可靠性模型汇总
《可靠性模型》课件
可靠性模型的参数设定
失效率:描述设备或系统在单位时间内发生故障的概率
维修率:描述设备或系统在单位时间内被修复的概率
平均修复时间:描述设备或系统从发生故障到被修复所 需的平均时间
平均无故障时间:描述设备或系统在两次故障之间的平 均时间
失效模式:描述设备或系统可能出现的故障类型和原因
维修策略:描述设备或系统在发生故障后的维修方式和 方法
添加标题
添加标题
应用:广泛应用于航空航天、汽 车、电子等领域,用于提高产品 的可靠性和安全性。
故障树分析法
基本概念:一种 系统安全分析方 法,用于识别和 评估系统中的故 障和失效
应用领域:广泛 应用于航空航天、 核能、化工、电 子等领域
主要步骤:建立 故障树、分析故 障原因、评估故 障概率、提出改 进措施
优点:可靠性框图法具有直观、易于理解的特点,可以帮助分析人员快 速了解系统的可靠性。
局限性:可靠性框图法只能提供系统的可靠性信息,不能提供系统的详 细性能信息。
可靠性模型的应用实例
电子产品可靠性模型应用实例
手机:电池寿命 预测、屏幕故障 率分析等
电脑:硬盘寿命 预测、主板故障 率分析等
家电:冰箱压缩 机寿命预测、洗 衣机电机故障率 分析等
电子设备:评估电子设备的可靠性, 如手机、电脑等
机械设备:评估机械设备的可靠性, 如汽车、飞机等
建筑工程:评估建筑工程的可靠性, 如桥梁、隧道等
医疗设备:评估医疗设备的可靠性, 如医疗器械、药品等
软件系统:评估软件系统的可靠性, 如操作系统、应用软件等
环境监测:评估环境监测设备的可靠 性,如空气质量监测、水质监测等
靠性和寿命
电力系统:用于 评估电力系统的 可靠性和稳定性
可靠性资料整理-Read
可靠性整理第一部分:概述(一)可靠性的必要性:1.客户的需要:仪器的使用部门,尤其是实时在线检测仪器的使用部门,强烈地希望所使用的仪器能够长时间连续、无故障得工作。
2.自身的需要:仪器自身可靠性的提高,就意味着自身竞争力的提高,最终的结果不是我们寻求客户,而是客户寻求我们。
(二)可靠性的定义可靠性的经典定义:产品在规定的条件下和规定的时间内,完成规定功能的能力。
该定义明确指出评价一个产品的可靠性,与规定的工作条件和规定的工作时间有关,也与规定产品应完成的功能有关。
产品的可靠性与工作条件的关系极为密切。
“规定的工作条件”是指产品工作时所处的环境条件、负荷条件和工作方式。
环境条件一般分为气候环境和机械环境。
气候环境是指电子元器件所处环境的气候条件,如温度、湿度、气压、气氛、盐雾、霉菌、辐射等;机械环境是指电子元器件是否经常受到外界机械应力的影响,如振动、冲击、碰撞、跌落、离心、摇摆等。
环境对电路所施加的应力可能是恒定的,也可能是变化的和交变的。
负荷条件是指电子元器件所承受的电、热、力等应力的条件,目前主要是指加在电子元器件上的电压、电流和功率等条件。
工作方式一般分为连续工作或间断工作,不工作的情况属于存贮状态。
“规定的时间”是指评价电子元器件的可靠性和规定的时间有关。
可靠性本身就是时间的函数,要保持电子元器件全部性能处于良好的工作状态,时间长比时间短更困难。
在同一工作条件下,保持的时间越长可靠性越高。
所以,在讨论电子元器件可靠性时,必须指明在多长时间内的可靠性。
规定功能:要明确具体产品的功能是什么,怎样才算是完成规定功能。
产品丧失规定功能称为失效,对可修复产品通常也称为故障。
能力:只是定性的理解是比较抽象的,为了衡量检验,后面将加以定量描述。
产品的失效或故障均具有偶然性,一个产品在某段时间内的工作情况并不很好地反映该产品可靠性的高低,而应该观察大量该种产品的工作情况并进行合理的处理后才能正确的反映该产品的可靠性,因此对能力的定量需用概率和数理统计的方法。
可靠性分析模型在工程设计中的应用
可靠性分析模型在工程设计中的应用工程设计是一项复杂而艰巨的任务,涉及到许多关键因素,其中之一就是可靠性。
可靠性分析模型被广泛应用于工程设计中,以帮助工程师评估和提高设计的可靠性。
本文将探讨可靠性分析模型在工程设计中的应用,并介绍几种常见的可靠性分析模型。
一、可靠性分析模型简介可靠性分析模型是一种定量分析工具,用于评估系统或构件的失效概率和寿命。
它通过建立数学模型和运用统计方法,对设备的可靠性进行定量计算和预测。
可靠性分析模型可以帮助工程师预测设备的寿命、优化维修计划、改进设计等,从而提高工程设计的可靠性。
二、可靠性分析模型的应用1. 故障树分析(FTA)故障树分析是一种常用的可靠性分析模型,它通过树状图的方式描述系统或构件发生失效的逻辑关系。
工程师可以通过故障树分析模型找出系统故障发生的关键因素,并采取相应的措施来提高设计的可靠性。
例如,在核能领域,故障树分析被广泛用于评估核电站的可靠性,以确保安全性能。
2. 事件树分析(ETA)事件树分析是另一种常见的可靠性分析模型,它通过图形表示系统失效的各个可能性,从而帮助工程师评估系统的可靠性水平。
与故障树分析类似,事件树分析也可以用来预测系统发生故障的概率,并通过制定相应的维修策略来提高可靠性。
例如,在航天领域,事件树分析可用于评估火箭发射的可靠性,保证任务的顺利完成。
3. Monte Carlo模拟Monte Carlo模拟是一种基于大量随机抽样的数值计算方法,用于评估系统的可靠性。
通过生成大量的随机数,模拟系统的运行过程,从而计算系统失效的概率和寿命。
Monte Carlo模拟可以克服传统方法中的一些假设和限制,更准确地评估系统的可靠性。
它在机械、电子、航空等领域的工程设计中得到了广泛应用。
4. 可靠性建模与评估软件除了上述模型,还有一些专业的可靠性建模与评估软件可供工程师使用。
这些软件提供了丰富的建模工具和分析方法,可帮助工程师进行更准确和高效的可靠性分析。
常用软件可靠性模型推导
常用软件可靠性模型推导本章针对软件可靠性IEEE P1633标准给出的模型参数的极大似然估计和最小二乘估计的详细推导,给出了求解公式。
随机过程类的软件可靠性数学模型主要包括马尔科夫过程模型(Markov Process Model)和非齐次泊松过程模型(NHPP).一般假定错误出现率在软件无改动的区间内是常数,并且随着错误数据的减少而下降,这样的模型数据马尔科夫过程模型,如Jelinski_Moranda 模型.另外,排错过程中的累积错误数作为时间的函数N(t)在一定的条件下可以近似为一个非齐次泊松过程,这一类的数学模型属于非齐次泊松过程模型。
如Goel_Okumoto 模型,Schneiwind 模型等.另外本章还讨论了一个非随机过程类模型Littlewood -Verrall 模型,L_V 模型应用贝叶斯方法研究软件可靠性。
对于大的样本,极大似然法是非常有效的估计方法,但只针对小样本或者中等大小的样本,用最小二乘法比较好。
下面将针对各个模型给出具体的参数估计推到过程。
1指数模型1.1 指数模型简介与假设 1.2 指数模型推导 ,t R e λλ-=其中为常数则有1λλm(t)=t,MTBF=1.3 指数模型参数估计 (1) 数据要求:测试时间: i t ,00=t ;累计失效数:i n (i t 时刻对应失效数)。
(2) 参数点估计:测试终止时刻测试时间为f t ,累积失效数为f n ,则参数估计值为:f fn t λ=2 Jelinski_Moranda(J_M)模型2.1 J_M 模型简介与假设由Jelinski -Moranda 开发的可靠性模型是最早建立且现在仍然使用着的模型之一,该模型现在正用在麦克唐奈道格拉斯海军工程中。
它是最具代表性的早期软件可靠性马尔可夫过程的数学模型。
随后的许多工作,都是在它的基础上,对其中与软件开发实际不相适合的地方进行改进而提出的。
因此,在这个意义上来说,JM 模型又是对后面的工作有着广泛影响的模型之一。
《可靠性模型》课件
确定失效后果和影响
评估每种失效模式可能导致的后果和影响,以便在 可靠性模型中考虑相应的可靠性参数和指标。
进行失效模式和影响分析 (FMEA)
通过FMEA方法,对每种失效模式进行风险 优先度评估,以便优先处理对系统可靠性影 响较大的失效模式。
确定可靠性参数和模型假设
选择合适的可靠性参数
根据系统特性和需求,选择适合的可靠性参数,如平均故 障间隔时间(MTBF)、故障率等。
模型评估指标
准确率
衡量模型正确预测的比例。
召回率
衡量模型发现真正正例的能力。
F1分数
准确率和召回率的调和平均数,综合衡量模型性能。
AUC-ROC
衡量模型在所有可能阈值下的性能,常用于分类问题。
04 可靠性模型的应用
在产品设计中的应用
故障模式影响分析(FMEA)
通过分析产品中潜在的故障模式,评估其对产品可靠性的影响,从而在设计阶段预防和减少故障。
在维修决策中的应用
维修计划制定
根据可靠性模型预测设备或系统的故障 率,制定合理的维修计划,降低维修成 本。
VS
维修策略优化
通过分析设备或系统的可靠性数据,优化 维修策略,提高维修效率和设备可用性。
在可靠性预测和评估中的应用
可靠性评估
通过可靠性模型对产品或系统的可靠性进行 评估,为产品设计、生产和维修提供依据。
确定系统的边界和约束条件
02 确定系统的边界和约束条件有助于将可靠性模型的范
围和限制条件明确化。
建立系统结构图
03
通过建立系统结构图,可以直观地表示系统中各组成
部分之间的连接和依赖关系。
确定失效模式和影响分析
分析可能的失效模式
分析系统可能出现的各种失效模式,包括硬 件故障、软件错误、人为操作失误等。
可靠性建模
可靠性模型1、概述用于定量分配、估算和评价产品可靠性的一种数学模型叫“可靠性模型”。
可靠性模型包括可靠性方框图和可靠性数学模型二项内容。
可靠性方框图与产品的工作原理图相协调。
产品的工作原理图表示产品各单元之间的物理关系,而可靠性方框图表示产品各单元之间的功能逻辑关系。
两者不能混淆。
例如:某振荡电路,由电感L和电容C组成,缺一不可,其工作原理图和可靠性方框图如图1所示:LC L C工作原理图可靠性方框图图1 LC 振荡电路的工作原理图和可靠性方框图从图1可以看出,工作原理图中,电感L和电容C 是并联的关系,而可靠性方框图中,它们却是串联关系。
产品的可靠性数学模型是定量描述产品可靠性的各种参数,如:失效率λ,可靠度R(t) ,平均故障间隔时间MTBF等。
λ——产品的故障总数与工作时间和寿命单位总数之比。
R(t)——产品在规定的条件下和规定的时间内完成规定功能的概率。
MTBF——产品的总工作时间与发生的故障次数之比。
对于寿命服从指数分布的电子产品,MTBF=1/λ。
2、典型的可靠性模型典型的可靠性模型有四种:串联模型,并联模型,r/n表决模型和旁联模型。
设产品由n个单元组成,各单元寿命服从指数分布,产品和各单元失效率分别为λs和λi ,平均故障间隔时间分别为MTBF S=1/λs和MTBF i=1/λi,可靠度分别为Rs(t) =e-λS t和Ri (t)=e-λi t,i=1,2,...n,t为产品的工作时间。
⑴串联模型——组成产品的所有单元中任一单元失效都会导致整个产品失效的模型。
①可靠性方框图②数学模型Rs(t)=R1(t) R2(t)…R n(t)=e-( λ1+λ2+…+λn ) t=e-λst;λs= λ1+λ2+…+λnMTBF S=1/λs=1/(1/MTBF1+1/MTBF2+…+1/MTBF n)若λ1=λ2=…=λn=λ(MTBF1=MTBF2=…=MTBF n=MTBF)则λs= n λMTBF S= MTBF /n⑵ 并联模型——组成产品的所有单元都失效时产品才失效的模型, 为工作储备模型。
软件可靠性模型
λ (t ) = NΦe − Φt
c)
参数估计 由 P(ti ) 可得似然函数:
L(t1 , t 2 , , t n ) = ∏ Φ[ N − (i − 1)]e −Φ[ N −(i −1)]ti
i =1 n
Rξ (t ) = Pr {ξ > t} = 1 − Fξ (t )
2.2 MTBF(Mean Time Between failure)平均 无故障工作时间(平均失效间隔时间)
是指两次相邻失效时间间隔的均值。假设当 两次相邻失效时间间隔为 ξ ,ξ 具有累计概率密 度函数 F (t ) = P(ξ ≤ t ) ,即可靠度函数
3.软件可靠性模型
软件可靠性模型的基本假设:
软件的运行剖面与可靠性测试剖面一致。 ② 一旦发现错误,立即修正,并不引入新的错误。 ③ 错误被查处和失效是独立的。 ④ 每个错误被发现的概率相等。 定义: 1. M(t):软件失效数目函数,即到t时刻软件的失效数目。 2. u(t):M(t)的均值函数,u(t)=E[M(t)]。 3. λ (t ) :错误的失效密度函数 4. z(t):危险率函数,表示一个还没有被激活的故障在其被激 活时,立即引起一个失效的概率。经常被假设为常数 ϕ
R(t ) = 1 − F (t ) = P(ξ > t )
则
MTBF = ∫ R(t )dt
0 ∞
2.3.MTTR(Mean Time to Repair)平均修复 时间
从一次故障产生到故障恢复的间隔的平均时 间。
2.4.A(Availability)可用度
定义:在要求的外部资源得到保证的前提下, 产品在规定的条件下和规定的时间区段内 可执行规定功能的能力。 A = ( MTBF )/( MTBF + MTTR )
可靠性模型(Day1-3)
可靠性模型可靠性模型目的•为了对产品进行可靠性分析,特别是为了进行可靠性预计与分配。
了进行可靠性预计与分配•并能利用不同的分布函数来计算整各系并能利用同分布函数来计算各系统或子系统的可靠度。
可靠性模型示例I级系统II级子系统III级装备IV级零部件•可靠性模型指的是系统可靠性逻辑框图(也称可靠性方框图)及其数学模型。
靠性框其数模型•原理图表示系统中各部分之间的物理关系。
•而可靠性逻辑图则表示系统中各部分之间的功能关系,即用简明扼要的直观方法表现能使系统完成任务的各种串—并—旁联方框的组合。
旁联方框的组合•了解系统中各个部分(或单元)的功能和它们相互之间的联系以及对整个系统的作用和影响对建立系统的可靠性数学模型、完成系统的可靠性设计、分配和预计都具有重要意义。
性设计分配和预计都具有重要意义•可靠性模型建立的步骤1)定义产品义产•规定产品性能:规定每种状态下的失效判据•规定条件:在执行任务过程中,产品各单元所遇到的环境和工作应力。
•规定任务时间:必须对产品工作时间做出明确规定任务时间必须对产品工作时间做出明确的定量规定(很重要)•定义产品单元的可靠性变量:用来描述任务可靠性框图中的每个单元完成其功能所需要的时间、周期或事件2)确定产品可靠性框图3)确定计算产品可靠性的机率表达式可靠性模型逻辑图和原理图•例如: 为了获得足够的电容量,常将三个电器并联。
假定选定失效模式是电容个电器并联假定选定失效模式是电容短路,则其中任何一个电容器短路都可使系统失败。
使系统失败•因此,该系统的原理图是并联,而逻辑图应是串联的。
c1c2c3 c1c2c3可靠性框图可靠性模型•导管及二个阀门的原理图和逻辑图流体流体阀门A阀门B阀门A阀门B原理图A BA 可靠性框图B可靠性逻辑图首先应明确系统功能是什么也•可靠性逻辑图,首先应明确系统功能是什么,也就是要明确系统正常工作的标准是什么,同时还应A B弄清部件A, B正常工作时应处的状态。
可靠性模型
– 节点(节点可以在需要时才加以标注)
• 输入节点:系统功能流程的起点
• 输出节点:系统功能流程的终点
• 中间节点
精选2021最新课件
7
可可靠性靠框图性模型示例
(收音机1)
1
1
2
天线
2
3
高频
放大
3
4
混频
4
5
振荡
5 中频 放大
6
2
6
7
检波
7 低频 放大
8
8
9
放音
9 电源
10
3
图3-2 收音机可靠性框图
剖面
件分析
2.建立可 (7)明确建模任务并确定限制条件
靠性框 图
(8)建立系统可靠性框图
3.确定数 (9)确定未精列选20入21最模新课型件 的单元
15
系统功能分析
• 对系统的构成、原理、功能、接口等各方
面深入的分析是建立正确的系统任务可靠
性模型的前导。
• 前导工作的主要任务就是进行系统的功能
分析
可靠性模型
Reliability Model
精选2021最新课件
1
系统可靠性模型建立-1
• 可靠性模型有关术语及定义 • 基本可靠性模型-任务可靠性模型 • 建立系统任务可靠性模型的程序 • 系统功能分析 • 典型的可靠性模型
精选2021最新课件
2
系统可靠性模型建立-2
• 不可修系统可靠性模型
– 虚单元 – 不含桥联的复杂系统任务可靠性模型 – 含桥联的复杂系统任务可靠性模型
系统中储备单元越多,则其任务可靠性越高。
注意事项
– 模型描述的是各单元之间的可靠性逻辑关系
第三章 系统可靠性模型
对于串联系统:A=A1 A2 ... An
求系统可靠度:P(A) P(A1 ) P(A 2 ) ... P(A n ) P(A i )
i 1 n
即系统可靠度与单元可靠度的关系为:
R S (t) P(A) R1 (t) R 2 (t) ... R n (t) R i (t)
3. R12345678 t R12345 t R67 t R8 t
如何计算 ( ) , s ? s t
Rs t s t Rs t
s Rs t dt
0
2.串并联系统模型
特征:图2-7所示串—并联系统是由n个(列)子系统
i 1 n
4. 特例( 1):假定各单元寿命服从指数分布,n 个单元失效
都属于偶然失效。令单元失效率为 (常数),单元可靠度为 i Ri (t ) e it .则:
n it n n it 系统可靠度RS (t ) e e i1 (令s i )
i 1
2.当阀1与阀2处于闭合状态时,不能截 流为系统失效,其中包括阀门泄露。
4.系统逻辑模型分类
分类依据:单元在系统中所处的状态及其对系统 的影响。
3.2 串联系统的可靠性模型
1.模型:一个系统由N个单元逻辑串联组成。
2.特点:任意一个单元失效则整个系统失效;
只有N个单元均正常工作系统才正常工作。
3.怎样求串联系统的可靠度
e
t
t 2
t
n 3时,可以自行推导
2 e t
6.推导n个相同单元并联情况
可靠性模型Reliability Model
的层次结构
功能的逐层分解可以细分到可以获得明确的技术 要求的最低层次(如部件)为止。
进行系统功能分解可以使系统的功能层次更加清晰, 同时也产生了许多低层次功能的接口问题。
对系统功能的层次性以及功能接口的分析,是建立 可靠性模型的重要一步。
2020/7/4
17
功能的分解
系统
1
2
4
3
1.1
1.2
2.1
2.2
1.4
1.3
4.1
4.2
2.4
2.3
3.1
3.2
4.4
4.3
3.4
3.3
图3-6 功能分解示意图
2020/7/4
18
功能的分类
在系统功能分解的基础上,可以按照给定的任务,对系 统的功能进行整理。
按重 要程 度分
按用 户要 求分
分类 基本功能
辅助功能
可靠性模型
Reliability Model
北京航空航天大学工程系统工程系
2020/7/4
1
系统可靠性模型建立-1
可靠性模型有关术语及定义 基本可靠性模型-任务可靠性模型 建立系统任务可靠性模型的程序 系统功能分析 典型的可靠性模型
2020/7/4
2
系统可靠性模型建立-2
不可修系统可靠性模型
2020/7/4
15
系统功能分析
对系统的构成、原理、功能、接口等各方面深 入的分析是建立正确的系统任务可靠性模型的 前导。
前导工作的主要任务就是进行系统的功能分析
功能的分解与分类 功能框图与功能流程图 时间分析 任务定义及故障判据
2020/7/4
可靠性增长模型
可靠性增长模型1、Duane 模型适用范围:各类产品的可靠性研制试验,老练、筛选、磨合试验及使用试验等的可靠性数据。
应用时需通过拟合优度检验。
原始数据: 1)投试台数k ;2)与累积试验时间t i 相应的累积故障次数N i ,i=1,2,…,n(n ≥3)。
(n 实际为观察次数)模型的数学表式:N i ≈at i b ,i=1,2,…,n 增长率m=1-b拟合优度检验:如果∣^ρ∣≥αρ,则接受模型;否则拒绝。
αρ为临界值,α为显著性水平(α≤0.02),可查表。
有关公式(最小二乘估计,LSE ):拟合优度检验参数:yy xx xy l l l /^=ρ 模型参数:xx xy l l b /^=)}ln ln (1exp{111^^∑∑==-=ni n i i i t b N n k a ^^1b m -=计算参数:n t t l n i ni i i xx /)ln ()(ln 1212∑∑==-=n N N l ni ni i i yy /)ln ()(ln 1212∑∑==-=n N t N t l ni i ni n i i i i xy /)ln ()ln (ln ln 111∑∑∑===-=当前的MTBF M(T):^^^/)(^b a T T M m=实例:某型电视机做40℃整机老练,投试11230台,每隔2小时进行一次观察,累计7次观察故障数据如下表: k=11230 n=7注:N i 为累积故障数解:计算:l xy =1.260885l xx =2.813848 l yy =0.568647检验:^ρ=0.9968>ρ0.001 =0.9507,符合Duane 模型 则:^b =0.44810 ^a =0.0054614 ^m =0.5519 =)(^n t M 1753 h2、AMSAA-BISE 模型* AMSAA-Army Materiel System Analysis Activity * BISE-Beijing Institute of Structure and Environment适用范围:一次性使用产品,可靠性水平较高且试验次数足够多时。
可靠性模型_图文
(d)系统的所有输入在规定极限之内,即不考虑由于输 入错误而引起系统故障的情况;
(e)当软件可靠性没有纳入系统可靠性模型时,应假设 整个软件是完全可靠的;
(f)当人员可靠性没有纳入系统可靠性模型时,应假设 人员是完全可靠的,而且人员与系统之间没有相互作 用问题。
*
28
典型可靠性模型
串联模型 并联模型 表决模型(r/n(G)模型) 非工作贮备模型(旁联模型) 桥联模型
*
29
串联模型
定义
组成系统的所有单元中任一单元的故障都会导致整 个系统故障的称为串联系统。 串联系统是最常用和最简单的模型之一。 串联系统的逻辑图如下图所示:
时间特性是可靠性分析中不可缺少的一个要素
*
23
时间分析-2
复杂系统一般具有两方面的特点:
(1)系统具有多功能,各功能的执行时机是有时序的 ,各功能的执行时间长短不一
(2)在系统工作的过程中,系统的结构是可以随时间 而变化
需要进行时间分析
确定时间基准 通过与该时间基准对应,可以得到系统功能流程图
*
44
2/3(G)表决模型
其可靠性数学模型为(表决器可靠度为1,组成单元的故障率均为 常值λ ):
*
45
表决系统特例
若表决器的可靠度为1:
当r=1时,1/n(G)即为并联系统, 当r=n时,n/n(G)即为串联系统:
系统的MTBCFS比并联系统小,比串联系统大 。
*
46
非工作贮备模型(旁联、冷贮备)
进行系统功能分解可以使系统的功能层次更加清晰 ,同时也产生了许多低层次功能的接口问题。
软件可靠性模型综述
软件可靠性模型综述可靠性是衡量所有软件系统最重要的特征之一。
不可靠的软件会让用户付出更多的时间和金钱, 也会使开发人员名誉扫地。
IEEE 把软件可靠性定义为在规定条件下, 在规定时间内, 软件不发生失效的概率。
该概率是软件输入和系统输出的函数, 也是软件中存在故障的函数, 输入将确定是否会遇到所存在的故障。
软件可靠性模型,对于软件可靠性的评估起着核心作用,从而对软件质量的保证有着重要的意义。
一般说来,一个好的软件可靠性模型可以增加关于开发项目的效率,并对了解软件开发过程提供了一个共同的工作基础,同时也增加了管理的透明度。
因此,对于如今发展迅速的软件产业,在开发项目中应用一个好的软件可靠性模型作出必要的预测,花费极少的项目资源产生好的效益,对于企业的发展有一定的意义。
1软件失效过程1.1软件失效的定义及机理当软件发生失效时,说明该软件不可靠,发生的失效数越多,发生失效的时间间隔越短,则该软件越不可靠。
软件失效的机理如下图所示:1)软件错误(Software error):指在开发人员在软件开发过程中出现的失误,疏忽和错误,包括启动错、输入范围错、算法错和边界错等。
2)软件缺陷(Software defect):指代码中存在能引起软件故障的编码,软件缺陷是静态存在的,只要不修改程序就一直留在程序当中。
如不正确的功能需求,遗漏的性能需求等。
3)软件故障(Software fault):指软件在运行期间发生的一种不可接受的内部状态,是软件缺陷被激活后的动态表现形式。
4)软件失效(Software failure):指程序的运行偏离了需求,软件执行遇到软件中缺陷可能导致软件的失效。
如死机、错误的输出结果、没有在规定的时间内响应等。
从软件可靠性的定义可以知道,软件可靠性是用概率度量的,那么软件失效的发生是一个随机的过程。
在使用一个程序时,在其他条件保持一致的前提下,有时候相同的输入数据会得到不同的输出结果。
可靠性建模资料整理
可靠性建模资料整理软件可靠性建模1模型概述1.1软件可靠性的定义1983年美国IEEE计算机学会对“软件可靠性”作出了明确定义,此后该定义被美国标准化研究所接受为国家标准,1989年我国也接受该定义为国家标准。
该定义包括两方面的含义:(1)在规定的条件下,在规定的时间内,软件不引起系统失效的概率;(2)在规定的时间周期内,在所述条件下程序执行所要求的功能的能力;其中的概率是系统输入和系统使用的函数,也是软件中存在的故障的函数,系统输入将确定是否会遇到已存在的故障(如果故障存在的话)。
软件失效的根本原因在于程序中存在着缺陷和错误,软件失效的产生与软件本身特性、人为因素、软件工程管理都密切相关。
影响软件可靠性的主要因素有软件自身特性、人为因素、软件工程管理等,这些因素具体还可分为环境因素、软件是否严密、软件复杂程度、软件是否易于用户理解、软件测试、软件的排错与纠正以及软件可靠性工程技术研究水平与应用能力等诸多方面。
1.2软件可靠性建模思想建立软件可靠性模型旨在根据软件可靠性相关测试数据,运用统计方法得出软件可靠性的预测值或估计值,下图给出了软件可靠性建模的基本思想。
图软件可靠性建模基本思想从图中可以看出软件失效总体来说随着故障的检出和排除而逐渐降低,在任意给定的时间,能够观测到软件失效的历史。
软件可靠性建模的目标如下:(1)预测软件系统达到预期目标所还需要的资源开销及测试时间;(2)预测测试结束后系统的期望可靠性。
1.3软件可靠性建模基本问题软件可靠性建模需要考虑以下基本问题:(1)模型建立模型建立指的是怎样去建立软件可靠性模型。
一方面是考虑模型建立的角度,例如从时间域角度、数据域角度、将软件失效时刻作为建模对象,还可以将一定时间内软件故障数作为建模对象;另一方面是考虑运用的数学语言,例如概率语言。
(2)模型比较在软件可靠性模型分类的基础上,对不同的模型分析比较,并对模型的有效性、适用性、简洁性等进行综合权衡,从而确定出模型的适用范围。
《可靠性模型》课件
统计法
基于大量数据进行统计分析
统计法是通过收集大量的设备运行数据,进行统计分析,找出设备失效的规律,进而建立可靠性模型 。这种方法适用于有长期、稳定运行数据的场景,能够反映设备的长期可靠性。
CHAPTER
02
可靠性模型的分类
概率可靠性模型
总结词:基于概率论的可靠性模型,用于描述随 机事件的不确定性。
概率可靠性模型通常用于描述复杂系统或产品的 失效行为,以及评估其可靠性指标,如可靠度、 故障概率等。
详细描述:概率可靠性模型使用概率论和随机过 程理论,对产品或系统的可靠性进行定量描述。 它考虑了各种可能性和不确定性,能够预测产品 或系统在不同条件下的性能表现。
模糊可靠性模型的建立需要 专业的模糊数学知识和经验 ,以及对具体问题的深入了 解。
灰色可靠性模型
01
总结词:基于灰色系统的可 靠性模型,用于处理不完全 信息的情况。
02
详细描述:灰色可靠性模型 是一种处理不完全信息或不 确定性的模型。它使用灰色 系统理论,通过已知信息来 推导未知信息,从而评估产 品或系统的可靠性。
可靠性模型的重要性
提高产品质量
通过可靠性模型评估产品或系统的可靠性,可以发现潜在 的问题和薄弱环节,从而针对性地进行改进和优化,提高 产品质量。
降低维护成本
通过可靠性模型预测产品或系统的性能和寿命,可以制定 合理的维护计划,减少不必要的维修和更换,降低维护成 本。
提高竞争力
可靠性是产品或系统的重要性能指标之一,通过建立可靠 性模型可以提高产品或系统的竞争力,赢得市场份额。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环境控 制系统
超高频 通信 雷达 甚高频 通信
武器控 制系统
大气数 据系统 备用 罗盘 固定 增稳
武器
机体
起落架
图3-5 F/A-18任务可靠性框图
2019/1/18 13
可靠性逻辑关系
K
双开关系统原理图
K1 K1 K2 K2
K
2
1
(a) 电路导通
(b)电路断开
双开关系统可靠性框图
2019/1/18 14
2019/产品的可靠性所建立的可靠性方 框图和数学模型。
方框:产品或功能 逻辑关系:功能布局 连线:系统功能流程的方向 无向的连线意味着是双向的。 节点(节点可以在需要时才加以标注) 输入节点:系统功能流程的起点 输出节点:系统功能流程的终点 中间节点
建立系统任务可靠性模型的程序
建模步骤 (1)确定任务和功能 (2)确定工作模式 (3)规定性能参数及范围 1、规定产 (4)确定物理界限与功能接口 品定义 (5)确定故障判据
功能分析 故障定义
时间及环境条件 (6)确定寿命剖面及任务剖面 分析 2.建立可靠 (7)明确建模任务并确定限制条件 性框图 (8)建立系统可靠性框图 3.确定数学 (9)确定未列入模型的单元 模型 (10)系统可靠性数学模型
不可修系统可靠性模型
虚单元 不含桥联的复杂系统任务可靠性模型 含桥联的复杂系统任务可靠性模型
建模实例:某卫星过渡轨道、同步及准同步轨道任务可靠性 系统任务可靠性建模的注意事项
2019/1/18
3
系统、单元——产品
系统
由相互作用和相互依赖的若干单元结合成的具有 特定功能的有机整体。 “系统”、“单元” 相对概念 可以是按产品层次划分:零部件、组件、 设备、分系统、系统、装备中任何相对的 两层 “系统”包含“单元”,其层次高于“单元”
2019/1/18
11
F18基本可靠性模型
发动机 1 通用液 压系统 发动机 2 右 发电机 燃油系 统 左 发电机 应急燃 油系统 电力分 配网 液压泵 1 环境控 制系统 液压泵 2 应急电 力系统 液压飞 控系统 超高频 通信 备用手 动系统 甚高频 通信
雷达
武器控 制系统
武器
塔康 系统
惯性 导航
2019/1/18
10
基本可靠性模型-任务可靠性模型
在进行设计时,根据要求同时建立基本可靠性 及任务可靠性模型的目的在于,需要在人力、 物力、费用和任务之间进行权衡。 设计者的责任就是要在不同的设计方案中利用 基本可靠性及任务可靠性模型进行权衡,在一 定的条件下得到最合理的设计方案。 为正确地建立系统的任务可靠性模型,必须对 系统的构成、原理、功能、接口等各方面有深 入的理解。
可靠性模型
Reliability Model
北京航空航天大学工程系统工程系
2019/1/18
1
系统可靠性模型建立-1
可靠性模型有关术语及定义 基本可靠性模型-任务可靠性模型 建立系统任务可靠性模型的程序 系统功能分析 典型的可靠性模型
2019/1/18
2
系统可靠性模型建立-2
备用 罗盘
大气数 据系统
固定 增稳
机体
起落架
自检
图3-4 F/A-18基本可靠性框图
2019/1/18
12
F18任务可靠性模型
发动机 1 发动机 2 右 发电机 左 发电机 燃油系 统 应急燃 油系统 液压泵 1 液压泵 2 液压飞 控系统 备用手 动系统 通用液 压系统
电力分 配网 应急电 力系统 塔康 系统 惯性 导航
图例
2019/1/18 7
可靠性模型示例
可靠性框图
(收音机) 1
1 1 天线 2 2 高频 放大 7 3 3 混频 4 4 振荡 5 5 中频 放大 10 6
2 3 4
6 检波
7 低频 放大
8
8 放音
9
9 电源
图3-2 收音机可靠性框图
1
2
3
4
可靠性数学模型
(a)提前 闭合故障 模式
n
Rs (t ) Ri (t ) e
产品可以指任何层次。
2019/1/18 4
模型
原理图 反映了系统及其组成单元之间的物理上的连接与 组合关系 功能框图、功能流程图 反映了系统及其组成单元之间的功能关系 系统的原理图、功能框图和功能流程图是建立系统可 靠性模型的基础
2019/1/18
5
可靠性模型
描述了系统及其组成单元之间的故障逻辑关系 多种可靠性建模方法 : 可靠性框图模型 可靠性框图 网络可靠性模型 故障树模型 事件树模型 马尔可夫模型 Petri网模型 GO图模型
2019/1/18
9
任务可靠性模型
任务可靠性模型
用以估计产品在执行任务过程中完成规定功能的概 率(在规定任务剖面中完成规定任务功能的能力), 描述完成任务过程中产品各单元的预定作用,用以 度量工作有效性的一种可靠性模型。 系统中储备单元越多,则其任务可靠性越高。
注意事项
模型描述的是各单元之间的可靠性逻辑关系
功能的分解
系统往往是多任务与多功能的 一个系统及功能是由许多分系统级功能实现的 通过自上而下的功能分解过程,可以得到系统功能 的层次结构 功能的逐层分解可以细分到可以获得明确的技术 要求的最低层次(如部件)为止。 进行系统功能分解可以使系统的功能层次更加清晰, 同时也产生了许多低层次功能的接口问题。 对系统功能的层次性以及功能接口的分析,是建立 可靠性模型的重要一步。
i 1 i 1
(b)不能 闭合故障 n 模式
i t
e
i t
i 1
n
图3-35行程开关可靠性框图
2019/1/18
8
基本可靠性模型
基本可靠性模型
用以估计产品及其组成单元发生故障所引起的维 修及保障要求的可靠性模型。 度量使用费用 全串联模型 储备单元越多,系统的基本可靠性(无故障持 续时间和概率)越低
2019/1/18 15
系统功能分析
对系统的构成、原理、功能、接口等各方面深 入的分析是建立正确的系统任务可靠性模型的 前导。 前导工作的主要任务就是进行系统的功能分析
功能的分解与分类 功能框图与功能流程图 时间分析 任务定义及故障判据
2019/1/18
16
功能的分解与分类