2015年普通高等学校招生全国统一考试数学理试题(北京卷,含解析)
2015年北京高考数学(理科)卷
2015年北京高考数学(理科)真题本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.复数()i 2i -= A .12i +B .12i -C .12i -+D .12i --【答案】A 【解析】i (2-i )=1+2i2.若x ,y 满足010x y x y x -⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y =+的最大值为A .0B .1C .32D .2【答案】D 【解析】可行域如图所示目标直线的斜率为12-,易知在(0,1)处截距取得最大值,此时z =4. 3.执行如图所示的程序框图,输出的结果为A .()22-,B .()40-,C .()44--,D .()08-,【答案】B 【解析】程序运行过程如下表所示故输出结果为(-4,0)4.设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B 【解析】两平面平行,则一平面内的任意一条直线与另一平面平行,故“m β∥”是“αβ∥”的必要条件. 若“m β∥”,“αβ∥”不一定成立,反例如下图所示.5.某三棱锥的三视图如图所示,则该三棱锥的表面积是俯视图侧(左)视图A.2 B.4 C.2+ D .5 【答案】C 【解析】例题图形如下图所示:过P 点做AB 的垂线交AB 于点D ,12222112,1,,12.2ABC PBC PAC PAB S S S BC PC PB PA PD S =⨯⨯=======∴=⨯所以表面积222S =++6.设{}n a 是等差数列. 下列结论中正确的是A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则2a > D .若10a <,则()()21230a a a a --> 【答案】C 【解析】当d >0,∴ a 1a 3=(a 2-d )(a 2+d )=a 22-d 2 ∵ a 22>a 22-d 2 ∴2a7.如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x +≥的解集是A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤【答案】C 【解析】如图,x =1时,f (x )=log 2(x +1)∴ f (x )≥log 2(x +1)解集为(-1,1],需要注意,log 2(x +1)定义域不包含-1,故选C .8.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油 【答案】D 【解析】A .问的是纵坐标最大值.B .消耗1升油甲走最远,则反过来路程相同甲最省油C .此时甲走过了80千米,消耗8升汽油D .80km/h 以下丙“燃油效率”更高,更省油 所以选择D .第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.在()52x +的展开式中,3x 的系数为 .(用数字作答)【答案】40【解析】()52x +中3x 的项为32352C x 所以系数为40.10.已知双曲线()22210x y a a -=>0y +=,则a =.【解析】0y +=所以有ba-=,有双曲线的方程2221x y a -=得b =1,且a >0.所以 a =.11.在极坐标系中,点π23⎛⎫ ⎪⎝⎭‚到直线()cos 6ρθθ=的距离为 .【答案】1 【解析】点π23⎛⎫ ⎪⎝⎭‚对应的直角坐标系为点(1‚,极坐标方程()cos sin 6ρθθ+=对应的直角坐标方程为60x -=,根据点到直线的距离公式1361.2d +-==.12.在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .【答案】1 【解析】由余弦定理可得2222536163cos ,22564b c a A bc +-+-===⨯⨯由正弦定理和二倍角公式可得,sin 22sin cos 322cos 2 1.sin sin 43A A A a A C C c ==⨯=⨯⨯=13.在ABC △中,点M ,N 满足2AM MC = ,BN NC = .若MN xAB yAC =+,则x =;y =.【答案】11,26x y ==- 【解析】12()23112611,.26MN AN AMAB AC AC AB AC x y =-=+-=-∴==-14.设函数()()()2142 1.x a x f x x a x a x ⎧-<⎪=⎨--⎪⎩‚‚‚≥①若1a =,则()f x 的最小值为;②若()f x 恰有2个零点,则实数a 的取值范围是 .【答案】① -1;② 1/2≤a <1或a ≥2【解析】 ①当a =1时,2x a ->-1. 4(x -1)(x -2)=4(x -1.5)2-1≥-1 当x =1.5时最小为-1.② 若函数()2x h x a =-在x <1时与x 轴有一个交点,所以a >0,并且当x =1时,(1)20x h a =->,所以0<a <2,函数()()()42g x x a x a =--有一个交点,所以2a ≥1且a <1,所以1/2≤a <1 若函数()2x h x a =-与x 轴没有交点,()()()42g x x a x a =--有两个交点, 当a ≤0,h (x )与x 轴无交点,g (x )无交点,所以不满足题意(舍);当h (1)=2-a 时,a ≥2,g (x )的两个交点为x 1=a ,x 2=2a 都是满足题意的, 综上所述,a 的取值范围是1/2≤a <1或a ≥2三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程) 15.(本小题13分)已知函数2()cos 222x x xf x =.(Ⅰ) 求()f x 的最小正周期;(Ⅱ) 求()f x 在区间[π0]-,上的最小值.【答案】 【解析】(1)2()cos 2221cos sin 2sin cos sin()4x x xf x x x x x x π=-===+-∴ f (x )的最小周期T =2π/1=2π.(2)∵ -π≤x ≤0 ∴ 3444x πππ-≤+≤∴1sin()4x π-≤+≤∴1()0f x -≤≤∴()f x 在区间[π0]-,上的最小值为1--. 16.(本小题13分)A ,B 两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下: A 组:10,11,12,13,14,15,16 B 组:12,13,15,16,17,14,a假设所有病人的康复时间互相独立,从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙.(Ⅰ) 求甲的康复时间不少于14天的概率;(Ⅱ) 如果25a =,求甲的康复时间比乙的康复时间长的概率;(Ⅲ) 当a 为何值时,A ,B 两组病人康复时间的方差相等?(结论不要求证明) 【答案】(1)37;(2)1049;(3)a =11或a =8. 【解析】(1)13173(14)7C P t C ≥==(2)当a =25时,假设乙的康复时间为12天,则符合题意的甲有13天、14天、15天、16天共4人; 乙的康复时间为13天,则符合题意的甲有14天、15天、16天共3人; 乙的康复时间为14天,则符合题意的甲有15天、16天共2人; 乙的康复时间为15天,则符合题意的甲有16天共1人;乙的康复时间为其他值时,由于甲的最大康复时间为16天,均不合题意. 所以符合题意的甲、乙选择方式共:4+3+2+1=10种所有甲、乙组合情况共117749C C ⨯=.因为任何组合情况都是等可能的,故10().49P t t =乙甲>(3)a =11或a =8. 根据数据平移和调整顺序不影响方差易得. 17.(本小题14分)如图,在四棱锥A EFCB -中,AEF △为等边三角形,平面AEF ⊥平面EFCB ,EF BC ∥,4BC =,2EF a =,60EBC FCB ∠=∠=︒,O 为EF 的中点. (Ⅰ) 求证:AO BE ⊥;(Ⅱ) 求二面角F AE B --的余弦值; (Ⅲ) 若BE ⊥平面AOC ,求a 的值.O FECBA【答案】 【解析】(1) ∵ △AEF 是等边三角形,O 为EF 的中点 ∴ AO ⊥EF又 ∵ 平面AEF ⊥平面EFCB , 且平面AEF ∩平面EFCB =EF ∴ AO ⊥平面EBCF ∴ AO ⊥BE(2)取CB 的中点D ,连接OD如图分别以OE ,OD ,OA 为x ,y ,z 轴建立直角坐标系(0,0,),(,0,0),(2,,0)A E a B(,0,),=(2,,0)AE a EB a =-设平面AEF 的法向量为1(0,1,0)n =平面AEB 的法向量2(,,)n x y z(2))0ax a x a y ⎧=⎪⎨--=⎪⎩所以21,1)n =-所以F —AE —B二面角的余弦值1212cos n n n n θ==因为F —AE —B 二面角为钝二面角,所以余弦值为 (3)由(1)知AO ⊥面FEBC∴ AO ⊥BE若BE ⊥平面AOC 仅需BE ⊥OC由(2)得=(2,,0)EB a -=(2,,0)OC -=0EB OC ,解得a =2(舍)或43a =.18.(本小题13分)已知函数()1ln 1xf x x+=-.(Ⅰ)求曲线()y f x =在点()()00f ,处的切线方程;(Ⅱ)求证:当()01x ∈,时,()323x f x x ⎛⎫>+ ⎪⎝⎭; (Ⅲ)设实数k 使得()33x f x k x ⎛⎫>+ ⎪⎝⎭对()01x ∈,恒成立,求k 的最大值. 【答案】【解析】(1)()1ln1xf x x +=-,x ∈(-1,1),()22'1f x x =-,()()'02,00f f ==, 所以切线方程为y =2x .(2)原命题等价于()()301,203x x f x x ⎛⎫∀∈-+> ⎪⎝⎭,设函数()()()3ln 1ln 123x F x x x x ⎛⎫=+---+ ⎪⎝⎭()422'1x F x x=-,当()01x ∈,时,()'0F x >,函数F (x )在()01x ∈,上是单调递增的, ()()00F x F >=,因此()()301,23x x f x x ⎛⎫∀∈>+ ⎪⎝⎭,(3)()()()()3342221ln ,01131()ln 0,011322'()1,0111x x k x x x x x t x k x x x kx k t x k x x x x⎛⎫+>+∈ ⎪-⎝⎭⎛⎫+⇔=-+>∈ ⎪-⎝⎭+-=-+=∈--,,,∴ [0,2]'()0k t x ∈≥,,函数()t x 是单调递增,()(0)0t x t =>显然成立. 当k >2时,令402'()0,(0,1)k t x x-==∈()(0)0t x t =<由此可知k 的最大值为2. 19.(本小题14分)已知椭圆C :()222210x y a b a b+=>>,点()01P ,和点()A m n ,()0m≠都在椭圆C 上,直线PA 交x 轴于点M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由. 【答案】 【解析】椭圆()222210x y a b a b +=>>过()01P ,, ∴ b 2=1离心率c e a ====∴ a =∴ 椭圆方程为2212x y +=∵ ()()01,P A m n ,, . ∴ 直线PA 的方程为11n y x m--=,直线PA 与x 轴交于M , 令y =0,则 ,,011M m m x M n n ⎛⎫=∴ ⎪--⎝⎭. (2)∵ ()()01,P B m n -,, ∴ 直线PB 的方程为11n y x m+-=-,直线PB 与x 轴交于N , 令y =0,则 1N mx n=+. ∴ ,01m N n ⎛⎫⎪+⎝⎭ 设Q (0,y 0)00001tan ,(1)(1)tan ,1mm n OQM y n y y n y ONQ m mn-∠==-+∠==+∵ ,OQM ONQ ∠=∠∴ tan tan ,OQM ONQ ∠=∠ ∴ 00(1),(1)n y m n y m+=- ∴ 2220222,12m m y m n===- ∴ 02y =± ∴ 存在点(0,2)Q ,使,OQM ONQ ∠=∠.20.(本小题13分)已知数列{}n a 满足:*1a ∈N ,136a ≤,且121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,()12n =,,…. 记集合{}*|n M a n =∈N .(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数;(Ⅲ)求集合M 的元素个数的最大值.【答案】(1)M ={6,12,24};(2)略;(3)8.【解析】(1)a 1=6,a 2=12,a 3=24,a 4=2×24-36=12,∴M ={6,12,24}.(2)用反证法证明a 1是3的倍数.否则若a 1不是3的倍数,用归纳法证明所有的a n 都不是3的倍数.n =1时,a 1不是3的倍数,假设n =k 时,a k 不是3的倍数,对于n =k +1,a k +1=2a k 或2a k -36都不是3的倍数,则所有的a n 都不是3的倍数,这与{a n }中存在一个数是3的倍数矛盾.因此a 1是3的倍数,于是a 2=2a 1或2a 1-36是3的倍数,以此类推,所有的a n 都是3的倍数.(3)M 的元素个数的最大值为8.首先,M 中的元素都不超过36,由a 1≤36,易得a 2≤36,类似可得a n ≤36.其次,M中的数最多除了前面两个数外,都是4的倍数.因为第二个数肯定是偶数,由a n定义可知第三个数及其后面的数肯定是4的倍数.再次,M中的数除以9的余数,由定义式可知,a n+1与2a n除以9的余数一样.①若a n中有3的倍数,由(2)可知,所有的a n都是3的倍数,所以,a n除以9的余数为3,6,3,6,…或者6,3,6,3,…,或0,0,0,…,而除以9余3且是4的倍数只有12,除以9余6且是4的倍数只有24,除以9余0且是4的倍数只有36,则M中的数从第三项起最多2项,加上前面两项最多4项.②a n中没有3的倍数,则an都不是3的倍数,对于a3除以9的余数,只能是1,4,7,2,5,8中的一个,从a3起,a n除以9的余数,只能是1,2,4,8,7,5,1,2,4,8,7,5,…不断6项循环的(可能是从2,4,8,7或5开始),而除以9的余数是1,2,4,8,7,5且是4的倍数(≤36)只有28,20,4,8,16,32,所以M中的项加上前面两项最多8项.易知,a1=1时,M={1,2,4,8,16,32,28,20}项数为8,所以M的元素最多个数为8.。
2015北京高考数学(理)真题解析
c a a2 b2 a a2 1 2 a 2
∴a 2 ∴椭圆方程为
x2 y2 1 2 1 , A m , n , ∵ P0 ,
n 1 x ,直线 PA 与 x 轴交于 M , m m m 令 y 0 ,则 xM ,∴ M ,0 1 n 1 n (2)
因为 F AE B 二面角为钝二面角, 、 5 所以余弦值为 . 5 ⑶由⑴知 AO 面 FEBC ∴ AO BE 若 BE 平面 AOC 仅需 BE OC 由⑵得 EB 2 a , 2 3 3a , 0 OC 2 , 2 3 3a , 0
k s t
1 1 0 0 2
0 2 1
2
2
4
2 2
4
0 3
2
4.B 【解析】 两平面平行,则一平面内的任意一条与另一平面平行,故“ m ∥ ”是“ ∥ ”的必要条 件. 若“ m ∥ ”,“ ∥ ”不一定成立,反例如右图所示.
α
β
5.C 【解析】 立体图形如右图所示
P A
C M 3 A 4 B N 5
1 14. , 1 2 , 2 【解析】 ①若函数 h( x) 2 x a 在 x 1 时与 x 轴有一个交点, 所以 a 0 ,并且当 x 1 时, h(1) 2 a 0 ,所以 0 a 2 , 函数 g ( x ) 4( x a)( x 2a ) 有一个交点,所以 2a ≥1 且 a 1 1 所以 ≤ a 1 2 ②若函数 h( x) 2 x a 与函数没有交点, g ( x ) 4( x a)( x 2a ) 有两个交点, 当 a ≤ 0 , h( x ) 与 x 轴无交点, g ( x ) 无交点,所以不满足题意(舍)
2015年高考理数真题试卷(北京卷)【答案加解析】
2015年高考理数真题试卷(北京卷)一.选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.(2015·新课标北京卷)复数i(2-i)=()A. 1+2iB. 1-2iC. -1+2iD. -1-2i2.(2015·新课标北京卷)若x,y满足,则z=x+2y的最大值为()A. 0B. 1C.D. 23.(2015·新课标北京卷)执行如图所示的程序框图,输出的结果为(),A. (-2,2)B. (-4,0)C. (-4,4)D. (0,-8)4.(2015·新课标北京卷)设,是两个不同的平面,m是直线且m."m"是""的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5.(2015·北京卷)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A. 2+B. 4+C. 2+2D. 56.(2015·北京卷)设是等差数列.下列结论中正确的是()A. 若,则B. 若,则C. 若,则D. 若,则()()7.(2015·北京卷)如图,函数f(x)的图象为折线ACB,则不等式f(x)log 2(x+1)的解集是()A. B. C. D.8.(2015·北京卷)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A. 消耗1升汽油,乙车最多可行驶5千米B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油二.填空题共6小题,每小题5分,共30分9.(2015北京卷)在的展开式中,的系数为________ (用数字作答)。
2015年高考理科数学北京卷(含答案解析)
数学试卷 第1页(共18页)数学试卷 第2页(共18页)数学试卷 第3页(共18页)绝密★启用前2015年普通高等学校招生全国统一考试(北京卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数i(2i)-=( )A .12i +B .12i -C .12i -+D .12i -- 2.若x ,y 满足010x y x y x -⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y =+的最大值为( )A .0B .1C .32D .2 3.执行如图所示的程序框图,输出的结果为( )A .(22)-,B .(40)-,C .(44)--,D .(08)-,4.设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件5.某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+ B.4C.2+D .5 6.设{}n a 是等差数列.下列结论中正确的是( )A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则2a >D .若10a <,则2123()()0a a a a -->7.如图,函数()f x 的图像为折线ACB ,则不等式2()log (1)f x x +≥的解集是A .{|10}x x -<≤B .{|11}x x -≤≤C .{|11}x x -<≤D .{|12}x x -<≤8.汽车的“燃油效率”是指汽车每消耗1汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中的横线上.9.在52x +()的展开式中,3x 的系数为________(用数字作答). 10.已知双曲线22210x y a a-=>()0y +=,则a =________. 11.在极坐标系中,点π23()‚到直线cos 6ρθθ=()的距离为________. 12.在ABC △中,4a =,5b =,6c =,则sin 2sin AC=________.13.在ABC △中,点M ,N 满足2AM MC =,BN NC =.若MN xAB yAC =+,则x =_______;y =_______.14.设函数2 14()(2) 1.x a x f x x a x a x ⎧-<=⎨--⎩()≥‚‚‚ ①若1a =,则()f x 的最小值为__________;②若()f x 恰有2个零点,则实数a 的取值范围是__________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数2()cos222x x x f x . (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间[π0]-,上的最小值.俯视图侧(左)视图--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共18页)数学试卷 第5页(共18页)数学试卷 第6页(共18页)16.(本小题满分13分)A ,B 两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A 组:10,11,12,13,14,15,16B 组:12,13,15,16,17,14,a假设所有病人的康复时间互相独立.从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果25a =,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当a 为何值时,A ,B 两组病人康复时间的方差相等?(结论不要求证明)17.(本小题满分14分)如图,在四棱锥A EFCB -中,AEF △为等边三角形,平面AEF ⊥平面EFCB ,EF BC ∥,4BC =,2EF a =,60EBC FCB ∠=∠=︒,O 为EF 的中点.(Ⅰ)求证:AO BE ⊥;(Ⅱ)求二面角F AE B --的余弦值; (Ⅲ)若BE ⊥平面AOC ,求a 的值.18.(本小题满分13分)已知函数1()ln1xf x x+=-. (Ⅰ)求曲线()y f x =在点(0(0))f ,处的切线方程;(Ⅱ)求证:当(01)x ∈,时,3()2()3x f x x >+;(Ⅲ)设实数k 使得3()()3xf x k x >+对(01)x ∈,恒成立,求k 的最大值.19.(本小题满分14分)已知椭圆22221(0) x ya b a bC +=>>:,点(01)P ,和点()A m n ,(0)m ≠都在椭圆C 上,直线PA 交x 轴于点M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.20.(本小题满分13分)已知数列{}n a 满足:*1a ∈N ,136a ≤,且121823618n n n nn a a a a a +⎧=⎨-⎩, ≤,,>,12n =(,,)…. 记集合*{|}n M a n =∈N .(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.O FECBA数学试卷 第7页(共18页)数学试卷 第8页(共18页)数学试卷 第9页(共18页)2015年普通高等学校招生全国统一考试(北京卷)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】2i(2i)2i i 12i -=-=+,故选A .【提示】利用复数得运算法则解答. 【考点】复数代数形式的乘除运算 2.【答案】D 【解析】如图,当01x y ==,,max 2z =,故选D .【提示】作出题中不等式组表示的平面区域,再将目标函数2z x y =+对应的直线进行平移,即可求出z 取得的最大值. 【考点】简单线性规划 3.【答案】B【解析】依题意得:02021s t x y k =====,,,,, 2222240403s t x y k s t x y k =-==-===-==-==,,,,,,,,结束,输出(4)-,故选B .【提示】模拟执行程序框图,依次写出每次循环得到x y k ,,的值,当3k =时满足条件3k ≥,退出循环,输出(4)-. 【考点】程序框图4.【答案】B 【解析】m β∥不能推出αβ∥,因为αβ、可能相交,只要m 和αβ、相交即可得到m β∥;而αβ∥,m α⊂∴m β、没有公共点,∴m β∥,即αβ∥能得到m β∥,∴“m β∥”是“αβ∥”的必要不充分条件,故选B .【提示】m β∥并得不到αβ∥,根据面面平行得判定定理,只有α内得两相交直线都平行于β,而αβ∥,并且m α⊂,显然能得到m β∥,这样即可找出正确选项. 【考点】必要条件,充分条件与充要条件得判断 5.【答案】C【解析】由三视图知,OA ⊥面ABC,AB AC == E 为BC 中点,211EA EC EB OA ====,,, ∴AE BC BC OA ⊥⊥,12222ABC S =⨯⨯=△,112OAC OAB S S ===△△,122BCO S =⨯=△∴2S =+C .【提示】根据三视图可判断直观图为:PA ⊥面ABC ,AB AC =,E 为BC 中点,211EA EC EB OA ====,,,BC AEO ⊥面,AC OE =特点,计算边长,求解面积. 【考点】由三视图求面积,体积 6.【答案】C【解析】∵若120a a +>,则120a d +>,2312320a a a d d d +=+>>,时,结论成立,即A 不正确;若120a a +<,则120a d +<,2312320a a a d d d +=+<<,时,结论成立,即B 不正确;{}n a 是等差数列,120a a <<,∴1322a aa +=>C 正确;若10a <,则22123)()(0a a a a d ---<=,即D 不正确.故选C .【提示】对选项分别进行判断,即可得出结论.【考点】等差数列的性质 7.【答案】C【解析】由题可知:由已知()f x 的图象,在此坐标系内作出2log (1)y x =+的图象,如图满足不等式2()log (1)f x x ≥+的x 范围是11x -<≤;所以不等式2()log (1)f x x ≥+的解集是(]1,1-,故选C .【提示】在已知坐标系内作出2log (1)y x =+的图象,利用数形结合得到不等式的解集. 【考点】指数函数和对数函数不等式的解法 8.【答案】D【解析】由图可知,对乙车存在一个速度,使燃油效率高于5,所以A 错;由图知,当以40km/h 的速度行驶时,甲车燃油效率最高,行驶相同路程时,耗油最少,B 错;甲车以80km/h 行驶1小时耗油8升,故C 错;在限速80km/h ,相同情况下,丙车燃油效率较乙车高,所以乙车更省油,故选D . 【提示】根据汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,以及图象,分别判断各个选项即可.【考点】函数的图象与图象变化第Ⅱ卷二、填空题 9.【答案】40【解析】5(2)x +的展开式的通项公式为:5152r r rr T C x -+=,当3r =时,系数为3255424402C ⨯=⨯=.数学试卷 第10页(共18页)数学试卷 第11页(共18页)数学试卷 第12页(共18页)故答案为40.【提示】写出二项式定理展开式的通项公式,利用x 的指数为3,求出r ,然后求解所求数值.【考点】二项式定理的应用 10.【答案】3【解析】双曲线2221x y a -=的渐近线方程为,所以x y a =±,解得1aa =. 【提示】运用双曲线的渐近线方程为x y a =±,结合条件可得1aa 的值.【考点】双曲线的简单性质 11.【答案】1【解析】点π2,3P ⎛⎫⎪⎝⎭化为P,直线方程为660x x =⇒+-=,所以点到直线方程的距离为212d ===. 【提示】化为直角坐标,再利用点到直线的距离公式距离公式即可得出. 【考点】简单曲线的极坐标方程 12.【答案】1【解析】在ABC △中,4a =,5b =,6c =,1625361cos =58C +-=⨯,2536163cos =2564A +-=⨯⨯,∴sin 8C =,sin 4A =,∴222sin 22sin cos 24253616901sin sin 263090A A A a b c a C C c bc +-+-===⨯==g . 【提示】利用余弦定理求出cos cos C A ,,即可得出结论. 【考点】余弦定理,二倍角的正弦,正弦定理 13.【答案】12x =【解析】由已知得到111111()323226MN MC CN AC CB AC AB AC AB AC =+=+=+-=-uuu r uuu r uuu r uuu r uu r uuu r uu u r uuu r uu u r uuu r ,所以1126x y ==-,.【提示】首先利用向量的三角形法则,将所求用向量AB AC uu u r uuu r、表示,然后利用平面向量基本定理得到值.【考点】平面向量的基本定理及其意义 14.【答案】min ()1f x =-[)1,12,2a ⎡⎫∈+∞⎪⎢⎣⎭【解析】①当1a =时,21,1()4(1)(2),1x x f x x x x ⎧-<=⎨--≥⎩,当1x <时,1()1f x -<<,当1x ≥时,min 311()41222f x f ⎛⎫⎛⎫==⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭,所以min ()1f x =-;②当0a ≤时,()f x 没有两个零点,当01a <<时,1x <时,220log 0x aa x -=⇒=<,()f x 有一个零点;而1x ≥时,12()0,2f x x a x a =⇒==;当21a ≥,即12a ≥时,()f x 恰有两个零点,所以当112a ≤<时,()f x 恰有两个零点;当12a ≤<时,1x <时,220log 1x aa x -=⇒=<,()f x 有一个零点;而1x ≥时,1()0f x x a =⇒=,22x a =,()f x 有两个零点, 此时()f x 有三个零点;当2a ≥时,1x <时,无零点;1x ≥时,有两个零点,此时()f x 有两个零点.综上所述[)1,12,2a ⎡⎫∈+∞⎪⎢⎣⎭.【提示】分别求出分段的函数的最小值,即可得到函数的最小值;分情况讨论,求出符合()f x 有两个零点的并集.【考点】函数的零点,分段函数的应用三、解答题15.【答案】(Ⅰ)2πT = (Ⅱ)12--【解析】(Ⅰ)()cos )f x x x -x x =πsin()42x =+-,则周期2π2π1T==. (Ⅱ)∵π0x -≤≤,∴3πππ444x -≤+≤,∴π1sin()42x -≤+≤,∴1()0f x -≤≤,∴()f x 在区间[π0]-,上的最小值为1--. 【提示】(Ⅰ)运用二倍角公式和两角和的正弦公式,化简()f x ,再由正弦喊话说的周期,即可得到所求(Ⅱ)由x 的范围,可得π4x +的范围,再由正弦函数的图象和性质,即可求得最小值. 【考点】两角和与差的正弦函数,三角函数的周期性及其求法,三角函数的最值 16.【答案】(Ⅰ)37(Ⅱ)1049(Ⅲ)11a =或18a =【解析】(Ⅰ)记甲康复时间不小于14天为事件A .则3()7P A =,所以甲康复时间不小于14天的概率为37.(Ⅱ)记甲的康复时间比乙的康复时间长为事件B .16y =-所以()7749P B==⨯.(Ⅲ)由于A组为公差为1的等差数列,所以当11a=或18a=时,B组也为公差为1的等差数列,所以方差一定相等,而方差相等的方程是关于a的一个一元二次方程,故最多有两个解,所以只有11a=或18a=两个值.【提示】(Ⅰ)事件等价于“甲是A组的第5或第6或第7个人”,由概率公式可得.(Ⅱ)设“甲的康复时间比乙的康复时间长”为事件B,列出基本时间空间表,由表即可求得()P B.(Ⅲ)由方差的公式可得.【考点】古典概型及其概率公式,概率的加法公式和方差17.【答案】(Ⅰ)见解析(Ⅱ)5-(Ⅲ)2a=【解析】(Ⅰ)证明:AEF∵△为等边三角形,O为EF中点,AO EF∴⊥又∵平面AEF⊥平面EFCB,平面AEF I平面EFCB EF=,AO∴⊥平面EFCB,AO BE∴⊥.(Ⅱ)以O为原点建立如图坐标系:∴(,0,0)E a,(,0,0)F a-,)A,),0)B a-,()EA a=-uu r,(2),0)EB a a=--uur平面AEF的法向量(0,1,0)m=u r;设平面AEB的法向量(,,)n x y z=r,则00n EA xxn EB⎧⎧=-=⎪⎪⇒⎨⎨+==⎪⎪⎩⎩r uu rgr uu rg,取1,1)n=-r,cos,||||m nm nm n==u r ru r r gu r rg∴又∵二面角F AE B--为钝角,∴二面角F AE B--的余弦值为.(Ⅲ)BE∵⊥平面AOC,BE OC∴⊥,(),0)OC a=--uuu r,2(2)))0BE OC a a a=----=uur uuu rg,解得2a=(舍去)或43a=.【提示】(Ⅰ)根据线面垂直的性质定理即可证明AO BE⊥.(Ⅱ)建立空间坐标系,利用向量法即可求二面角F AE B--的余弦值.(Ⅲ)利用线面垂直的性质,结合向量法即可求a的值.【考点】空间直线和平面垂直的判定以及二面角的求解18.【答案】(Ⅰ)2y x=(Ⅱ)见解析(Ⅲ)k最大值为2【解析】:(Ⅰ)()ln(1)ln(1)f x x x=+--,11()11f xx x-'=-+-1111x x=++-,又()0f x=,所以,切线方程为02(0)y x-=-,即2y x=.(Ⅱ)3322()()2ln(1)ln(1)233F x f x x x x x x x=--=+----,211()2211F x xx x'=+--+-222(1)(1)(1)xx x=-++-22222(1)(1)1x xx-+-=-4221xx=-,又因为01x<<,所以()0F x'>,所以()F x在(0,1)上是增函数,又(0)0F=,故()(0)F x F>,所以3()3xf x k x⎛⎫>+⎪⎝⎭.(Ⅲ)31ln(0,1)13x xk x xx⎛⎫+>+∈⎪-⎝⎭,,设21()ln()0,(0,1)13x xt x k x xx+=-+>∈-,422222()(1)(0,1)11kx kt x k x xx x+-'=-+=∈--,[0,2]k∈,()0t x'≥,函数(x)t是单调递增,()(0)t x t'>显然成立.当2k>时,令()0t x'=()0t x'=,得42(0,1)kx-=∈,()(0)0t x t<=,显然不成立,由此可知k最大值为2.【提示】(Ⅰ)利用函数的导数求在曲线上某点处的切线方程(Ⅱ)构造新函数利用函数的单调性证明命题成立(Ⅲ)对k进行讨论,利用新函数的单调性求参数k的取值范围【考点】切线方程的求法及新函数的单调性的求解证明数学试卷第13页(共18页)数学试卷第14页(共18页)数学试卷第15页(共18页)数学试卷 第16页(共18页)数学试卷 第17页(共18页)数学试卷 第18页(共18页)19.【答案】(Ⅰ)C 的方程为2212x y +=,01m M n ⎛⎫ ⎪-⎝⎭(Ⅱ)存在,点Q的坐标为(【解析】(Ⅰ)由题意知1b =,c a =,又222a b c =+,解得1a b c ===,所以C 的方程为2212x y +=.PA 的斜率1PA n k m-=,所以PA 方程11n y x m -=+, 令0y =,解得1m x n =-,所以,01m M n ⎛⎫⎪-⎝⎭. (Ⅱ)(,)B m n -,同(Ⅰ)可得,01m N n ⎛⎫ ⎪+⎝⎭,1tan QM OQM k ∠=,tan QN ONQ k ∠=,因为OQM ONQ ∠=∠所以1QN QM k k =g ,设(,0)Q t ,则111m m n nt t -+--=即2221m t n =-, 又A 在椭圆C 上,所以2212m n +=,即2221m n =-,所以t =(Q 使得OQM ONQ ∠=∠.【提示】(Ⅰ)根据椭圆的几何性质得出2221b ca abc =⎧⎪⎪=⎨⎪⎪=+⎩求解即可.(Ⅱ)求解得出,01m M n ⎛⎫ ⎪-⎝⎭,,01m N n ⎛⎫ ⎪+⎝⎭,运用图形得出OQM ONQ ∠=∠,故1Q N Q M k k =g , 设(,0)Q t ,代入整理得2221m t n =-,又2212m n +=,则2221m n=-根据m ,n 的关系整体求解.【考点】直线圆锥曲线的方程,位置关系,数形结合的思想的运用,运用代数的方法求解几何问题20.【答案】(Ⅰ)6,1{2,24}M = (Ⅱ)见解析(Ⅲ)集合M 的元素个数的最大值为8【解析】(Ⅰ)若16a =,由于12,18(1,2,)236,18n n n n n a a a n a a +≤⎧==⎨->⎩,{|}n M a n =∈*N . 故集合M 的所有元素为6,12,24,即6,1{2,24}M = (Ⅱ)若存在(1,2,,)i a i n =是3的倍数,设3()i a k k =∈*N ,当18i a ≤时,126i i a a k +==,1i a +也是3的倍数; 当18i a >时,1236636i i a a k +=-=-,1i a +也是3的倍数. 综上,1i a +是3的倍数,依次类推,当n i ≥时,n a 是3的倍数;若存在(2,3,,)i a i n =是3的倍数,设3()i a k k =∈*N ,当118i a -≤时,1322i i a k a -==g ,因为1i a *-∈N ,所以1i a -也是3的倍数;当18i a >时,1363622i i a k a -+⎛⎫==+ ⎪⎝⎭g ,因为1i a -∈*N ,所以1i a -也是3的倍数;. 综上,1i a -是3的倍数,依次类推,当n i <时,n a 是3的倍数;所以原结论成立.(Ⅲ)当11a =时,将11a =代入1218(1,2,)23618n n n n n a a a n a a +≤⎧==⎨->⎩,,, 依次得到2,4,8,16,32,28,20,4,所以当9n ≥时,6n n a a -=,此时{1,2,4,8,16,20,28,32}M =,共8个元素. 由题意,3a 可取的值有14a ,1436a -,1472a -,14108a -共4个元素, 显然,不论1a 为何值,3a 必为4的倍数,所以34(1,2,,9)a k k ==,①当3{4,8,16,20,28,32}a ∈时,{4,8,16,20,28,32}n a ∈(3)n ≥,此时M 最多有8个元素; ②当3{12,24}a ∈时,{12,24}n a ∈(3)n ≥,此时M 最多有4个元素; ③当336a =时,36n a =(3)n ≥,此时M 最多有3个元素;所以集合M 的元素个数的最大值为8.【提示】(Ⅰ)16a =,利用12,18(1,2,)236,18n n n n n a a a n a a +≤⎧==⎨->⎩可求得集合M 的所有元素为6,12,24.(Ⅱ)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数,由12,18(1,2,)236,18n n n nn a a a n a a +≤⎧==⎨->⎩,可归纳证明对任意n n k a ≥,是3的倍数. (Ⅲ)分1a 是3的倍数与1a 不是3的倍数讨论,即可求得集合M 的元素个数的最大值. 【考点】数列递推关系的应用,分类讨论思想与等价转化思想及推理,运算能力。
2015年普通高等学校招生全国统一考试理科数学(北京卷)
2015年普通高等学校招生全国统一考试北京理科数学本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.) 1.(2015北京,理1)复数i(2-i)=( )A.1+2iB.1-2iC.-1+2iD.-1-2i 答案:A解析:i(2-i)=2i -i 2=2i -(-1)=1+2i .2.(2015北京,理2)若x ,y 满足{x −y ≤0,x +y ≤1,x ≥0,则z=x+2y 的最大值为( )A.0B.1C.32D.2答案:D解析:根据题意,由约束条件画出可行域如图阴影部分所示. 目标函数z=x+2y ,即y=-12x+z 2.由图可知当直线y=-12x+z 2过点B (0,1)时,z 取最大值,且z max =0+2×1=2.3.(2015北京,理3)执行如图所示的程序框图,输出的结果为( )A.(-2,2)B.(-4,0)C.(-4,-4)D.(0,-8) 答案:B解析:x=1,y=1,k=0,进入循环:s=1-1=0,t=1+1=2,x=0,y=2,k=0+1=1<3;s=0-2=-2,t=0+2=2,x=-2,y=2,k=1+1=2<3;s=-2-2=-4,t=-2+2=0,x=-4,y=0,k=2+1=3≥3,跳出循环,输出(x ,y ),即(-4,0). 4.(2015北京,理4)设α,β是两个不同的平面,m 是直线且m ⊂α.“m ∥β”是“α∥β”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 答案:B解析:充分性:若m ⊂α,m ∥β,则平面α和β可能平行也可能相交,所以充分性不成立;必要性:若α∥β,m ⊂α,则m ∥β,必要性成立.故“m ∥β”是“α∥β”的必要而不充分条件,选B .5.(2015北京,理5)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+√5B.4+√5C.2+2√5D.5 答案:C解析:由三视图还原几何体如图.∴S表面积=S△BCD+2S△ACD+S△ABC=1 2×2×2+2×12×√5×1+12×2×√5=2+√5+√5=2+2√5.6.(2015北京,理6)设{a n}是等差数列.下列结论中正确的是()A.若a1+a2>0,则a2+a3>0B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a2>√a1a3D.若a1<0,则(a2-a1)(a2-a3)>0答案:C解析:设等差数列公差为d.对于A选项,a1+a2=2a1+d>0,而a2+a3=2a1+3d不一定大于0;对于B选项,a1+a3=2a1+2d<0,a1+a2=2a1+d不一定小于0;对于C选项,0<a1<a2,则公差d>0.所以a2=a1+a32>√a1a3;对于D选项,(a2-a1)(a2-a3)=-d2≤0.故只有C正确.7.(2015北京,理7)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|-1<x≤0}B.{x|-1≤x≤1}C.{x|-1<x≤1}D.{x|-1<x≤2}答案:C解析:如图,作出函数f(x)与y=log2(x+1)的图象.易知直线BC 的方程为y=-x+2,由{y =−x +2,y =log 2(x +1)得D 点坐标为(1,1).由图可知,当-1<x ≤1时,f (x )≥log 2(x+1),所以所求解集为{x|-1<x ≤1}.8.(2015北京,理8)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油 答案:D解析:对于选项A,从图中可以看出乙车的最高燃油效率大于5,故A 项错误;对于选项B,同样速度甲车消耗1升汽油行驶的路程比乙车、丙车的多,所以行驶相同路程,甲车油耗最少,故B 项错误;对于选项C,甲车以80千米/小时的速度行驶,1升汽油行驶10千米,所以行驶1小时,即行驶80千米,消耗8升汽油,故C 项错误;对于选项D,速度在80千米/小时以下时,相同条件下每消耗1升汽油,丙车行驶路程比乙车多,所以该市用丙车比用乙车更省油,故D 项正确.第二部分(非选择题 共110分)二、填空题(共6小题,每小题5分,共30分.)9.(2015北京,理9)在(2+x )5的展开式中,x 3的系数为 .(用数字作答) 答案:40解析:(2+x )5展开式的通项为T r+1=C 5r 25-r x r ,令r=3,得T 4=C 5322x 3=10×4x 3=40x 3,∴x 3的系数为40. 10.(2015北京,理10)已知双曲线x 2a2-y 2=1(a>0)的一条渐近线为√3x+y=0,则a= . 答案:√33解析:∵双曲线x 2a2-y 2=1的渐近线方程为y=±x a ,即y±xa=0.又a>0,∴1a =√3,∴a=√33.11.(2015北京,理11)在极坐标系中,点(2,π3)到直线ρ(cos θ+√3sin θ)=6的距离为 . 答案:1解析:∵x=ρcos θ,y=ρsin θ,∴点(2,π3)的直角坐标为(2cos π3,2sin π3),即(1,√3). ∵ρ(cos θ+√3sin θ)=6,∴ρcos θ+√3ρsin θ=6, ∴x+√3y-6=0.∴点(1,√3)到直线x+√3y-6=0的距离 d=|1+√3×√3−6|2=1. 12.(2015北京,理12)在△ABC 中,a=4,b=5,c=6,则sin2AsinC= .答案:1解析:在△ABC 中,由正弦定理知,sin2A sinC =2sinAcosA sinC =2cos A ·a c =2cos A×46=43cos A ,再根据余弦定理,得cos A=36+25−162×6×5=34,所以sin2A sinC=43×34=1.13.(2015北京,理13)在△ABC 中,点M ,N 满足AM ⃗⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗⃗⃗ =NC ⃗⃗⃗⃗⃗ .若MN ⃗⃗⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AC⃗⃗⃗⃗⃗ ,则x= ,y= .答案:12-16解析:如图,MN ⃗⃗⃗⃗⃗⃗⃗ =MC ⃗⃗⃗⃗⃗⃗ +CN ⃗⃗⃗⃗⃗ =13AC ⃗⃗⃗⃗⃗ −12BC ⃗⃗⃗⃗⃗=13AC ⃗⃗⃗⃗⃗ −12(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ) =12AB ⃗⃗⃗⃗⃗ −16AC ⃗⃗⃗⃗⃗ , ∴x=12,y=-16.14.(2015北京,理14)设函数f (x )={2x −a,x <1,4(x −a)(x −2a),x ≥1.①若a=1,则f (x )的最小值为 ;②若f (x )恰有2个零点,则实数a 的取值范围是 .答案:①-1 ②[12,1)∪[2,+∞)解析:①当a=1时,f (x )={2x −1,x <1,4(x −1)(x −2),x ≥1,当x<1时,2x -1∈(-1,1);当x ≥1时,4(x-1)(x-2)∈[-1,+∞). 故f (x )的最小值为-1.②若函数f (x )=2x -a 的图象在x<1时与x 轴有一个交点,则a>0,并且当x=1时,f (1)=2-a>0,所以0<a<2.同时函数f (x )=4(x-a )(x-2a )的图象在x ≥1时与x 轴有一个交点,所以{a <1,2a ≥1.故12≤a<1.若函数f (x )=2x-a 的图象在x<1时与x 轴没有交点,则函数f (x )=4(x-a )(x-2a )的图象在x ≥1时与x 轴有两个不同的交点,当a ≤0时,函数f (x )=2x -a 的图象与x 轴无交点,函数f (x )=4(x-a )(x-2a )的图象在x ≥1上与x 轴也无交点,不满足题意.当21-a ≤0,即a ≥2时,函数f (x )=4(x-a )(x-2a )的图象与x 轴的两个交点x 1=a ,x 2=2a 都满足题意.综上,a 的取值范围为[12,1)∪[2,+∞).三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程)15.(本小题13分)(2015北京,理15)已知函数f (x )=√2sin x 2cos x 2−√2sin 2x2. (1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值. 解:(1)因为f (x )=√22sin x-√22(1-cos x )=sin (x+π4)−√22, 所以f (x )的最小正周期为2π. (2)因为-π≤x ≤0,所以-3π4≤x+π4≤π4. 当x+π4=-π2,即x=-3π4时,f (x )取得最小值. 所以f (x )在区间[-π,0]上的最小值为f (−3π4)=-1-√22. 16.(本小题13分)(2015北京,理16)A,B 两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下: A 组:10,11,12,13,14,15,16 B 组:12,13,15,16,17,14,a假设所有病人的康复时间相互独立,从A,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙. (1)求甲的康复时间不少于14天的概率;(2)如果a=25,求甲的康复时间比乙的康复时间长的概率;(3)当a 为何值时,A,B 两组病人康复时间的方差相等?(结论不要求证明)解:设事件A i 为“甲是A 组的第i 个人”,事件B i 为“乙是B 组的第i 个人”,i=1,2, (7)由题意可知P (A i )=P (B i )=17,i=1,2, (7)(1)由题意知,事件“甲的康复时间不少于14天”等价于“甲是A 组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是P (A 5∪A 6∪A 7)=P (A 5)+P (A 6)+P (A 7)=37.(2)设事件C 为“甲的康复时间比乙的康复时间长”,由题意知,C=A 4B 1∪A 5B 1∪A 6B 1∪A 7B 1∪A 5B 2∪A 6B 2∪A 7B 2∪A 7B 3∪A 6B 6∪A 7B 6.因此P (C )=P (A 4B 1)+P (A 5B 1)+P (A 6B 1)+P (A 7B 1)+P (A 5B 2)+P (A 6B 2)+P (A 7B 2)+P (A 7B 3)+P (A 6B 6)+P (A 7B 6) =10P (A 4B 1) =10P (A 4)P (B 1) =1049.(3)a=11或a=18.17.(本小题14分)(2015北京,理17)如图,在四棱锥A-EFCB 中,△AEF 为等边三角形,平面AEF ⊥平面EFCB ,EF ∥BC ,BC=4,EF=2a ,∠EBC=∠FCB=60°,O 为EF 的中点. (1)求证:AO ⊥BE ;(2)求二面角F-AE-B 的余弦值; (3)若BE ⊥平面AOC ,求a 的值.解:(1)因为△AEF 是等边三角形,O 为EF 的中点,所以AO ⊥EF.又因为平面AEF ⊥平面EFCB ,AO ⊂平面AEF , 所以AO ⊥平面EFCB ,所以AO ⊥BE.(2)取BC 中点G ,连接OG. 由题设知EFCB 是等腰梯形, 所以OG ⊥EF.由(1)知AO ⊥平面EFCB , 又OG ⊂平面EFCB , 所以OA ⊥OG.如图建立空间直角坐标系O -xyz , 则E (a ,0,0),A (0,0,√3a ),B (2,√3(2-a ),0),EA ⃗⃗⃗⃗⃗ =(-a ,0,√3a ),BE ⃗⃗⃗⃗⃗ =(a-2,√3(a-2),0).设平面AEB 的法向量为n =(x ,y ,z ),则{n ·EA ⃗⃗⃗⃗⃗ =0,n ·BE ⃗⃗⃗⃗⃗ =0,即{−ax +√3az =0,(a −2)x +√3(a −2)y =0.令z=1,则x=√3,y=-1. 于是n =(√3,-1,1).平面AEF 的法向量为p =(0,1,0). 所以cos <n ,p >=n·p|n||p|=-√55. 由题知二面角F-AE-B 为钝角,所以它的余弦值为-√55.(3)因为BE ⊥平面AOC ,所以BE ⊥OC ,即BE ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =0.因为BE ⃗⃗⃗⃗⃗ =(a-2,√3(a-2),0),OC ⃗⃗⃗⃗⃗ =(-2,√3(2-a ),0), 所以BE ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =-2(a-2)-3(a-2)2.由BE ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =0及0<a<2,解得a=43.18.(本小题13分)(2015北京,理18)已知函数f (x )=ln 1+x1−x. (1)求曲线y=f (x )在点(0,f (0))处的切线方程;(2)求证:当x ∈(0,1)时,f (x )>2(x +x 33); (3)设实数k 使得f (x )>k (x +x 33)对x ∈(0,1)恒成立,求k 的最大值.解:(1)因为f (x )=ln(1+x )-ln(1-x ),所以f'(x )=11+x +11−x,f'(0)=2. 又因为f (0)=0,所以曲线y=f (x )在点(0,f (0))处的切线方程为y=2x. (2)令g (x )=f (x )-2(x +x 33), 则g'(x )=f'(x )-2(1+x 2)=2x 41−x2.因为g'(x )>0(0<x<1),所以g (x )在区间(0,1)上单调递增. 所以g (x )>g (0)=0,x ∈(0,1), 即当x ∈(0,1)时,f (x )>2(x +x 33). (3)由(2)知,当k ≤2时,f (x )>k (x +x 33)对x ∈(0,1)恒成立.当k>2时,令h (x )=f (x )-k (x +x 33), 则h'(x )=f'(x )-k (1+x 2)=kx 4−(k−2)1−x 2.所以当0<x<√k−2k4时,h'(x )<0,因此h (x )在区间(0,√k−2k4)上单调递减. 当0<x<√k−2k 4时,h (x )<h (0)=0, 即f (x )<k (x +x 33).所以当k>2时,f (x )>k (x +x 33)并非对x ∈(0,1)恒成立.综上可知,k 的最大值为2.19.(本小题14分)(2015北京,理19)已知椭圆C :x 2a 2+y 2b2=1(a>b>0)的离心率为√22,点P (0,1)和点A (m ,n )(m ≠0)都在椭圆C 上,直线PA 交x 轴于点M.(1)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(2)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N.问:y 轴上是否存在点Q ,使得∠OQM=∠ONQ ?若存在,求点Q 的坐标;若不存在,说明理由.解:(1)由题意得{b =1,c a=√22,a 2=b 2+c 2.解得a 2=2.故椭圆C 的方程为x 22+y 2=1. 设M (x M ,0).因为m ≠0,所以-1<n<1. 直线PA 的方程为y-1=n−1m x , 所以x M =m 1−n, 即M (m1−n,0). (2)因为点B 与点A 关于x 轴对称,所以B (m ,-n ).设N (x N ,0),则x N =m1+n.“存在点Q (0,y Q )使得∠OQM=∠ONQ ”等价于“存在点Q (0,y Q )使得|OM||OQ|=|OQ||ON|”,即y Q 满足y Q 2=|x M ||x N |.因为x M =m 1−n ,x N =m 1+n ,m 22+n 2=1, 所以y Q 2=|x M ||x N |=m 21−n 2=2.所以y Q =√2或y Q =-√2.故在y 轴上存在点Q ,使得∠OQM=∠ONQ ,点Q 的坐标为(0,√2)或(0,-√2).20.(本小题13分)(2015北京,理20)已知数列{a n }满足:a 1∈N *,a 1≤36,且a n+1={2a n ,a n ≤18,2a n −36,a n >18(n=1,2,…).记集合M={a n |n ∈N *}.(1)若a 1=6,写出集合M 的所有元素;(2)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (3)求集合M 的元素个数的最大值. 解:(1)6,12,24.(2)因为集合M 存在一个元素是3的倍数,所以不妨设a k 是3的倍数.由a n+1={2a n ,a n ≤18,2a n −36,a n >18可归纳证明对任意n ≥k ,a n 是3的倍数.如果k=1,则M 的所有元素都是3的倍数.如果k>1,因为a k =2a k-1或a k =2a k-1-36,所以2a k-1是3的倍数,于是a k-1是3的倍数.类似可得,a k-2,…,a 1都是3的倍数,从而对任意n ≥1,a n 是3的倍数,因此M 的所有元素都是3的倍数.综上,若集合M 存在一个元素是3的倍数,则M 的所有元素都是3的倍数.(3)由a 1≤36,a n ={2a n−1,a n−1≤18,2a n−1−36,a n−1>18可归纳证明a n ≤36(n=2,3,…).因为a 1是正整数,a 2={2a 1,a 1≤18,2a 1−36,a 1>18,所以a 2是2的倍数.从而当n ≥3时,a n 是4的倍数.如果a 1是3的倍数,由(2)知对所有正整数n ,a n 是3的倍数. 因此当n ≥3时,a n ∈{12,24,36}. 这时M 的元素个数不超过5.如果a 1不是3的倍数,由(2)知对所有正整数n ,a n 不是3的倍数. 因此当n ≥3时,a n ∈{4,8,16,20,28,32}. 这时M 的元素个数不超过8.当a 1=1时,M={1,2,4,8,16,20,28,32}有8个元素. 综上可知,集合M 的元素个数的最大值为8.。
北京市高考数学试题及答案【解析版】
2015年北京市高考数学试卷(理科)一、选择题(每小题5分,共40分)1.(5分)(2015•北京)复数i(2﹣i)=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则解答.解答:解:原式=2i﹣i2=2i﹣(﹣1)=1+2i;故选:A.点评:本题考查了复数的运算;关键是熟记运算法则.注意i2=﹣1.2.(5分)(2015•北京)若x,y满足,则z=x+2y的最大值为()A.0B.1C.D.2考点:简单线性规划.专题:不等式的解法及应用.分析:作出题中不等式组表示的平面区域,再将目标函数z=x+2y对应的直线进行平移,即可求出z取得最大值.解答:解:作出不等式组表示的平面区域,得到如图的三角形及其内部阴影部分,由解得A(,),目标函数z=x+2y,将直线z=x+2y进行平移,当l经过点A时,目标函数z达到最大值∴z最大值==故选:C.点评:本题给出二元一次不等式组,求目标函数z=x+2y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.3.(5分)(2015•北京)执行如图所示的程序框图,输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的x,y,k的值,当k=3时满足条件k≥3,退出循环,输出(﹣4,0).解答:解:模拟执行程序框图,可得x=1,y=1,k=0s=0,i=2x=0,y=2,k=1不满足条件k≥3,s=﹣2,i=2,x=﹣2,y=2,k=2不满足条件k≥3,s=﹣4,i=0,x=﹣4,y=0,k=3满足条件k≥3,退出循环,输出(﹣4,0),故选:B.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的x,y,k的值是解题的关键,属于基础题.4.(5分)(2015•北京)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分不要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:m∥β并得不到α∥β,根据面面平行的判定定理,只有α内的两相交直线都平行于β,而α∥β,并且m⊂α,显然能得到m∥β,这样即可找出正确选项.解答:解:m⊂α,m∥β得不到α∥β,因为α,β可能相交,只要m和α,β的交线平行即可得到m∥β;α∥β,m⊂α,∴m和β没有公共点,∴m∥β,即α∥β能得到m∥β;∴“m∥β”是“α∥β”的必要不充分条件.故选B.点评:考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念.5.(5分)(2015•北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2D.5考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:根据三视图可判断直观图为:A⊥面ABC,AC=AB,E为BC中点,EA=2,EA=EB=1,OA=1,:BC⊥面AEO,AC=,OE=判断几何体的各个面的特点,计算边长,求解面积.解答:解:根据三视图可判断直观图为:OA⊥面ABC,AC=AB,E为BC中点,EA=2,EC=EB=1,OA=1,∴可得AE⊥BC,BC⊥OA,运用直线平面的垂直得出:BC⊥面AEO,AC=,OE=∴S△ABC=2×2=2,S△OAC=S△OAB=×1=.S△BCO=2×=.故该三棱锥的表面积是2,故选:C.点评: 本题考查了空间几何体的三视图的运用,空间想象能力,计算能力,关键是恢复直观图,得出几何体的性质.6.(5分)(2015•北京)设{a n }是等差数列,下列结论中正确的是( )A . 若a 1+a 2>0,则a 2+a 3>0B . 若a 1+a 3<0,则若a 1+a 2<0,C . 若若0<a 1<a 2,则a 2D . 若a 1<0,则(a 2﹣a 1)(a 2﹣a 3)>0考点: 等差数列的性质.专题: 计算题;等差数列与等比数列.分析: 对选项分别进行判断,即可得出结论.解答: 解:若a 1+a 2>0,则2a 1+d >0,a 2+a 3=2a 1+3d >2d ,d >0时,结论成立,即A 不正确;若a 1+a 2<0,则2a 1+d <0,a 2+a 3=2a 1+3d <2d ,d <0时,结论成立,即B 不正确;{a n }是等差数列,0<a 1<a 2,2a 2=a 1+a 3>2,∴a 2>,即C 正确;若a 1<0,则(a 2﹣a 1)(a 2﹣a 3)=﹣d 2<0,即D 不正确.故选:C .点评: 本题考查等差数列的通项,考查学生的计算能力,比较基础.7.(5分)(2015•北京)如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x+1)的解集是( )A . {x|﹣1<x≤0}B . {x|﹣1≤x≤1}C . {x|﹣1<x≤1}D . {x|﹣1<x≤2}考点: 指、对数不等式的解法.专题: 不等式的解法及应用.分析: 在已知坐标系内作出y=log 2(x+1)的图象,利用数形结合得到不等式的解集. 解答: 解:由已知f (x )的图象,在此坐标系内作出y=log 2(x+1)的图象,如图满足不等式f (x )≥log 2(x+1)的x 范围是﹣1<x≤1;所以不等式f (x )≥log 2(x+1)的解集是{x|﹣1<x≤1};故选C .点评: 本题考查了数形结合求不等式的解集;用到了图象的平移.8.(5分)(2015•北京)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是( )A . 消耗1升汽油,乙车最多可行驶5千米B . 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C . 甲车以80千米/小时的速度行驶1小时,消耗10升汽油D . 某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油考点:函数的图象与图象变化.专题:创新题型;函数的性质及应用.分析:根据汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,以及图象,分别判断各个选项即可.解答:解:对于选项A,消耗1升汽油,乙车行驶的距离比5小的很多,故A错误;对于选项B,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最小,故B错误,对于选项C,甲车以80千米/小时的速度行驶1小时,里程为80千米,燃油效率为10,故消耗8升汽油,故C错误,对于选项D,因为在速度低于80千米/小时,丙的燃油效率高于乙的燃油效率,故D正确.点评:本题考查了函数图象的识别,关键掌握题意,属于基础题.二、填空题(每小题5分,共30分)9.(5分)(2015•北京)在(2+x)5的展开式中,x3的系数为40 (用数字作答)考点:二项式定理的应用.专题:二项式定理.分析:写出二项式定理展开式的通项公式,利用x的指数为3,求出r,然后求解所求数值.解答:解:(2+x)5的展开式的通项公式为:T=25﹣r x r,r+1所求x3的系数为:=40.故答案为:40.点评:本题考查二项式定理的应用,二项式系数的求法,考查计算能力.10.(5分)(2015•北京)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a= .考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:运用双曲线的渐近线方程为y=±,结合条件可得=,即可得到a的值.解答:解:双曲线﹣y2=1的渐近线方程为y=±,由题意可得=,解得a=.故答案为:.点评:本题考查双曲线的方程和性质,主要考查双曲线的渐近线方程的求法,属于基础题.11.(5分)(2015•北京)在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为1 .考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:化为直角坐标,再利用点到直线的距离公式距离公式即可得出.解答:解:点P(2,)化为P.直线ρ(cosθ+sinθ)=6化为.∴点P到直线的距离d==1.故答案为:1.点评:本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.12.(5分)(2015•北京)在△ABC中,a=4,b=5,c=6,则= 1 .考点:余弦定理;二倍角的正弦;正弦定理.专题:计算题;解三角形.分析:利用余弦定理求出cosC,cosA,即可得出结论.解答:解:∵△ABC中,a=4,b=5,c=6,∴cosC==,cosA==∴sinC=,sinA=,∴==1.故答案为:1.点评:本题考查余弦定理,考查学生的计算能力,比较基础.13.(5分)(2015•北京)在△ABC中,点M,N满足=2,=,若=x+y,则x= ,y= ﹣.考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:首先利用向量的三角形法则,将所求用向量表示,然后利用平面向量基本定理得到x,y值.解答:解:由已知得到===;由平面向量基本定理,得到x=,y=;故答案为:.点评:本题考查了平面向量基本定理的运用,一个向量用一组基底表示,存在唯一的实数对(x,y)使,向量等式成立.14.(5分)(2015•北京)设函数f(x)=,①若a=1,则f(x)的最小值为﹣1 ;②若f(x)恰有2个零点,则实数a的取值范围是≤a<1或a≥2.考点:函数的零点;分段函数的应用.专题:创新题型;函数的性质及应用.分析:①分别求出分段的函数的最小值,即可得到函数的最小值;②分别设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a),分两种情况讨论,即可求出a的范围.解答:解:①当a=1时,f(x)=,当x<1时,f(x)=2x﹣1为增函数,f(x)>﹣1,当x>1时,f(x)=4(x﹣1)(x﹣2)=4(x2﹣3x+2)=4(x﹣)2﹣1,当1<x<时,函数单调递减,当x>时,函数单调递增,故当x=时,f(x)min=f()=﹣1,②设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)若在x<1时,h(x)=与x轴有一个交点,所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,所以≤a<1,若函数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤时,即a≥2时,g(x)的两个交点为x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是≤a<1,或a≥2.点评:本题考查了分段函数的问题,以及函数的零点问题,培养了学生的转化能力和运算能力以及分类能力,属于中档题.三、解答题(共6小题,共80分)15.(13分)(2015•北京)已知函数f(x)=sincos﹣sin.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣π,0]上的最小值.考点:两角和与差的正弦函数;三角函数的周期性及其求法;三角函数的最值.专题:计算题;三角函数的求值;三角函数的图像与性质.分析:(Ⅰ)运用二倍角公式和两角和的正弦公式,化简f(x),再由正弦喊话说的周期,即可得到所求;(Ⅱ)由x的范围,可得x+的范围,再由正弦函数的图象和性质,即可求得最小值.解答:解:(Ⅰ)f(x)=sincos﹣sin=sinx﹣(1﹣cosx)=sinxcos+cosxsin﹣=sin(x+)﹣,则f(x)的最小正周期为2π;(Ⅱ)由﹣π≤x≤0,可得﹣≤x+≤,即有﹣1,则当x=﹣时,sin(x+)取得最小值﹣1,则有f(x)在区间[﹣π,0]上的最小值为﹣1﹣.点评:本题考查二倍角公式和两角和的正弦公式,同时考查正弦函数的周期和值域,考查运算能力,属于中档题.16.(13分)(2015•北京)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组;12,13,15,16,17,14,a假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果a=25,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)考点:极差、方差与标准差;古典概型及其概率计算公式.专题:概率与统计.分析:设事件A为“甲是A组的第i个人”,事件B i为“乙是B组的第i个人”,由题意i可知P(A i)=P(B i)=,i=1,2,••,7(Ⅰ)事件等价于“甲是A组的第5或第6或第7个人”,由概率公式可得;(Ⅱ)设事件“甲的康复时间比乙的康复时间长”C=A4B1∪A5B1∪A6B1∪A7B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6,易得P(C)=10P(A4B1),易得答案;(Ⅲ)由方差的公式可得.解答:解:设事件A为“甲是A组的第i个人”,事件B i为“乙是B组的第i个人”,i由题意可知P(A i)=P(B i)=,i=1,2,••,7(Ⅰ)事件“甲的康复时间不少于14天”等价于“甲是A组的第5或第6或第7个人”∴甲的康复时间不少于14天的概率P(A5∪A6∪A7)=P(A5)+P(A6)+P(A7)=;(Ⅱ)设事件C为“甲的康复时间比乙的康复时间长”,则C=A4B1∪A5B1∪A6B1∪A7B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6,∴P(C)=P(A4B1)+P(A5B1)+P(A6B1)P+(A7B1)+P(A5B2)+P(A6B2)+P(A7B2)+P(A7B3)+P(A6B6)+P(A7B6)=10P(A4B1)=10P(A4)P(B1)=(Ⅲ)当a为11或18时,A,B两组病人康复时间的方差相等.点评:本题考查古典概型及其概率公式,涉及概率的加法公式和方差,属基础题.17.(14分)(2015•北京)如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(Ⅰ)求证:AO⊥BE.(Ⅱ)求二面角F﹣AE﹣B的余弦值;(Ⅲ)若BE⊥平面AOC,求a的值.考点:二面角的平面角及求法;直线与平面垂直的判定;直线与平面垂直的性质.专题:空间位置关系与距离;空间角.分析:(Ⅰ)根据线面垂直的性质定理即可证明AO⊥BE.(Ⅱ)建立空间坐标系,利用向量法即可求二面角F﹣AE﹣B的余弦值;(Ⅲ)利用线面垂直的性质,结合向量法即可求a的值解答:证明:(Ⅰ)∵△AEF为等边三角形,O为EF的中点,∴AO⊥EF,∵平面AEF⊥平面EFCB,AO⊂平面AEF,∴AO⊥平面EFCB∴AO⊥BE.(Ⅱ)取BC的中点G,连接OG,∵EFCB是等腰梯形,∴OG⊥EF,由(Ⅰ)知AO⊥平面EFCB,∵OG⊂平面EFCB,∴OA⊥OG,建立如图的空间坐标系,则OE=a,BG=2,GH=a,BH=2﹣a,EH=BHtan60°=,则E(a,0,0),A(0,0,a),B(2,,0),=(﹣a,0,a),=(a﹣2,﹣,0),设平面AEB的法向量为=(x,y,z),则,即,令z=1,则x=,y=﹣1,即=(,﹣1,1),平面AEF的法向量为,则cos<>==即二面角F﹣AE﹣B的余弦值为;(Ⅲ)若BE⊥平面AOC,则BE⊥OC,即=0,∵=(a﹣2,﹣,0),=(﹣2,,0),∴=﹣2(a﹣2)﹣3(a﹣2)2=0,解得a=.点评:本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法.18.(13分)(2015•北京)已知函数f(x)=ln,(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求证,当x∈(0,1)时,f(x);(Ⅲ)设实数k使得f(x)对x∈(0,1)恒成立,求k的最大值.考点:利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(1)利用函数的导数求在曲线上某点处的切线方程.(2)构造新函数利用函数的单调性证明命题成立.(3)对k进行讨论,利用新函数的单调性求参数k的取值范围.解答:解答:(1)因为f(x)=ln(1+x)﹣ln(1﹣x)所以又因为f(0)=0,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x.(2)证明:令g(x)=f(x)﹣2(x+),则g'(x)=f'(x)﹣2(1+x2)=,因为g'(x)>0(0<x<1),所以g(x)在区间(0,1)上单调递增.所以g(x)>g(0)=0,x∈(0,1),即当x∈(0,1)时,f(x)>2(x+).(3)由(2)知,当k≤2时,f(x)>对x∈(0,1)恒成立.当k>2时,令h(x)=f(x)﹣,则h'(x)=f'(x)﹣k(1+x2)=,所以当时,h'(x)<0,因此h(x)在区间(0,)上单调递减.当时,h(x)<h(0)=0,即f(x)<.所以当k>2时,f(x)>并非对x∈(0,1)恒成立.综上所知,k的最大值为2.点评:本题主要考查切线方程的求法及新函数的单调性的求解证明.在高考中属常考题型,难度适中.19.(14分)(2015•北京)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A (m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(Ⅰ)求椭圆C的方程,并求点M的坐标(用m,n表示);(Ⅱ)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标,若不存在,说明理由.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:创新题型;圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:(I)根据椭圆的几何性质得出求解即可.(II)求解得出M(,0),N(,0),运用图形得出tan∠OQM=tan∠ONQ,=,求解即可得出即y Q2=x M•x N,+n2,根据m,m的关系整体求解.解答:解:(Ⅰ)由题意得出解得:a=,b=1,c=1∴+y2=1,∵P(0,1)和点A(m,n),﹣1<n<1∴PA的方程为:y﹣1=x,y=0时,x M=∴M(,0)(II)∵点B与点A关于x轴对称,点A(m,n)(m≠0)∴点B(m,﹣n)(m≠0)∵直线PB交x轴于点N,∴N(,0),∵存在点Q,使得∠OQM=∠ONQ,Q(0,y Q),∴tan∠OQM=tan∠ONQ,∴=,即y Q2=x M•x N,+n2=1y Q2==2,∴y Q=,故y轴上存在点Q,使得∠OQM=∠ONQ,Q(0,)或Q(0,﹣)点评:本题考查了直线圆锥曲线的方程,位置关系,数形结合的思想的运用,运用代数的方法求解几何问题,难度较大,属于难题.20.(13分)(2015•北京)已知数列{a n}满足:a1∈N*,a1≤36,且a n+1=(n=1,2,…),记集合M={a n|n∈N*}.(Ⅰ)若a1=6,写出集合M的所有元素;(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;(Ⅲ)求集合M的元素个数的最大值.考点:数列递推式.专题:创新题型;点列、递归数列与数学归纳法.分析:(Ⅰ)a=6,利用a n+1=可求得集合M的所有元素为6,12,24;1(Ⅱ)因为集合M存在一个元素是3的倍数,所以不妨设a k是3的倍数,由a n+1=(n=1,2,…),可归纳证明对任意n≥k,a n是3的倍数;(Ⅲ)分a1是3的倍数与a1不是3的倍数讨论,即可求得集合M的元素个数的最大值.解答:解:(Ⅰ)若a=6,由于a n+1=(n=1,2,…),M={a n|n∈N*}.1故集合M的所有元素为6,12,24;(Ⅱ)因为集合M存在一个元素是3的倍数,所以不妨设a k是3的倍数,由a n+1=(n=1,2,…),可归纳证明对任意n≥k,a n是3的倍数.如果k=1,M的所有元素都是3的倍数;如果k>1,因为a k=2a k﹣1,或a k=2a k﹣1﹣36,所以2a k﹣1是3的倍数;于是a k﹣1是3的倍数;类似可得,a k﹣2,…,a1都是3的倍数;从而对任意n≥1,a n是3的倍数;综上,若集合M存在一个元素是3的倍数,则集合M的所有元素都是3的倍数(Ⅲ)对a1≤36,a n=(n=1,2,…),可归纳证明对任意n≥k,a n<36(n=2,3,…)因为a1是正整数,a2=,所以a2是2的倍数.从而当n≥3时,a n是2的倍数.如果a1是3的倍数,由(Ⅱ)知,对所有正整数n,a n是3的倍数.因此当n≥3时,a n∈{12,24,36},这时M的元素个数不超过5.如果a1不是3的倍数,由(Ⅱ)知,对所有正整数n,a n不是3的倍数.因此当n≥3时,a n∈{4,8,16,20,28,32},这时M的元素个数不超过8.当a1=1时,M={1,2,4,8,16,20,28,32},有8个元素.综上可知,集合M的元素个数的最大值为8.点评:本题考查数列递推关系的应用,突出考查分类讨论思想与等价转化思想及推理、运算能力,属于难题.2015年北京市高考数学试卷(理科)一、选择题(每小题5分,共40分)1.(5分)(2015•北京)复数i(2﹣i)=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i2.(5分)(2015•北京)若x,y满足,则z=x+2y的最大值为()A.0B.1C.D.23.(5分)(2015•北京)执行如图所示的程序框图,输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)4.(5分)(2015•北京)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分不要条件D.既不充分也不必要条件5.(5分)(2015•北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2D.56.(5分)(2015•北京)设{a n}是等差数列,下列结论中正确的是()A.若a+a2>0,则a2+a3>0B.若a1+a3<0,则若a1+a2<0,1C.若若0<a<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>017.(5分)(2015•北京)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|﹣1<x≤0}B.{x|﹣1≤x≤1}C.{x|﹣1<x≤1}D.{x|﹣1<x≤2}8.(5分)(2015•北京)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油二、填空题(每小题5分,共30分)9.(5分)(2015•北京)在(2+x)5的展开式中,x3的系数为(用数字作答)(5分)(2015•北京)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a= .10.11.(5分)(2015•北京)在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为.12.(5分)(2015•北京)在△ABC中,a=4,b=5,c=6,则= .13.(5分)(2015•北京)在△ABC中,点M,N满足=2,=,若=x+y,则x= ,y= .14.(5分)(2015•北京)设函数f(x)=,①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.三、解答题(共6小题,共80分)15.(13分)(2015•北京)已知函数f(x)=sincos﹣sin.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣π,0]上的最小值.16.(13分)(2015•北京)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组;12,13,15,16,17,14,a假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果a=25,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)17.(14分)(2015•北京)如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(Ⅰ)求证:AO⊥BE.(Ⅱ)求二面角F﹣AE﹣B的余弦值;(Ⅲ)若BE⊥平面AOC,求a的值.18.(13分)(2015•北京)已知函数f(x)=ln,(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求证,当x∈(0,1)时,f(x);(Ⅲ)设实数k使得f(x)对x∈(0,1)恒成立,求k的最大值.19.(14分)(2015•北京)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A (m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(Ⅰ)求椭圆C的方程,并求点M的坐标(用m,n表示);(Ⅱ)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标,若不存在,说明理由.20.(13分)(2015•北京)已知数列{a n}满足:a1∈N*,a1≤36,且a n+1=(n=1,2,…),记集合M={a n|n∈N*}.(Ⅰ)若a1=6,写出集合M的所有元素;(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;(Ⅲ)求集合M的元素个数的最大值.。
2015年北京市高考数学试卷(理科)答案与解析讲解
2015年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共40分)1.(5分)(2015•北京)复数i(2﹣i)=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i2.(5分)(2015•北京)若x,y满足,则z=x+2y的最大值为()A.0B.1C.D.23.(5分)(2015•北京)执行如图所示的程序框图,输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)4.(5分)(2015•北京)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分不要条件D.既不充分也不必要条件5.(5分)(2015•北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2D.56.(5分)(2015•北京)设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则若a1+a2<0,C.若若0<a1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>07.(5分)(2015•北京)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|﹣1<x≤0} B.{x|﹣1≤x≤1} C.{x|﹣1<x≤1} D.{x|﹣1<x≤2}8.(5分)(2015•北京)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油二、填空题(每小题5分,共30分)9.(5分)(2015•北京)在(2+x)5的展开式中,x3的系数为(用数字作答)10.(5分)(2015•北京)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a=.11.(5分)(2015•北京)在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为.12.(5分)(2015•北京)在△ABC中,a=4,b=5,c=6,则=.13.(5分)(2015•北京)在△ABC中,点M,N满足=2,=,若=x+y,则x=,y=.14.(5分)(2015•北京)设函数f(x)=,①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.三、解答题(共6小题,共80分)15.(13分)(2015•北京)已知函数f(x)=sin cos﹣sin.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣π,0]上的最小值.16.(13分)(2015•北京)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组;12,13,15,16,17,14,a假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B 组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果a=25,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)17.(14分)(2015•北京)如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(Ⅰ)求证:AO⊥BE.(Ⅱ)求二面角F﹣AE﹣B的余弦值;(Ⅲ)若BE⊥平面AOC,求a的值.18.(13分)(2015•北京)已知函数f(x)=ln,(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求证,当x∈(0,1)时,f(x);(Ⅲ)设实数k使得f(x)对x∈(0,1)恒成立,求k的最大值.19.(14分)(2015•北京)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(Ⅰ)求椭圆C的方程,并求点M的坐标(用m,n表示);(Ⅱ)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标,若不存在,说明理由.20.(13分)(2015•北京)已知数列{a n}满足:a1∈N*,a1≤36,且a n+1=(n=1,2,…),记集合M={a n|n∈N*}.(Ⅰ)若a1=6,写出集合M的所有元素;(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;(Ⅲ)求集合M的元素个数的最大值.答案:1、解:原式=2i﹣i2=2i﹣(﹣1)=1+2i;故选:A.2、解:作出不等式组表示的平面区域,得到如图的三角形及其内部阴影部分,由解得A(,),目标函数z=x+2y,将直线z=x+2y进行平移,当l经过点A时,目标函数z达到最大值∴z最大值==故选:C.3、解:模拟执行程序框图,可得x=1,y=1,k=0s=0,i=2x=0,y=2,k=1不满足条件k≥3,s=﹣2,i=2,x=﹣2,y=2,k=2不满足条件k≥3,s=﹣4,i=0,x=﹣4,y=0,k=3满足条件k≥3,退出循环,输出(﹣4,0),故选:B.4、解:m⊂α,m∥β得不到α∥β,因为α,β可能相交,只要m和α,β的交线平行即可得到m∥β;α∥β,m⊂α,∴m和β没有公共点,∴m∥β,即α∥β能得到m∥β;∴“m∥β”是“α∥β”的必要不充分条件.故选B.5、解:根据三视图可判断直观图为:OA⊥面ABC,AC=AB,E为BC中点,EA=2,EC=EB=1,OA=1,∴可得AE⊥BC,BC⊥OA,运用直线平面的垂直得出:BC⊥面AEO,AC=,OE=∴S△ABC=2×2=2,S△OAC=S△OAB=×1=.S△BCO=2×=.故该三棱锥的表面积是2,故选:C.6、解:若a1+a2>0,则2a1+d>0,a2+a3=2a1+3d>2d,d>0时,结论成立,即A不正确;若a1+a2<0,则2a1+d<0,a2+a3=2a1+3d<2d,d<0时,结论成立,即B不正确;{a n}是等差数列,0<a1<a2,2a2=a1+a3>2,∴a2>,即C正确;若a1<0,则(a2﹣a1)(a2﹣a3)=﹣d2<0,即D不正确.故选:C.7、解:由已知f(x)的图象,在此坐标系内作出y=log2(x+1)的图象,如图满足不等式f(x)≥log2(x+1)的x范围是﹣1<x≤1;所以不等式f(x)≥log2(x+1)的解集是{x|﹣1<x≤1};故选C.8、解:对于选项A,消耗1升汽油,乙车行驶的距离比5小的很多,故A错误;对于选项B,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最小,故B错误,对于选项C,甲车以80千米/小时的速度行驶1小时,里程为80千米,燃油效率为10,故消耗8升汽油,故C错误,对于选项D,因为在速度低于80千米/小时,丙的燃油效率高于乙的燃油效率,故D 正确.9、解:(2+x)5的展开式的通项公式为:T5﹣r x r,r+1=2所求x3的系数为:=40.故答案为:40.10、解:双曲线﹣y2=1的渐近线方程为y=±,由题意可得=,解得a=.故答案为:.11、解:点P(2,)化为P.直线ρ(cosθ+sinθ)=6化为.∴点P到直线的距离d==1.故答案为:1.12、解:∵△ABC中,a=4,b=5,c=6,∴cosC==,cosA==∴sinC=,sinA=,∴==1.故答案为:1.13、解:由已知得到===;由平面向量基本定理,得到x=,y=;故答案为:.14、解:①当a=1时,f(x)=,当x<1时,f(x)=2x﹣1为增函数,f(x)>﹣1,当x>1时,f(x)=4(x﹣1)(x﹣2)=4(x2﹣3x+2)=4(x﹣)2﹣1,当1<x<时,函数单调递减,当x>时,函数单调递增,故当x=时,f(x)min=f()=﹣1,②设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)若在x<1时,h(x)=与x轴有一个交点,所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,所以≤a<1,若函数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤时,即a≥2时,g(x)的两个交点为x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是≤a<1,或a≥2.15、解:(Ⅰ)f(x)=sin cos﹣sin=sinx﹣(1﹣cosx)=sinxcos+cosxsin﹣=sin(x+)﹣,则f(x)的最小正周期为2π;(Ⅱ)由﹣π≤x≤0,可得﹣≤x+≤,即有﹣1,则当x=﹣时,sin(x+)取得最小值﹣1,则有f(x)在区间[﹣π,0]上的最小值为﹣1﹣.16、解:设事件A i为“甲是A组的第i个人”,事件B i为“乙是B组的第i个人”,由题意可知P(A i)=P(B i)=,i=1,2,••,7(Ⅰ)事件“甲的康复时间不少于14天”等价于“甲是A组的第5或第6或第7个人”∴甲的康复时间不少于14天的概率P(A5∪A6∪A7)=P(A5)+P(A6)+P(A7)=;(Ⅱ)设事件C为“甲的康复时间比乙的康复时间长”,则C=A4B1∪A5B1∪A6B1∪A7B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6,∴P(C)=P(A4B1)+P(A5B1)+P(A6B1)P+(A7B1)+P(A5B2)+P(A6B2)+P (A7B2)+P(A7B3)+P(A6B6)+P(A7B6)=10P(A4B1)=10P(A4)P(B1)=(Ⅲ)当a为11或18时,A,B两组病人康复时间的方差相等.17、证明:(Ⅰ)∵△AEF为等边三角形,O为EF的中点,∴AO⊥EF,∵平面AEF⊥平面EFCB,AO⊂平面AEF,∴AO⊥平面EFCB∴AO⊥BE.(Ⅱ)取BC的中点G,连接OG,∵EFCB是等腰梯形,∴OG⊥EF,由(Ⅰ)知AO⊥平面EFCB,∵OG⊂平面EFCB,∴OA⊥OG,建立如图的空间坐标系,则OE=a,BG=2,GH=a,BH=2﹣a,EH=BHtan60°=,则E(a,0,0),A(0,0,a),B(2,,0),=(﹣a,0,a),=(a﹣2,﹣,0),设平面AEB的法向量为=(x,y,z),则,即,令z=1,则x=,y=﹣1,即=(,﹣1,1),平面AEF的法向量为,则cos<>==即二面角F﹣AE﹣B的余弦值为;(Ⅲ)若BE⊥平面AOC,则BE⊥OC,即=0,∵=(a﹣2,﹣,0),=(﹣2,,0),∴=﹣2(a﹣2)﹣3(a﹣2)2=0,解得a=.18、解答:(1)因为f(x)=ln(1+x)﹣ln(1﹣x)所以又因为f(0)=0,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x.(2)证明:令g(x)=f(x)﹣2(x+),则g'(x)=f'(x)﹣2(1+x2)=,因为g'(x)>0(0<x<1),所以g(x)在区间(0,1)上单调递增.所以g(x)>g(0)=0,x∈(0,1),即当x∈(0,1)时,f(x)>2(x+).(3)由(2)知,当k≤2时,f(x)>对x∈(0,1)恒成立.当k>2时,令h(x)=f(x)﹣,则h'(x)=f'(x)﹣k(1+x2)=,所以当时,h'(x)<0,因此h(x)在区间(0,)上单调递减.当时,h(x)<h(0)=0,即f(x)<.所以当k>2时,f(x)>并非对x∈(0,1)恒成立.综上所知,k的最大值为2.19、解:(Ⅰ)由题意得出解得:a=,b=1,c=1∴+y2=1,∵P(0,1)和点A(m,n),﹣1<n<1∴PA的方程为:y﹣1=x,y=0时,x M=∴M(,0)(II)∵点B与点A关于x轴对称,点A(m,n)(m≠0)∴点B(m,﹣n)(m≠0)∵直线PB交x轴于点N,∴N(,0),∵存在点Q,使得∠OQM=∠ONQ,Q(0,y Q),∴tan∠OQM=tan∠ONQ,∴=,即y Q2=x M•x N,+n2=1y Q2==2,∴y Q=,故y轴上存在点Q,使得∠OQM=∠ONQ,Q(0,)或Q(0,﹣)20、解:(Ⅰ)若a1=6,由于a n+1=(n=1,2,…),M={a n|n∈N*}.故集合M的所有元素为6,12,24;(Ⅱ)因为集合M存在一个元素是3的倍数,所以不妨设a k是3的倍数,由a n+1=(n=1,2,…),可归纳证明对任意n≥k,a n是3的倍数.如果k=1,M的所有元素都是3的倍数;如果k>1,因为a k=2a k﹣1,或a k=2a k﹣1﹣36,所以2a k﹣1是3的倍数;于是a k﹣1是3的倍数;类似可得,a k﹣2,…,a1都是3的倍数;从而对任意n≥1,a n是3的倍数;综上,若集合M存在一个元素是3的倍数,则集合M的所有元素都是3的倍数(Ⅲ)对a1≤36,a n=(n=1,2,…),可归纳证明对任意n≥k,a n<36(n=2,3,…)因为a1是正整数,a2=,所以a2是2的倍数.从而当n≥3时,a n是2的倍数.如果a1是3的倍数,由(Ⅱ)知,对所有正整数n,a n是3的倍数.因此当n≥3时,a n∈{12,24,36},这时M的元素个数不超过5.如果a1不是3的倍数,由(Ⅱ)知,对所有正整数n,a n不是3的倍数.因此当n≥3时,a n∈{4,8,16,20,28,32},这时M的元素个数不超过8.当a1=1时,M={1,2,4,8,16,20,28,32},有8个元素.综上可知,集合M的元素个数的最大值为8.11。
2015年北京市高考数学试卷(理科)(含解析版)
17.(14 分)如图,在四棱锥 A﹣EFCB 中,△AEF 为等边三角形,平面 AEF⊥平面 EFCB,EF∥ BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O 为 EF 的中点.
(Ⅰ)求证:AO⊥BE. (Ⅱ)求二面角 F﹣AE﹣B 的余弦值; (Ⅲ)若 BE⊥平面 AOC,求 a 的值.
≠0)都在椭圆 C 上,直线 PA 交 x 轴于点 M. (Ⅰ)求椭圆 C 的方程,并求点 M 的坐标(用 m,n 表示); (Ⅱ)设 O 为原点,点 B 与点 A 关于 x 轴对称,直线 PB 交 x 轴于点 N,问:y 轴上是否存在点 Q,
使得∠OQM=∠ONQ?若存在,求点 Q 的坐标,若不存在,说明理由.
(n=1,2,…),记
集合 M={an|n∈N*}. (Ⅰ)若 a1=6,写出集合 M 的所有元素; (Ⅱ)如集合 M 存在一个元素是 3 的倍数,证明:M 的所有元素都是 3 的倍数; (Ⅲ)求集合 M 的元素个数的最大值.
19.(14 分)已知椭圆 C: + =1(a>b>0)的离心率为 ,点 P(0,1)和点 A(m,n)(m
绝密★启用前
2015 年普通高等学校招生全国统一考试
C.充分必要条件
D.既不充分也不必要条件
5.(5 分)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )
数 学(理)(北京卷)
本试卷共 5 页,150 分。考试时长 120 分钟。考生务必将答案答在答题卡上,在试卷上作答无
效。考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共 40 分)
一、选择题(每小题 5 分,共 40 分)
1.(5 分)复数 i(2﹣i)=( )
A.1+2i
100教育:2015高考试题——理数(北京卷)含答案
2015 年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共 5 页, 150 分.考试时长 120 分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共 40 分)一、选择题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项中,选出符合题目要求的一项.1.复数i 2 iA . 1 2i B. 1 2i C. 1 2ix y ≤ 0 ,2.若 x , y 满足 x y ≤ 1,则 z x 2 y 的最大值为x≥ 0 ,3A.0B.1 C. D.2 23.执行如图所示的程序框图,输出的结果为A.2,2B.4,0C.4, 4D. 1 2i D.0,8开始x=1,y=1 ,k=0 s=x-y, t=x+yx=s, y=tk=k+1否k≥ 3是输出 (x, y)结束4.设,是两个不同的平面,m是直线且m?m∥”是“∥”的.“A .充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.某三棱锥的三视图如图所示,则该三棱锥的表面积是1211正(主)视图侧( 左 )视图俯视图A.25 B . 45C.2 25D. 5 6.设a n是等差数列 . 下列结论中正确的是A .若 a1a20 ,则 a2a30B.若 a1a30 ,则 a1a20C.若 0 a1a2,则 a2a1a3D.若 a10 ,则a2a1a2a3 0 7.如图,函数f x 的图像为折线ACB ,则不等式 f x ≥ log2x 1 的解集是y2CAO Bx-12A .x | 1x ≤ 0B .x | 1≤x≤1C.x | 1x≤ 1D.x | 1 x≤28.汽车的“燃油效率”是指汽车每消耗1 升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况 . 下列叙述中正确的是A .消耗 1 升汽油,乙车最多可行驶 5 千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80 千米 /小时的速度行驶 1 小时,消耗10 升汽油D.某城市机动车最高限速80 千米 /小时 . 相同条件下,在该市用丙车比用乙车更省油第二部分(非选择题共 110 分)二、填空题共 6 小题,每小题 5 分,共30 分.5.(用数字作答)9.在 2 x 的展开式中,x3的系数为10.已知双曲线x2y2 1 a0 的一条渐近线为3x y0 ,则 a.a211.在极坐标系中,点 2 ? π到直线cos3sin6的距离为.312.在△ABC中,a4, b5, c6,则 sin 2 A.sin C13.在△ABC中,点 M ,N满足 AM2MC , BN NC .若 MN xAB y AC ,则 x ; y.2x a ?x1?14.设函数 f x4 x a x 2a ? x ≥1.①若a1,则f x 的最小值为;②若f x 恰有 2 个零点,则实数 a 的取值范围是.三、解答题(共 6 小题,共 80 分.解答应写出文字说明,演算步骤或证明过程)15.(本小题13 分)222(Ⅰ ) 求 f ( x) 的最小正周期;(Ⅱ ) 求 f ( x) 在区间 [ π,0]上的最小值.16.(本小题13 分)A ,B 两组各有7 位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组: 10, 11, 12, 13, 14, 15, 16B组: 12, 13, 15, 16, 17, 14, a假设所有病人的康复时间互相独立,从 A , B 两组随机各选 1 人, A 组选出的人记为甲, B 组选出的人记为乙.(Ⅰ ) 求甲的康复时间不少于14 天的概率;(Ⅱ ) 如果a25 ,求甲的康复时间比乙的康复时间长的概率;(Ⅲ ) 当 a 为何值时, A , B 两组病人康复时间的方差相等?(结论不要求证明)17.(本小题14 分)如图,在四棱锥 A EFCB 中,△AEF为等边三角形,平面AEF平面EFCB,EF ∥BC,BC 4 , EF 2a ,EBC FCB 60 , O 为EF的中点.(Ⅰ) 求证:AO BE;(Ⅱ ) 求二面角 F AE B 的余弦值;(Ⅲ ) 若BE平面AOC,求a的值.AFOEB18.(本小题13 分)已知函数 f x ln 1x .1x(Ⅰ)求曲线 y f x 在点0 , f0处的切线方程;(Ⅱ)求证:当x0,1时, f xx32 x;C 3222(Ⅰ ) 求 f ( x) 的最小正周期;(Ⅱ ) 求 f ( x) 在区间 [ π,0]上的最小值.16.(本小题13 分)A ,B 两组各有7 位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组: 10, 11, 12, 13, 14, 15, 16B组: 12, 13, 15, 16, 17, 14, a假设所有病人的康复时间互相独立,从 A , B 两组随机各选 1 人, A 组选出的人记为甲, B 组选出的人记为乙.(Ⅰ ) 求甲的康复时间不少于14 天的概率;(Ⅱ ) 如果a25 ,求甲的康复时间比乙的康复时间长的概率;(Ⅲ ) 当 a 为何值时, A , B 两组病人康复时间的方差相等?(结论不要求证明)17.(本小题14 分)如图,在四棱锥 A EFCB 中,△AEF为等边三角形,平面AEF平面EFCB,EF ∥BC,BC 4 , EF 2a ,EBC FCB 60 , O 为EF的中点.(Ⅰ) 求证:AO BE;(Ⅱ ) 求二面角 F AE B 的余弦值;(Ⅲ ) 若BE平面AOC,求a的值.AFOEB18.(本小题13 分)已知函数 f x ln 1x .1x(Ⅰ)求曲线 y f x 在点0 , f0处的切线方程;(Ⅱ)求证:当x0,1时, f xx32 x;C 3222(Ⅰ ) 求 f ( x) 的最小正周期;(Ⅱ ) 求 f ( x) 在区间 [ π,0]上的最小值.16.(本小题13 分)A ,B 两组各有7 位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组: 10, 11, 12, 13, 14, 15, 16B组: 12, 13, 15, 16, 17, 14, a假设所有病人的康复时间互相独立,从 A , B 两组随机各选 1 人, A 组选出的人记为甲, B 组选出的人记为乙.(Ⅰ ) 求甲的康复时间不少于14 天的概率;(Ⅱ ) 如果a25 ,求甲的康复时间比乙的康复时间长的概率;(Ⅲ ) 当 a 为何值时, A , B 两组病人康复时间的方差相等?(结论不要求证明)17.(本小题14 分)如图,在四棱锥 A EFCB 中,△AEF为等边三角形,平面AEF平面EFCB,EF ∥BC,BC 4 , EF 2a ,EBC FCB 60 , O 为EF的中点.(Ⅰ) 求证:AO BE;(Ⅱ ) 求二面角 F AE B 的余弦值;(Ⅲ ) 若BE平面AOC,求a的值.AFOEB18.(本小题13 分)已知函数 f x ln 1x .1x(Ⅰ)求曲线 y f x 在点0 , f0处的切线方程;(Ⅱ)求证:当x0,1时, f xx32 x;C 3222(Ⅰ ) 求 f ( x) 的最小正周期;(Ⅱ ) 求 f ( x) 在区间 [ π,0]上的最小值.16.(本小题13 分)A ,B 两组各有7 位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组: 10, 11, 12, 13, 14, 15, 16B组: 12, 13, 15, 16, 17, 14, a假设所有病人的康复时间互相独立,从 A , B 两组随机各选 1 人, A 组选出的人记为甲, B 组选出的人记为乙.(Ⅰ ) 求甲的康复时间不少于14 天的概率;(Ⅱ ) 如果a25 ,求甲的康复时间比乙的康复时间长的概率;(Ⅲ ) 当 a 为何值时, A , B 两组病人康复时间的方差相等?(结论不要求证明)17.(本小题14 分)如图,在四棱锥 A EFCB 中,△AEF为等边三角形,平面AEF平面EFCB,EF ∥BC,BC 4 , EF 2a ,EBC FCB 60 , O 为EF的中点.(Ⅰ) 求证:AO BE;(Ⅱ ) 求二面角 F AE B 的余弦值;(Ⅲ ) 若BE平面AOC,求a的值.AFOEB18.(本小题13 分)已知函数 f x ln 1x .1x(Ⅰ)求曲线 y f x 在点0 , f0处的切线方程;(Ⅱ)求证:当x0,1时, f xx32 x;C 3222(Ⅰ ) 求 f ( x) 的最小正周期;(Ⅱ ) 求 f ( x) 在区间 [ π,0]上的最小值.16.(本小题13 分)A ,B 两组各有7 位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组: 10, 11, 12, 13, 14, 15, 16B组: 12, 13, 15, 16, 17, 14, a假设所有病人的康复时间互相独立,从 A , B 两组随机各选 1 人, A 组选出的人记为甲, B 组选出的人记为乙.(Ⅰ ) 求甲的康复时间不少于14 天的概率;(Ⅱ ) 如果a25 ,求甲的康复时间比乙的康复时间长的概率;(Ⅲ ) 当 a 为何值时, A , B 两组病人康复时间的方差相等?(结论不要求证明)17.(本小题14 分)如图,在四棱锥 A EFCB 中,△AEF为等边三角形,平面AEF平面EFCB,EF ∥BC,BC 4 , EF 2a ,EBC FCB 60 , O 为EF的中点.(Ⅰ) 求证:AO BE;(Ⅱ ) 求二面角 F AE B 的余弦值;(Ⅲ ) 若BE平面AOC,求a的值.AFOEB18.(本小题13 分)已知函数 f x ln 1x .1x(Ⅰ)求曲线 y f x 在点0 , f0处的切线方程;(Ⅱ)求证:当x0,1时, f xx32 x;C 3222(Ⅰ ) 求 f ( x) 的最小正周期;(Ⅱ ) 求 f ( x) 在区间 [ π,0]上的最小值.16.(本小题13 分)A ,B 两组各有7 位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组: 10, 11, 12, 13, 14, 15, 16B组: 12, 13, 15, 16, 17, 14, a假设所有病人的康复时间互相独立,从 A , B 两组随机各选 1 人, A 组选出的人记为甲, B 组选出的人记为乙.(Ⅰ ) 求甲的康复时间不少于14 天的概率;(Ⅱ ) 如果a25 ,求甲的康复时间比乙的康复时间长的概率;(Ⅲ ) 当 a 为何值时, A , B 两组病人康复时间的方差相等?(结论不要求证明)17.(本小题14 分)如图,在四棱锥 A EFCB 中,△AEF为等边三角形,平面AEF平面EFCB,EF ∥BC,BC 4 , EF 2a ,EBC FCB 60 , O 为EF的中点.(Ⅰ) 求证:AO BE;(Ⅱ ) 求二面角 F AE B 的余弦值;(Ⅲ ) 若BE平面AOC,求a的值.AFOEB18.(本小题13 分)已知函数 f x ln 1x .1x(Ⅰ)求曲线 y f x 在点0 , f0处的切线方程;(Ⅱ)求证:当x0,1时, f xx32 x;C 3222(Ⅰ ) 求 f ( x) 的最小正周期;(Ⅱ ) 求 f ( x) 在区间 [ π,0]上的最小值.16.(本小题13 分)A ,B 两组各有7 位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组: 10, 11, 12, 13, 14, 15, 16B组: 12, 13, 15, 16, 17, 14, a假设所有病人的康复时间互相独立,从 A , B 两组随机各选 1 人, A 组选出的人记为甲, B 组选出的人记为乙.(Ⅰ ) 求甲的康复时间不少于14 天的概率;(Ⅱ ) 如果a25 ,求甲的康复时间比乙的康复时间长的概率;(Ⅲ ) 当 a 为何值时, A , B 两组病人康复时间的方差相等?(结论不要求证明)17.(本小题14 分)如图,在四棱锥 A EFCB 中,△AEF为等边三角形,平面AEF平面EFCB,EF ∥BC,BC 4 , EF 2a ,EBC FCB 60 , O 为EF的中点.(Ⅰ) 求证:AO BE;(Ⅱ ) 求二面角 F AE B 的余弦值;(Ⅲ ) 若BE平面AOC,求a的值.AFOEB18.(本小题13 分)已知函数 f x ln 1x .1x(Ⅰ)求曲线 y f x 在点0 , f0处的切线方程;(Ⅱ)求证:当x0,1时, f xx32 x;C 3。
2015北京高考数学真题(理科)及答案
2015北京高考数学真题(理科)一、选择题(每小题5分,共40分)1.(5分)复数i(2﹣i)=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i2.(5分)若x,y满足,则z=x+2y的最大值为()A.0 B.1 C.D.23.(5分)执行如图所示的程序框图输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)4.(5分)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2D.56.(5分)设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>07.(5分)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|﹣1<x≤0}B.{x|﹣1≤x≤1}C.{x|﹣1<x≤1}D.{x|﹣1<x≤2}8.(5分)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油二、填空题(每小题5分,共30分)9.(5分)在(2+x)5的展开式中,x3的系数为(用数字作答)10.(5分)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a=.11.(5分)在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为.12.(5分)在△ABC中,a=4,b=5,c=6,则=.13.(5分)在△ABC中,点M,N满足=2,=,若=x+y,则x=,y=.14.(5分)设函数f(x)=,①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.三、解答题(共6小题,共80分)15.(13分)已知函数f(x)=sin cos﹣sin.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣π,0]上的最小值.16.(13分)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组;12,13,15,16,17,14,a假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果a=25,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)17.(14分)如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(Ⅰ)求证:AO⊥BE.(Ⅱ)求二面角F﹣AE﹣B的余弦值;(Ⅲ)若BE⊥平面AOC,求a的值.18.(13分)已知函数f(x)=ln,(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求证,当x∈(0,1)时,f(x)>;(Ⅲ)设实数k使得f(x)对x∈(0,1)恒成立,求k的最大值.19.(14分)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(Ⅰ)求椭圆C的方程,并求点M的坐标(用m,n表示);(Ⅱ)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标,若不存在,说明理由.20.(13分)已知数列{a n}满足:a1∈N*,a1≤36,且a n+1=(n=1,2,…),记集合M={a n|n ∈N*}.(Ⅰ)若a1=6,写出集合M的所有元素;(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;(Ⅲ)求集合M的元素个数的最大值.参考答案与试题解析一、选择题(每小题5分,共40分)1.【解答】原式=2i﹣i2=2i﹣(﹣1)=1+2i;故选:A.2.【解答】作出不等式组表示的平面区域,当l经过点B时,目标函数z达到最大值∴z最大值=0+2×1=2.故选:D.3.【解答】模拟程序框图的运行过程,如下;x=1,y=1,k=0时,s=x﹣y=0,t=x+y=2;x=s=0,y=t=2,k=1时,s=x﹣y=﹣2,t=x+y=2;x=s=﹣2,y=t=2,k=2时,s=x﹣y=﹣4,t=x+y=0;x=s=﹣4,y=t=0,k=3时,循环终止,输出(x,y)是(﹣4,0).故选:B.4.【解答】m⊂α,m∥β得不到α∥β,因为α,β可能相交,只要m和α,β的交线平行即可得到m∥β;α∥β,m⊂α,∴m和β没有公共点,∴m∥β,即α∥β能得到m∥β;∴“m∥β”是“α∥β”的必要不充分条件.故选B.5.【解答】根据三视图可判断直观图为:OA⊥面ABC,AC=AB,E为BC中点,EA=2,EC=EB=1,OA=1,∴可得AE⊥BC,BC⊥OA,运用直线平面的垂直得出:BC⊥面AEO,AC=,OE=∴S△ABC=2×2=2,S△OAC=S△OAB=×1=.S△BCO=2×=.故该三棱锥的表面积是2,故选:C.6.【解答】若a1+a2>0,则2a1+d>0,a2+a3=2a1+3d>2d,d>0时,结论成立,即A不正确;若a1+a3<0,则a1+a2=2a1+d<0,a2+a3=2a1+3d<2d,d<0时,结论成立,即B不正确;{a n}是等差数列,0<a1<a2,2a2=a1+a3>2,∴a2>,即C正确;若a1<0,则(a2﹣a1)(a2﹣a3)=﹣d2≤0,即D不正确.故选:C.7.【解答】由已知f(x)的图象,在此坐标系内作出y=log2(x+1)的图象,如图满足不等式f(x)≥log2(x+1)的x范围是﹣1<x≤1;所以不等式f(x)≥log2(x+1)的解集是{x|﹣1<x≤1};故选C.8.【解答】对于选项A,从图中可以看出当乙车的行驶速度大于40千米每小时时的燃油效率大于5千米每升,故乙车消耗1升汽油的行驶路程远大于5千米,故A错误;对于选项B,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最小,故B错误,对于选项C,甲车以80千米/小时的速度行驶1小时,里程为80千米,燃油效率为10,故消耗8升汽油,故C错误,对于选项D,因为在速度低于80千米/小时,丙的燃油效率高于乙的燃油效率,故D正确.二、填空题(每小题5分,共30分)9.【解答】(2+x)5的展开式的通项公式为:T r+1=25﹣r x r,所求x3的系数为:=40.故答案为:40.10.【解答】双曲线﹣y2=1的渐近线方程为y=±,由题意可得=,解得a=.故答案为:.11.【解答】点P(2,)化为P.直线ρ(cosθ+sinθ)=6化为.∴点P到直线的距离d==1.故答案为:1.12.【解答】∵△ABC中,a=4,b=5,c=6,∴cosC==,cosA==∴sinC=,sinA=,∴==1.故答案为:1.13.【解答】由已知得到===;由平面向量基本定理,得到x=,y=;故答案为:.14.【解答】①当a=1时,f(x)=,当x<1时,f(x)=2x﹣1为增函数,f(x)>﹣1,当x>1时,f(x)=4(x﹣1)(x﹣2)=4(x2﹣3x+2)=4(x﹣)2﹣1,当1<x<时,函数单调递减,当x>时,函数单调递增,故当x=时,f(x)min=f()=﹣1,②设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)若在x<1时,h(x)=与x轴有一个交点,所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,所以≤a<1,若函数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤0时,即a≥2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是≤a<1,或a≥2.三、解答题(共6小题,共80分)15.【解答】(Ⅰ)f(x)=sin cos﹣sin=sinx﹣(1﹣cosx)=sinxcos+cosxsin﹣=sin(x+)﹣,则f(x)的最小正周期为2π;(Ⅱ)由﹣π≤x≤0,可得﹣≤x+≤,即有﹣1,则当x=﹣时,sin(x+)取得最小值﹣1,则有f(x)在区间[﹣π,0]上的最小值为﹣1﹣.16.【解答】设事件A i为“甲是A组的第i个人”,事件B i为“乙是B组的第i个人”,由题意可知P(A i)=P(B i)=,i=1,2,••,7(Ⅰ)事件“甲的康复时间不少于14天”等价于“甲是A组的第5或第6或第7个人”∴甲的康复时间不少于14天的概率P(A5∪A6∪A7)=P(A5)+P(A6)+P(A7)=;(Ⅱ)设事件C为“甲的康复时间比乙的康复时间长”,则C=A4B1∪A5B1∪A6B1∪A7B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6,∴P(C)=P(A4B1)+P(A5B1)+P(A6B1)+P(A7B1)+P(A5B2)+P(A6B2)+P(A7B2)+P(A7B3)+P(A6B6)+P(A7B6)=10P(A4B1)=10P(A4)P(B1)=(Ⅲ)当a为11或18时,A,B两组病人康复时间的方差相等.17.【解答】证明:(Ⅰ)∵△AEF为等边三角形,O为EF的中点,∴AO⊥EF,∵平面AEF⊥平面EFCB,AO⊂平面AEF,∴AO⊥平面EFCB∴AO⊥BE.(Ⅱ)取BC的中点G,连接OG,∵EFCB是等腰梯形,∴OG⊥EF,由(Ⅰ)知AO⊥平面EFCB,∵OG⊂平面EFCB,∴OA⊥OG,建立如图的空间坐标系,则OE=a,BG=2,GH=a,(a≠2),BH=2﹣a,EH=BHtan60°=,则E(a,0,0),A(0,0,a),B(2,,0),=(﹣a,0,a),=(a﹣2,﹣,0),设平面AEB的法向量为=(x,y,z),则,即,令z=1,则x=,y=﹣1,即=(,﹣1,1),平面AEF的法向量为,则cos<>==即二面角F﹣AE﹣B的余弦值为;(Ⅲ)若BE⊥平面AOC,则BE⊥OC,即=0,∵=(a﹣2,﹣,0),=(﹣2,,0),∴=﹣2(a﹣2)﹣3(a﹣2)2=0,解得a=.18.【解答】(1)因为f(x)=ln(1+x)﹣ln(1﹣x)所以又因为f(0)=0,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x.(2)证明:令g(x)=f(x)﹣2(x+),则g'(x)=f'(x)﹣2(1+x2)=,因为g'(x)>0(0<x<1),所以g(x)在区间(0,1)上单调递增.所以g(x)>g(0)=0,x∈(0,1),即当x∈(0,1)时,f(x)>2(x+).(3)由(2)知,当k≤2时,f(x)>对x∈(0,1)恒成立.当k>2时,令h(x)=f(x)﹣,则h'(x)=f'(x)﹣k(1+x2)=,所以当时,h'(x)<0,因此h(x)在区间(0,)上单调递减.当时,h(x)<h(0)=0,即f(x)<.所以当k>2时,f(x)>并非对x∈(0,1)恒成立.综上所知,k的最大值为2.19.【解答】(Ⅰ)由题意得出解得:a=,b=1,c=1∴+y2=1,∵P(0,1)和点A(m,n),﹣1<n<1∴PA的方程为:y﹣1=x,y=0时,x M=∴M(,0)(II)∵点B与点A关于x轴对称,点A(m,n)(m≠0)∴点B(m,﹣n)(m≠0)∵直线PB交x轴于点N,∴N(,0),∵存在点Q,使得∠OQM=∠ONQ,Q(0,y Q),∴tan∠OQM=tan∠ONQ,∴=,即y Q2=x M•x N,+n2=1y Q2==2,∴y Q=,故y轴上存在点Q,使得∠OQM=∠ONQ,Q(0,)或Q(0,﹣)20.【解答】(Ⅰ)若a1=6,由于a n+1=(n=1,2,…),M={a n|n∈N*}.故集合M的所有元素为6,12,24;(Ⅱ)因为集合M存在一个元素是3的倍数,所以不妨设a k是3的倍数,由a n+1=(n=1,2,…),可归纳证明对任意n≥k,a n是3的倍数.如果k=1,M的所有元素都是3的倍数;如果k>1,因为a k=2a k﹣1,或a k=2a k﹣1﹣36,所以2a k﹣1是3的倍数;于是a k﹣1是3的倍数;类似可得,a k﹣2,…,a1都是3的倍数;从而对任意n≥1,a n是3的倍数;综上,若集合M存在一个元素是3的倍数,则集合M的所有元素都是3的倍数(Ⅲ)对a1≤36,a n=(n=1,2,…),可归纳证明对任意n≥k,a n<36(n=2,3,…)因为a1是正整数,a2=,所以a2是2的倍数.从而当n≥2时,a n是2的倍数.如果a1是3的倍数,由(Ⅱ)知,对所有正整数n,a n是3的倍数.因此当n≥3时,a n∈{12,24,36},这时M的元素个数不超过5.如果a1不是3的倍数,由(Ⅱ)知,对所有正整数n,a n不是3的倍数.因此当n≥3时,a n∈{4,8,16,20,28,32},这时M的元素个数不超过8.当a1=1时,M={1,2,4,8,16,20,28,32},有8个元素.综上可知,集合M的元素个数的最大值为8.。
2015-2019高考理科数学北京卷真题详解
第二部分(非选择题 共 110 分)
二、填空题:共 6 小题,每小题 5 分,共 30 分。
(9)【2015 年北京,理 9】在 (2 + x)5 的展开式中, x3 的系数为
.(用数字作答)
【答案】40
【解析】 Tr+1
=
C5r
25-r
xr ,当
r
=
3
时,系数为
C53 22
=
4´
5´ 2
4
=
40 .
(10)【2015
年北京,理
10】已知双曲线
x2 a2
-
y2
= 1(a
>
0) 的一条渐近线为
3x + y = 0 ,则 a =
.
【答案】 3
3
【解析】令
x2 a2
-
y2
=
0
Þ
x a
+
y
=
0 ,所以
1 a
=
3Þa= 3.
3
( ) (11)【2015
年北京,理
11】在极坐标系中,点
æ çè
2
‚
π 3
ö ÷ø
(C) -1 + 2i
(D) -1 - 2i
【答案】A
【解析】 i(2 - i) = 2i - i2 =1+ 2i ,故选 A.
ìx - y £ 0,
(2)【2015
年北京,理
2】若
x
,
y
满足
ï í
x
+
y
£
1,
则
z
=
x
+
2
y
2015年北京市高考数学试卷(理科)答案与解析
2015年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(每小题 5分,共40分)1. ( 5 分)(2015?北京)复数 i (2- i )=( )A . 1+2iB . 1 - 2iC . - 1+2iD . - 1 - 2i考点:复数代数形式的乘除运算. 专题:数系的扩充和复数. 分析:利用复数的运算法则解答.解答:解:原式=2i - i 2=2i -( - 1) =1+2i ;故选:A .点评:本题考查了复数的运算;关键是熟记运算法则•注意i 2= - 1.垃-2.( 5分)(2015?北京)若x , y 满足-x+y<^L ,贝U z=x+2y 的最大值为()A . 0B . 1C . JD . 2考点:简单线性规划. 专题:不等式的解法及应用.分析:作出题中不等式组表示的平面区域,再将目标函数z=x+2y 对应的直线进行平移,即可求出z 取得最大值. 解答:*,*),目标函数z=x+2y ,将直线z=x+2y 进行平移,当I 经过点A 时,目标函数z 达到最大值• • • z 最大值=故选:C .解:作出不等式组K -” x+y<l 表示的平面区域,Co得到如图的三角形及其内部阴影部分,由X- y=0解得A点评:本题给出二元一次不等式组,求目标函数z=x+2y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.3. ( 5分)(2015?北京)执行如图所示的程序框图,输出的结果为( )/輸出0』/| (S)A . ( - 2, 2) B. ( - 4, 0) C. ( - 4, - 4) D. (0,- 8)考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的x, y, k的值,当k=3时满足条件k為, 退出循环,输出(-4,0).解答:解:模拟执行程序框图,可得x=1 , y=1 , k=0s=0, i=2x=0 , y=2 , k=1不满足条件k為,s=- 2, i=2 , x= - 2, y=2 , k=2不满足条件k為,s= - 4, i=0 , x= - 4, y=0, k=3满足条件k為,退出循环,输出(-4, 0),故选:B.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的x, y, k的值是解题的关键,属于基础题.4. (5分)(2015?北京)设a, B是两个不同的平面,m是直线且m? a, m H B是“a B” 的()A .充分而不必要条件B .必要而不充分条件C .充分不要条件D .既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:m// B并得不到all B,根据面面平行的判定定理,只有a内的两相交直线都平行于B,而a// B,并且m? a,显然能得到m// B,这样即可找出正确选项.解答:解:m? a, m// B得不到a// B,因为a , B可能相交,只要m和a, B的交线平行即可得到m // B;a// B, m? a, ••• m 和B没有公共点,m // B,即all B能得到m// B;••• m//B是“a B的必要不充分条件.故选B.点评:考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念.5. (5分)(2015?北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A . 2+J 二B . 4+ .二C . 2+2 .口D . 5考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:根据三视图可判断直观图为:A丄面ABC , AC=AB , E为BC中点,EA=2 , EA=EB=1 , OA=1,: BC 丄面AEO , A C W5, OE=V^判断几何体的各个面的特点,计算边长,求解面积.解答:解:根据三视图可判断直观图为:OA 丄面ABC , AC=AB , E 为BC 中点,EA=2, EC=EB=1 , OA=1 ,•••可得 AE 丄 BC , BC 丄 OA , 运用直线平面的垂直得出:BC 丄面AEO , AC= 口,OE=-xVs •2 2考点:等差数列的性质.专题:计算题;等差数列与等比数列. 分析:对选项分别进行判断,即可得出结论.解答:解:若a i +a 2>0,则2a i +d > 0, a 2+a 3=2a i +3d >2d , d >0时,结论成立,即A 不正确; 若 a i +a 2< 0,贝U2a i +d <0, a 2+a 3=2a i +3d < 2d , d < 0 时,结论成立,即 B 不正确; {a n }是等差数列,0<a i < a 2, 2a 2=a i +a 3>2 - . ., • a 2> . .「即卩 C 正确; 若 a i < 0,则(a 2- a i ) (a 2 - a 3) = - d 2< 0, 即卩 D 不正确.故选:C .点评:本题考查等差数列的通项,考查学生的计算能力,比较基础.7. ( 5分)(2015?北京)如图,函数f (x )的图象为折线 ACB ,则不等式f (x ) ^g 2 (x+1 ) 的解集是()•- S A ABC =「2X?=2 , S A OAC =S A OAB 2S A BCO =-2x =;故该三棱锥的表面积是2丨:,",点评:本题考查了空间几何体的三视图的运用, 图,得出几何体的性质.空间想象能力,计算能力,关键是恢复直观6. ( 5分)(2015?北京)设{a n }是等差数列, A .若 a i +a 2>0,贝U a 2+a 3>0若若 0v a i < a 2,贝U a 2F 列结论中正确的是( )B .若 a i +a 3< 0,则若 a i +a 2< 0,D .若 a i < 0 ,则(a 2 - a i ) (a 2 - a 3)> 0/'-1or-_2—rA . {x|—1v xO} B. {x| —1 纟<1} C. {x|—1 v x W} D. {x| - 1v x€}考点:指、对数不等式的解法.专题:不等式的解法及应用.分析:在已知坐标系内作出y=log 2(x+1)的图象,利用数形结合得到不等式的解集. 解答:解:由已知f (x)的图象,在此坐标系内作出y=log2 (x+1)的图象,如图满足不等式f (x) ^og2 (x+1 )的x范围是-1 v x<;所以不等式f (x) ^og2 (x+1) 的解集是{x| - 1 v x<};故选C.点评:本题考查了数形结合求不等式的解集;用到了图象的平移.& ( 5分)(2015?北京)汽车的燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油考点:函数的图象与图象变化.专题:创新题型;函数的性质及应用.分析:根据汽车的燃油效率”是指汽车每消耗1升汽油行驶的里程,以及图象,分别判断各个选项即可.解答:解:对于选项A,消耗1升汽油,乙车行驶的距离比5小的很多,故A错误;对于选项B,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最小,故B错误,对于选项C,甲车以80千米/小时的速度行驶1小时,里程为80千米,燃油效率为10,故消耗8升汽油,故C错误,对于选项D,因为在速度低于80千米/小时,丙的燃油效率高于乙的燃油效率,故D 正确.点评:本题考查了函数图象的识别,关键掌握题意,属于基础题.二、填空题(每小题5分,共30分)9. (5分)(2015?北京)在(2+x)5的展开式中,x3的系数为40 (用数字作答)考点:二项式定理的应用.专题:二项式定理.分析:写出二项式定理展开式的通项公式,利用x的指数为3,求出r,然后求解所求数值.解答:解:(2+x)5的展开式的通项公式为:Tr+仁C^25 r x r,J所求x3的系数为:eg2,=40.故答案为:40.点评:本题考查二项式定理的应用,二项式系数的求法,考查计算能力.10. (5分)(2015?北京)已知双曲线王㊁-y2=1 (a> 0)的一条渐近线为V3x+y=0,则a=_Vs3 —考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:运用双曲线的渐近线方程为y= ±,结合条件可得丄=.一;,即可得到a的值.a a解答:2解:双曲线二7 —y2=1的渐近线方程为y= ±,J 3由题意可得一=•、: '■;,解得a= ■3故答案为::;.3点评:本题考查双曲线的方程和性质,主要考查双曲线的渐近线方程的求法,属于基础题.■"l-!-11. (5分)(2015?北京)在极坐标系中,点(2,二~)到直线P(cos sin 0)=6的距离J为1 .考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:化为直角坐标,再利用点到直线的距离公式距离公式即可得出.解答:解:点P (2,)化为P -.31直线p (cos0+J5sin 0)=6 化为_20.11+3 - E|•••点P到直线的距离d= =1.^1+ (V3)2故答案为:1.点评:本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.12. (5 分)(2015?北京)在△ ABC 中,a=4, b=5, c=6,则斗罟■ = 1 .sinC考点:余弦定理;二倍角的正弦;正弦定理.专题:计算题;解三角形.分析:利用余弦定理求出cosC, cosA,即可得出结论.解答:解:•/△ ABC 中,a=4, b=5, c=6 ,• sinC亍,sinA=(,si nC故答案为:1.点评:本题考查余弦定理,考查学生的计算能力,比较基础.13. (5分)(2015 ?北京)在△ ABC中,点M, N满足八「=2旷,m,若Vx^+y厂, 贝卩x= , y= -—.—2- ------------考点:平面向量的基本定理及其意义. 专题:平面向量及应用.分析:首先利用向量的三角形法则,将所求用向量[了表示,然后利用平面向量基本定理得到x , y 值.解答:解:由已知得到r'.-".:':'戶二苜二厂:〜厂-二:厂- << 丄对一二广;由平面向量基本定理,得到x=—, y=「3 I 1故答案为:丄一 _.2 6点评:本题考查了平面向量基本定理的运用,一个向量用一组基底表示,存在唯一的实数对(x , y )使,向量等式成立.① 若a=1,则f (x )的最小值为 - 1;② 若f (x )恰有2个零点,则实数 a 的取值范围是二Wav 1或a 丝£考点:函数的零点;分段函数的应用. 专题:创新题型;函数的性质及应用.分析:① 分别求出分段的函数的最小值,即可得到函数的最小值;② 分别设h (x ) =2x - a , g (x ) =4 (x - a ) (x - 2a ),分两种情况讨论,即可求出 a 的范围.3,f (x ) min =f (=) = - 1 ,②设 h (x ) =2 - a , g (x ) =4 (x - a ) (x - 2a ) 若在x v 1时,h (x )=与x 轴有一个交点, 所以 a >0,并且当 x=1 时,h (1) =2 - a > 0,所以 0 v a v 2,而函数g (x ) =4 (x - a ) (x - 2a )有一个交点,所以 2a 》,且a v 1, 所以丄1,2若函数h (x ) =2x - a 在x v 1时,与x 轴没有交点,14. ( 5分)(2015?北京)设函数解答:解:①当a=1时,f (x )=y<l4 (x _ 1) (K _ 23,葢>1当 x v 1 时,f (x )当 x >1 时,f (x )=2x - 1 为增函数,f (x )>- 1,=4 (x - 1) (x - 2) =4 (x 2- 3x+2) =4 (x -—)当1v xv —时,函数单调递减,当 x,函数单调递增,故当贝U 函数g (x ) =4 (x - a ) (x - 2a )有两个交点,当aO 时,h (x )与x 轴无交点,g (x )无交点,所以不满足题意(舍去),当h (1) =2 - a W 时,即卩a ^2时,g (x )的两个交点为x i =a , x 2=2a ,都是满足题意的, 综上所述a 的取值范围是丄毛V 1,或a^2.2点评:本题考查了分段函数的问题,以及函数的零点问题,培养了学生的转化能力和运算能 力以及分类能力,属于中档题.三、解答题(共6小题,共80分)15. (13 分)(2015?北京)已知函数 f (x ) M^si£co 愛-逅sin 2— I ^3 (I )求f (x )的最小正周期;(H )求f (x )在区间[-n, 0]上的最小值.值.解: ( I ) f (x )=『!si2cof -'sin2 2则有f ( x )在区间[-n, 0]上的最小值为-1 -工2.2本题考查二倍角公式和两角和的正弦公式,同时考查正弦函数的周期和值域,考查运 算能力,属于中档题.16. (13分)(2015?北京)A , B 两组各有7位病人,他们服用某种药物后的康复时间(单 位:天)记录如下: A 组:10, 11, 12, 13, 14, 15, 16 B 组;12, 13, 15, 16, 17, 14, a假设所有病人的康复时间相互独立,从 A , B 两组随机各选1人,A 组选出的人记为甲,B组选出的人记为乙.考点:两角和与差的正弦函数;三角函数的周期性及其求法; 专题:计算题;三角函数的求值;三角函数的图像与性质. 分析:三角函数的最值. (I )运用二倍角公式和两角和的正弦公式,化简 即可得到所求;f ( x ),再由正弦喊话说的周期,(n )由x 的范围,可得x+的范围,再由正弦函数的图象和性质,即可求得最小解答:=_ sinx -2(1 - cosx ) =sin xcos =sin 71 +cosxs in-4斗-垃-)八(x )的最小正周期为)由-n 奚切,可得(x+2 n;点评: 1,(I )求甲的康复时间不少于14天的概率;(H )如果a=25,求甲的康复时间比乙的康复时间长的概率;(川)当a为何值时,A , B两组病人康复时间的方差相等?(结论不要求证明)考点:极差、方差与标准差;古典概型及其概率计算公式.专题:概率与统计.分析:设事件A i为甲是A组的第i个人”事件B i为乙是B组的第i个人”,由题意可知P(A i) =P ( B i)=丄,i=1 , 2, ?? , 7(I )事件等价于甲是A组的第5或第6或第7个人”,由概率公式可得;(I )设事件甲的康复时间比乙的康复时间长”>A4B1U A5B1U A6B1U A7B1U A5B2U A6B2U A7B2U A7B3U A6B6U A7B6,易得P(C) =10P (A4B1),易得答案;(川)由方差的公式可得.解答: 解:设事件A i为甲是A组的第i个人”,事件B i为乙是B组的第i个人”,由题意可知P (A i) =P ( B i)=二,i=1 , 2 , ?? , 7(I)事件甲的康复时间不少于14天”等价于甲是A组的第5或第6或第7个人”•••甲的康复时间不少于14天的概率P (A5U A6U A7) =P (A5) +P (A6) +P (A7)37 ;(n)设事件C为甲的康复时间比乙的康复时间长”,贝y C=A4B1 U A5B1U A6B1U A7B1 U A5B2U A6B2U A7B2U A7B3U A6B6U A7B6,• P (C) =P (A4B1) +P (A5B1) +P (A6B1) P+ (A7B1) +P (A5B2) +p (A6B2) +P (A7B2) +P (A7B3) +P (A6B6) +P (A7B6)=10P (A4B1) =10P (A4) P ( B1) -4 y(川)当a为11或18时,A , B两组病人康复时间的方差相等.点评:本题考查古典概型及其概率公式,涉及概率的加法公式和方差,属基础题.17. (14分)(2015?北京)如图,在四棱锥A - EFCB中,△ AEF为等边三角形,平面AEF丄平面EFCB , EF// BC , BC=4 , EF=2a, / EBC= / FCB=60 ° O 为EF 的中点.(I )求证:AO丄BE.(II )求二面角F- AE - B的余弦值;(川)若BE丄平面AOC,求a的值.B考点:二面角的平面角及求法;直线与平面垂直的判定;直线与平面垂直的性质. 专题:空间位置关系与距离;空间角.分析:(I)根据线面垂直的性质定理即可证明AO丄BE .(II )建立空间坐标系,利用向量法即可求二面角F- AE - B的余弦值;(川)利用线面垂直的性质,结合向量法即可求a的值解答:证明:(I) •••△AEF为等边三角形,0为EF的中点,••• A0 丄EF ,•/平面AEF丄平面EFCB , A0?平面AEF ,•A0丄平面EFCB•A0 丄BE .(I )取BC的中点G,连接0G,••• EFCB是等腰梯形,•0G 丄EF ,由(I )知A0丄平面EFCB ,•/ 0G?平面EFCB , • 0A 丄0G,建立如图的空间坐标系,贝U 0E=a, BG=2 , GH=a , BH=2 - a, EH=BHtan60 丄「一 - ■, 则E (a, 0, 0), A (0, 0,听a), B (2,亦(2一色),0),EA= (- a, 0, a), BE = (a- 2,- ^3(2 _ 巴),0),设平面AEB的法向量为i= (x, y, z),则n*EA=0,即 f "站血昭0:n*BE=0((a- 2) K+-/3 fa - 2)令z=1,贝U x=订E, y= - 1, 即n=(.二-1, 1),平面AEF的法向量为■;,>I Dn5cFEBzFGE18 5贝 Ucosvlln即-『=0,----- * ----- *o-''=-2 (a — 2 — 3 (a — 2) =0,解得a=-.贝U BE 丄OC•••=F = (a — 2,—:—厂;,0), 56= (— 2,衍 C2-a),0),点评:本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法.(I )求曲线y=f (x )在点(0, f (0))处的切线方程;3(n )求证,当x € (0, 1)时,f (x )〔玄+专);即二面角F - AE — B 的余弦值为 (川)若BE 丄平面AOC , (13分)(2015?北京)已知函数 f (x ) =ln —-1 一工3(川)设实数k 使得f (x ) >比(时兰一)对x € (0, 1)恒成立,求k 的最大值.考点:利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用. 专题:导数的综合应用. 分析:(1)利用函数的导数求在曲线上某点处的切线方程.(2) 构造新函数利用函数的单调性证明命题成立. (3)对k 进行讨论,利用新函数的单调性求参数k 的取值范围. 解答:解答:(1)因为 f (x ) =ln (1+x )- In (1- x )所以f y X)叮J ‘严(0)弍1+x 1 _ x又因为f (0) =0,所以曲线y=f (x )在点(0, f (0))处的切线方程为 y=2x .I 3(2)证明:令 g (x ) =f (x )- 2 (x+:'),贝U| 3 |22 Jg' (x ) =f (x )- 2 (1+x )=…一,1- d当 k >2 时,令 h (x ) =f (x )-上「-h (x )V h (0) =0,即 f (x )V,:芒'T _ !所以当k >2时,f (x )>忙.,.[.并非对x € (0, 1)恒成立.3 综上所知,k 的最大值为2.点评:本题主要考查切线方程的求法及新函数的单调性的求解证明•在高考中属常考题型, 难度适中.和点A (m , n ) ( m #))都在椭圆C 上,直线PA 交x 轴于点M .因为 所以 g' ( x )> 0 ( 0V x V 1),所以g (x )在区间(0, 1) 上单调递增. g (x )> g (0) =0, x € (0, 1),3即当 x € (0, 1)时,f (x )> 2 (x+[).(3)由(2)知,当k 电时,f (x)>J :, ' :对x € (0, 1)恒成立.所以当 减.V 0,因此h (x )在区间(0,'■) 上单调递19. (14分)(2015?北京)已知椭圆 ,点 P (0, 1)2h' (x ) =f (x )- k (1+x )h' (x ) C:=1 (a > b > 0)的离心率为(I )求椭圆C 的方程,并求点 M 的坐标(用m , n 表示);(H )设0为原点,点B 与点A 关于x 轴对称,直线 PB 交x 轴于点N ,问:y 轴上是否 存在点Q ,使得/OQM= / ONQ ?若存在,求点 Q 的坐标,若不存在,说明理由.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:创新题型;圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题. 分析:(I )根据椭圆的几何性质得出a 2la求解即可.ID0) , N (. 1 -n |H-n,0),运用图形得出 tan / OQM=tan / ONQ ,2,求解即可得出即 y Q =X M ?X N ,+n 2,根据m , m 的关系整体求解.解答:解:(I )由题意得出b=l c V2 a - 22. 1 I呂-b +c解得:a= :, b=1, c=1• +y2=1,••• P (0 , 1)和点 A• PA 的方程为:y -(m , n ), — 1 v n v 1n _ 1 um x , y=0 时,x M =m1 _ n••• M ——0)1 _ nT 点B 与点A 关于x 轴对称,点 A ( m , n ) (m#))B (m , — n ) (m 崔))(II ) •••点 •••直线PB 交x 轴于点N ,••• N (0),(II )求解得出M (1一—-■^**-*-L%•^―丿23 A/ iX-1\-2•••存在点 Q ,使得/ OQM= / ONQ , Q (0, y Q ),/• tan / OQM=tan / ONQ ,.\—=^'J ,g 卩 y Q 2=x M ?X N ,丄 + n 2=1% % 2I 2小2y Q = --------- =2,1- n 2二y Q =丨.爲故 y 轴上存在点 Q ,使得/ OQM= / ONQ , Q (0, . ■:)或 Q (0, -:?)点评:本题考查了直线圆锥曲线的方程,位置关系,数形结合的思想的运用,运用代数的方法求解几何问题,难度较大,属于难题.20. (13 分)(2015?北京)已知数列{a n }满足:a i €N *, ai<36,且 a n+i = (n=1 , 2,…),记集合 M={a 叫n€N }.(I )若a i =6,写出集合 M 的所有元素;(n )如集合M 存在一个元素是3的倍数,证明:M 的所有元素都是 3的倍数; (川)求集合M 的元素个数的最大值.考点:数列递推式.专题:创新题型;点列、递归数列与数学归纳法. 分析:(I ) a i =6,利用 a n+i =24 ;(n )因为集合M 存在一个元素是3的倍数,所以不妨设 a k 是3的倍数,由36, ^>18(川)分a i 是3的倍数与a i 不是3的倍数讨论,即可求得集合 M 的元素个数的最大 值.『%^>18「如 ^<18可求得集合M 的所有元素为6, 12,a n+1=*(n=1, 2,…),可归纳证明对任意 n 冰,a n 是3的倍数;故集合M 的所有元素为6, 12, 24;(n )因为集合M 存在一个元素是3的倍数,所以不妨设a k 是3的倍数,由如果k=1 , M 的所有元素都是 3的倍数;如果k > 1,因为a k =2a k -1,或a k =2a k -1- 36,所以2a k -1是3的倍数;于是 a k -1是3 的倍数; 类似可得,a k -2,…,a 1都是3的倍数; 从而对任意 n N, a n 是3的倍数;综上,若集合M 存在一个元素是3的倍数,则集合M 的所有元素都是3的倍数IfSaa-l- a n <18(川)对a 1W 36, ai={(n=1,2,…)可归纳证明对任意 n 沫,a n v 36 (n=2 , 3, ••)r2ai ! a |^18因为a 1是正整数,a 2= .. ,所以a 2是2的倍数.2aj - 36, &!>18从而当n 绍时,a n 是2的倍数.如果a 1是3的倍数,由(n )知,对所有正整数 n , a n 是3的倍数. 因此当n 绍时,a n €{12 , 24, 36},这时M 的元素个数不超过 5. 如果a 1不是3的倍数,由(n )知,对所有正整数 n , an 不是3的倍数.因此当n 绍时,an€{4 , 8, 16, 20, 28, 32},这时M 的元素个数不超过 & 当 a 1=1 时,M={1 , 2,4, 8, 16, 20, 28, 32},有 8 个元素.综上可知,集合M 的元素个数的最大值为 &点评:本题考查数列递推关系的应用,突出考查分类讨论思想与等价转化思想及推理、运算 能力,属于难题.解答:2%解:(I )右 a i =6,由于 a n+1 =2a… - 36, IL n 务6^>18(n =1, 2,…),M={a n |n€N *}.a n+1 =务a^>18(n=1, 2,…),可归纳证明对任意n 冰,a n 是3的倍数.。
2015年北京高考理科数学真题及答案
2015年北京高考理科数学真题及答案本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.复数A.B.C.D.【答案】A【解析】i(2-i)=1+2i【难度】容易【难度】容易【点评】本题考查复数的计算。
在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。
在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。
2.若,满足则的最大值为A.0B.1C.D.2【答案】D【解析】可行域如图所示目标直线的斜率为,易知在(0,1)处截距取得最大值,此时z=4.【难度】容易【点评】本题考查分段函数值域求解。
在高一数学强化提高班上学期课程讲座1,第二章《函数》有详细讲解,在高考精品班数学(理)强化提高班中有对函数相关知识的总结讲解。
3.执行如图所示的程序框图,输出的结果为A.B.C.D.【答案】B【解析】程序运行过程如下表所示x10-2-4y1220k0123s0-2-4t22故输出结果为(-4,0)【难度】容易【点评】本题算法初步。
在高二数学(理)强化提高班上学期,第一章《算法初步》有详细讲解,其中第02讲有完全相似的题目。
在高考精品班数学(理)强化提高班中有对程序框图题目相关的总结讲解。
4.设,是两个不同的平面,是直线且.“”是“”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】两平面平行,则一平面内的任意一条直线与另一平面平行,故“”是“”的必要条件.若“”,“”不一定成立,反例如下图所示.【难度】容易【点评】本题考查立体几何中点到直线的距离问题。
在高一数学强化提高班下学期课程讲座1,第一章《立体几何》有详细讲解,在高考精品班数学(理)强化提高班中有对立体几何相关知识的总结讲解。
北京卷(数学理)解析版
2015年普通高等学校招生全国统一考试·北京卷(理科)检索号:231.(2015·北京高考理科·T1)复数i(2-i)=()A.1+2iB.1-2iC.-1+2iD.-1-2i【解析】选A.i(2-i)=2i-i2=1+2i.检索号:312.(2015·北京高考理科·T2)若x,y满足则z=x+2y的最大值为()A.0B.1C.D.2【解析】选D.作出可行域及l0:x+2y=0如图所示,把(1,0)代入l0,可知l0的右上方为正,所以向上平移l0,过点(0,1)时z=x+2y取最大值2.检索号:493.(2015·北京高考理科·T3)执行如图所示的程序框图,输出的结果为()A.(-2,2)B.(-4,0)C.(-4,-4)D.(0,-8)【解析】选B.x=1,y=1,k=0;s=0,t=2,x=0,y=2,k=1;s=-2,t=2,x=-2,y=2,k=2;s=-4,t=0,x=-4,y=0,k=3.输出(-4,0).检索号:24.(2015·北京高考理科·T4)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β”是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解题指南】先判断能否由“m∥β”推出“α∥β”,再判断能否由“α∥β”推出“m∥β”,最后利用充分必要条件的定义可得结论.【解析】选B.当m∥β时,可能α∥β,也可能α与β相交.当α∥β时,由m⊂α可知,m∥β.因此,“m∥β”是“α∥β”的必要而不充分条件.检索号:365.(2015·北京高考理科·T5)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2D.5【解题指南】还原几何体,分别计算各面的面积,然后求和.【解析】选C.还原几何体如图所示,S △BCD=BC·DE=×2×2=2,S△ACD=S△ABD=××1=,S △ABC=BC·AE=×2×=,所以表面积为2+2.检索号:256.(2015·北京高考理科·T6)设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a2>D.若a1<0,则(a2-a1)(a2-a3)>0【解析】选C.对a1=2,a2=-1,a3=-4选项A,B不成立.选项C,由0<a1<a2可知{a n}是递增的正项等差数列,由均值不等式可知,a 2=>,取不到等号.选项D,(a2-a1)(a2-a3)=-d2≤0,不正确.检索号:77.(2015·北京高考理科·T7)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|-1<x≤0}B.{x|-1≤x≤1}C.{x|-1<x≤1}D.{x|-1<x≤2}【解题指南】在同一坐标系内作出函数y=log2(x+1)的图象,利用图象求解.【解析】选C.函数y=log2(x+1)的图象如图所示,所以不等式f(x)≥log2(x+1)的解集为{x|-1<x≤1}.检索号:88.(2015·北京高考理科·T8)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同的路程,三辆汽车中,甲车消耗汽油量最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该城市用丙车比用乙车更省油【解题指南】正确理解横、纵轴及图象的意义是解题的关键.【解析】选D.选项A,问的是纵坐标最大值.选项B,消耗1升油甲走最远,则反过来路程相同甲最省油.选项C,此时甲走过了80千米,消耗8升汽油.选项D,80千米/小时以下丙“燃油效率”更高,更省油.检索号:539.(2015·北京高考理科·T9)在(2+x)5的展开式中,x3的系数为(用数字作答).【解题指南】利用二项展开式的通项可以求出x3的系数.【解析】含有x3的项为22x3=40x3.所以x3的系数为40.答案:40检索号:4510.(2015·北京高考理科·T10)已知双曲线-y2=1(a>0)的一条渐近线为x+y=0,则a=.【解题指南】先化成标准方程.当焦点在x轴时渐近线方程为y=±x;当焦点在y轴时,渐近线方程为y=±x.【解析】双曲线的焦点在x轴上,所以渐近线方程为y=±x.所以=,即a=.答案:检索号:5911.(2015·北京高考理科·T11)在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为.【解题指南】把点和直线转化到直角坐标系中,再利用点到直线距离公式求解.【解析】点(2,)可化为(2cos,2sin),即(1,).直线ρ(cosθ+sinθ)=6可化为x+y-6=0.由点到直线距离公式可得=1.答案:1检索号:1912.(2015·北京高考理科·T12)在△ABC中,a=4,b=5,c=6,则=.【解题指南】利用二倍角公式展开sin2A,再利用正、余弦定理角化边.【解析】=====1.答案:1检索号:2113.(2015·北京高考理科·T13)在△ABC中,点M,N满足=2,=,若=x+y,则x=,y=.【解析】由=2,=得=-,=-=-(-),所以=-=-(-)+=-.所以x=,y=-.答案:-检索号:914.(2015·北京高考理科·T14)设函数f(x)=①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.【解题指南】对于①问,可以作出图象求最小值.对于②问讨论a找零点个数.【解析】①f(x)=由图象可知当x=时,取最小值-1.②若a>0,当x<1,f(x)=2x-a恰有一个零点log2a时,有解得≤a<1;当x<1,f(x)=2x-a无零点时,有解得a≥2.若a≤0,当x<1时,f(x)无零点;当x≥1时,由题意知应恰有两个零点,所以无解.综上,≤a<1或a≥2.答案:①-1②≤a<1或a≥2检索号:1615.(2015·北京高考理科·T15)(13分)已知函数f(x)=sin cos-sin2.(1)求f(x)的最小正周期.(2)求f(x)在区间[-π,0]上的最小值.【解析】(1)f(x)=sin x-×=(sin x+cos x)-=sin(x+)-,最小正周期为2π.(2)由x∈[-π,0]得x+∈[-,].当x+=-,即x=-时,f(x)取最小值-1-.检索号:5016.(2015·北京高考理科·T16)(13分)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组:12,13,15,16,17,14,a假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(1)求甲的康复时间不少于14天的概率.(2)如果a=25,求甲的康复时间比乙的康复时间长的概率.(3)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)【解题指南】(1)古典概型的概率计算.(2)由乙的康复时间分别求出对应甲的康复时间,再求概率.(3)利用数据平移调整顺序不影响方差可得结论.【解析】(1)P(t≥14)==.(2)当a=25时,假设乙的康复时间为12天,则符合题意的甲有13天,14天,15天,16天,共4人;若乙的康复时间为13天,则符合题意的甲有14天,15天,16天,共3人;若乙的康复时间为14天,则符合题意的甲有15天,16天,共2人;若乙的康复时间为15天,则符合题意的甲有16天,共1人.当乙的康复时间为其他值时,由于甲的最大康复时间为16天,均不符合题意.所以符合题意的甲、乙选择方式共4+3+2+1=10种.因为甲、乙组合情况共×=49种,又因为任何组合情况都是等可能的,故P(t甲>t乙)=.(3)a=11或a=18.检索号:3917.(2015·北京高考理科·T17)(14分)如图,在四棱锥A-EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(1)求证:AO⊥BE.(2)求二面角F-AE-B的余弦值.(3)若BE⊥平面AOC,求a的值.【解题指南】(1)要证AO⊥EB,只需证明AO⊥平面EBCF.(2)建立空间直角坐标系,利用向量法求二面角余弦值.(3)将BE⊥平面AOC转化为BE⊥OC,再利用数量积为0,解出a.【解析】(1)因为△AEF是等边三角形,O为EF的中点,所以AO⊥EF.又因为平面AEF⊥平面EFCB,交线EF,AO⊂平面AEF,所以AO⊥平面EBCF.因为BE⊂平面EBCF,所以AO⊥BE.(2)取BC的中点D,连接OD.如图分别以OE,OD,OA为x,y,z轴建立空间直角坐标系,则A(0,0,a),E(a,0,0),B(2,2-a,0),=(a,0,-a),=(2,2-a,-a),设平面ABE的法向量n1=(x,y,z),则令z=1,得所以n 1=(,-1,1).平面AEF的法向量n2=(0,1,0).所以cos<n1,n2>===-.因为二面角F-AE-B为钝二面角,所以余弦值为-.(3)由(1)知AO⊥平面EFCB.因为BE⊂平面EFCB,所以AO⊥EB.要使BE⊥平面AOC,只需BE⊥OC.因为=(2-a,2-a,0),=(-2,2-a,0),所以·=-4+2a+(2-a)2=0,即3a2-10a+8=0,解得a=2(舍)或a=.检索号:1218.(2015·北京高考理科·T18)(13分)已知函数f(x)=ln.(1)求曲线y=f(x)在点(0,f(0))处的切线方程.(2)求证:当x∈(0,1)时,f(x)>2(x+).(3)设实数k使得f(x)>k(x+)对x∈(0,1)恒成立,求k的最大值.【解题指南】(1)求出切点(0,f(0)),导数f'(0),代入得到切线方程.(2)构造函数F(x)=ln(1+x)-ln(1-x)-2(x+),证明最小值大于0.(3)构造函数t(x)=ln-k(x+),x∈(0,1),求导t'(x)=-k(1+x2)=,x∈(0,1),讨论k的取值情况.【解析】(1)f(x)=ln,x∈(-1,1),f'(x)=,f'(0)=2,f(0)=0,所以切线方程为y=2x.(2)原命题等价于任意x∈(0,1),f(x)-2(x+)>0.设函数F(x)=ln(1+x)-ln(1-x)-2(x+),F'(x)=.当x∈(0,1)时,F'(x)>0,函数F(x)在x∈(0,1)上是单调递增函数.F(x)>F(0)=0,因此任意x∈(0,1),f(x)>2(x+).(3)ln>k(x+),x∈(0,1)⇔t(x)=ln-k(x+)>0,x∈(0,1).t'(x)=-k(1+x2)=,x∈(0,1).当k∈[0,2],t'(x)≥0,函数t(x)单调递增,t(x)>t(0)=0显然成立.当k>2时,令t'(x 0)=0得=∈(0,1),t'(x)的变化情况列表如下:x(0,x0)x0(x0,1)t'(x)-0+t(x)↘极小值↗t(x0)<t(0)=0,显然不成立.当k<0时,显然k不取最大值.综上可知,k的最大值为2.检索号:4719.(2015·北京高考理科·T19)(14分)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(1)求椭圆C的方程,并求点M的坐标(用m,n表示).(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标;若不存在,说明理由.【解题指南】(1)由点P可求得b2,再利用e==可求得a.写出直线PA方程,令y=0得M坐标. (2)把∠OQM=∠ONQ转化为tan∠OQM=tan∠ONQ.【解析】(1)椭圆+=1(a>b>0)过P(0,1),所以b2=1,离心率e====,所以a=,所以椭圆方程为+y2=1.因为P(0,1),A(m,n),所以直线PA的方程为y-1=x,直线PA与x轴交于M,令y=0,则x M=,所以M(,0).(2)因为P(0,1),B(m,-n),所以直线PB的方程为y-1=x,直线PB与x轴交于N,令y=0,则x N=,所以N(,0).设Q(0,y 0),tan∠OQM=||=||,tan∠ONQ=||=||,因为∠OQM=∠ONQ,所以tan∠OQM=tan∠ONQ,所以||=||.所以===2,所以y 0=±.因此,存在点Q(0,±),使∠OQM=∠ONQ.检索号:3520.(2015·北京高考理科·T20)(13分)已知数列{a n}满足:a1∈N*,a1≤36且a n+1=(n=1,2,…),记集合M={a n|n∈N*}.(1)若a1=6,写出集合M的所有元素.(2)若集合M存在一个元素是3的倍数.证明:M的所有元素都是3的倍数.(3)求集合M的元素个数的最大值.【解题指南】(1)直接代入定义求解.(2)(3)可用归纳推理证明的方法求解.【解析】(1)a1=6,a2=12,a3=24,a4=2×24-36=12,所以M={6,12,24}.(2)因为集合M存在一个元素是3的倍数,所以不妨设a k是3的倍数,由a n+1=可归纳证明对任意n≥k,a n是3的倍数.如果k=1,则M的所有元素都是3的倍数.如果k>1,因为a k=2a k-1或a k=2a k-1-36,所以2a k-1是3的倍数,于是a k-1是3的倍数,类似可得a k-2,…,a1都是3的倍数,从而对任意n≥1,a n是3的倍数,因此M的所有元素都是3的倍数.综上,若集合M存在一个元素是3的倍数,则M的所有元素都是3的倍数.(3)由a1≤36,a n=可归纳证明a n≤36(n=2,3,…).因为a1是正整数,a2=所以a2是2的倍数,从而当n≥3时,a n是4的倍数,如果a1是3的倍数,由(2)知对所有正整数n,a n是3的倍数,因此当n≥3时,a n∈{12,24,36},这时M的元素个数不超过5,如果a1不是3的倍数,由(2)知对所有正整数n,a n不是3的倍数,因此当n≥3时,a n∈{4,8,16,20,28,32},这时M的元素个数不超过8,当a1=1时,M={1,2,4,8,16,20,28,32}有8个元素.综上可知,集合M的元素个数的最大值为8.。
2015年普通高等学校招生全国统一考试理科数学(北京卷)
2015年普通高等学校招生全国统一考试北京理科数学本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.) 1.(2015北京,理1)复数i(2-i)=( ) A.1+2i B.1-2i C.-1+2i D.-1-2i 答案:A解析:i(2-i)=2i -i 2=2i -(-1)=1+2i .2.(2015北京,理2)若x ,y 满足{x −y ≤0,x +y ≤1,x ≥0,则z=x+2y 的最大值为( )A.0B.1C.32D.2答案:D解析:根据题意,由约束条件画出可行域如图阴影部分所示. 目标函数z=x+2y ,即y=-12x+z 2.由图可知当直线y=-12x+z 2过点B (0,1)时,z 取最大值,且z max =0+2×1=2.3.(2015北京,理3)执行如图所示的程序框图,输出的结果为( )A.(-2,2)B.(-4,0)C.(-4,-4)D.(0,-8) 答案:B解析:x=1,y=1,k=0,进入循环:s=1-1=0,t=1+1=2,x=0,y=2,k=0+1=1<3;s=0-2=-2,t=0+2=2,x=-2,y=2,k=1+1=2<3;s=-2-2=-4,t=-2+2=0,x=-4,y=0,k=2+1=3≥3,跳出循环,输出(x ,y ),即(-4,0). 4.(2015北京,理4)设α,β是两个不同的平面,m 是直线且m ⊂α.“m ∥β”是“α∥β”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 答案:B解析:充分性:若m ⊂α,m ∥β,则平面α和β可能平行也可能相交,所以充分性不成立;必要性:若α∥β,m ⊂α,则m ∥β,必要性成立.故“m ∥β”是“α∥β”的必要而不充分条件,选B .5.(2015北京,理5)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+√5B.4+√5C.2+2√5D.5答案:C解析:由三视图还原几何体如图.∴S 表面积=S △BCD +2S △ACD +S △ABC =12×2×2+2×12×√5×1+12×2×√5=2+√5+√5=2+2√5.6.(2015北京,理6)设{a n }是等差数列.下列结论中正确的是 ( )A.若a 1+a 2>0,则a 2+a 3>0B.若a 1+a 3<0,则a 1+a 2<0C.若0<a 1<a 2,则a 2>√a 1a 3D.若a 1<0,则(a 2-a 1)(a 2-a 3)>0 答案:C解析:设等差数列公差为d.对于A 选项,a 1+a 2=2a 1+d>0, 而a 2+a 3=2a 1+3d 不一定大于0; 对于B 选项,a 1+a 3=2a 1+2d<0, a 1+a 2=2a 1+d 不一定小于0;对于C 选项,0<a 1<a 2,则公差d>0.所以a 2=a 1+a32>√a 1a 3;对于D 选项,(a 2-a 1)(a 2-a 3)=-d 2≤0.故只有C 正确.7.(2015北京,理7)如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x+1)的解集是( )A.{x|-1<x ≤0}B.{x|-1≤x ≤1}C.{x|-1<x ≤1}D.{x|-1<x ≤2}答案:C解析:如图,作出函数f (x )与y=log 2(x+1)的图象.易知直线BC 的方程为y=-x+2,由{y =−x +2,y =log 2(x +1)得D 点坐标为(1,1).由图可知,当-1<x ≤1时,f (x )≥log 2(x+1),所以所求解集为{x|-1<x ≤1}.8.(2015北京,理8)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油 答案:D解析:对于选项A,从图中可以看出乙车的最高燃油效率大于5,故A 项错误;对于选项B,同样速度甲车消耗1升汽油行驶的路程比乙车、丙车的多,所以行驶相同路程,甲车油耗最少,故B 项错误;对于选项C,甲车以80千米/小时的速度行驶,1升汽油行驶10千米,所以行驶1小时,即行驶80千米,消耗8升汽油,故C 项错误;对于选项D,速度在80千米/小时以下时,相同条件下每消耗1升汽油,丙车行驶路程比乙车多,所以该市用丙车比用乙车更省油,故D 项正确.第二部分(非选择题 共110分)二、填空题(共6小题,每小题5分,共30分.)9.(2015北京,理9)在(2+x )5的展开式中,x 3的系数为 .(用数字作答) 答案:40解析:(2+x )5展开式的通项为T r+1=C 5r 25-r x r ,令r=3,得T 4=C 5322x 3=10×4x 3=40x 3,∴x 3的系数为40. 10.(2015北京,理10)已知双曲线x 2a2-y 2=1(a>0)的一条渐近线为√3x+y=0,则a= . 答案:√33解析:∵双曲线x 2a2-y 2=1的渐近线方程为y=±x a ,即y±xa=0.又a>0,∴1a =√3,∴a=√33.11.(2015北京,理11)在极坐标系中,点(2,π3)到直线ρ(cos θ+√3sin θ)=6的距离为 . 答案:1解析:∵x=ρcos θ,y=ρsin θ,∴点(2,π3)的直角坐标为(2cos π3,2sin π3),即(1,√3). ∵ρ(cos θ+√3sin θ)=6,∴ρcos θ+√3ρsin θ=6, ∴x+√3y-6=0.∴点(1,√3)到直线x+√3y-6=0的距离 d=|1+√3×√3−6|2=1. 12.(2015北京,理12)在△ABC 中,a=4,b=5,c=6,则sin2AsinC= .答案:1解析:在△ABC 中,由正弦定理知,sin2A sinC =2sinAcosA sinC =2cos A ·a c =2cos A×46=43cos A ,再根据余弦定理,得cos A=36+25−162×6×5=34,所以sin2A sinC =43×34=1.13.(2015北京,理13)在△ABC 中,点M ,N 满足AM ⃗⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗⃗⃗ =NC ⃗⃗⃗⃗⃗ .若MN ⃗⃗⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗⃗ ,则x= ,y= . 答案:12-16解析:如图,MN ⃗⃗⃗⃗⃗⃗⃗ =MC ⃗⃗⃗⃗⃗⃗ +CN ⃗⃗⃗⃗⃗ =13AC ⃗⃗⃗⃗⃗ −12BC ⃗⃗⃗⃗⃗=13AC ⃗⃗⃗⃗⃗ −12(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ) =12AB ⃗⃗⃗⃗⃗ −16AC ⃗⃗⃗⃗⃗ , ∴x=12,y=-16.14.(2015北京,理14)设函数f (x )={2x −a,x <1,4(x −a)(x −2a),x ≥1.①若a=1,则f (x )的最小值为 ;②若f (x )恰有2个零点,则实数a 的取值范围是 .答案:①-1 ②[12,1)∪[2,+∞)解析:①当a=1时,f (x )={2x −1,x <1,4(x −1)(x −2),x ≥1,当x<1时,2x -1∈(-1,1);当x ≥1时,4(x-1)(x-2)∈[-1,+∞). 故f (x )的最小值为-1.②若函数f (x )=2x -a 的图象在x<1时与x 轴有一个交点,则a>0,并且当x=1时,f (1)=2-a>0,所以0<a<2.同时函数f (x )=4(x-a )(x-2a )的图象在x ≥1时与x 轴有一个交点,所以{a <1,2a ≥1.故12≤a<1.若函数f (x )=2x-a 的图象在x<1时与x 轴没有交点,则函数f (x )=4(x-a )(x-2a )的图象在x ≥1时与x 轴有两个不同的交点,当a ≤0时,函数f (x )=2x -a 的图象与x 轴无交点,函数f (x )=4(x-a )(x-2a )的图象在x ≥1上与x 轴也无交点,不满足题意.当21-a ≤0,即a ≥2时,函数f (x )=4(x-a )(x-2a )的图象与x 轴的两个交点x 1=a ,x 2=2a 都满足题意.综上,a 的取值范围为[12,1)∪[2,+∞).三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程)15.(本小题13分)(2015北京,理15)已知函数f (x )=√2sin x 2cos x 2−√2sin 2x2. (1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值. 解:(1)因为f (x )=√22sin x-√22(1-cos x )=sin (x+π4)−√22, 所以f (x )的最小正周期为2π. (2)因为-π≤x ≤0,所以-3π4≤x+π4≤π4. 当x+π4=-π2,即x=-3π4时,f (x )取得最小值. 所以f (x )在区间[-π,0]上的最小值为f (−3π4)=-1-√22. 16.(本小题13分)(2015北京,理16)A,B 两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下: A 组:10,11,12,13,14,15,16 B 组:12,13,15,16,17,14,a假设所有病人的康复时间相互独立,从A,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙. (1)求甲的康复时间不少于14天的概率;(2)如果a=25,求甲的康复时间比乙的康复时间长的概率;(3)当a 为何值时,A,B 两组病人康复时间的方差相等?(结论不要求证明)解:设事件A i 为“甲是A 组的第i 个人”,事件B i 为“乙是B 组的第i 个人”,i=1,2, (7)由题意可知P (A i )=P (B i )=17,i=1,2, (7)(1)由题意知,事件“甲的康复时间不少于14天”等价于“甲是A 组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是P (A 5∪A 6∪A 7)=P (A 5)+P (A 6)+P (A 7)=37.(2)设事件C 为“甲的康复时间比乙的康复时间长”,由题意知,C=A 4B 1∪A 5B 1∪A 6B 1∪A 7B 1∪A 5B 2∪A 6B 2∪A 7B 2∪A 7B 3∪A 6B 6∪A 7B 6.因此P (C )=P (A 4B 1)+P (A 5B 1)+P (A 6B 1)+P (A 7B 1)+P (A 5B 2)+P (A 6B 2)+P (A 7B 2)+P (A 7B 3)+P (A 6B 6)+P (A 7B 6) =10P (A 4B 1) =10P (A 4)P (B 1)=1049.(3)a=11或a=18.17.(本小题14分)(2015北京,理17)如图,在四棱锥A-EFCB 中,△AEF 为等边三角形,平面AEF ⊥平面EFCB ,EF ∥BC ,BC=4,EF=2a ,∠EBC=∠FCB=60°,O 为EF 的中点. (1)求证:AO ⊥BE ;(2)求二面角F-AE-B 的余弦值; (3)若BE ⊥平面AOC ,求a 的值.解:(1)因为△AEF 是等边三角形,O 为EF 的中点,所以AO ⊥EF.又因为平面AEF ⊥平面EFCB ,AO ⊂平面AEF , 所以AO ⊥平面EFCB ,所以AO ⊥BE.(2)取BC 中点G ,连接OG. 由题设知EFCB 是等腰梯形, 所以OG ⊥EF.由(1)知AO ⊥平面EFCB , 又OG ⊂平面EFCB , 所以OA ⊥OG.如图建立空间直角坐标系O -xyz , 则E (a ,0,0),A (0,0,√3a ),B (2,√3(2-a ),0),EA ⃗⃗⃗⃗⃗ =(-a ,0,√3a ),BE ⃗⃗⃗⃗⃗ =(a-2,√3(a-2),0).设平面AEB 的法向量为n =(x ,y ,z ),则{n ·EA⃗⃗⃗⃗⃗ =0,n ·BE⃗⃗⃗⃗⃗ =0,即{−ax +√3az =0,(a −2)x +√3(a −2)y =0.令z=1,则x=√3,y=-1. 于是n =(√3,-1,1).平面AEF 的法向量为p =(0,1,0). 所以cos <n ,p >=n·p|n||p|=-√55. 由题知二面角F-AE-B 为钝角,所以它的余弦值为-√55.(3)因为BE ⊥平面AOC ,所以BE ⊥OC ,即BE ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =0.因为BE ⃗⃗⃗⃗⃗ =(a-2,√3(a-2),0),OC ⃗⃗⃗⃗⃗ =(-2,√3(2-a ),0), 所以BE ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =-2(a-2)-3(a-2)2. 由BE⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =0及0<a<2,解得a=43. 18.(本小题13分)(2015北京,理18)已知函数f (x )=ln 1+x1−x. (1)求曲线y=f (x )在点(0,f (0))处的切线方程; (2)求证:当x ∈(0,1)时,f (x )>2(x +x 33); (3)设实数k 使得f (x )>k (x +x 33)对x ∈(0,1)恒成立,求k 的最大值.解:(1)因为f (x )=ln(1+x )-ln(1-x ),所以f'(x )=11+x +11−x,f'(0)=2. 又因为f (0)=0,所以曲线y=f (x )在点(0,f (0))处的切线方程为y=2x.(2)令g (x )=f (x )-2(x +x 33), 则g'(x )=f'(x )-2(1+x 2)=2x 41−x2.因为g'(x )>0(0<x<1),所以g (x )在区间(0,1)上单调递增. 所以g (x )>g (0)=0,x ∈(0,1), 即当x ∈(0,1)时,f (x )>2(x +x 33). (3)由(2)知,当k ≤2时,f (x )>k (x +x 33)对x ∈(0,1)恒成立.当k>2时,令h (x )=f (x )-k (x +x 33), 则h'(x )=f'(x )-k (1+x 2)=kx 4−(k−2)1−x 2.所以当0<x<√k−2k4时,h'(x )<0,因此h (x )在区间(0,√k−2k4)上单调递减. 当0<x<√k−2k 4时,h (x )<h (0)=0, 即f (x )<k (x +x 33).所以当k>2时,f (x )>k (x +x 33)并非对x ∈(0,1)恒成立.综上可知,k 的最大值为2.19.(本小题14分)(2015北京,理19)已知椭圆C :x 2a 2+y 2b2=1(a>b>0)的离心率为√22,点P (0,1)和点A (m ,n )(m ≠0)都在椭圆C上,直线PA 交x 轴于点M.(1)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(2)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N.问:y 轴上是否存在点Q ,使得∠OQM=∠ONQ ?若存在,求点Q 的坐标;若不存在,说明理由.解:(1)由题意得{b =1,c a=√22,a 2=b 2+c 2.解得a 2=2.故椭圆C 的方程为x 22+y 2=1. 设M (x M ,0).因为m ≠0,所以-1<n<1. 直线PA 的方程为y-1=n−1m x , 所以x M =m 1−n, 即M (m1−n,0). (2)因为点B 与点A 关于x 轴对称,所以B (m ,-n ).设N (x N ,0),则x N =m1+n.“存在点Q (0,y Q )使得∠OQM=∠ONQ ”等价于“存在点Q (0,y Q )使得|OM||OQ|=|OQ||ON|”,即y Q 满足y Q 2=|x M ||x N |.因为x M =m 1−n ,x N =m 1+n ,m 22+n 2=1, 所以y Q 2=|x M ||x N |=m 21−n 2=2.所以y Q =√2或y Q =-√2.故在y 轴上存在点Q ,使得∠OQM=∠ONQ ,点Q 的坐标为(0,√2)或(0,-√2).20.(本小题13分)(2015北京,理20)已知数列{a n }满足:a 1∈N *,a 1≤36,且a n+1={2a n ,a n ≤18,2a n −36,a n >18(n=1,2,…).记集合M={a n |n ∈N *}.(1)若a 1=6,写出集合M 的所有元素;(2)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (3)求集合M 的元素个数的最大值. 解:(1)6,12,24.(2)因为集合M 存在一个元素是3的倍数,所以不妨设a k 是3的倍数.由a n+1={2a n ,a n ≤18,2a n −36,a n >18可归纳证明对任意n ≥k ,a n 是3的倍数.如果k=1,则M 的所有元素都是3的倍数.如果k>1,因为a k =2a k-1或a k =2a k-1-36,所以2a k-1是3的倍数,于是a k-1是3的倍数.类似可得,a k-2,…,a 1都是3的倍数,从而对任意n ≥1,a n 是3的倍数,因此M 的所有元素都是3的倍数.综上,若集合M 存在一个元素是3的倍数,则M 的所有元素都是3的倍数.(3)由a 1≤36,a n ={2a n−1,a n−1≤18,2a n−1−36,a n−1>18可归纳证明a n ≤36(n=2,3,…).因为a 1是正整数,a 2={2a 1,a 1≤18,2a 1−36,a 1>18,所以a 2是2的倍数.从而当n ≥3时,a n 是4的倍数.如果a 1是3的倍数,由(2)知对所有正整数n ,a n 是3的倍数. 因此当n ≥3时,a n ∈{12,24,36}. 这时M 的元素个数不超过5.如果a 1不是3的倍数,由(2)知对所有正整数n ,a n 不是3的倍数. 因此当n ≥3时,a n ∈{4,8,16,20,28,32}. 这时M 的元素个数不超过8.当a 1=1时,M={1,2,4,8,16,20,28,32}有8个元素. 综上可知,集合M 的元素个数的最大值为8.。
2015北京高考数学(理科)答案
2015年普通高等学校招生全国统一考试(北京卷)理科数学试题答案与解析1.解析()2i 2i 2i i 12i -=-=+.故选A.2.解析不等式组表示的可行域如图所示因此,可知目标函数在()0,1处取得最大值2.故选D.3.解析运行程序的过程如下:0s =,2t =,0x =,2y =,1k =;2s =-,2t =,2x =-,2y =,2k =;4s =-,0t =,4x =-,0y =,3k =;结束.所以输出的结果为()4,0-.故选B.4.解析根据面面平行的性质,若两个面平行,则一个平面内的任意一条直线与另一个平面平行;根据面面平行的判定,若一个平面的两条相交直线分别平行另一个平面.才能推出面面平行,所以“//m β”是“//αβ”的必要而不充分条件.故选B.5.解析三视图对应的立体图形如图所示,12222ABC S =⨯⨯=△,AC BC==,1122ACP BCP S S===△△,AP BP ==ABP △是以AB 为底的等腰三角形,高122ABP S=⨯=△综上所述,表面积22S =+=+故选C.PCBA6.解析依题意,{}n a 是等差数列,若120a a +>,并不能推出230a a +>;故选项A 不正确.对于B 选项,若130a a +<,并不能推出120a a +<;故选项B 不正确.对于C 选项,若120a a <<,则210d a a =->,()()22213222a a a a a d a d -=--+=()2222220a a d d --=>,因此2a >C 正确.对于D 选项,若10a <,则()()221230a a a a d --=-…,并不能推出()()21230a a a a -->.故选C.7.解析函数不等式的求解,利用函数图像求解不等式.在同一坐标系中画出()y f x =及()2log 1y x =+的图像,如图所示.可知()()2log 1f x x +…的解集为(]1,1-.故选C.8.解析通过图像逐一研究.对于A 选项,由图可得,乙图纵坐标的最大值大于5,故选项A 不正确;对于B 选项,由图可得,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故选项B 不正确;对于C 选项,由图可得,甲车以80km /h 的速度行驶,其“燃油效率”为10km /L ,若甲车行驶1小时,消耗8升汽油,故选项C 不正确;对于选项D ,对于机动车最高限速80km /h ,相同条件下,丙车比乙车更省油.故选D.9.解析()52x +展开式的通项公式()515C 2,0,1,2,,5r r rr T x r -+== ,3x 的系数为325C 240=.10.解析依题意,双曲线()22210x y a a-=>的渐近线方程为x y a =±,则1a -=,得3a =. 11.解析极坐标中的点π2,3⎛⎫⎪⎝⎭对应直角坐标系中的点为(,极坐标方程()cos 6ρθθ=对应的直角坐标系方程为60x -=,根据点到直线的距离公式13612d +-==. 12.解析在ABC △中,sin 22sin cos sin sin A A A C C =,由正弦定理得sin sin A aC c=,由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因此sin 24321sin 64A C =⨯⨯=. 13.解析在ABC △中,点M 满足2AM MC = ,点N 满足BN NC =,则()111111323226MN MC CN AC CB AC AB AC AB AC =+=+=+-=- ,因此12x =,16y =-.CB14.解析(1)若1a =,()()()21,1,412, 1.x x f x x x x ⎧-<⎪=⎨--⎪⎩….函数()f x 的值域为[)1,-+∞,因此()f x 的最小值为1-. (2)依题意,函数()21x y a x =-<至多有一个零点.若函数()f x 恰有两个零点,则有两种情形:① 函数2xy a =-在(),1-∞上无零点,则0a …或2a …,当0a …时,函数()()()42f x x a x a =--在[)1,+∞上无零点; 当2a …时,函数()()()42f x x a x a =--在[)1,+∞上有两个零点, 故2a …;② 函数2xy a =-在(),1-∞上有1个零点,则02a <<,此时函数()()()42f x x a x a =--在[)1,+∞上恰有一个零点,故121a a <⎧⎨⎩…,解得112a <…. 综上,若函数()f x 恰有两个零点,则实数a 的取值范围是[)1,12,2⎡⎫+∞⎪⎢⎣⎭.15.解析(1)()1cos cos 222222x x x f x x x -==+-=πsin 42x ⎛⎫+-⎪⎝⎭,函数()f x 的最小正周期2πT =.(2)当π0x -剎?时,3πππ444x -+剟,π1sin 42x ⎛⎫-+ ⎪⎝⎭剟,函数()f x 在区间[]π,0-的最小值为1--. 16. 解析(1)设甲的康复事件为ξ,则()3147P ξ=…,即甲的康复时间不少于14天的概率为37. (2)设乙的康复事件为η,集合{}10,11,12,13,14,15,16A =,{}12,13,14,15,16,17,25B =,则选取病人的基本事件空间为(){},,A B ξηξη∈∈,共49个基本事件,其中符合题意的基本事件为:()13,12,()14,12,()14,13,()15,12,()15,13,()15,14,()16,12,()16,13,()16,14,()16,15,共10个,从而()1049P ξη>=.(3)可以看出A 组7个连续的正整数,B 组为12至17共6个连续的正整数和a ,从而11a =或18时,两组离散程度相同,即方差相等.17. 解析(1)因为AEF △为等边三角形,O 为EF 的中点,所以AO EF ⊥,又因为平面AEF ⊥平面EFCB ,平面AEF 平面EFCB =EF ,AO ⊂平面AEF ,所以AO ⊥平面EFCB ,所以AO BE ⊥.(2)取BC 的中点为D ,连接OD ,因为四边形EBCF 是等腰梯形,所以OD EF ⊥. 以O 为原点OE ,OD ,OA ,为x ,y ,z 轴建立直角坐标系,如图所示,则()A ,(),0,0E a,)()2,0B a -,所以(),03A E a a =,)()2,0BE a a =--,设平面AEF 的法向量为m ,显然()0,1,0=m ,设平面ABE 的法向量为(),,x y z =n ,则有00AE BE ⎧⋅=⎪⎨⋅=⎪⎩n n,即())0220ax a x a y ⎧-=⎪⎨-+-=⎪⎩,所以)1,1=-n .所以二面角F AE B --的余弦值的绝对值为cos ,⋅==m n m n m n ,又因为二面角F AE B --为钝二面角,则二面角F AE B --的余弦值为5-. (3)由(1)知AO BE ⊥,若BE ⊥平面A O C ,只需BE OC ⊥即可,由(2)知)()2,0BE a a =--,)()2,0OC a =--,0BE OC ⋅= ,得()()222320a a ----=,解得2a =(舍)或43a =. 18. 解析(1)由题可知函数()f x 的定义域是()1,1-,则()221f x x'=-,()02f '=,()00f =,从而曲线()y f x =在点()()0,0f 处的切线方程为2y x =.(2)构造辅助函数证明不等式.设()()323x g x f x x ⎛⎫=-+ ⎪⎝⎭,则()00g =,()()4222222111x g x x x x '=-+=--,当()0,1x ∈时,()0g x '>,即()g x 在()0,1上单调递增,从而()()00g x g >=,即()323x f x x ⎛⎫>+ ⎪⎝⎭对任意()0,1x ∈恒成立.(3)构造函数()()31ln ,0,113x x P x k x x x ⎛⎫+=-+∈ ⎪-⎝⎭,又()00P =,若()0P x >对()0,1x ∀∈恒成立,则()00P '…,又()()()4222212111k x P x k x x x --'=-+=--,即()020P k '=-…,得2k …,又当2k =时,()323x f x x ⎛⎫>+ ⎪⎝⎭对()0,1x ∈恒成立,因此k 的最大值为2.19. 解析(1)因为2c e a ==,所以2b a =,又点()0,1P 在椭圆C :()222210x y a b a b +=>>上,则1b =,a =C 的方程为2212x y +=,直线PA 的方程:11n y x m -=+,令0y =,可得1mx n =-,所以点M 的坐标是,01m n ⎛⎫⎪-⎝⎭. (2)点B 与A 关于x 轴对称,所以(),B m n -,直线PB 的方程:11n y x m--=+,令0y =,所以可得1m x n =+,则,01m N n ⎛⎫⎪+⎝⎭,因为OQM ONQ ∠=∠, 所以tan tan OQM ONQ ∠=∠,所以OM OQ OQ ON=,即2OQ OM ON =, 因为2222111m m m OQ OM ON n n n ==⋅=-+-,又点()(),0A m n m ≠在椭圆C 上,所以2212m n +=,即2212m n -=,所以22222m OQ m ==,得(0,Q .20. 解析(1)6,12,24.(2)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数. 由12,18236,18n n n n n a a a a a +⎧=⎨->⎩…,可归纳证明对任意n k …,n a 是3的倍数.如果1k =,则M 的所有元素都是3的倍数;如果1k >,因为12k k a a -=或1236k k a a -=-,所以12k a -是3的倍数,或1236k a --是3的倍数,于是1k a -是3的倍数.类似可得,2k a -,…,1a 都是3的倍数.从而对任意1n …,n a 是3的倍数,因此M 的所有元素都是3的倍数.综上,若集合M 存在一个元素是3的倍数,则M 的所有元素都是3的倍数.(3)由136a …,*1a ∈N ,11112,18236,18n n n n n a a a a a ----⎧=⎨->⎩…,可归纳证明()362,3,n a n = ….因为1a 是正整数,112112,18236,18a a a a a ⎧=⎨->⎩…,所以2a 是2的倍数.从而当3n …时,n a 是4的倍数.如果1a 是3的倍数,由(2)知对所有正整数n ,n a 是3的倍数,因此当3n …时,{}12,24,36n a ∈,这时,M 中的元素的个数不超过5.如果1a 不是3的倍数,由(2)知,对所有的正整数n ,n a 不是3的倍数,因此当3n …时,{}4,8,16,20,28,32n a ∈,这时M 的元素的个数不超过8.当11a =时,{}1,2,4,8,16,20,28,32M =有8个元素. 综上可知,集合M 的元素个数的最大值为8.。
2015年北京市高考数学试卷(理科)(解析版)
2015年北京市高考数学试卷(理科)一、选择题(每小题5分,共40分)1.(5分)(2015•北京)复数i(2﹣i)=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i2.(5分)(2015•北京)若x,y满足,则z=x+2y的最大值为()A.0B.1C.D.23.(5分)(2015•北京)执行如图所示的程序框图,输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)4.(5分)(2015•北京)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分不要条件D.既不充分也不必要条件5.(5分)(2015•北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2D.56.(5分)(2015•北京)设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则若a1+a2<0,D.若a1<0,则(a2﹣a1)(a2﹣a3)>0C.若若0<a1<a2,则a27.(5分)(2015•北京)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|﹣1<x≤0} B.{x|﹣1≤x≤1} C.{x|﹣1<x≤1} D.{x|﹣1<x≤2}8.(5分)(2015•北京)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油二、填空题(每小题5分,共30分)9.(5分)(2015•北京)在(2+x)5的展开式中,x3的系数为(用数字作答)10.(5分)(2015•北京)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a=.11.(5分)(2015•北京)在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为.12.(5分)(2015•北京)在△ABC中,a=4,b=5,c=6,则=.13.(5分)(2015•北京)在△ABC中,点M,N满足=2,=,若=x+y,则x=,y=.14.(5分)(2015•北京)设函数f(x)=,①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.三、解答题(共6小题,共80分)15.(13分)(2015•北京)已知函数f(x)=sin cos﹣sin.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣π,0]上的最小值.16.(13分)(2015•北京)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组;12,13,15,16,17,14,a假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果a=25,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)17.(14分)(2015•北京)如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(Ⅰ)求证:AO⊥BE.(Ⅱ)求二面角F﹣AE﹣B的余弦值;(Ⅲ)若BE⊥平面AOC,求a的值.18.(13分)(2015•北京)已知函数f(x)=ln,(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求证,当x∈(0,1)时,f(x);(Ⅲ)设实数k使得f(x)对x∈(0,1)恒成立,求k的最大值.19.(14分)(2015•北京)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(Ⅰ)求椭圆C的方程,并求点M的坐标(用m,n表示);(Ⅱ)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标,若不存在,说明理由.20.(13分)(2015•北京)已知数列{a n}满足:a1∈N*,a1≤36,且a n+1=(n=1,2,…),记集合M={a n|n∈N*}.(Ⅰ)若a1=6,写出集合M的所有元素;(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;(Ⅲ)求集合M的元素个数的最大值.2015年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共40分)1.(5分)(2015•北京)复数i(2﹣i)=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则解答.解答:解:原式=2i﹣i2=2i﹣(﹣1)=1+2i;故选:A.点评:本题考查了复数的运算;关键是熟记运算法则.注意i2=﹣1.2.(5分)(2015•北京)若x,y满足,则z=x+2y的最大值为()A.0B.1C.D.2考点:简单线性规划.专题:不等式的解法及应用.分析:作出题中不等式组表示的平面区域,再将目标函数z=x+2y对应的直线进行平移,即可求出z取得最大值.解答:解:作出不等式组表示的平面区域,得到如图的三角形及其内部阴影部分,由解得A(,),目标函数z=x+2y,将直线z=x+2y进行平移,当l经过点A时,目标函数z达到最大值∴z最大值==故选:C.点评:本题给出二元一次不等式组,求目标函数z=x+2y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.3.(5分)(2015•北京)执行如图所示的程序框图,输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的x,y,k的值,当k=3时满足条件k≥3,退出循环,输出(﹣4,0).解答:解:模拟执行程序框图,可得x=1,y=1,k=0s=0,i=2x=0,y=2,k=1不满足条件k≥3,s=﹣2,i=2,x=﹣2,y=2,k=2不满足条件k≥3,s=﹣4,i=0,x=﹣4,y=0,k=3满足条件k≥3,退出循环,输出(﹣4,0),故选:B.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的x,y,k的值是解题的关键,属于基础题.4.(5分)(2015•北京)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分不要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:m∥β并得不到α∥β,根据面面平行的判定定理,只有α内的两相交直线都平行于β,而α∥β,并且m⊂α,显然能得到m∥β,这样即可找出正确选项.解答:解:m⊂α,m∥β得不到α∥β,因为α,β可能相交,只要m和α,β的交线平行即可得到m∥β;α∥β,m⊂α,∴m和β没有公共点,∴m∥β,即α∥β能得到m∥β;∴“m∥β”是“α∥β”的必要不充分条件.故选B.点评:考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念.5.(5分)(2015•北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2D.5考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:根据三视图可判断直观图为:A⊥面ABC,AC=AB,E为BC中点,EA=2,EA=EB=1,OA=1,:BC⊥面AEO,AC=,OE=判断几何体的各个面的特点,计算边长,求解面积.解答:解:根据三视图可判断直观图为:OA⊥面ABC,AC=AB,E为BC中点,EA=2,EC=EB=1,OA=1,∴可得AE⊥BC,BC⊥OA,运用直线平面的垂直得出:BC⊥面AEO,AC=,OE=∴S△ABC=2×2=2,S△OAC=S△OAB=×1=.S△BCO=2×=.故该三棱锥的表面积是2,故选:C.点评:本题考查了空间几何体的三视图的运用,空间想象能力,计算能力,关键是恢复直观图,得出几何体的性质.6.(5分)(2015•北京)设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则若a1+a2<0,D.若a1<0,则(a2﹣a1)(a2﹣a3)>0C.若若0<a1<a2,则a2考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:对选项分别进行判断,即可得出结论.解答:解:若a1+a2>0,则2a1+d>0,a2+a3=2a1+3d>2d,d>0时,结论成立,即A不正确;若a1+a2<0,则2a1+d<0,a2+a3=2a1+3d<2d,d<0时,结论成立,即B不正确;{a n}是等差数列,0<a1<a2,2a2=a1+a3>2,∴a2>,即C正确;若a1<0,则(a2﹣a1)(a2﹣a3)=﹣d2<0,即D不正确.故选:C.点评:本题考查等差数列的通项,考查学生的计算能力,比较基础.7.(5分)(2015•北京)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|﹣1<x≤0} B.{x|﹣1≤x≤1} C.{x|﹣1<x≤1} D.{x|﹣1<x≤2}考点:指、对数不等式的解法.专题:不等式的解法及应用.分析:在已知坐标系内作出y=log2(x+1)的图象,利用数形结合得到不等式的解集.解答:解:由已知f(x)的图象,在此坐标系内作出y=log2(x+1)的图象,如图满足不等式f(x)≥log2(x+1)的x范围是﹣1<x≤1;所以不等式f(x)≥log2(x+1)的解集是{x|﹣1<x≤1};故选C.点评:本题考查了数形结合求不等式的解集;用到了图象的平移.8.(5分)(2015•北京)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油考点:函数的图象与图象变化.专题:创新题型;函数的性质及应用.分析:根据汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,以及图象,分别判断各个选项即可.解答:解:对于选项A,消耗1升汽油,乙车行驶的距离比5小的很多,故A错误;对于选项B,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最小,故B错误,对于选项C,甲车以80千米/小时的速度行驶1小时,里程为80千米,燃油效率为10,故消耗8升汽油,故C错误,对于选项D,因为在速度低于80千米/小时,丙的燃油效率高于乙的燃油效率,故D正确.点评:本题考查了函数图象的识别,关键掌握题意,属于基础题.二、填空题(每小题5分,共30分)9.(5分)(2015•北京)在(2+x)5的展开式中,x3的系数为40(用数字作答)考点:二项式定理的应用.专题:二项式定理.分析:写出二项式定理展开式的通项公式,利用x的指数为3,求出r,然后求解所求数值.解答:解:(2+x)5的展开式的通项公式为:T r+1=25﹣r x r,所求x3的系数为:=40.故答案为:40.点评:本题考查二项式定理的应用,二项式系数的求法,考查计算能力.10.(5分)(2015•北京)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a=.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:运用双曲线的渐近线方程为y=±,结合条件可得=,即可得到a的值.解答:解:双曲线﹣y2=1的渐近线方程为y=±,由题意可得=,解得a=.故答案为:.点评:本题考查双曲线的方程和性质,主要考查双曲线的渐近线方程的求法,属于基础题.11.(5分)(2015•北京)在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为1.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:化为直角坐标,再利用点到直线的距离公式距离公式即可得出.解答:解:点P(2,)化为P.直线ρ(cosθ+sinθ)=6化为.∴点P到直线的距离d==1.故答案为:1.点评:本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.12.(5分)(2015•北京)在△ABC中,a=4,b=5,c=6,则=1.考点:余弦定理;二倍角的正弦;正弦定理.专题:计算题;解三角形.分析:利用余弦定理求出cosC,cosA,即可得出结论.解答:解:∵△ABC中,a=4,b=5,c=6,∴cosC==,cosA==∴sinC=,sinA=,∴==1.故答案为:1.点评:本题考查余弦定理,考查学生的计算能力,比较基础.13.(5分)(2015•北京)在△ABC中,点M,N满足=2,=,若=x+y,则x=,y=﹣.考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:首先利用向量的三角形法则,将所求用向量表示,然后利用平面向量基本定理得到x,y值.解答:解:由已知得到===;由平面向量基本定理,得到x=,y=;故答案为:.点评:本题考查了平面向量基本定理的运用,一个向量用一组基底表示,存在唯一的实数对(x,y)使,向量等式成立.14.(5分)(2015•北京)设函数f(x)=,①若a=1,则f(x)的最小值为﹣1;②若f(x)恰有2个零点,则实数a的取值范围是≤a<1或a≥2.考点:函数的零点;分段函数的应用.专题:创新题型;函数的性质及应用.分析:①分别求出分段的函数的最小值,即可得到函数的最小值;②分别设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a),分两种情况讨论,即可求出a的范围.解答:解:①当a=1时,f(x)=,当x<1时,f(x)=2x﹣1为增函数,f(x)>﹣1,当x>1时,f(x)=4(x﹣1)(x﹣2)=4(x2﹣3x+2)=4(x﹣)2﹣1,当1<x<时,函数单调递减,当x>时,函数单调递增,故当x=时,f(x)min=f()=﹣1,②设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)若在x<1时,h(x)=与x轴有一个交点,所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,所以≤a<1,若函数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤时,即a≥2时,g(x)的两个交点为x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是≤a<1,或a≥2.点评:本题考查了分段函数的问题,以及函数的零点问题,培养了学生的转化能力和运算能力以及分类能力,属于中档题.三、解答题(共6小题,共80分)15.(13分)(2015•北京)已知函数f(x)=sin cos﹣sin.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣π,0]上的最小值.考点:两角和与差的正弦函数;三角函数的周期性及其求法;三角函数的最值.专题:计算题;三角函数的求值;三角函数的图像与性质.分析:(Ⅰ)运用二倍角公式和两角和的正弦公式,化简f(x),再由正弦喊话说的周期,即可得到所求;(Ⅱ)由x的范围,可得x+的范围,再由正弦函数的图象和性质,即可求得最小值.解答:解:(Ⅰ)f(x)=sin cos﹣sin=sinx﹣(1﹣cosx)=sinxcos+cosxsin﹣=sin(x+)﹣,则f(x)的最小正周期为2π;(Ⅱ)由﹣π≤x≤0,可得﹣≤x+≤,即有﹣1,则当x=﹣时,sin(x+)取得最小值﹣1,则有f(x)在区间[﹣π,0]上的最小值为﹣1﹣.点评:本题考查二倍角公式和两角和的正弦公式,同时考查正弦函数的周期和值域,考查运算能力,属于中档题.16.(13分)(2015•北京)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组;12,13,15,16,17,14,a假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果a=25,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)考点:极差、方差与标准差;古典概型及其概率计算公式.专题:概率与统计.分析:设事件A i为“甲是A组的第i个人”,事件B i为“乙是B组的第i个人”,由题意可知P(A i)=P(B i)=,i=1,2,••,7(Ⅰ)事件等价于“甲是A组的第5或第6或第7个人”,由概率公式可得;(Ⅱ)设事件“甲的康复时间比乙的康复时间长”C=A4B1∪A5B1∪A6B1∪A7B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6,易得P(C)=10P(A4B1),易得答案;(Ⅲ)由方差的公式可得.解答:解:设事件A i为“甲是A组的第i个人”,事件B i为“乙是B组的第i个人”,由题意可知P(A i)=P(B i)=,i=1,2,••,7(Ⅰ)事件“甲的康复时间不少于14天”等价于“甲是A组的第5或第6或第7个人”∴甲的康复时间不少于14天的概率P(A5∪A6∪A7)=P(A5)+P(A6)+P(A7)=;(Ⅱ)设事件C为“甲的康复时间比乙的康复时间长”,则C=A4B1∪A5B1∪A6B1∪A7B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6,∴P(C)=P(A4B1)+P(A5B1)+P(A6B1)P+(A7B1)+P(A5B2)+P(A6B2)+P(A7B2)+P(A7B3)+P(A6B6)+P(A7B6)=10P(A4B1)=10P(A4)P(B1)=(Ⅲ)当a为11或18时,A,B两组病人康复时间的方差相等.点评:本题考查古典概型及其概率公式,涉及概率的加法公式和方差,属基础题.17.(14分)(2015•北京)如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(Ⅰ)求证:AO⊥BE.(Ⅱ)求二面角F﹣AE﹣B的余弦值;(Ⅲ)若BE⊥平面AOC,求a的值.考点:二面角的平面角及求法;直线与平面垂直的判定;直线与平面垂直的性质.专题:空间位置关系与距离;空间角.分析:(Ⅰ)根据线面垂直的性质定理即可证明AO⊥BE.(Ⅱ)建立空间坐标系,利用向量法即可求二面角F﹣AE﹣B的余弦值;(Ⅲ)利用线面垂直的性质,结合向量法即可求a的值解答:证明:(Ⅰ)∵△AEF为等边三角形,O为EF的中点,∴AO⊥EF,∵平面AEF⊥平面EFCB,AO⊂平面AEF,∴AO⊥平面EFCB∴AO⊥BE.(Ⅱ)取BC的中点G,连接OG,∵EFCB是等腰梯形,∴OG⊥EF,由(Ⅰ)知AO⊥平面EFCB,∵OG⊂平面EFCB,∴OA⊥OG,建立如图的空间坐标系,则OE=a,BG=2,GH=a,BH=2﹣a,EH=BHtan60°=,则E(a,0,0),A(0,0,a),B(2,,0),=(﹣a,0,a),=(a﹣2,﹣,0),设平面AEB的法向量为=(x,y,z),则,即,令z=1,则x=,y=﹣1,即=(,﹣1,1),平面AEF的法向量为,则cos<>==即二面角F﹣AE﹣B的余弦值为;(Ⅲ)若BE⊥平面AOC,则BE⊥OC,即=0,∵=(a﹣2,﹣,0),=(﹣2,,0),∴=﹣2(a﹣2)﹣3(a﹣2)2=0,解得a=.点评:本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法.18.(13分)(2015•北京)已知函数f(x)=ln,(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求证,当x∈(0,1)时,f(x);(Ⅲ)设实数k使得f(x)对x∈(0,1)恒成立,求k的最大值.考点:利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(1)利用函数的导数求在曲线上某点处的切线方程.(2)构造新函数利用函数的单调性证明命题成立.(3)对k进行讨论,利用新函数的单调性求参数k的取值范围.解答:解答:(1)因为f(x)=ln(1+x)﹣ln(1﹣x)所以又因为f(0)=0,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x.(2)证明:令g(x)=f(x)﹣2(x+),则g'(x)=f'(x)﹣2(1+x2)=,因为g'(x)>0(0<x<1),所以g(x)在区间(0,1)上单调递增.所以g(x)>g(0)=0,x∈(0,1),即当x∈(0,1)时,f(x)>2(x+).(3)由(2)知,当k≤2时,f(x)>对x∈(0,1)恒成立.当k>2时,令h(x)=f(x)﹣,则h'(x)=f'(x)﹣k(1+x2)=,所以当时,h'(x)<0,因此h(x)在区间(0,)上单调递减.当时,h(x)<h(0)=0,即f(x)<.所以当k>2时,f(x)>并非对x∈(0,1)恒成立.综上所知,k的最大值为2.点评:本题主要考查切线方程的求法及新函数的单调性的求解证明.在高考中属常考题型,难度适中.19.(14分)(2015•北京)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(Ⅰ)求椭圆C的方程,并求点M的坐标(用m,n表示);(Ⅱ)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标,若不存在,说明理由.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:创新题型;圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:(I)根据椭圆的几何性质得出求解即可.(II)求解得出M(,0),N(,0),运用图形得出tan∠OQM=tan∠ONQ,=,求解即可得出即y Q2=x M•x N,+n2,根据m,m的关系整体求解.解答:解:(Ⅰ)由题意得出解得:a=,b=1,c=1∴+y2=1,∵P(0,1)和点A(m,n),﹣1<n<1∴PA的方程为:y﹣1=x,y=0时,x M=∴M(,0)(II)∵点B与点A关于x轴对称,点A(m,n)(m≠0)∴点B(m,﹣n)(m≠0)∵直线PB交x轴于点N,∴N(,0),∵存在点Q,使得∠OQM=∠ONQ,Q(0,y Q),∴tan∠OQM=tan∠ONQ,∴=,即y Q2=x M•x N,+n2=1y Q2==2,∴y Q=,故y轴上存在点Q,使得∠OQM=∠ONQ,Q(0,)或Q(0,﹣)点评:本题考查了直线圆锥曲线的方程,位置关系,数形结合的思想的运用,运用代数的方法求解几何问题,难度较大,属于难题.20.(13分)(2015•北京)已知数列{a n}满足:a1∈N*,a1≤36,且a n+1=(n=1,2,…),记集合M={a n|n∈N*}.(Ⅰ)若a1=6,写出集合M的所有元素;(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;(Ⅲ)求集合M的元素个数的最大值.考点:数列递推式.专题:创新题型;点列、递归数列与数学归纳法.分析:(Ⅰ)a1=6,利用a n+1=可求得集合M的所有元素为6,12,24;(Ⅱ)因为集合M存在一个元素是3的倍数,所以不妨设a k是3的倍数,由a n+1=(n=1,2,…),可归纳证明对任意n≥k,a n是3的倍数;(Ⅲ)分a1是3的倍数与a1不是3的倍数讨论,即可求得集合M的元素个数的最大值.解答:解:(Ⅰ)若a1=6,由于a n+1=(n=1,2,…),M={a n|n∈N*}.故集合M的所有元素为6,12,24;(Ⅱ)因为集合M存在一个元素是3的倍数,所以不妨设a k是3的倍数,由a n+1=(n=1,2,…),可归纳证明对任意n≥k,a n是3的倍数.如果k=1,M的所有元素都是3的倍数;如果k>1,因为a k=2a k﹣1,或a k=2a k﹣1﹣36,所以2a k﹣1是3的倍数;于是a k﹣1是3的倍数;类似可得,a k﹣2,…,a1都是3的倍数;从而对任意n≥1,a n是3的倍数;综上,若集合M存在一个元素是3的倍数,则集合M的所有元素都是3的倍数(Ⅲ)对a1≤36,a n=(n=1,2,…),可归纳证明对任意n≥k,a n<36(n=2,3,…)因为a1是正整数,a2=,所以a2是2的倍数.从而当n≥3时,a n是2的倍数.如果a1是3的倍数,由(Ⅱ)知,对所有正整数n,a n是3的倍数.因此当n≥3时,a n∈{12,24,36},这时M的元素个数不超过5.如果a1不是3的倍数,由(Ⅱ)知,对所有正整数n,a n不是3的倍数.因此当n≥3时,a n∈{4,8,16,20,28,32},这时M的元素个数不超过8.当a1=1时,M={1,2,4,8,16,20,28,32},有8个元素.综上可知,集合M的元素个数的最大值为8.点评:本题考查数列递推关系的应用,突出考查分类讨论思想与等价转化思想及推理、运算能力,属于难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年普通高等学校招生全国统一考试数学理试题(北京卷,含解析)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项 是符合题目要求的. 1.1.复数()i 2i -=A .12i +B .12i -C .12i -+D .12i --【答案】A 【解析】试题分析:(2)12i i i -=+ 考点:复数运算2.若x ,y 满足010x y x y x -⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y =+的最大值为A .0B .1 C.32D .2【答案】D【解析】试题分析:如图,先画出可行域,由于2z x y =+,则1122y x z =-+,令0Z =,作直线12y x=-,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z取得最小值2.考点:线性规划;3.执行如图所示的程序框图,输出的结果为A.()22-,B.()40-,C.()44--,D.()08-,开始x=1,y=1,k=0s=x-y,t=x+yx=s,y=tk=k+1k≥3输出(x,y)结束是否【答案】B考点:程序框图4.设α,β是两个不同的平面,m是直线且mα⊂.“mβ∥”是“αβ∥”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】试题分析:因为α,β是两个不同的平面,m是直线且mα⊂.若“mβ∥”,则平面、αβ可能相交也可能平行,不能推出//αβ,反过来若//αβ,m α⊂,则有m β∥,则“m β∥”是“αβ∥”的必要而不充分条件.考点:1.空间直线与平面的位置关系;2.充要条件. 5.某三棱锥的三视图如图所示,则该三棱锥的表面积是11俯视图侧(左)视图21A .25+B .45+C .225+D .5 【答案】C 【解析】试题分析:根据三视图恢复成三棱锥P-ABC ,其中PC ⊥平面ABC ,取AB 棱的中点D ,连接CD 、PD ,有,PD AB CD AB ⊥⊥,底面ABC 为等腰三角形底边AB 上的高CD 为2,AD=BD=1,PC=1,5,ABC PD S ∆=1222,2=⨯⨯=,12552PAB S ∆=⨯⨯=,AC BC =5=1512PAC PBC S S ∆∆==⨯⨯5=,三棱锥表面积表252S =+.考点:1.三视图;2.三棱锥的表面积.6.设{}n a 是等差数列. 下列结论中正确的是A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则213a a a > D .若10a <,则()()21230a a a a --> 【答案】C考点:1.等差数列通项公式;2.作差比较法7.如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x +≥的解集是A B Oxy -122CA .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤【答案】C 【解析】考点:1.函数图象;2.解不等式.8.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油【答案】【解析】试题分析:“燃油效率”是指汽车每消耗1升汽油行驶的里程,A 中乙车消耗1升汽油,最多行驶的路程为乙车图象最高点的纵坐标值,A 错误;B 中以相同速度行驶相同路程,甲燃油效率最高,所以甲最省油,B 错误,C 中甲车以80千米/小时的速度行驶1小时,甲车每消耗1升汽油行驶的里程10km,行驶80km ,消耗8升汽油,C 错误,D 中某城市机动车最高限速80千米/小时. 由于丙比乙的燃油效率高,相同条件下,在该市用丙车比用乙车更省油,选D.考点:1.函数应用问题;2.对“燃油效率”新定义的理解;3.对图象的理解.第Ⅱ卷(非选择题 共110分)二、填空题(共6个小题,每题5分,共30分) 9.在()52x +的展开式中,3x 的系数为.(用数字作答)【答案】40 【解析】试题分析:利用通项公式,5152r r r r T C x -+=⋅,令3r =,得出3x 的系数为325240C ⋅=考点:二项式定理10.已知双曲线()22210x y a a-=>的一条渐近线为30x y +=,则a =.【答案】33考点:双曲线的几何性质11.在极坐标系中,点π23⎛⎫ ⎪⎝⎭‚到直线()cos 3sin 6ρθθ=的距离为.【答案】1 【解析】试题分析:先把点(2,)3π极坐标化为直角坐标3),再把直线的极坐标方程()cos 3sin 6ρθθ=化为直角坐标方程360x y +-=,利用点到直线距离公式136113d +-==+.考点:1.极坐标与直角坐标的互化;2.点到直线距离. 12.在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .【答案】 1 【解析】试题分析:222sin 22sin cos 2sin sin 2A A A a b c a C C c bc +-==⋅2425361616256⨯+-=⋅=⨯⨯ 考点:正弦定理、余弦定理13.在ABC △中,点M ,N 满足2AM MC =,BN NC =.若MN x AB y AC =+,则x =;y =.【答案】11,26- 【解析】试题分析:特殊化,不妨设,4,3AC AB AB AC ⊥==,利用坐标法,以A 为原点,AB 为x 轴,AC为y 轴,建立直角坐标系,3(0,0),(0,2),(0,3),(4,0),(2,)2A M CB N ,1(2,),(4,0),2MN AB =-=(0,3)AC =,则1(2,)(4,0)(0,3)2x y -=+,11142,3,,226x y x y ==-∴==-. 考点:平面向量14.设函数()()()2142 1.x a x f x x a x a x ⎧-<⎪=⎨--⎪⎩‚‚‚≥①若1a =,则()f x 的最小值为;②若()f x 恰有2个零点,则实数a 的取值范围是.【答案】(1)1,(2)112a ≤<或2a ≥.考点:1.函数的图象;2.函数的零点;3.分类讨论思想.三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程) 15.(本小题13分)已知函数2()2sin cos 2sin 222x x xf x =-.(Ⅰ) 求()f x 的最小正周期;(Ⅱ) 求()f x 在区间[π0]-,上的最小值. 【答案】(1)2π,(2)21-- 【解析】试题分析:先用降幂公式和辅助角公式进行三角恒等变形,把函数化为()sin()f x A x mωϕ=++形式,再利用周期公式2T πω=求出周期,第二步由于0,x π-≤≤则可求出3444x πππ-≤+≤,借助正弦函数图象 找出在这个范围内当42x ππ+=-,即34x π=-时,()f x 取得最小值为:212--. 试题解析:(Ⅰ) 211cos ()2sincos2sin 2sin 222222xxxxf x x -=-=⋅-⋅=222sin cos 222x x =+-2sin()42x π=+- (1)()f x 的最小正周期为221T ππ==; (2)30,444x x ππππ-≤≤∴-≤+≤,当3,424x x πππ+=-=-时,()f x 取得最小值为:212--考点: 1.三角函数式的恒等变形;2.三角函数图像与性质. 16.(本小题13分)A ,B 两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A 组:10,11,12,13,14,15,16B 组:12,13,15,16,17,14,a假设所有病人的康复时间互相独立,从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙.(Ⅰ) 求甲的康复时间不少于14天的概率;(Ⅱ) 如果25a =,求甲的康复时间比乙的康复时间长的概率;(Ⅲ) 当a 为何值时,A ,B 两组病人康复时间的方差相等?(结论不要求证明) 【答案】(1)37,(2)1049,(3)11a =或1817.(本小题14分)如图,在四棱锥A EFCB -中,AEF △为等边三角形,平面AEF ⊥平面EFCB ,EF BC ∥,4BC =,2EF a =,60EBC FCB ∠=∠=︒,O 为EF 的中点.(Ⅰ) 求证:AO BE ⊥;(Ⅱ) 求二面角F AE B --的余弦值; (Ⅲ) 若BE ⊥平面AOC ,求a 的值.O FECBA【答案】(1)证明见解析,(2)55-,(3)43a = 【解析】试题分析:证明线线垂直可寻求线面垂直,利用题目提供的面面垂直平面AEF ⊥平面EFCB ,借助性质定理证明AO ⊥平面EFCB ,进而得出线线垂直,第二步建立空间直角坐标系,写出相关点的坐标,平面AEF 的法向量易得,只需求平面AEB 的法向量,设平面AEB 的法向量,利用线线垂直,数量积为零,列方程求出法向量,再根据二面角公式求出法向量的余弦值;第三步由于AO BE ⊥,要想BE ⊥平面AOC ,只需BE OC ⊥,利用向量、BE OC 的坐标,借助数量积为零,求出a 的值,根据实际问题予以取舍.试题解析:(Ⅰ)由于平面AEF ⊥平面EFCB ,AEF △为等边三角形,O 为EF 的中点,则AO EF ⊥,根据面面垂直性质定理,所以AO ⊥平面EFCB ,又BE ⊂平面EFCB ,则AO BE ⊥.(Ⅱ)取CB 的中点D ,连接OD,以O 为原点,分别以、、OE OD OA 为、、x y z 轴建立空间直角坐标系,(0,03)A a ,(,0,0),(2,233,0),(,0,3)E a B a AE a a -=-,(2,233,0)EB a a =--,由于平面AEF 与y 轴垂直,则设平面AEF 的法向量为1(0,1,0)n =,设平面AEB 的法向量2(,,1)n x y =,2,-30,3n AE ax a x ⊥==,2,(2)(233)0,1n EB a x a y y ⊥-+-==-,则2n =(3,1,1)-,二面角F AE B --的余弦值12121215cos ,55n n n n n n ⋅〈〉===-⋅,由二面角F AE B --为钝二面角,所以二面角F AE B --的余弦值为55-. (Ⅲ)有(1)知AO ⊥平面EFCB ,则AO BE ⊥,若BE ⊥平面AOC ,只需BE OC ⊥,(2,EB a =-233,0)a -,又(2,233,0)OC a =--,22(2)(233)0BE OC a a ⋅=--+-=,解得2a =或43a =,由于2a <,则43a =. 考点:1.线线垂直的证明;2.利用法向量求二面角;3.利用数量积解决垂直问题. 18.(本小题13分)已知函数()1ln1xf x x+=-.(Ⅰ)求曲线()y f x =在点()()00f ,处的切线方程; (Ⅱ)求证:当()01x ∈,时,()323x f x x ⎛⎫>+ ⎪⎝⎭; (Ⅲ)设实数k 使得()33x f x k x ⎛⎫>+ ⎪⎝⎭对()01x ∈,恒成立,求k 的最大值. 【答案】(Ⅰ)20x y -=,(Ⅱ)证明见解析,(Ⅲ)k 的最大值为2.试题解析:(Ⅰ)212()ln,(1,1),(),(0)2,(0)011x f x x f x f f x x+''=∈-===--,曲线()y f x =在点()()00f ,处的切线方程为20x y -=;(Ⅱ)当()01x ∈,时,()323x f x x ⎛⎫>+ ⎪⎝⎭,即不等式3()2()03x f x x -+>,对(0,1)x ∀∈成立,设331()ln 2()ln(1)ln(1)2()133x x x F x x x x x x +=-+=+---+-,则422()1x F x x'=-,当()01x ∈,时,()0F x '>,故()F x 在(0,1)上为增函数,则()(0)0F x F >=,因此对(0,1)x ∀∈,3()2()3x f x x >+成立;(Ⅲ)使()33x f x k x ⎛⎫>+ ⎪⎝⎭成立,()01x ∈,,等价于31()ln()013x x F x k x x +=-+>-,()01x ∈,;422222()(1)11kx k F x k x x x +-'=-+=--,当[0,2]k ∈时,()0F x '≥,函数在(0,1)上位增函数,()(0)0F x F >=,符合题意;当2k >时,令402()0,(0,1)k F x x k-'==∈,()(0)F x F <,显然不成立,综上所述可知:k 的最大值为2.考点:1.导数的几何意义;2.利用导数研究函数的单调性,证明不等式;3.含参问题讨论. 19.(本小题14分)已知椭圆C :()222210x y a b a b+=>>,点()01P ,和点()A m n ,()0m ≠都在椭圆C 上,直线PA 交x 轴于点M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由. 【答案】 【解析】试题分析:椭圆C :()222210x y a b a b+=>>,点()01P ,在椭圆上,利用条件列方程组,解出待定系数222,1ab ==,写出椭圆方程;由点()01P ,和点()A m n ,()0m ≠,写出PA 直线方程,令0y =求出x 值,写出直线与x 轴交点坐标;由点(0,1),(,)P B m n -,写出直线PB 的方程,令0y =求出x 值,写出点N 的坐标,设0(0,)Q y ,,tan tan OQM ONQ OQM ONQ∠=∠∴∠=∠求出tan OQM ∠和tan ONQ ∠,利用二者相等,求出0y =Q (0,±使得OQM ONQ ∠=∠.试题解析:(Ⅰ)由于椭圆C :()222210x ya b a b +=>>过点()01P ,且离心率为2,2211,1,b b==222c e a=22221112a b a a -==-=,22a =,椭圆C 的方程为2212x y +=. (0,1),(,)P A m n ,直线PA 的方程为:11n y x m -=+,令0,1m y x n ==-,(,0)1mM n∴-; 考点:1.求椭圆方程;2.求直线方程及与坐标轴的交点;3.存在性问题. 20.(本小题13分)已知数列{}n a 满足:*1a ∈N ,136a ≤,且121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,()12n =,,…. 记集合{}*|n M a n =∈N .(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.【答案】(1){6,12,24}M =,(2)证明见解析,(3)8 【解析】①试题分析:(Ⅰ)由16a =,可知23412,24,12,a a a ===则{6,12,24}M =;(Ⅱ)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数,用数学归纳法证明对任意n k ≥,n a 是3的倍数,当1k =时,则M 中的所有元素都是3的倍数,如果1k >时,因为12k k a a -=或1236k a --,所以12k a -是3的倍数,于是1k a -是3的倍数,类似可得,21,......k a a -都是3的倍数,从而对任意1n ≥,n a 是3的倍数,因此M 的所有元素都是3的倍数.第二步集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数,由已知121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,,用数学归纳法证明对任意n k ≥,n a 是3的倍数;第三步由于M 中的元素都不超过36,M 中的元素个数最多除了前面两个数外,都是4的倍数,因为第二个数必定为偶数,由n a 的定义可知,第三个数及后面的数必定是4的倍数,由定义可知,1n a +和2n a 除以9的余数一样,分n a 中有3的倍数和n a 中没有3的倍数两种情况,研究集合M 中的元素个数,最后得出结论集合M 的元素个数的最大值为8.试题解析:(Ⅰ)由已知121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,可知:12346,12,24,12,a a a a ===={6,12,24}M ∴=(Ⅱ)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数,由已知121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,,可用用数学归纳法证明对任意n k ≥,n a 是3的倍数,当1k =时,则M中的所有元素都是3的倍数,如果1k >时,因为12k k a a -=或1236k a --,所以12k a -是3的倍数,于是1k a -是3的倍数,类似可得,21,......k a a -都是3的倍数,从而对任意1n ≥,n a 是3的倍数,因此M 的所有元素都是3的倍数.(Ⅲ)由于M 中的元素都不超过36,由136a ≤,易得236a ≤,类似可得36n a ≤,其次M 中的元素个数最多除了前面两个数外,都是4的倍数,因为第二个数必定为偶数,由n a 的定义可知,第三个数及后面的数必定是4的倍数,另外,M 中的数除以9的余数,由定义可知,1n a +和2n a 除以9的余数一样,考点:1.分段函数形数列通项公式求值;2.归纳法证明;3.数列元素分析.。