, k2=ω2ε。
现将电场和磁场分解为横向分量和纵向分量, 即E=Et+azEz H=Ht+azHz 微波传输线第3章微波传输线おオ式中, az为z向单位矢量, t表示横向坐标, 可以代表直角坐标中的(x, y); 也可代表圆柱坐标中的(ρ, φ)。
《传输线理论详解》课件
VS
详细描述
在高速数字信号处理中,传输线理论被用 于分析信号在传输过程中的特性变化,以 及如何减小信号的延迟和畸变。通过传输 线理论,可以优化信号传输路径和系统参 数,提高信号的传输速度和稳定性,满足 高速数字信号处理的需求。
高频微波系统设计
总结词
传输线理论在高频率微波系统设计中具有重 要应用,有助于实现高频微波信号的高效传 输。
详细描述
传输线的基本特性包括阻抗、传播常数和电磁波的传播速度等。阻抗决定了传输线对信号的负载能力,传播常数 决定了电磁波在传输线中的传播速度和相位变化,而电磁波的传播速度则与传输线的材料和结构有关。这些特性 参数对于传输线的性能和信号完整性至关重要。
传输线的应用场景
总结词
传输线在通信、电子、电力等领域有着广泛的应用, 如信号传输、能量传输等。
详细描述
传输线在许多领域都有着广泛的应用,如通信领域中 的信号传输、电力领域中的能量传输等。在通信领域 中,传输线被用于连接各种通信设备,如电话、电视 和互联网设备,实现信号的传输和接收。在电力领域 中,传输线被用于远距离输电和配电,实现电能的传 输和分配。此外,在电子设备中,传输线还被用于连 接各个组件,实现信号的传输和能量的传递。
当传输线中存在电压或电流 变化时,会在传输线周围产 生电磁场,电磁能量会以辐 射的形式向周围空间传播, 形成电磁辐射。同时,这种 电磁辐射可能会对其他电子 设备产生干扰。
E = -dΦ/dt,H = dA/dt, 其中E是电场强度,H是磁场 强度,Φ是磁通量,A是磁 矢量势。
电磁辐射与干扰可能会对其 他电子设备产生干扰,因此 需要进行电磁兼容性设计和 防护措施。同时,电磁辐射 也可以用于通信和探测等领 域。
传输线的传播特性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用波导电参数 波导在微波天馈线系统中的应用 波导在微波器件上的应用
自学
13
§3.2 金属规则波导的分析方法
为什么采用电磁场理论
传输线方程的局限性
设备利用率-复用技术-提高频率-降低波长-波长 与横向尺寸-分布参数不适用
同轴电缆中内外导体上电荷、电流不等 20150929 广电 单根导线、空心金属管、光纤等无法用电路方法解决
导波:沿波导行进(传播)的波叫做导行 波,简称为导波。
导波和自由空间中电磁波的差别
电磁波的能量被局限在波导内部 沿波导规定的Z方向前进 传输效率高
3
各种形式的波导
(a)圆波导 (b)矩形波导
(c) 脊形波导
4
双线传输线的局限
双线传输线—导引电磁能流的传输线,但 传输信号的频率低。若在高频率双线传输 的损耗很大,辐射电磁波很明显。
电磁场理论的有效性
任何电气问题都可以用麦氏方程表示 信号功率必须满足要求,能量携带者是电磁波,而不
是自由电子。
14
规则波导
规则波导:是指一条无限长而且直的波导, 特性沿长度不变。
工程上采用近似分析法
X Z
Y
15
3.2.1 假设条件(理想波导的定义 )
波导管壁是理想导体,电导率为无穷大; 波导内空间介质各向同性、均匀且无损耗; 波导中无自由电荷和传导电流; 波导是无限长的管子,不存在终端的反射,考
20分离变量-2横向(波)和纵向(行波)分量Ez(x,y,z)Ez(x,y)Z1(z) Hz(x,y,z)Hz(x,y)Z2(z) (3.4)
将(3.4-a)代入(3.3-c)可得
2 [ E z ( x ,y ) Z 1 ( z ) k ] 2 [ E z ( x ,y ) Z 1 ( z ) 0 ]
(3.5)
21
分离变量-3
利用横向拉普拉斯算子,上式变为 t 2 [ E ( x ,y ) Z 1 ( z ) ] z 2 2 [ E ( x ,y ) Z 1 ( z ) ] K 2 E ( x ,y ) Z 1 ( z ) 0
E(x,y)和Z无关,Z1(z)只与Z有关,可以改写为
Z 1 (z ) t 2 E (x ,y ) E (x ,y )d 2 d Z 1 ( 2 z ) Z K 2 E (x ,y )Z 1 (z ) 0
(3.3)
19
分离变量-1
平面波对导体斜入射时会出现行驻波 在波导管中,当电磁波对波导管斜入射时,电磁波
将在波壁上来回反射,在横截面上将形成一种驻波 分布。驻波的分布由波导管的截面形状所决定。 入射的电磁波还将沿波导壁导行,沿着z轴向前传 播。由于是规则波导,因此沿z轴方向没有反射, 所以,沿z轴电磁波呈现行波状态, 把电磁波在波导中的传播分为两种情况:沿z方向 (即纵向)和沿x、y方向(即横向)来进行分析。
22
分离变量-4
上式两边同除以E(x,y)Z1(z),并移项得
E t2E (x(,xy ,)y)Z11 (z)d2 dZ1(Z 2z)K2
波导传输线理论
内容提要
金属波导引导电磁波传播时应遵 循的基本规律和所具有的特征。
波动方程的求解过程 波导中导波的传播特性
波的传播速度 导波的波长 导波的截止波长 单模传输条件
2
§3.1 波导和导波
波导:凡是引导和限制电磁波传播的单导 体结构的传输线都可以称为波导。例如光 纤、金属波导。
在平行双导线中传输的行波属于TEM波, 而在金属波导中不存在TEM波,只需讨论 TE、TM波。
同轴线对在低频时传输的波是TEM波,在 高频时既有TEM波又有TE和TM波。
带状线、微带线传输的主模是TEM波,同 样还有TE、TM波存在。
7
波导中为何没有TEM波
若金属波导管中存在TEM波,那么磁力线应 在横截面上,而磁力线应是闭合的,如图所示。 根据右手螺旋规则,必有电场的纵向分量Ez。沿 此闭合磁力线对H做线积分,积分后应等于轴向电 流,但是,在空心波导管中根本无法形成轴向电 流
8
波导中为何没有TEM波
换一种解释:若金属波导管中存在TEM,电 力线分布于波导横截面上,则它必为闭合的磁力 线包围;磁力线正交于电场,必有磁场强度H的纵 向分量Hz如图所示。
9
自由空间和波导的不同
在均匀无限大的空间中,电磁波是自由地 向各个方向传播的。
当电磁波向理想导体斜入射时,在理想导 体的上半平面,出现由入射波与反射波叠 加形成的沿Z方向的行驻波。
20150929 卓越
10
波导中波的特点
在与导体相平行的Z方向(即沿着理想的导 体边界)呈行波状态;
在与导体相垂直的方向上是驻波状态。
11
导体传送电磁能的实质
由电磁场理论发现,理想导体内部是 不存在电磁场的。由导体传送电磁能,实 质上传输的电磁能流的电场和磁场,只是 在导体周围有限空间内被导体引导着传输, 而不是在导体内部,导体起着引导方向和 限制的作用。
同轴线—内外导体间有绝缘材料支撑,电 磁波被约束在内外导体间,这样就阻止了 电磁波向外辐射以及外界对它的干扰,但 无法在更高频率段使用。
5
空心金属波导
为了适用在更高频率段,防止电磁波辐射, 减少绝缘介质损耗,又提出了用空心金属 波导管做传输线。常用在微波、雷达和卫 星通信中传输信号。
6
不同的传输模式
Ex,Ey,Hx,Hy全部横向场分量
17
3.2.3 分析过程
波动方程
2 E k 2 E 0
2
H
k2H
0
(3.1)
k2 2
为波导内介质的相位常数
直角坐标系中的分量表示
EiEx jEy kEz HiHx jHy kHz
(3.2)
18
标量形式亥姆霍兹方程
2E x k 2E x 0 2E y k 2E y 0 2E z k 2E z 0 2H x k 2H x 0 2H y k 2H y 0 2H z k 2H z 0
察的部分也远离波源,截面形状、大小、结构 及媒质分布不变; 传播的电磁波是简谐的。
16
3.2.2 分析导波内E、H的思路
目的:求出波导管内E、H表达式 方法:从E和H的波动方程入手 步骤:
① 从矢量波动方程获得标量波动方程; ② 求解出沿纵向传播的Ez和Hz ; ③ 利用Ez,Hz与Ex,Ey,Hx,Hy关系式解出