天津高中数学必修选修全部知识点精华归纳总结(新课标人教A版)

合集下载

新课标人教A版高中数学知识点总结

新课标人教A版高中数学知识点总结

高中数学必修1知识点总结第一章集合与函数概念【1.1.1】集合的含义与表示1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N表示自然数集,N*或N表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.+(3)集合与元素间的关系对象a与集合M的关系是a e M,或者a电M,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合③描述法:{x|x具有的性质},其中x为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集•②含有无限个元素的集合叫做无限集•③不含有任何元素的集合叫做空集(0).【1.1.2】集合间的基本关系(7)已知集合A有>个元素,则它有n个子集,它有n一个真子集,它有个非空子集,它有非空真子集.【1.1.3】集合的基本运算8)交集、并集、补集交集AQB{x I x e A,且x e B}(1)AA=A⑵An0=0⑶AnB匸AAQB u B并集AUB{x I x e A,或x e B}补集{x I x e U,且x电A}(1)AUA=A(2)AU0=A(3)AUB-AAUB-Bi An(C A)=02Au(c A)=UU U(AA B)=(C A)U(B)UUU【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集I x I<a(a〉0){x I一a<x<a}I x I>a(a〉0)x I x<-a或x>a}I ax+b l<c,I ax+b I>c(c〉0)把ax+b看成一个整体,化成丨x I<a,I x I>a(a〉0)型不等式来求解(2)一元二次不等式的解法判别式A=b2一4acA>0A=0A<0二次函数y=ax2+bx+c(a〉0)的图象\\//I\11V1111I tIV °卜\yO一元二次方程ax2+bx+c=0(a〉0)的根x=-1,2(其匸bx=x=—122a无实根1±Jb2一4ac2ahx<x)112ax2+bx+c〉0(a〉0)的解集{x I x<x或x〉x}「b、{x I x丰一——}2aRax2+bx+c<0(a〉0)的解集{x I x<x<x}1200〖1.2〗函数及其表示1.2.1】函数的概念1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作/:A T B.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.2)区间的概念及表示法①设a,b是两个实数,且a<b,满足a§x§b的实数x的集合叫做闭区间,记做[a,b];满足a<x<b的实数x的集合叫做开区间,记做(a,b);满足a§x<b,或a<x§b的实数x的集合叫做半开半闭区间,分别记做[a,b),(a,b];满足x>a,x>a,x§b,x<b的实数x的集合分别记做[a,),(a,),(—g,b],(—g,b).注意:对于集合{兀1a<x<b}与区间(a,b),前者a可以大于或等于b,而后者必须a<b.3)求函数的定义域时,一般遵循以下原则:①f(x)是整式时,定义域是全体实数.②f(x)是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤y=tan x中,x丰k兀+—(k G Z).2⑥零(负)指数幕的底数不能为零.⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知f(x)的定义域为[a,b],其复合函数/[g(x)]的定义域应由不等式a§g(x)§b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数y二f(x)可以化成一个系数含有y的关于x的二次方程a(y)x2+b(y)x+c(y)二0,则在a(y)丰0时,由于x,y为实数,故必须有'二b2(y)-4a(y)-c(y)>°,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.6)映射的概念①设A、B是两个集合,如果按照某种对应法则/,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则/)叫做集合A到B的映射,记作f:A T B.②给定一个集合A到集合B的映射,且aG A,bG B•如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值X 、x ,当x<x 时,都12•1••2有f(x)〉f(x),那么就说•••12•f(x)在这个区间上是减函数•yo(1)利用定义y=f(x)(2)利用已知函数的 f(x )N. 单调性1f (X )(3)利用函数图象(在f(x)某个区间图 xx x象下降为减)12(4)利用复合函数(2)打““”函数f (x )-x+x (a >0)的图象与性质(3) /(x )分别在(一a 厂、2]、W'a ,+8)上为增函数,分别在S ,°)、(0,2]上为减函数.q 石£最大(小)值定义V -24a\② 在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数y 二f [g (x )],令u 二g (x ),若y 二f (u )为增,u 二g (x )为增,则y 二f [g (x )]为增;若y 二f (u )为减,u 二g (x )为减,则y 二f [g (x )]为增;若y 二f (u )为增,u 二g (x )为减,则y 二f [g (x )]为减;若y 二f (u )为减,u 二g (x )为增,则y 二f [g (x )]为减. ①一般地,设函数y 二f (x )的定义域为1,如果存在实数M满足:(1)对于任意的x e 1f (x )<M ;(2)存在x 0e1,使得f (x 0)-M•那么,我们称M是函数/(x )记作f (x )二M .max②一般地,设函数y 二f (x )的定义域为I ,如果存在实数m 满足:(1)对于任意的x e 1,都有f (x )=m ;(2) 存在x 0e1,使得f (x 0)-m .那么,我们称m 是函数/(x )的最小值,记作f (x )-m .00max【1.3.2】奇偶性(4)函数的奇偶性 ①定义及判定方法函数的性质定义图象 判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个X ,都有f(—x)=—f(x),那么函数f(x)叫做奇函数.-a-(a,f (aj)KT .(1) 利用定义(要先判断定义域是否关于原点对称)(2) 利用图象(图象关于原点对称)jy(-a.0K/(j)-xi-—(d>0),都有如果对于函数f (x)定义域内(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y轴对称)h、°左移h个单位>y=f(x+h)y=f(x)m>y=f(x)+k ②伸缩变换y=f(x)°<吧1申>y=f(①x)®>i,缩y=f(x)°申申申>y=Af(x)A>1,伸③对称变换y=f(x)原点>y=-f(-x)y=f(x)直线y=<>y=f-1(x)去掉申轴左边图象保留y轴右边图象,并作其关于y轴对称图象>y=f(I x l)y=f(x)<保留x轴上方图象<将x 轴下方图象翻折上去②若函数f(x)为奇函数,且在x=0处有定义,则f(°)-°.③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幕函数、三角函数等各种基本初等函数的图象.①平移变换(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具•要重视数形结合解题的思想方法.第二章基本初等函数(I)〖2.1〗指数函数【2.1.1】指数与指数幕的运算(1)根式的概念①如果x n=a,aGR,xGR,n>1,且nGN,那么x叫做a的n次方根.当n是奇数时,a的n次方根用+③根式的性质:(na)n=a;当n为奇数时,n an=a;当n为偶数时,(a>0)(a<0)符号n'a表示;当n是偶数时,正数a的正的n次方根用符号na表示,负的n次方根用符号一n a表示;0的n次方根是0;负数a 没有n次方根.②式子na叫做根式,这里n叫做根指数,a叫做被开方数.当n为奇数时,a为任意实数;当n为偶数时,a、0.2)分数指数幂的概念m①正数的正分数指数幕的意义是:a n二nam(a>0,n e N,且n>1).0的正分数指数幕等于o.+m1m f1②正数的负分数指数幕的意义是:a一n=(一)n=n:(—)m(a>0,n e N,且n>1).0的负分数指数幕没a¥a+有意义.注意口诀:底数取倒数,指数取相反数.3)分数指数幂的运算性质①a r-a s=a r+s(a>0,r,s e R)②(a r)s=a r(a>0,r,s e R)③(ab)r=a r b r(a>0,b>0,r e R)【2.1.2】指数函数及其性质4)指数函数函数名称指数函数定义函数y-a x(a>0j i a丰1)叫做指数函数a>10<a<1V八y-ax/\y-a x y图象丿\y-1(0,1)(0,1)—”鼻,O x0x定义域R值域(0,+如过定点图象过定点(0,1),即当x=0时,y二1.奇偶性非奇非偶单调性在R上是增函数在R上是减函数①加法:log M +log N 二log(MN )aaa③数乘:n log M =log M n (n e R )aa②减法:lo g M -lo g N 二lo gaaa N④a lo g a N =Nn⑤log M n=logM(b 丰0,n e R )ab a〖2.2〗对数函数【2.2.1】对数与对数运算1)对数的定义①若a x 二N (a >0,且a 丰1),则x 叫做以a 为底N 的对数,记作x 二log N ,其中a 叫做底数,N 叫做真数.a② 负数和零没有对数. ③ 对数式与指数式的互化:x=lo g N o ax =N (a >0,a丰1,N >0).a2)几个重要的对数恒等式log1=0,log a =1,log a b =b .aa a3)常用对数与自然对数常用对数:l g N ,即lo g N ;自然对数:l nN ,即lo g N (其中e =2.71828...).10e(4)对数的运算性质如果a >°,a丰1,M >0,N >0,那么log N⑥换底公式:log N —b (b >0,且b丰1)a log ab2.2.2】对数函数及其性质设函数y二f(x)的定义域为A,值域为C,从式子y二f(x)中解出x,得式子x(y).如果对于y在C中的任何一个值,通过式子x=(y),x在A中都有唯一确定的值和它对应,那么式子x=(y)表示x是y的函数,函数X=9(y)叫做函数y=f(x)的反函数,记作X=f T(y),习惯上改写成y=f T(X).(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式y=f(x)中反解出x=f T(y);③将x=f-1(y)改写成y=f-1(x),并注明反函数的定义域.8)反函数的性质①原函数y=f(x)与反函数y=f-1(x)的图象关于直线y=x对称.②函数y=f(x)的定义域、值域分别是其反函数y=f-1(x)的值域、定义域.③若P a b)在原函数y=f(x)的图象上,则P'(b,a)在反函数y=f-1(x)的图象上.④一般地,函数y=f(x)要有反函数则它必须为单调函数.〖2.3〗幂函数1)幂函数的定义一般地,函数y二x a叫做幕函数,其中x为自变量,a是常数.关于y轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限②过定点:所有的幕函数在(°,+8)都有定义,并且图象都通过点(i,i).③单调性:如果0,则幕函数的图象过原点,并且在[°,+8)上为增函数•如果0,则幕函数的图象在(°,+8)上为减函数,在第一象限内,图象无限接近x轴与y轴.④奇偶性:当a为奇数时,幕函数为奇函数,当a为偶数时,幕函数为偶函数.当a=-(其中p,q互质,p和q GZ),p若p为奇数q为奇数时,则y=x p是奇函数,若p为奇数q为偶数时,则y=x p是偶函数,若p为偶数q为奇数时, ■q则y=XP是非奇非偶函数.⑤图象特征:幕函数y二x a,xG(°,+8),当a>1时,若°<x<1,其图象在直线y=x下方,若x>1,其图象在直线y=x上方,当a<1时,若°<x<1,其图象在直线y=x上方,若x>1,其图象在直线y=x下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:f(x)二ax2+bx+c(a丰°)②顶点式:f(x)二a(x-h)2+k(a丰°)③两根式: f(x)二a(x—x1)(x—x2)(a丰°)(2)求二次函数解析式的方法b 需,顶点坐标是②当a >0时,抛物线开口向上, 函数在Z ,-冷上递减’在[--2a ,+Q 上递增’当x 一2a 时' 2a 4a M (x ,0)M (x ,0),MM 曰x -x I 二I a I ① 已知三个点坐标时,宜用一般式.② 已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③ 若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求f (x )更方便.3)二次函数图象的性质 ①二次函数/(x )二ax 2+bx +c (a 丰0)的图象是一条抛物线,对称轴方程为x 二一b4ac -b 22a'4a4ac -b 2bb 、min (X )=石;当。

高中数学教材人教A版目录(详细版)要点

高中数学教材人教A版目录(详细版)要点

第一章 集合与函数概念数学①必修第二章 基本初等函数(I)第三章 函数的应用第一章 空间几何体第二章 点、直线、平面之间的位置关系数学②必修第三章 直线与方程第四章 圆与方程第二章 统计第三章 概率第一章 三角函数第二章 平面向量第四章 圆与方程第一章 算法初步数学③必修数学④必修第二章 数列第三章 不等式第一章 常用逻辑用语第二章 圆锥曲线与方程第三章 导数及其应用第一章 统计案例第三章 三角恒等变换第一章 解三角形数学⑤必修数学选修1-1第二章 推理与证明数学选修1-2第三章 数系的扩充与复数的引入第四章 框图第一章 常用逻辑用语数学选修2-1第二章 圆锥曲线与方程第三章 空间向量与立体几何第一章 导数及其应用数学选修2-2数学选修2-2第二章 推理与证明第三章 数系的扩充与复数的引入第一章 计数原理数学选修2-3第二章 随机变量及其分布第三章 统计案例第一讲 早期的算术与几何第二讲 古希腊数学第三讲 中国古代数学瑰宝第七讲 千古谜题第八讲 对无穷的深入思考第九讲 中国现代数学的开拓与发展第三讲 中国古代数学瑰宝第四讲 平面解析几何的产生第五讲 微积分的诞生第六讲 近代数学两巨星数学选修3-1数学史选讲第一讲 从欧式几何看球面第二讲 球面上的距离和角第三讲 球面上的基本图形第四讲 球面三角形数学选修3-3球面上的几何第五讲 球面三角形的全等第六讲 球面多边形与欧拉公式第七讲 球面三角形的边角关系第八讲 欧式几何与非欧几何第一讲 平面图形的对称群数学选修3-4对称与群第二讲 代数学中的对称与抽象群的概念第三讲 对称与群的故事第一讲 相似三角形的判定及有关性质数学选修4-1几何证明选讲第二讲 直线与圆的位置关系第三讲 圆锥曲线性质的探讨第一讲 线性变换与二阶矩阵数学选修4-2矩阵与变换第二讲 变换的复合与二阶矩阵的乘法第三讲 逆变换与逆矩阵第四讲 变换的不变量与矩阵的特征向量第一讲 坐标系数学选修4-4坐标系与参数方程第四讲 数论在密码中的应用第一讲 优选法第二讲 证明不等式的基本方法第三讲 柯西不等式与排序不等式第四讲 数学归纳法证明不等式第一讲 整数的整除第二讲 同余与同余方程第三讲 一次不定方程第二讲 参数方程第一讲 不等式与绝对值不等式数学选修4-5不等式选讲数学选修4-6初等数论初步第二讲 决策树方法第三讲 风险型决策的敏感性分析第二讲 试验设计初步第一讲 风险与决策的基本概念第四讲 马尔可夫型决策简介数学选修4-7优选法与实验设计初步数学选修4-9风险与决策1.1 集合1.2 函数及其表示1.3 函数的基本性质2.1 指数函数2.2 对数函数2.3 幂函数3.1 函数与方程3.2 函数模型及其应用1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式4.1 圆的方程4.2 直线、圆的位置关系4.2 直线、圆的位置关系4.3 空间直角坐标系1.1 算法与程序框图1.2 基本算法语句1.3 算法案例2.1 随机抽样2.2 用样本估计总体2.3 变量间的相关关系3.1 随机事件的概率3.2 古典概型3.3 几何概型1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图像和性质1.5 函数y=Asin(ωx+ψ)的图像1.6 三角函数模型的简单应用2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例2.5 平面向量应用举例3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换1.1 正弦定理和余弦定理1.2 应用举例1.3 实习作业2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次(组)与简单的线性规划问题3.4 基本不等式√ab≤﹙a+b﹚/21.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑关联词1.4 全称量词与存在量词2.1 椭圆2.2 双曲线2.3 抛物线3.1 变化率与导数3.2 导数的计算3.3 导数在研究函数中的应用3.4 生活中的优化问题举例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用2.1 合情推理与演绎推理2.2 直接证明与间接证明3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算4.1 流程图4.2 结构图1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑关联词1.4 全称量词与存在量词2.1 曲线与方程2.2 椭圆2.3 双曲线2.4 抛物线3.1 空间向量及其运算3.2 立体几何中的向量方法1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算1.1 分类加法计数原理与分布乘法计数原理1.2 排列与组合1.3 二项式定理2.1 离散型随机变量及其分布列2.2 二项分布及其应用2.3 离散型随机变量的均值与方差2.4 正态分布3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用一 古埃及的数学二 两河流域的数学三 丰富多彩的记数制度一 希腊数学的先行者二 毕达哥拉斯学派三 欧几里得与《原本》四 数学之神——阿基米德一 《周髀算经》与赵爽弦图二 《九章算术》三 大衍求一术四 中国古代数学家一 坐标思想的早期萌芽二 笛卡尔坐标系三 费马的解析几何思想四 解析几何的进一步发展一 微积分产生的历史背景二 科学巨人牛顿的工作三 莱布尼茨的“微积分”一 分析的化身——欧拉二 数学王子——高斯一 三次、四次方程求根公式的发现二 高次方程可解性问题的解决三 伽罗瓦与群论四 古希腊三大几何问题的解决一 古代的无穷观念二 无穷集合论的创立三 集合论的进一步发展与完善一 中国现代数学发展概观二 人民的数学家——华罗庚三 当代几何大师——陈省身一 平面与球面的位置关系一 平面与球面的位置关系二 直线与球面的位置关系和球幂定理三 球面的对称性一 球面上的距离二 球面上的角一 极与赤道二 球面二角形三 球面三角形一 球面三角形三边之间的关系二 球面“等腰”三角形三 球面三角形的周长四 球面三角形的内角和一 球面多边形及其内角和公式二 简单多面体的欧拉公式三 用球面多边形的内角和公式证明欧拉公式一 球面上的正弦定理和余弦定理二 用向量方法证明球面上的余弦定理三 从球面上的正弦定理看球面与平面四 球面上余弦定理的应用——求地球上两城市间的距离一 平面几何与球面几何的比较二 欧式平行公理与非欧几何模型——庞加莱模型三 欧式几何与非欧几何的意义一 平面刚体运动二 对称变换三 平面图形的对称群一 n元对称群Sn二 多项式的对称变换三 抽象群的概念一 带饰和面饰二 化学分子的对称群三 晶体的分类四 伽罗瓦理论一 平行线等分线段定理二 平行线分线段成比例定理三 相似三角形的判定及性质四 直角三角形的射影定理一 圆周角定理二 圆内接四边形的性质与判定定理三 圆的切线的性质及判定定理四 弦切角的性质五 与圆有关的比例线段一 平行射影二 平面与圆柱面的截线三 平面与圆锥面的截线一 线性变换与二阶矩阵二 二阶矩阵与平面向量的乘法三 线性变换的基本性质一 复合变换与二阶矩阵的乘法二 矩阵乘法的性质一 逆变换与逆矩阵二 二阶行列式与逆矩阵三 逆矩阵与二元一次方程组一 变换的不变量——矩阵的特征向量二 特征向量的应用一 平面直角坐标系二 极坐标系三 简单曲线的极坐标方程四 柱坐标系与球坐标系简介一 曲线的参数方程一 曲线的参数方程二 圆锥曲线的参数方程三 直线的参数方程四 渐开线与摆线一 不等式二 绝对值不等式一 比较法二 综合法与分析法三 反证法与放缩法一 二维形式的柯西不等式二 一般形式的柯西不等式三 排序不等式一 数学归纳法二 用数学归纳法证明不等式一 整除二 最大公因数与最小公倍数三 算术基本定理一 同余二 剩余类及其运算三 费马小定理和欧拉定理四 一次同余方程五 拉格朗日插值法和孙子定理六 弃九验算法一 二元一次不定方程二 二元一次不定方程的特解三 多元一次不定方程一 信息的加密与去密二 大数分解和公开密钥一 什么叫优选法二 单峰函数三 黄金分割法——0.618法四 分数法五 其他几种常用的优选法五 其他几种常用的优选法六 多因素方法一 正交试验设计法二 正交试验的应用一 风险与决策的的关系二 风险与决策的基本概念一 马尔可夫链简介二 马尔可夫型决策简介三 长期准则下的马尔可夫型决策理论1.1.1 集合的含义与表示1.1.2 集合间的基本关系1.1.3 集合的基本运算1.2.1 函数的概念1.2.2 函数的表示法1.3.1 单调性与最大(小)值1.3.2 奇偶性2.1.1 指数与指数幂的运算2.1.2 指数函数及其性质2.2.1 对数与对数运算2.2.2 对数函数及其性质3.1.1 方程的根与函数的零点3.1.2 用二分法求方程的近似解3.2.1 几类不同增长的函数模型3.2.2 函数模型的应用实例1.1.1 柱、锥、台、球的结构特征1.1.2 简单组合体的结构特征1.2.1 空间几何体的三视图1.2.2 空间几何体的直观图1.2.3 平行投影与中心投影1.3.1 柱体、锥体、台体的表面积与体积1.3.2 球的体积和表面积2.1.1 平面2.1.2 空间中直线与直线之间的位置关系2.1.3 空间中直线与平面之间的位置关系2.1.4 平面与平面之间的位置关系2.2.1 直线与平面平行的判定2.2.2 平面与平面平行的判定2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质2.3.1 直线与平面垂直的判定2.3.2 平面与平面垂直的判定2.3.3 直线与平面垂直的性质2.3.4 平面与平面垂直的性质3.1.1 倾斜角与斜率3.1.2 两条直线平行与垂直的判定3.2.1 直线的点斜式方程3.2.2 直线的两点式方程3.2.3 直线的一般式方程3.3.1 两条直线的交点坐标3.3.2 两点间的距离3.3.3 点到直线的距离3.3.4 两条平行直线间的距离4.1.1 圆的标准方程4.1.2 圆的一般方程4.2.1 直线与圆的位置关系4.2.2 圆与圆的位置关系4.2.3 直线与圆的方程的应用4.3.1 空间直角坐标系4.3.2 空间两点间的距离公式1.1.1 算法的概念1.1.2 程序框图1.2.1 输入语句、输出语句和赋值语句1.2.2 条件语句1.2.3 循环语句2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.2.1 用样本的频率分布估计总体分布2.2.2 用样本的数字特征估计总体的数字特征2.3.1 变量之间的相关关系2.3.2 两个变量的线性相关3.1.1 随机事件的概率3.1.2 概率的意义3.1.3 概率的基本性质3.2.1 古典概型3.2.2 整数值随机数(random numbers)的产生3.3.1 几何概型3.3.2 均匀随机数的产生1.1.1 任意角1.1.2 弧度制1.2.1 任意角的三角函数1.2.2 同角三角函数的基本关系1.4.1 正弦函数、余弦函数的图像1.4.2 正弦函数、余弦函数的性质1.4.3 正切函数的性质和图像2.1.1 向量的物理背景与概念2.1.2 向量的几何表示2.1.3 相等向量与共线向量2.2.1 向量加法运算及其几何意义2.2.2 向量减法运算及其几何意义2.2.3 向量数乘运算及其几何意义2.3.1 平面向量基本定理2.3.2 平面向量的正交分解及坐标表示2.3.3 平面向量的坐标运算2.3.4 平面向量共线的坐标表示2.4.1 平面向量数量积的物理背景及其含义2.4.2 平面向量数量积的坐标表示、模、夹角2.5.1 平面几何中的向量方法2.5.2 向量在物理中的应用举例3.1.1 两角差的余弦公式3.1.2 两角和与差的正弦、余弦、正切公式3.1.3 二倍角的正弦、余弦、正切公式1.1.1 正弦定理1.1.2 余弦定理3.3.1 二元一次不等式(组)与平面区域3.3.2 简单的线性规划问题1.1.1 命题1.1.2 四种命题1.1.3 四种命题间的相互关系1.2.1 充分条件与必要条件1.2.2 充要条件1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)1.4.1 全称量词1.4.2 存在量词1.4.3 含有一个量词的命题的否定2.1.1 椭圆及其标准方程2.1.2 椭圆的简单几何性质2.2.1 双曲线及其标准方程2.2.2 双曲线的简单几何性质2.3.1 抛物线及其标准方程2.3.2 抛物线的简单几何性质3.1.1 变化率问题3.1.2 导数的概念3.1.3 导数的几何意义3.2.1 几个常用函数的导数3.2.2 基本初等函数的导数公式及导数的运算法则3.3.1 函数的单调性与导数3.3.2 函数的极值与导数3.3.3 函数的最大(小)值与导数2.1.1 合情推理2.1.2 演绎推理2.2.1 综合法和分析法2.2.2 反证法3.1.1 数系的扩充和复数的概念3.1.2 复数的几何意义3.2.1 复数代数形式的加减运算及其几何意义3.2.2 复数代数形式的乘除运算1.1.1 命题1.1.2 四种命题1.1.3 四种命题间的相互关系1.2.1 充分条件与必要条件1.2.2 充要条件1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)1.4.1 全称量词1.4.2 存在量词1.4.3 含有一个量词的命题的否定2.1.1 曲线与方程2.1.2 求曲线的方程2.2.1 椭圆及其标准方程2.2.2 椭圆的简单几何性质2.3.1 双曲线及其标准方程2.3.2 双曲线的简单几何性质2.4.1 抛物线及其标准方程2.4.2 抛物线的简单几何性质3.1.1 空间向量及其加减运算3.1.2 空间向量的数乘运算3.1.3 空间向量的数量积运算3.1.4 空间向量的正交分解及其坐标表示3.1.5 空间向量运算的坐标表示1.1.1 变化率问题1.1.2 导数的概念1.1.3 导数的几何意义1.2.1 几个常用函数的导数1.2.2 基本初等函数的导数公式及导数的运算法则1.3.1 函数的单调性与导数1.3.2 函数的极值与导数1.3.3 函数的最大(小)值与导数1.5.1 曲边梯形的面积1.5.2 汽车行驶的路程1.5.3 定积分的概念1.7.1 定积分在几何中的应用1.7.2 定积分在物理中的应用2.1.1 合情推理2.1.2 演绎推理2.2.1 综合法和分析法2.2.2 反证法3.3.1 数系的扩充和复数的概念3.3.2 复数的几何意义3.2.1 复数代数形式的加减运算及其几何意义3.2.2 复数代数形式的乘除运算1.2.1 排列1.2.2 组合1.3.1 二项式定理1.3.2 “杨辉三角”与二项式系数的性质2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.2.1 条件概率2.2.2 事件的相互独立性2.2.3 独立重复试验与二项分布2.3.1 离散型随机变量的均值2.3.2 离散型随机变量的方差1. 象形文字中的数字记法2. 纸草书上的数学3. 几何学的诞生1. 楔形文字中的记数法2. 泥板上的代数3. 泥板上的几何1. 中国古代的算筹记数2. 印度——阿拉伯数码3. 其他记数制度1. 毕达哥拉斯2. 勾股定理与勾股形数3. 多边形数4. 不可公度1. 几何大师欧几里得2. 《原本》1. 《九章算术》的重要成就举例2. 《九章算术》的深远影响1. 刘徽与割圆术2. 祖冲之与祖暅1. 牛顿与微积分2. 牛顿的“流数术”1. 数学英雄2. 欧拉的丰功伟绩1. 高斯的故事2. 高斯的学术成就1. 三次、四次方程问题2. 世界上最早的数学竞赛3. 张冠李戴1. 初步的尝试2. 中学生数学家取得的成就1. 伽罗瓦的传奇人生2. 伽罗瓦的群论1. 三大几何问题的由来2. 解决三大几何问题的早起努力3. 三大几何问题的最后解决1. 建立集合理论的最早尝试2. 康托尔的集合论思想3. 不朽的康托尔1. 罗素悖论2. 消除悖论的初步成功1. 奠基阶段2. 发展时期1. 小荷才露尖尖角2. 出类拔萃赴英伦3. 艰苦岁月创辉煌4. 报效祖国攀高峰5. 独具慧眼识英才6. 老骥伏枥志千里1. 少年时代2. 清华岁月3. 留学欧洲4. 抗日烽火5. 定居美国6. 崇高荣誉7. 落叶归根1. 平面与球面相交2. 平面与球面相离3. 平面与球面相切1. 球面三角形2. 三面角3. 对顶三角形4. 球极三角形1. “边边边”(S.S.S)判定定理2. “边角边”(S.A.S)判定定理3. “角边角”(A.S.A)判定定理4. “角角角”(A.A.A)判定定理1. 向量的向量积2. 球面上余弦定理的向量证法1. 平面刚体运动的定义2. 平面刚体运动的性质1. 对称变换的定义2. 正多边形的对称变换3. 对称变换的合成4. 对称变换的性质5. 对称变换的逆变换1. 群的一般概念2. 直积1. 相似三角形的判定2. 相似三角形的性质(一)几类特殊线性变换及其二阶矩阵 1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用1.恒等变换2.旋转变换3.切变变换4.反射变换5.投影变换1. 逆变换与逆矩阵2. 逆矩阵的性质1. 二元一次方程组的矩阵形式2. 逆矩阵与二元一次方程组1. 特征值与特征向量2. 特征值与特征向量的计算1. A^nα的简单表示2. 特征向量在实际问题中的应用1. 平面直角坐标系2. 平面直角坐标系中的伸缩变换1. 极坐标系的概念2. 极坐标和直角坐标的互化1. 圆的极坐标方程2. 直线的极坐标方程1. 柱坐标系2. 球坐标系1. 参数方程的概念2. 圆的的参数方程3. 参数方程和普通方程的互化1. 椭圆的参数方程2. 双曲线的参数方程3. 抛物线的参数方程1. 渐开线2. 摆线1. 不等式的基本性质2. 基本不等式3. 三个正数的算术-几何平均不等式1. 绝对值三角不等式2. 绝对值不等式的解法1. 整除的概念和性质2. 带余除法3. 素数及其判别法1. 最大公因数2. 最小公倍数1. 同余的概念2. 同余的性质1. 一次同余方程2. 大衍求一术1. 黄金分割常数2. 黄金分割法——0.618法1. 分数法2. 分数法的最优性1. 对分法2 盲人爬山法3. 分批试验法4. 多峰的情形1. 纵横对折法和从好点出发法2. 平行线法3. 双因素盲人爬山法1. 正交表2. 正交试验设计3. 试验结果的分析4. 正交表的特性1. 风险(平均损失)2. 平均收益3. 损益矩阵4. 风险型决策1. 马尔可夫性与马尔可夫链2. 转移概率与转移概率矩阵1. 马尔可夫链的平稳分布2. 平稳分布与马尔可夫型决策的长期准则3. 平稳准则的应用案例。

人教版高中数学知识点总结:新课标人教A版高中数学选修2-2知识点总结(最新整理)

人教版高中数学知识点总结:新课标人教A版高中数学选修2-2知识点总结(最新整理)

高中数学选修2-2知识点总结第一章 导数及其应用1.函数的平均变化率为=∆∆=∆∆x fx y xx f x x f x x x f x f ∆-∆+=--)()()()(111212注1:其中是自变量的改变量,可正,可负,可零。

x ∆注2:函数的平均变化率可以看作是物体运动的平均速度。

2、导函数的概念:函数)(x f y =在处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim0000,则称函数)(x f y =0x x =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim0000.3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。

4导数的背景(1)切线的斜率;(2)瞬时速度;(3)边际成本。

5、常见的函数导数和积分公式函数导函数不定积分y c=0'y =————————n y x =()*n N ∈1'n y nx -=11n nx x dx n +=+⎰xy a=()0,1a a >≠'ln xy a a=ln xxa a dx a=⎰x y e ='xy e =x x e dx e =⎰log a y x=()0,1,0a a x >≠>1'ln y x a =————————ln y x =1'y x=1ln dx xx =⎰sin y x='cos y x =cos sin xdx x =⎰cos y x='sin y x=-sin cos xdx x=-⎰6、常见的导数和定积分运算公式:若,均可导(可积),则有:()f x ()g x和差的导数运算[]'''()()()()f xg x f x g x ±=±积的导数运算[]'''()()()()()()f xg x f x g x f x g x ⋅=±特别地:()()''Cf x Cf x =⎡⎤⎣⎦商的导数运算[]'''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦特别地:()()21'()'g x g x g x ⎡⎤-=⎢⎥⎣⎦复合函数的导数x u x y y u '''=⋅微积分基本定理(其中()baf x dx =⎰)()()'F x f x =和差的积分运算1212[()()]()()bb baaaf x f x dx f x dx f x dx±=±⎰⎰⎰特别地:()()()bbaakf x dx k f x dx k =⎰⎰为常数积分的区间可加性()()()()bc baacf x dx f x dx f x dx a c b =+<<⎰⎰⎰其中6.用导数求函数单调区间的步骤:①求函数f (x )的导数②令>0,解不等式,得x 的范围就是递增'()f x '()f x 区间.③令<0,解不等式,得x 的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的'()f x 定义域。

2023年新教材高中人教A版数学必修第一册知识点(8页)全文

2023年新教材高中人教A版数学必修第一册知识点(8页)全文

新教材高一数学必修第—册知识点第一章 集合与常用逻辑用语1元素:研究的对象统称为元素,用小写拉丁字母表示,元素三大性质:互异性,确定性,无 ,,,c b a 序性.2集合:一些元素组成的总体叫做集合,简称集,用大写拉丁字母表示. ,,,C B A 3集合相等:两个集合的元素一样,记作.B A ,B A =4元素与集合的关系:①属于:;②不属于:.A a ∈A a ∉5常用的数集及其记法:自然数集;正整数集;整数集;有理数集;实数集.N +N N 或*Z Q R 6集合的表示方法:①列举法:把集合中的全部元素一一列举出来,并用花括号括起来表示集合的方法;②描述法:把集合中全部具有共同特征的元素所组成的集合表示为的方法; )(x P x })(|{x P A x ∈③图示法(图):用平面上封闭曲线的内部代表集合的方法.Venn 7集合间的根本关系:子集:对于两个集合,如果集合中任意一个元素都是集合中的元素,就B A ,A B 称集合为集合的子集,记作,读作包含于;真子集:如果,但存在元素,且A A A B B A ⊆B x ∈A x ∉,就称集合是集合的真子集,记作,读作真包含于.A B A B A B 8空集:不含任何元素的集合,用表示,空集的性质,空集是任何集合的子集,是任何集合的真子∅集.9集合的根本运算:并集;交集; },|{B x A x x B A ∈∈=或 },|{B x A x x B A ∈∈=且 补集(为全集,全集是含有所研究问题中涉及的全部元素). },|{A x U x x A C U ∉∈=且U 运算性质:;;;;B A B B A ⊆⇔= B A A B A ⊆⇔= A A =∅ ∅=∅ A ,.∅==∅=U C U C A A C C U U U U ,,)()()()(),()()(B A C B C A C B A C B C A C U U U U U U ==10充分条件与必要条件:一般地,“假设p ,则q 〞为真命题,p 可以推出q ,记作,称p 是q 的q p ⇒充分条件,q 是p 的必要条件;p 是q 的条件的四种类型:假设,则p 是q 的充分不必要q q p ,⇒p 条件;假设,则p 是q 的必要充分不条件;假设,则p 是q 的充要条件;p p q ,⇒q q p ⇔假设,,则p 是q 的既不充分也不必要条件. pq q p 11全称量词及全称量词命题:短语“全部的〞,“任意一个〞在逻辑中叫做全称量词,并用符号表∀示,含有全称量词的命题成为全称量词命题.12存在量词及存在量词命题:短语“存在一个〞,“至少有一个〞在逻辑中叫做存在量词,并用符号∃表示,含有存在量词的命题成为存在量词命题.13全称量词命题与存在量词命题的否认:全称量词命题的否认是存在量词命题;存在量词命题的否认是全称量词命题.第二章一元二次函数、方程不等式1不等式的性质不等式的性质: ①对称性;②传递性;③可加性a b b a >⇔<,a b b c a c >>⇒>;④可乘性,;a b a c b c >⇒+>+,0a b c ac bc >>⇒>,0a b c ac bc ><⇒<⑤同向可加性;⑥同向可乘性; ,a b c d a c b d >>⇒+>+0,0a b c d ac bd >>>>⇒>⑦可乘方性;()0,1n n a b a b n n >>⇒>∈N >⑧可开方性.⑨可倒数性. )0,1a b n n >>⇒>∈N >ba b a 110<⇒>>2重要不等式:假设,则,当且仅当时等号成立.R b a ∈,ab b a 222≥+b a =3根本不等式:假设,,则,即,当且仅当时等号成立. 0a >0b >a b +≥2a b+≥b a =4不等式链:假设,,则,当且仅当时等号成立;一正0a >0b >ba ab b a b a 1122222+≥≥+≥+b a =二定三相等.5一元二次不等式:只含有一个未知数,并且未知数的最gao 次数是的不等式. 26第三章 函数的概念与性质1函数的概念:一般地,设是非空的实数集,如果对于集合中的任意一个数x ,按照某种确定的B A ,A 对应关系,在集合中都有唯—确定的数y 与它对应,那么就称为从集合到集合的一f B B A f →:A B 个函数,记作,其中,x 叫做自变量,x 的取值范围叫做函数的定义域,与x 的值相对A x x f y ∈=),(A 应的y 值叫做函数值,函数值的集合叫做函数的值域,值域是集合的子集. }|)({A x x f ∈B 2函数的三要素:定义域、对应关系、值域. 求函数定义域的原则:(1)假设为整式,则其定义域是;()f x R (2)假设为分式,则其定义域是使分母不为0的实数集合;()f x (3)假设是二次根式(偶次根式),则其定义域是使根号内的式子不小于0的实数集合; ()f x (4)假设,则其定义域是; ()0f x x =}{0x x ≠(5)假设,则其定义域是;()()0,1x f x a a a =>≠R (6)假设,则其定义域是; ()()log 0,1a f x x a a =>≠}{0x x >(7)假设,则其定义域是;x x f tan )(=},2|{Z k k x x ∈+≠ππ求函数值域的方法:配方法,换元法,图象法,单调性法等;求函数的解析式的方法:待定系数法,换元法,配凑法,方程组法等;3函数的表示方法:解析法(用函数表达式表示两个变量之间的对应关系)、图象法(用图象表达两个变量之间的对应关系)、列表法(列出表格表示两个变量之间的对应关系).4分段函数:在定义域内,对于自变量x 的不同取值区间,有不同对应关系的函数. 6函数的单调性:(1)单调递增:设任意(,I 是的定义域),当时,有.特别的,当D x x ∈21,I D ⊆()f x 12x x <12()()f x f x <函数在它的定义域上单调递增时,该函数称为增函数;(2)单调递减:设任意(,I 是的定义域),当时,有.特别的,当D x x ∈21,I D ⊆()f x 12x x <12()()f x f x >函数在它的定义域上单调递增时,该函数称为减函数.7单调区间:如果函数在区间上单调递增或单调递减,那么就说函数在这一区间有(严格的)单调性,区间就叫做函数的单调区间,单调区间分为单调增区间和单调减区间. 8复合函数的单调性:同增异减.9函数的最大值、最小值:一般地,设函数的定义域为,如果存在实数满足:,都有)(x f y =I M I x ∈∀;使得,那么称是函数的最大(小)值. ))(()(M x f M x f ≥≤I x ∈∃0M x f =)(0M10函数的奇偶性:偶函数:一般地,设函数的定义域为,如果,都有,且,那么函)(x f y =I I x ∈∀I x ∈-)()(x f x f =-数叫做偶函数;偶函数的图象关于y 轴对称;偶函数满足;)(x f y =|)(|)()(x f x f x f ==-奇函数:一般地,设函数的定义域为,如果,都有,且,那么)(x f y =I I x ∈∀I x ∈-)()(x f x f -=-函数叫做奇函数;奇函数的图象关于原点对称;假设奇函数的定义域中有零,则其函数图象必过原点,即)(x f y =.(0)0f =11幂函数:一般地,函数叫做幂函数,其中是自变量,是常数. αx y =x α12幂函数的性质:()f x x α=①全部的幂函数在都有定义,并且图象都通过点;()0,+∞()1,1②如果,则幂函数的图象过原点,并且在区间上是增函数;0α>[)0,+∞③如果,则幂函数的图象在区间上是减函数,在第—象限内,当从右边趋向于原点时,0α<()0,+∞x 图象在轴右方无限地逼近轴,当趋向于时,图象在轴上方无限地逼近轴; y y x +∞x x ④在直线的右侧,幂函数图象“指大图高〞; 1=x ⑤幂函数图象不出现于第四象限. 第四章 指数函数与对数函数1n 次方根与分数指数幂、指数幂运算性质(1)假设,则;; n x a =))n x n=⎪⎩为奇数为偶数()()a n a n ⎧⎪=⎨⎪⎩为奇数为偶数(3);(4);na =*0,,,1)m na a m n N n =>∈>且(5);*0,,1)m naa m n N n -=>∈>,且(6)的正分数指数幂为,的负分数指数幂没有意义.000(7);()0,,r s r sa a a a r s R +⋅=>∈(8);()()0,,r s rsa a a r s R =>∈(9).()()0,0,,rrrab a b a b r s R =⋅>>∈2对数、对数运算性质(1);(2); ()log 0,1xa a N x N a a =⇔=>≠()log 100,1a a a =>≠(3);(4);;()log 10,1a a a a =>≠()log 0,1a Na N a a =>≠(5);()log 0,1m a a m a a =>≠(6);()log ()log log 0,1,0,0a a a MN M N a a =+>≠M >N >(7); ()log log log 0,1,0,0aa a MM N a a N=->≠M >N >(8);()log log 0,1,0n a a M n M a a =⋅>≠M >(9)换底公式; ()log log 0,1,0,0,1log c a c bb a a bc c a=>≠>>≠(10); ()log log 0,1,,*m na a nb b a a n m N m =>≠∈(11);()1log log 0,1,0,aa M a a M n R n=>≠>∈(12). ()log log log 10,1,0,1,0,1a b c b c a a a b b c c ⋅⋅=>≠>≠>≠3指数函数及其性质:)1,0(≠>=a a a y x 且①定义域为; ②值域为;③过定点;(),-∞+∞()0,+∞()0,1④单调性:当时,函数在上是增函数;当时,函数在上是减函数; 1a >()f x R 01a <<()f x R ⑤在y 轴右侧,指数函数的图象“底大图高〞. 4对数函数及其性质:)1,0(log ≠>=a a x y a 且①定义域为;②值域为;③过定点;()0,+∞(),-∞+∞()1,0④单调性:当时,函数在上是增函数;当时,函数在上是减函1a >()f x ()0,+∞01a <<()f x ()0,+∞数;⑤在直线的右侧,对数函数的图象“底大图低〞.1=x 5指数函数与对数函数互为反函数,它们的图象关于直线对称. x a y =)1,0(log ≠>=a a x y a 且x y =6不同函数增长的差异:线性函数模型的增长特点是直线上升,其增长速度不变;指数)0(>+=k b kx y 函数模型的增长特点是随着自变量的增大,函数值增大的速度越来越快,呈“指数爆炸〞状)1(>=a a y x 态;对数函数模型的增长特点是随着自变量的增大,函数值增大速度越来越慢,即增长)1(log >=a x y a 速度平缓;幂函数模型的增长速度介于指数函数和对数函数之间.)0(>=n x y n 7函数的零点:在函数的定义域内,使得的实数叫做函数的零点.)(x f y =0)(=x f x 8零点存在性定理:如果函数在区间上的图象是连续不断的一条曲线,且有,()f x [],a b ()()0f a f b ⋅<那么函数在区间内至少有一个零点,即存在,使得,这个也就是方程()y f x =(),a b (),c a b ∈()0f c =c 的根.()0f x =9二分法:对于区间上图象连续不断且的函数,通过不断把它的零点所在],[b a ()()0f a f b ⋅<)(x f y =区间一分为二,使得区间的两个端点逐渐逼近零点,进而得到零点近似值的方法.10给定准确度,用二分法求函数零点近似值的步骤: ε)(x f y =0x ⑴确定零点的初始区间,验证; 0x [],a b ()()0f a f b ⋅<⑵求区间的中点;[],a b c ⑶计算,并进一步确定零点所在的区间; )(c f ①假设,则就是函数的零点;0)(=c f c ②假设(此时),则令; 0)()(<c f a f ),(0c a x ∈c b =③假设(此时),则令;0)()(<b f c f ),(0b c x ∈c a =⑷推断是否到达准确度:假设,则得到零点的近似值(或);否则重复上面的⑵至⑷. εa b ε-<a b 第五章 三角函数1任意角的分类:按终边的旋转方向分: ⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2象限角:角的顶点与原点重合,角的始边与轴的非负半轴重合,终边落在第几象限,则称为第αx α几象限角.第—象限角的集合为;{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为;{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为; {}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z角的终边不在任何一个象限,就称这个角不属于任何一个象限 α终边在轴非负半轴的角的集合; x },2|{Z k k ∈=παα终边在轴非正半轴的角的集合; x },2|{Z k k ∈+=ππαα终边在轴非负半轴的角的集合;y },22|{Z k k ∈+=ππαα终边在轴非正半轴的角的集合;y },22|{Z k k ∈+-=ππαα终边在轴的角的集合;x },|{Z k k ∈=παα终边在轴的角的集合;y },2|{Z k k ∈+=ππαα终边在坐标轴的角的集合; },2|{Z k k ∈=παα2终边相同的角:与角终边相同的角的集合为.α{}360,k k ββα=⋅+∈Z 3弧度制:长度等于半径长的弧所对的圆心角叫做弧度.14角度与弧度互化公式:,,.2360π=1180π=180157.3π⎛⎫=≈ ⎪⎝⎭5扇形公式:半径为的圆的圆心角所对弧的长为,则角的弧度数的绝对值是.假设扇形r αl αlrα=的圆心角为,半径为,弧长为,周长为,面积为,则,,()αα为弧度制r l C S l r α=2C r l =+.21122S lr r α==6三角函数的概念:设是一个任意大小的角,的终边上任意一点P 的坐标是,它与原点的距αα(),x y离是,则,,. ()0r r =>sin y r α=cos x r α=()tan 0yx xα=≠7三角函数的符号:一全正二正弦三正切四余弦. 8记忆特别角的三角函数值:α 15 30 45 60 75 90 120 135 150180 270 360 α 12π 6π 4π 3π 125π 2π 32π 43π 65π π 23ππ2 αsin 426- 21 22 23 426+ 1 23 22 210 1-0 αcos 426+ 23 22 21 426-0 21- 22- 23-1-01 αtan 32- 1 3 32+不存在 3- 1- 33-0 不存在9同角三角函数的根本关系:,;()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=- .()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫==⎪⎝⎭10诱导公式口诀:奇变偶不变,符号看象限.,,.()()1sin 2sin k παα+=()cos 2cos k παα+=()()tan 2tan k k παα+=∈Z ,,. ()()2sin sin παα+=-()cos cos παα+=-()tan tan παα+=,,.()()3sin sin αα-=-()cos cos αα-=()tan tan αα-=-,,. ()()4sin sin παα-=()cos cos παα-=-()tan tan παα-=-,.,. ()5sin cos 2παα⎛⎫-=⎪⎝⎭cos sin 2παα⎛⎫-= ⎪⎝⎭()6sin cos 2παα⎛⎫+= ⎪⎝⎭cos sin 2παα⎛⎫+=- ⎪⎝⎭11三角函数的图象与性质:sin y x = cos y x =tan y x =图象定义域RR,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R 函数性质12两角和差的正弦、余弦、正切公式:(1);(2); ()cos cos cos sin sin αβαβαβ-=+()cos cos cos sin sin αβαβαβ+=-(3);(4);()sin sin cos cos sin αβαβαβ-=-()sin sin cos cos sin αβαβαβ+=+(5);()tan tan tan 1tan tan αβαβαβ--=+()()tan tan tan 1tan tan αβαβαβ-=-+(6). ()tan tan tan 1tan tan αβαβαβ++=-()()tan tan tan 1tan tan αβαβαβ+=+-13二倍角公式:(1);(2);sin 22sin cos ααα=2222cos 2cos sin 2cos 112sin ααααα=-=-=-(,);(3);2cos 21cos 2αα+=21cos 2sin 2αα-=22tan tan 21tan ααα=-14半角公式:(1);(2);(3);(4)2cos 12sin αα-±=2cos 12cos αα+±=αααcos 1cos 12tan +-±=αααααcos 1sin sin cos 12tan +=-=15辅助角公式:.的终边上在角点其中ϕϕϕ),(,tan ),sin(cos sin 22b a abx b a x b x a =±+=±16函数的图象与性质:b x A y ++=)sin(ϕω图象变换:先平移后伸缩:函数的图象上全部点向左(右)平移个单位长度,得到函数sin y x =ϕ的图象;再将函数的图象上全部点的横坐标伸长(缩短)到原来的倍(纵坐()sin y x ϕ=+()sin y x ϕ=+1ω标不变),得到函数的图象;再将函数的图象上全部点的纵坐标伸长(缩()sin y x ωϕ=+()sin y x ωϕ=+短)到原来的倍(横坐标不变),得到函数的图象. A ()sin y x ωϕ=A +先伸缩后平移:函数的图象上全部点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函sin y x =1ω最值当时,22x k ππ=+()k ∈Z ;当max1y =22x k ππ=-时,.()k ∈Z min 1y =-当时,()2x k k π=∈Z ;当max 1y =2x k ππ=+时,.()k ∈Z min 1y =-既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数奇函数单调性在 2,222k k ππππ⎡⎤-+⎢⎥⎣⎦上是增函数;在()k ∈Z 32,222k k ππππ⎡⎤++⎢⎥⎣⎦上是减函数.()k ∈Z 在上是[]()2,2k k k πππ-∈Z 增函数;在[]2,2k k πππ+上是减函数.()k ∈Z 在,22k k ππππ⎛⎫-+ ⎪⎝⎭上是增函数.()k ∈Z 对称性对称中心()(),0k k π∈Z 对称轴()2x k k ππ=+∈Z 对称中心 (),02k k ππ⎛⎫+∈Z ⎪⎝⎭对称轴()x k k π=∈Z 对称中心 (),02k k π⎛⎫∈Z⎪⎝⎭无对称轴数的图象;再将函数的图象上全部点向左(右)平移个单位长度,得到函数sin y x ω=sin y x ω=ϕω的图象;再将函数的图象上全部点的纵坐标伸长(缩短)到原来的倍(横()sin y x ωϕ=+()sin y x ωϕ=+A 坐标不变),得到函数的图象. ()sin y x ωϕ=A +五点法画图函数的性质:()()sin 0,0y x ωϕω=A +A >>①定义域为R ;②值域为;③单调性:依据函数的单调区间求函数的单调区间; ],[A A -x y sin =④奇偶性:当时,函数是奇函数;当时,函数Z k k ∈=,πϕ()sin y x ωϕ=A +Z k k ∈+=,2ππϕ是偶函数;⑤周期:;⑥对称性:依据函数的对称性研究函数的对称()sin y x ωϕ=A +ωπ2=T x y sin =性12π17函数的应用B x A y ++=)sin(ϕω①振幅:A ;②周期:;③频率:;④相位:;⑤初相:.2πωT =12f ωπ==T x ωϕ+ϕ⑥最值:函数,当时,取得最小值为 ;当时,取得最大值为B x A y ++=)sin(ϕω1x x =min y 2x x =maxy ,则,,.()max min 12y y A =-()max min 12y y B =+()21122x x x x T=-<。

高中数学新教材人教A版全部知识详解归纳

高中数学新教材人教A版全部知识详解归纳
6.不等式3≤|8-x|的解集为.
7.不等式|2x+1|-2|x-1|>0的解集为

10.解不等式|2x-4|-|3x+9|<1.
预备专题二
常用公式
1.平方差公式:(a+b)(a-b)=a2-b2.
2.完全平方公式:(ab)2=a22ab+b2.
3.立方和公式:(a+b)(a2-ab+b2)=a3+b3.
例2.已知:x+y=1,求x3+y3+3xy的值.
例3.已知:x2-3x+1=0,求x3+1的值.
x
2
例4.设x=
2-
2
,y=
2+
,求:x3+y3的值.
冲关训练二
1.计算(a2)3+a2·a3-a2÷a-3的结果为()8.先化简,再求值:(x+y)2-(x+y)(x-y)-2y2,
A.2a5-aB.2a5-1
例2.解方程:2x13.
二、|x|<a与|x|>a(a>0)型绝对值பைடு நூலகம்等式的几何意义及其解法
(1) |x|≤a(a>0)的几何意义是以点a和-a为端点的线段,|x|≤a⇔-a≤x≤a;即解集是[-a,a].
(2) |x|>a(a>0)的几何意义是数轴除去以点a和-a为端点的线段后剩下的两条射线,|x|>a⇔x<-a或x>a;即解集是(-∞,-a)∪(a,+∞).
8.解不等式|x-x2-2|>x2-3x-4.
9.(高考江苏卷)解不等式x+|2x+3|≥2.
11
A.3,+∞B.3,1
1
C.[1,+∞)D.3,1∪(1,+∞)
4.不等式|x+3|-|x-3|>3的解集是()
33
A.x>
B.
<x≤3
x2x2
C.{x|x≥3}D.{x|-3<x≤0}5.不等式|x-2|≤|x|的解集是.

新课标人教A版高一数学必修知识点总结归纳大全

新课标人教A版高一数学必修知识点总结归纳大全

精心整理高中数学必修1知识点第一章集合与函数概念一、集合有关概念:1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:(1说明:(2)(3)(4)3}(1(2(Ⅱ)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x∈R|x-3>2}或{x|x-3>2}(3)图示法(文氏图):4、常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R5、“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a611.反之:集合A2结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B A B B A且⇔⊆⊆①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A⊂B(或B⊃A)③如果A⊆B,B⊆C,那么A⊆C④如果A⊆B同时B⊇A那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。

三、集合的运算1.的交集.记作A2、做A,B3B=B∪A.4、(1(2记作:S S(3)性质:⑴C U(C U A)=A⑵(C U A)∩A=Φ⑶(C U A)∪A=U(4)(C U A)∩(C U B)=C U(A∪B)(5)(C U A)∪(C U B)=C U(A∩B)二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注意:1、如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;2、函数的定义域、值域要写成集合或区间的形式.组的(3)义的x(2(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

2019新人教A版高中数学选择性必修一全册重点知识点归纳总结(复习必背)【可编辑全文】

2019新人教A版高中数学选择性必修一全册重点知识点归纳总结(复习必背)【可编辑全文】

2019新人教版高中数学选择性必修一全册重点知识点归纳总结(复习必背)第一章空间向量与立体几何一、知识要点1、空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性2、空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+ ;BA OA OB a b =-=- ;()OP a R λλ=∈运算律:(1)加法交换律:a b b a +=+(2)加法结合律:)()(c b a c b a ++=++(3)数乘分配律:ba b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则3、共线向量(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作b a//。

(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a=λb 。

(3)三点共线:A 、B 、C 三点共线<=>ACAB λ=<=>OB y OA x OC +=(其中x +y =1)(4)与a 共线的单位向量为4、共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b 不共线,p与向量,a b 共面的条件是存在实数x ,y 使p xa yb =+。

(3)四点共面:若A 、B 、C 、P 四点共面<=>ACy AB x AP +=<=>)1(=++++=z y x OC z OB y OA x OP 其中5、空间向量基本定理:如果三个向量,,a b c不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。

新人教版A高中数学必修1-5知识点高考复习总结大全

新人教版A高中数学必修1-5知识点高考复习总结大全

高一数学必修1知识网络集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。

、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。

、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。

真子集:若且(即至少存在但),则是的真子集。

集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,,()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。

高中数学知识点总结(精华版)

高中数学知识点总结(精华版)

高中数学必修+选修知识点归纳新课标人教A版一、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。

集合三要素:确定性、互异性、无序性。

2、 只要构成两个集合的元素是一样的,就称这两个集合相等。

3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法.§1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。

记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B. 3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n2个子集,21n-个真子集.§1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A . 2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A . 3、全集、补集?{|,}U C A x x U x U =∈∉且 §1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.§1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、注意函数单调性的证明方法:(1)定义法:设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.步骤:取值—作差—变形—定号—判断 格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…(2)导数法:设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数. §1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称. 知识链接:函数与导数1、函数)(x f y =在点0x 处的导数的几何意义: 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.2、几种常见函数的导数①'C 0=;②1')(-=n n nxx ;③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a xx ln )('=; ⑥xx e e =')(;⑦a x x a ln 1)(log '=;⑧xx 1)(ln '=3、导数的运算法则 (1)'()u v u v ±=±.(2)'''()uv u v uv =+.(3)'''2()(0)u u v uv v v v-=≠. 4、复合函数求导法则复合函数(())y f g x =的导数和函数(),()y f u u g x ==的导数间的关系为x u x y y u '''=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.解题步骤:分层—层层求导—作积还原. 5、函数的极值 (1)极值定义:极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值;极值是在0x 附近所有的点,都有)(x f >)(0x f ,则)(0x f 是函数)(x f 的极小值. (2)判别方法:①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值;②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. 6、求函数的最值(1)求()y f x =在(,)a b 内的极值(极大或者极小值)(2)将()y f x =的各极值点与(),()f a f b 比较,其中最大的一个为最大值,最小的一个为极小值。

高中数学人教A版(2019)选择性必修第三册知识点归纳含答案

高中数学人教A版(2019)选择性必修第三册知识点归纳含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!高中数学选择性必修第三册必备知识手册2024一轮复习【计数原理】1、一般地,有如下分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有N m n =+种不同的方法。

2、一般地,有如下分步乘法计数原理:完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有N m n =´种不同的方法。

3、一般地,我们有:n 元集合A ={1a ,2a ,…,n a }的不同子集有2n个。

天津高中数学必修 选修全部知识点精华归纳总结(新课标人教A版)

天津高中数学必修 选修全部知识点精华归纳总结(新课标人教A版)

高三第一轮复习资料(个人汇编请注意保密)引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。

不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

此外,基础内容还增加了向量、算法、概率、统计等内容。

选修课程有4个系列:系列1:由2个模块组成。

选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。

选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。

选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。

选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。

系列3:由6个专题组成。

选修3—1:数学史选讲。

选修3—2:信息安全与密码。

选修3—3:球面上的几何。

选修3—4:对称与群。

选修3—5:欧拉公式与闭曲面分类。

选修3—6:三等分角与数域扩充。

系列4:由10个专题组成。

选修4—1:几何证明选讲。

选修4—2:矩阵与变换。

选修4—3:数列与差分。

选修4—4:坐标系与参数方程。

选修4—5:不等式选讲。

选修4—6:初等数论初步。

选修4—7:优选法与试验设计初步。

选修4—8:统筹法与图论初步。

选修4—9:风险与决策。

选修4—10:开关电路与布尔代数。

2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算必修1数学知识点第一章:集合与函数概念§1.1.1、集合1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。

新教材 人教A版高中数学选择性必修第一册全册讲义(知识点考点汇总及配套习题,含解析)

新教材 人教A版高中数学选择性必修第一册全册讲义(知识点考点汇总及配套习题,含解析)

人教A版高中数学选择性必修第一册全册学案第一章空间向量与立体几何........................................................................................................ - 2 -1.1空间向量及其运算......................................................................................................... - 2 -1.1.1空间向量及其线性运算...................................................................................... - 2 -1.1.2空间向量的数量积运算.................................................................................... - 16 -1.2空间向量基本定理....................................................................................................... - 29 -1.3空间向量及其运算的坐标表示................................................................................... - 38 -1.3.1空间直角坐标系................................................................................................ - 38 -1.3.2空间运算的坐标表示........................................................................................ - 46 -1.4空间向量的应用........................................................................................................... - 59 -1.4.1用空间向量研究直线、平面的位置关系........................................................ - 59 -第1课时空间向量与平行关系........................................................................ - 59 -第2课时空间向量与垂直关系........................................................................ - 69 -1.4.2用空量研究距离、夹角问题............................................................................ - 79 -章末总结 ............................................................................................................................... - 97 - 第二章直线和圆的方程............................................................................................................ - 113 -2.1直线的倾斜角与斜率................................................................................................. - 113 -2.1.1倾斜角与斜率.................................................................................................. - 113 -2.1.2两条直线平行和垂直的判定.......................................................................... - 121 -2.2直线的方程 ................................................................................................................ - 131 -2.2.1直线点斜式方程.............................................................................................. - 131 -2.2.2直线的两点式方程.......................................................................................... - 137 -2.2.3直线的一般式方程.......................................................................................... - 145 -2.3直线的交点坐标与距离公式..................................................................................... - 154 -2.3.1两条直线的交点坐标...................................................................................... - 154 -2.3.2两点间的距离公式.......................................................................................... - 154 -2.3.3点到直线的距离公式...................................................................................... - 163 -2.3.4两条平行直线间的距离.................................................................................. - 163 -2.4圆的方程 .................................................................................................................... - 171 -2.4.1圆的标准方程.................................................................................................. - 171 -2.4.2圆的一般方程.................................................................................................. - 180 -2.5直线与圆、圆与圆的位置关系................................................................................. - 188 -2.5.1直线与圆的位置关系...................................................................................... - 188 -2.5.2圆与圆的位置关系.......................................................................................... - 199 -章末复习 ............................................................................................................................. - 208 - 第三章圆锥曲线的方程............................................................................................................ - 222 -3.1椭圆 ............................................................................................................................ - 222 -3.1.1椭圆及其标准方程.......................................................................................... - 222 -3.1.2椭圆的简单几何性质...................................................................................... - 234 -第1课时椭圆的简单几何性质...................................................................... - 234 -第2课时椭圆的标准方程及性质的应用...................................................... - 244 -3.2双曲线 ........................................................................................................................ - 256 -3.2.1双曲线及其标准方程...................................................................................... - 256 -3.2.2 双曲线的简单几何性质 .................................................................................. - 267 -3.3 抛物线 ........................................................................................................................ - 281 -3.3.1 抛物线及其标准方程 ...................................................................................... - 281 -3.3.2 抛物线的简单几何性质 .................................................................................. - 291 - 章末复习 ............................................................................................................................. - 303 - 全书复习 ..................................................................................................................................... - 316 -第一章 空间向量与立体几何1.1 空间向量及其运算1.1.1 空间向量及其线性运算国庆期间,某游客从上海世博园图1 图2如果游客还要登上东方明珠顶端(D )俯瞰上海美丽的夜景,如图1.空间向量(1)定义:在空间,具有大小和方向的量叫做空间向量.(2)长度或模:空间向量的大小.(3)表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a ,b ,c ,…表示;若向量a 的起点是A ,终点是B ,也可记作:AB →,其模记为|a |或|AB →|.2.几类常见的空间向量3.(1)向量的加法、减法①定义:实数λ与空间向量a 的乘积λa 仍然是一个向量,称为向量的数乘运算.当λ>0时,λa 与向量a 方向相同;当λ<0时,λa 与向量a 方向相反;当λ=0时,λa =0;λa 的长度是a 的长度的|λ|倍.②运算律a .结合律:λ(μa )=μ(λa )=(λμ)a .b .分配律:(λ+μ)a =λa +μa ,λ(a +b )=λa +λb .思考:向量运算的结果与向量起点的选择有关系吗?[提示] 没有关系.4.共线向量(1)定义:表示若干空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.(2)方向向量:在直线l 上取非零向量a ,与向量a 平行的非零向量称为直线l 的方向向量.规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(3)共线向量定理:对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ使a =λb .(4)如图,O 是直线l 上一点,在直线l 上取非零向量a ,则对于直线l 上任意一点P ,由数乘向量定义及向量共线的充要条件可知,存在实数λ,使得OP →=λa .5.共面向量(1)定义:平行于同一个平面的向量叫做共面向量.(2)共面向量定理:若两个向量a ,b 不共线,则向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间一点P 位于平面ABC 内的充要条件:存在有序实数对(x ,y ), 使AP →=xAB →+yAC →或对空间任意一点O ,有OP →=OA →+xAB →+yAC →.思考:(1)空间中任意两个向量一定是共面向量吗?(2)若空间任意一点O 和不共线的三点A ,B ,C ,满足OP →=13OA →+13OB →+13OC →,则点P 与点A ,B ,C 是否共面?[提示] (1)空间中任意两个向量都可以平移到同一个平面内,成为同一个平面的两个向量,因此一定是共面向量.(2)由OP →=13OA →+13OB →+13OC →得OP →-OA →=13(OB →-OA →)+13(OC →-OA →) 即AP →=13AB →+13AC →,因此点P 与点A ,B ,C 共面.1.思考辨析(正确的打“√”,错误的打“×”)(1)空间向量a ,b ,c ,若a ∥b ,b ∥c ,则a ∥c .( ) (2)相等向量一定是共线向量.( ) (3)三个空间向量一定是共面向量.( ) (4)零向量没有方向.( )[提示] (1)× 若b =0时,a 与c 不一定平行.(2)√ 相等向量一定共线,但共线不一定相等.(3)× 空间两个向量一定是共面向量,但三个空间向量可能是共面的,也可以是不共面的.(4)× 零向量有方向,它的方向是任意的.2.如图所示,在四棱柱ABCD -A 1B 1C 1D 1所有的棱中,可作为直线A 1B 1的方向向量的有( )A .1个B .2个C .3个D .4个D [共四条AB ,A 1B 1,CD ,C 1D 1.]3.点C 在线段AB 上,且|AB |=5,|BC |=3,AB →=λBC →,则λ=________.-53[因为C 在线段AB 上,所以AB →与BC →方向相反,又因|AB |=5,|BC |=3,故λ=-53.] 4.在三棱锥A -BCD 中,若△BCD 是正三角形,E 为其中心,则AB →+12BC →-32DE →-AD →化简的结果为________.0 [延长DE 交边BC 于点F ,连接AF ,则有AB →+12BC →=AF →,32DE →+AD →=AD →+DF →=AF →,故AB →+12BC →-32DE →-AD →=0.]【例1】 (1)给出下列命题:①若|a |=|b |,则a =b 或a =-b ;②若向量a 是向量b 的相反向量,则|a |=|b |;③在正方体ABCD -A 1B 1C 1D 1中,AC →=A 1C 1→;④若空间向量m ,n ,p 满足m =n ,n =p ,则m =p .其中正确命题的序号是________.(2)如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,顶点连接的向量中,与向量AA ′→相等的向量有________;与向量A ′B ′→相反的向量有________.(要求写出所有适合条件的向量)(1)②③④ (2)BB ′→,CC ′→,DD ′→ B ′A ′→,BA →,CD →,C ′D ′→ [(1)对于①,向量a 与b 的方向不一定相同或相反,故①错;对于②,根据相反向量的定义知|a |=|b |,故②正确;对于③,根据相等向量的定义知,AC →=A 1C 1→,故③正确;对于④,根据相等向量的定义知正确.(2)根据相等向量的定义知,与向量AA ′→相等的向量有BB ′→,CC ′→,DD ′→.与向量A ′B ′→相反的向量有B ′A ′→,BA →,CD →,C ′D ′→.]解答空间向量有关概念问题的关键点及注意点(1)关键点:紧紧抓住向量的两个要素,即大小和方向.(2)注意点:注意一些特殊向量的特性.①零向量不是没有方向,而是它的方向是任意的,且与任何向量都共线,这一点说明了共线向量不具备传递性.②单位向量方向虽然不一定相同,但它们的长度都是1.③两个向量模相等,不一定是相等向量;反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量.[跟进训练]1.下列关于空间向量的命题中,正确命题的个数是( )①长度相等、方向相同的两个向量是相等向量;②平行且模相等的两个向量是相等向量;③若a ≠b ,则|a |≠|b |;④两个向量相等,则它们的起点与终点相同.A .0B .1C .2D .3B [根据向量的定义,知长度相等、方向相同的两个向量是相等向量,①正确;平行且模相等的两个向量可能是相等向量,也可能是相反向量,②不正确;当a =-b 时,也有|a |=|b |,③不正确;只要模相等、方向相同,两个向量就是相等向量,与向量的起点与终点无关,④不正确.综上可知只有①正确,故选B.]【例2】 (1)如图所示,在正方体ABCD 1111为向量AC 1→的有( )①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1→)+D 1C 1→;③(AB →+BB 1→)+B 1C 1→;④(AA 1→+A 1B 1→)+B 1C 1→.A .1个B .2个C .3个D .4个(2)已知正四棱锥P -ABCD ,O 是正方形ABCD 的中心,Q 是CD 的中点,求下列各式中x ,y ,z 的值.①OQ →=PQ →+yPC →+zP A →;②P A →=xPO →+yPQ →+PD →.[思路探究] (1)合理根据向量的三角形和平行四边形法则,以及在平行六面体中,体对角线向量等于从同一起点出发的三条棱向量的和.如AC 1→=AB →+AD →+AA 1→.(2)根据数乘向量及三角形或平行四边形法则求解.(1)D [对于①,(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→;对于②,(AA 1→+A 1D 1→)+D 1C 1→=AD 1→+D 1C 1→=AC 1→;对于③,(AB →+BB 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→;对于④,(AA 1→+A 1B 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→.](2)[解] ①如图,∵OQ →=PQ →-PO →=PQ →-12(P A →+PC →)=PQ →-12PC →-12P A →, ∴y =z =-12. ②∵O 为AC 的中点,Q 为CD 的中点,∴P A →+PC →=2PO →,PC →+PD →=2PQ →,∴P A →=2PO →-PC →,PC →=2PQ →-PD →,∴P A →=2PO →-2PQ →+PD →,∴x =2,y =-2.1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.[跟进训练]2.已知空间四边形ABCD ,连接AC ,BD ,设M ,G 分别是BC ,CD 的中点,则MG →-AB →+AD →等于( )A .32DB → B .3MG → C .3GM → D .2MG → B [MG →-AB →+AD →=MG →-(AB →-AD →)=MG →-DB →=MG →+BD →=MG →+2MG →=3MG →.]【例3】 (1)设e 1,e 2是空间两个不共线的向量,已知AB =e 1+k e 2,BC =5e 1+4e 2,DC →=-e 1-2e 2,且A ,B ,D 三点共线,实数k =________.(2)如图所示,已知四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断CE →与MN →是否共线.[思路探究] (1)根据向量共线的充要条件求解.(2)根据数乘向量及三角形法则,把MN →表示成λCE →的形式,再根据向量共线的充要条件求解.(1)1 [AD →=AB →+BC →+CD →=(e 1+k e 2)+(5e 1+4e 2)+(e 1+2e 2)=7e 1+(k +6)e 2. 设AD →=λAB →,则7e 1+(k +6)e 2=λ(e 1+k e 2),所以⎩⎨⎧ λ=7λk =k +6,解得k =1.] (2)[解] 法一:因为M ,N 分别是AC ,BF 的中点,且四边形ABCD ,四边形ABEF 都是平行四边形,所以MN →=MA →+AF →+FN →=12CA →+AF →+12FB →. 又因为MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,以上两式相加得CE →=2MN →,所以CE →∥MN →,即CE →与MN →共线.法二:因为四边形ABEF 为平行四边形,所以连接AE 时,AE 必过点N . ∴CE →=AE →-AC →=2AN →-2AM →=2(AN →-AM →)=2MN →.所以CE →∥MN →,即CE →与MN →共线.证明空间三点共线的三种思路对于空间三点P ,A ,B 可通过证明下列结论来证明三点共线.(1)存在实数λ,使P A →=λPB →成立.(2)对空间任一点O ,有OP →=OA →+tAB →(t ∈R ).(3)对空间任一点O ,有OP →=xOA →+yOB →(x +y =1).[跟进训练]3.如图,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F →=23FC →.求证:E ,F ,B 三点共线.[证明] 设AB →=a ,AD →=b ,AA 1→=c , 因为A 1E →=2ED 1→,A 1F →=23FC →,所以A 1E →=23A 1D 1→,A 1F →=25A 1C →,所以A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c ,所以EF →=A 1F →-A 1E →=25a-415b -25c =25⎝ ⎛⎭⎪⎫a -23b -c . 又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c ,所以EF →=25EB →,所以E ,F ,B 三点共线.[探究问题]1.什么样的向量算是共面向量?[提示] 能够平移到同一个平面内的向量称为共面向量. 2.能说明P ,A ,B ,C 四点共面的结论有哪些? [提示] (1)存在有序实数对(x ,y ),使得AP →=xAB →+yAC →.(2)空间一点P 在平面ABC 内的充要条件是存在有序实数组(x ,y ,z )使得OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(3)四点中任意两点的方向向量与另外两点的方向向量共线,如P A →∥BC →.3.已知向量a ,b ,c 不共面,且p =3a +2b +c ,m =a -b +c ,n =a +b -c ,试判断p ,m ,n 是否共面.[提示] 设p =x m +y n ,即3a +2b +c =x (a -b +c )+ y (a +b -c )=(x +y )a +(-x +y )b +(x -y )c .因为a ,b ,c 不共面,所以⎩⎨⎧x +y =3,-x +y =2,x -y =1,而此方程组无解,所以p 不能用m ,n 表示,即p ,m ,n 不共面.【例4】 已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若点M 满足OM →=13OA →+13OB →+13OC →. (1)判断MA →,MB →,MC →三个向量是否共面; (2)判断M 是否在平面ABC 内.[思路探究] (1)根据向量共面的充要条件,即判断是否MA →=xMB →+yMC →;(2)根据(1)的结论,也可以利用OM →=xOA →+yOB →+zOC →中x +y +z 是否等于1.[解] (1)∵OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), ∴MA →=BM →+CM →=-MB →-MC →, ∴向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,而它们有共同的起点M ,且A ,B ,C 三点不共线,∴M ,A ,B ,C 共面,即M 在平面ABC 内.解决向量共面的策略(1)若已知点P 在平面ABC 内,则有AP →=xAB →+yAC →或OP →=xOA →+yOB →+zOC →(x +y +z =1),然后利用指定向量表示出已知向量,用待定系数法求出参数.(2)证明三个向量共面(或四点共面),需利用共面向量定理,证明过程中要灵活进行向量的分解与合成,将其中一个向量用另外两个向量来表示.1.一些特殊向量的特性(1)零向量不是没有方向,而是它的方向是任意的. (2)单位向量方向虽然不一定相同,但它们的长度都是1.(3)两个向量模相等,不一定是相等向量,反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量.2.OP →=OA →+xAB →+yAC →称为空间平面ABC 的向量表达式.由此可知空间中任意平面由空间一点及两个不共线向量唯一确定.3.证明(或判断)A ,B ,C 三点共线时,只需证明存在实数λ,使AB →=λBC →(或AB →=λAC →)即可,也可用“对空间任意一点O ,有OC →=tOA →+(1-t )OB →”来证明A ,B ,C 三点共线.4.空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x ,y ),使MP →=xMA →+yMB →,满足这个关系式的点都在平面MAB 内;反之,平面MAB 内的任一点都满足这个关系式.这个充要条件常用于证明四点共面.5.直线的方向向量是指与直线平行或共线的非零向量,一条直线的方向向量有无穷多个,它们的方向相同或相反.6.向量p 与向量a ,b 共面的充要条件是在a 与b 不共线的前提下才成立的,若a 与b 共线,则不成立.1.下列条件中使M 与A ,B ,C 一定共面的是( ) A .OM →=2OA →-OB →-OC → B .OM →=15OA →+13OB →+12OC →C .MA →+MB →+MC →=0 D .OM →+OA →+OB →+OC →=0C [由MA →+MB →+MC →=0得MA →=-MB →-MC →,故M ,A ,B ,C 共面.] 2.已知正方体ABCD -A 1B 1C 1D 1,若点F 是侧面CD 1的中心,且AF →=AD →+mAB→-nAA 1→,则m ,n 的值分别为( )A .12,-12B .-12,-12C .-12,12D .12,12A [由于AF →=AD →+DF →=AD →+12(DC →+DD 1→)=AD →+12AB →+12AA 1→,所以m =12,n=-12,故答案为A.]3.化简:12(a +2b -3c )+5⎝ ⎛⎭⎪⎫23a -12b +23c -3(a -2b +c )=________.56a +92b -76c [原式=12a +b -32c +103a -52b +103c -3a +6b -3c =⎝ ⎛⎭⎪⎫12+103-3a +⎝ ⎛⎭⎪⎫1-52+6b +⎝ ⎛⎭⎪⎫-32+103-3c =56a +92b -76c .] 4.给出下列四个命题:①方向相反的两个向量是相反向量;②若a ,b 满足|a |>|b |且a ,b 同向,则a >b ; ③不相等的两个空间向量的模必不相等; ④对于任何向量a ,b ,必有|a +b |≤|a |+|b |. 其中正确命题的序号为________.④ [对于①,长度相等且方向相反的两个向量是相反向量,故①错;对于②,向量是不能比较大小的,故不正确;对于③,不相等的两个空间向量的模也可以相等,故③错;只有④正确.]5.设两非零向量e 1,e 2不共线,且k e 1+e 2与e 1+k e 2共线,求k 的值. [解] ∵两非零向量e 1,e 2不共线,且k e 1+e 2与e 1+k e 2共线,∴k e 1+e 2=t (e 1+k e 2),则(k -t )e 1+(1-tk )e 2=0.∵非零向量e 1,e 2不共线,∴k -t =0,1-kt =0,解得k =±1.1.1.2 空间向量的数量积运算1.空间向量的夹角 (1)夹角的定义已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉.(2)夹角的范围空间任意两个向量的夹角θ的取值范围是[0,π].特别地,当θ=0时,两向量同向共线;当θ=π时,两向量反向共线,所以若a ∥b ,则〈a ,b 〉=0或π;当〈a ,b 〉=π2时,两向量垂直,记作a ⊥b .2.空间向量的数量积(1)定义:已知两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做a ,b 的数量积,记作a ·b .即a ·b =|a ||b |cos 〈a ,b 〉.规定:零向量与任何向量的数量积为0. (2)常用结论(a ,b 为非零向量) ①a ⊥b ⇔a ·b =0.②a ·a =|a ||a |cos 〈a ,a 〉=|a |2. ③cos 〈a ,b 〉=a ·b|a ||b |. (3)数量积的运算律(2)若a ·b >0,则〈a ,b 〉一定是锐角吗?[提示] (1)若a ·b =0,则不一定有a ⊥b ,也可能a =0或b =0.(2)当〈a ,b 〉=0时,也有a ·b >0,故当a ·b >0时,〈a ·b 〉不一定是锐角. 3.投影向量 (1)投影向量在空间,向量a 向向量b 投影,可以先将它们平移到同一个平面内,进而利用平面上向量的投影,得到与向量b 共线的向量c ,c =|a |cos 〈a ,b 〉b|b |,则向量c 称为向量a 在向量b 上的投影向量,同理向量b 在向量a 上的投影向量是|b |cos 〈a ,b 〉a|a |.(2)向量a 在平面β上的投影向量向量a 向平面β投影,就是分别由向量a 的起点A 和终点B 作平面β的垂线,垂足分别为A ′,B ′,得到向量A ′B ′→,则向量A ′B ′→称为向量a 在平面β上的投影向量.这时,向量a ,A ′B ′→的夹角就是向量a 所在直线与平面β所成的角.[提醒] (1)两个向量的数量积是数量,而不是向量,它可以是正数、负数或零; (2)向量数量积的运算不满足消去律、作商和乘法的结合律 ,即a ·b =a ·c ⇒b =c ,a ·b =k ⇒b =k a,(a ·b )·c =a ·(b·c )都不成立.1.思考辨析(正确的打“√”,错误的打“×”) (1)对于非零向量a ,b ,〈a ,b 〉与〈a ,-b 〉相等. ( ) (2)对于任意向量a ,b ,c ,都有(a ·b )c =a (b ·c ). ( ) (3)若a ·b =b ·c ,且b ≠0,则a =c . ( ) (4)(3a +2b )·(3a -2b )=9|a |2-4|b |2. ( )[提示] (1)× (2)× (3)× (4)√2.(教材P 8练习T 1改编)在正三棱柱ABC -A 1B 1C 1中,若AB =BB 1,则AB 1与BC 1所成角的余弦值为( )A .38B .14C .34D .18B [令底面边长为1,则高也为1,AB 1→=AB →+BB 1→,BC 1→=B C →+CC 1→,∴AB 1→·BC 1→=(AB →+BB 1→)·(BC →+CC 1→)=AB →·BC →+BB 1→·CC 1→=1×1×cos 120°+12=12,又|AB 1→|=|BC 1→|= 2.∴cos 〈AB 1,BC 1〉=122×2=14.故选B.]3.已知a =3p -2q ,b =p +q ,p 和q 是相互垂直的单位向量,则a·b =( ) A .1 B .2 C .3 D .4 A [由题意知,p·q =0,p 2=q 2=1.所以a ·b =(3p -2q )·(p +q )=3p 2+p ·q -2q 2=3-2=1.]4.设a ⊥b ,〈a ,c 〉=π3,〈b ,c 〉=π6,且|a |=1,|b |=2,|c |=3,则向量a +b +c 的模是________.17+63 [因为|a +b +c |2=(a +b +c )2=|a |2+|b |2+|c |2+2(a ·b +a ·c +b ·c )=1+4+9+2⎝ ⎛⎭⎪⎫0+1×3×12+2×3×32=17+63,所以|a +b +c |=17+6 3.]【例1】 (1)如图,三棱锥A -BCD 中,AB =AC ==60°,则AB →·CD →等于( )A .-2B .2C .-2 3D .2 3(2)在四面体OABC 中,棱OA ,OB ,OC 两两垂直,且OA =1,OB =2,OC =3,G 为△ABC 的重心,求OG →·(OA →+OB →+OC →)的值.(1)A [∵CD →=AD →-AC →,∴AB →·CD →=AB →·(AD →-AC →)=AB →·AD →-AB →·AC →=0-2×2×cos 60°=-2.](2)[解] OG →=OA →+AG →=OA →+13(AB →+AC →)=OA →+13[(OB →-OA →)+(OC →-OA →)]=13OB →+13OC →+13OA →. ∴OG →·(OA →+OB →+OC →)=⎝ ⎛⎭⎪⎫13OB →+13OC →+13OA →·(OA →+OB →+OC →)=13OB →2+13OC →2+13OA →2 =13×22+13×32+13×12=143.在几何体中求空间向量的数量积的步骤(1)首先将各向量分解成已知模和夹角的向量的组合形式.(2)利用向量的运算律将数量积展开,转化成已知模和夹角的向量的数量积. (3)根据向量的方向,正确求出向量的夹角及向量的模. (4)代入公式a·b =|a ||b |cos 〈a ,b 〉求解.[跟进训练]1.在长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AA 1B 1B 的中心,F 为A 1D 1的中点,求下列向量的数量积:(1)BC →·ED 1→;(2)BF →·AB 1→.[解] 如图,设AB →=a ,AD →=b ,AA 1→=c ,则|a |=|c |=2,|b |=4,a·b =b·c =c·a =0.(1)BC →·ED 1→=BC →·(EA 1→+A 1D 1→)=b ·12(c -a )+b =|b |2=42=16.(2)BF →·AB 1→=(BA 1→+A 1F →)·(AB →+AA 1→)=c -a +12b ·(a +c )=|c |2-|a |2=22-22=0.=OC ,M ,N 分别是OA ,BC 的中点,G 是MN 的中点,求证:OG ⊥BC .[思路探究] 首先把向量OG →和BC →均用OA →、OB →、OC →表示出来,通过证明OG →·BC →=0来证得OG ⊥BC .[证明] 连接ON ,设∠AOB =∠BOC =∠AOC =θ,又设OA →=a ,OB →=b ,OC →=c , 则|a |=|b |=|c |. 又OG →=12(OM →+ON →)=12⎣⎢⎡⎦⎥⎤12OA →+12(OB →+OC →) =14(a +b +c ),BC →=c -b . ∴OG →·BC →=14(a +b +c )·(c -b )=14(a ·c -a ·b +b ·c -b 2+c 2-b ·c ) =14(|a |2·cos θ-|a |2·cos θ-|a |2+|a |2)=0. ∴OG →⊥BC →,即OG ⊥BC .用向量法证明垂直关系的步骤 (1)把几何问题转化为向量问题; (2)用已知向量表示所证向量;(3)结合数量积公式和运算律证明数量积为0; (4)将向量问题回归到几何问题.[跟进训练]2.如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .证明:P A ⊥BD .[证明] 由底面ABCD 为平行四边形,∠DAB =60°,AB =2AD 知,DA ⊥BD ,则BD →·DA →=0.由PD ⊥底面ABCD 知,PD ⊥BD ,则BD →·PD →=0.又P A →=PD →+DA →,∴P A →·BD →=(PD →+DA →)·BD →=PD →·BD →+DA →·BD →=0,即P A ⊥BD .【例3】 (1)已知a +b +c =0,|a |=2,|b 夹角〈a ,b 〉为( )A .30°B .45°C .60°D .以上都不对(2)如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,求异面直线OA 与BC 的夹角的余弦值.[思路探究] (1)根据题意,构造△ABC ,使AB →=c ,AC →=b ,BC →=a ,根据△ABC 三边之长,利用余弦定理求出向量a 与b 之间的夹角即可.(2)求异面直线OA 与BC 所成的角,首先来求OA →与BC →的夹角,但要注意异面直线所成角的范围是⎝ ⎛⎦⎥⎤0,π2,而向量夹角的取值范围为[0,π],注意角度的转化.(1)D [∵a +b +c =0,|a |=2,|b |=3,|c |=4, ∴以这三个向量首尾相连组成△ABC ;令AB →=c ,AC →=b ,BC →=a ,则△ABC 三边之长分别为BC =2,CA =3,AB =4; 由余弦定理,得:cos ∠BCA =BC 2+CA 2-AB 22BC ·CA =22+32-422×2×3=-14,又向量BC →和CA →是首尾相连,∴这两个向量的夹角是180°-∠BCA , ∴cos 〈a ,b 〉=14,即向量a 与b 之间的夹角〈a ,b 〉不是特殊角.](2)[解] ∵BC →=AC →-AB →,∴OA →·BC →=OA →·AC →-OA →·AB →=|OA →|·|AC →|·cos 〈OA →,AC →〉-|OA →|·|AB →|·cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120° =24-16 2.∴cos 〈OA →,BC →〉=OA →·BC →|OA →|·|BC →|=24-1628×5=3-225,∴异面直线OA 与BC 的夹角的余弦值为3-225.利用向量数量积求夹角问题的思路(1)求两个向量的夹角有两种方法:①结合图形,平移向量,利用空间向量夹角的定义来求,但要注意向量夹角的范围;②先求a ·b ,再利用公式cos 〈a ,b 〉=a ·b|a ||b |求出cos 〈a ,b 〉的值,最后确定〈a ,b 〉的值. (2)求两条异面直线所成的角,步骤如下:①根据题设条件在所求的异面直线上取两个向量(即直线的方向向量); ②将异面直线所成角的问题转化为向量夹角问题; ③利用数量积求向量夹角的余弦值或角的大小;④异面直线所成的角为锐角或直角,利用向量数量积求向量夹角的余弦值时应将余弦值加上绝对值,从而求出异面直线所成的角的大小.[跟进训练]3.如图,在正方体ABCD -A 1B 1C 1D 1中,求BC 1→与AC →夹角的大小.[解] 不妨设正方体的棱长为1,则BC 1→·AC →=(BC →+CC 1→)·(AB →+BC →) =(AD →+AA 1→)·(AB →+AD →)=AD →·AB →+AD →2+AA 1→·AB →+AA 1→·AD → =0+AD 2→+0+0=AD 2→=1, 又∵|BC 1→|=2,|AC →|=2,∴cos 〈BC 1→,AC →〉=BC 1→·AC →|BC 1→||AC →|=12×2=12.∵〈BC 1→,AC →〉∈[0,π],∴〈BC 1→,AC →〉=π3.即BC 1→与AC →夹角的大小为π3.[探究问题]1.用数量积解决的距离问题一般有哪几种? [提示] 线段长度即点点距、点线距、点面距. 2.求模的大小常用哪些公式?[提示] 由公式|a |=a ·a 可以推广为|a ±b |=(a ±b )2=a 2±2a ·b +b 2.3.如图,已知线段AB ⊥平面α,BC ⊂α,CD ⊥BC ,DF ⊥平面α,且∠DCF =30°,D 与A 在平面α的同侧,若AB =BC =CD =2,试求A ,D 两点间的距离.[提示] ∵AD →=AB →+BC →+CD →,∴|AD →|2=(AB →+BC →+CD →)2=|AB →|2+|BC →|2+|CD →|2+2AB →·BC →+2AB →·CD +2BC →·CD →=12+2(2·2·cos 90°+2·2·cos 120°+2·2·cos 90°)=8,∴|AD →|=22,即A ,D 两点间的距离为2 2.【例4】 如图所示,在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,沿着它的对角线AC 将△ACD 折起,使AB 与CD 成60°角,求此时B ,D 间的距离.[思路探究] BD →=BA →+AC →+CD →―→|BD →|2 注意对〈BA →,CD →〉的讨论,再求出B ,D 间距离.[解] ∵∠ACD =90°,∴AC →·CD =0,同理可得AC →·BA →=0.∵AB 与CD 成60°角,∴〈BA →,CD →〉=60°或〈BA →,CD →〉=120°.又BD →=BA →+AC →+CD →,∴|BD →|2=|BA →|2+|AC →|2+|CD →|2+2BA →·AC →+2BA →·CD →+2AC →·CD →=3+2×1×1×cos 〈BA →,CD →〉.∴当〈BA →,CD →〉=60°时,|BD →|2=4,此时B ,D 间的距离为2;当〈BA →,CD →〉=120°时,|BD →|2=2,此时B ,D 间的距离为 2.求两点间的距离或线段长的方法(1)将相应线段用向量表示,通过向量运算来求对应向量的模.(2)因为a ·a =|a |2,所以|a |=a·a ,这是利用向量解决距离问题的基本公式.另外,该公式还可以推广为|a ±b |=(a ±b )2=a 2±2a ·b +b 2.(3)可用|a ·e |=|a ||cos θ|(e 为单位向量,θ为a ,e 的夹角)来求一个向量在另一个向量所在直线上的投影.[跟进训练]4.如图所示,在平面角为120°的二面角α-AB -β中,AC ⊂α,BD ⊂β,且AC ⊥AB ,BD ⊥AB ,垂足分别为A ,B .已知AC =AB =BD =6,求线段CD 的长.[解] ∵AC ⊥AB ,BD ⊥AB ,∴CA →·AB →=0,BD →·AB →=0.∵二面角α-AB -β的平面角为120°,∴〈CA →,BD →〉=180°-120°=60°. ∴CD →2=(CA →+AB →+BD →)2=CA →2+AB →2+BD →2+2CA →·AB →+2CA →·BD →+2BD →·AB →=3×62+2×62×cos 60°=144,∴CD =12.1.空间两向量的数量积与平面向量的数量积类似,由于数量积不满足结合律,因此在进行数量积运算时,一次、二次式与实数运算相同,运算公式也相同,三次及以上必须按式中的运算顺序依次进行运算.2.空间向量数量积运算的两种方法(1)利用定义:利用a ·b =|a ||b |cos 〈a ,b 〉并结合运算律进行计算.(2)利用图形:计算两个向量的数量积,可先将各向量移到同一顶点,利用图形寻找夹角,再代入数量积公式进行运算.3.在几何体中求空间向量数量积的步骤(1)首先将各向量分解成已知模和夹角的向量的组合形式.(2)利用向量的运算律将数量积展开,转化为已知模和夹角的向量的数量积. (3)代入a ·b =|a ||b |cos 〈a ,b 〉求解.4.空间向量中求两向量夹角与平面向量中的求法完全相同,都是应用公式cos 〈a ,b 〉=a·b|a |·|b |,解题的关键就是求a ·b 和|a |、|b |.求模时注意|a |2=a ·a 的应用.1.如图,空间四边形ABCD 的每条边和对角线的长都等于1,E ,F ,G 分别是AB ,AD ,DC 的中点,则FG →·AB →=( )A .34 B .14 C .12 D .32B [由题意可得FG →=12AC →,∴FG →·AB →=12×1×1×cos 60°=14.]2.已知两异面直线的方向向量分别为a ,b ,且|a |=|b |=1,a·b =-12,则两直线的夹角为( )A .30°B .60°C .120°D .150°B [设向量a ,b 的夹角为θ,则cos θ=a·b|a ||b |=-12,所以θ=120°,则两个方向向量对应的直线的夹角为180°-120°=60°.]3.在空间四边形ABCD 中,AB →·CD →+BC →·AD →+CA →·BD →=________. 0 [原式=AB →·CD →+BC →·AD →+CA →·(AD →-AB →) =AB →·(CD →-CA →)+AD →·(BC →+CA →) =AB →·AD →+AD →·BA →=0.]4.如图所示,在一个直二面角α-AB -β的棱上有两点A ,B ,AC ,BD 分别是这个二面角的两个面内垂直于AB 的线段,且AB =4,AC =6,BD =8,则CD 的长为________.229 [∵CD →=CA →+AB →+BD →=AB →-AC →+BD →, ∴CD →2=(AB →-AC →+BD →)2=AB →2+AC →2+BD →2-2AB →·AC →+2AB →·BD →-2AC →·BD →=16+36+64=116, ∴|CD →|=229.]5.如图,已知空间四边形ABCD 的每条边和对角线的长都等于a ,点M ,N 分别是边AB ,CD 的中点.(1)求证:MN 为AB 和CD 的公垂线; (2)求MN 的长;(3)求异面直线AN 与MC 所成角的余弦值. [解] 设AB →=p ,AC →=q ,AD →=r .由题意,可知|p |=|q|=|r|=a ,且p ,q ,r 三向量两两夹角均为60°. (1)证明:MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ), ∴MN →·AB →=12(q +r -p )·p=12(q ·p +r ·p -p 2) =12(a 2·cos 60°+a 2·cos 60°-a 2)=0 ∴MN ⊥AB ,同理可证MN ⊥CD . ∴MN 为AB 与CD 的公垂线. (2)由(1)可知MN →=12(q +r -p ),∴|MN →|2=(MN →)2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -q·p -r ·p )]=14(a 2+a 2+a 2+2⎝ ⎛⎭⎪⎫a 22-a 22-a 22]=14×2a 2=a 22. ∴|MN →|=22a ,∴MN 的长度为22a . (3)设向量AN →与MC →的夹角为θ,∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·⎝ ⎛⎭⎪⎫q -12p =12⎝ ⎛⎭⎪⎫q 2-12q ·p +r·q -12r ·p =12⎝ ⎛⎭⎪⎫a 2-12a 2·cos 60°+a 2cos 60°-12a 2·cos 60° =12⎝ ⎛⎭⎪⎫a 2-a 24+a 22-a 24=a 22. 又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →|·|MC →|·cos θ=32a ·32a ·cos θ=a 22.∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23.从而异面直线AN 与MC 所成角的余弦值为23.1.2 空间向量基本定理(1)共面向量定理:如果两个向量1.空间向量基本定理如果三个向量a ,b ,c 不共面,那么对任意一个空间向量p ,存在唯一的有序实数组(x ,y ,z ),使得p =x a +y b +z c .其中{a ,b ,c }叫做空间的一个基底,a ,b ,c 都叫做基向量.空间任意三个不共面的向量都可以构成空间的一个基底.思考:(1)零向量能不能作为一个基向量?(2)当基底确定后,空间向量基本定理中实数组(x ,y ,z )是否唯一?[提示] (1)不能.因为0与任意一个非零向量共线,与任意两个非零向量共面. (2)唯一确定. 2.正交分解 (1)单位正交基底如果空间的一个基底中的三个基向量两两垂直,且长度都是1,那么这个基底叫做单位正交基底.常用{i ,j ,k }表示.(2)正交分解把一个空间向量分解为三个两两垂直的向量,叫做把空间向量进行正交分解.1.思考辨析(正确的打“√”,错误的打“×”)(1)若{OA →,OB →,OC →}不能构成空间的一个基底,则O ,A ,B ,C 四点共面.( ) (2)若{a ,b ,c }为空间的一个基底,则a ,b ,c 全不是零向量. ( ) (3)只有两两垂直的三个向量才能作为空间向量的一组基底. ( )[提示] (1)√ (2)√ (3)×2.已知{a ,b ,c }是空间的一个基底,则可以和向量p =a +b ,q =a -b 构成基底的向量是( )A .aB .bC .a +2bD .a +2c[答案] D3.在长方体ABCD -A 1B 1C 1D 1中,可以作为空间向量一个基底的是( ) A .AB →,AC →,AD → B .AB →,AA 1→,AB 1→ C .D 1A 1→,D 1C 1→,D 1D →D .AC 1→,A 1C →,CC 1→ C [由题意知,D 1A 1→,D 1C 1→,D 1D →不共面,可以作为空间向量的一个基底.]4.已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 共线,则x =________,y =________.1 -1 [由m 与n 共线,得1x =-1y =11,∴x =1,y =-1.]【例1】 (1)设x =a +b ,y =b +c ,z =c +给出下列向量组:①{a ,b ,x },②{x ,y ,z },③{b ,c ,z },④{x ,y ,a +b +c }.其中可以作为空间一个基底的向量组有( )A .1个B .2个C .3个D .4个(2)已知{e 1,e 2,e 3}是空间的一个基底,且OA →=e 1+2e 2-e 3,OB →=-3e 1+e 2+2e 3,OC →=e 1+e 2-e 3,试判断{OA →,OB →,OC →}能否作为空间的一个基底.(1)C [如图所示,令a =AB →,b =AA 1→,c =AD →,则x =AB 1→,y =AD 1→,z =AC →,a +b +c =AC 1→.由于A ,B 1,C ,D 1四点不共面,可知向量x ,y ,z 也不共面,同理b ,c ,z 和x ,y ,a +b +c 也不共面,故选C.](2)[解] 假设OA →,OB →,OC →共面,由向量共面的充要条件知,存在实数x ,y ,使OA →=xOB →+yOC →成立,∴e 1+2e 2-e 3=x (-3e 1+e 2+2e 3)+y (e 1+e 2-e 3), 即e 1+2e 2-e 3=(y -3x )e 1+(x +y )e 2+(2x -y )e 3∵{e 1,e 2,e 3}是空间的一个基底,∴e 1,e 2,e 3不共面.∴⎩⎨⎧y -3x =1,x +y =2,2x -y =-1,此方程组无解.即不存在实数x ,y 使得OA →=xOB →+yOC →, 所以OA →,OB →,OC →不共面.所以{OA →,OB →,OC →}能作为空间的一个基底.基底判断的基本思路及方法(1)基本思路:判断三个空间向量是否共面,若共面,则不能构成基底;若不共面,则能构成基底.(2)方法:①如果向量中存在零向量,则不能作为基底;如果存在一个向量可以用另外的向量线性表示,则不能构成基底.②假设a =λb +μ c ,运用空间向量基本定理,建立λ,μ的方程组,若有解,则共面,不能作为基底;若无解,则不共面,能作为基底.[跟进训练]1.设向量{a ,b ,c }是空间一个基底,则一定可以与向量p =a +b ,q =a -b ,构成空间的另一个基底的向量是( )A .aB .bC .cD .a 或bC [由题意和空间向量的共面定理, 结合p +q =(a +b )+(a -b )=2a , 得a 与p ,q 是共面向量, 同理b 与p ,q 是共面向量,所以a 与b 不能与p ,q 构成空间的一个基底; 又c 与a 和b 不共面,所以c 与p ,q 构成空间的一个基底.]【例2】 如图,四棱锥P -OABC 的底面为一矩形,PO ⊥平面OABC ,设OA →=a ,OC →=b ,OP →=c ,E ,F 分别是PC ,PB 的中点,试用a ,b ,c 表示:BF →,BE →,AE →,EF →.[思路探究]利用图形寻找待求向量与a ,b ,c 的关系→利利用向量运算进行分拆→直至向量用a ,b ,c 表示[解] 连接BO (图略),则BF →=12BP →=12(BO →+OP →)=12(c -b -a )=-12a -12b +12c .BE →=BC →+CE →=BC →+12CP →=BC →+12(CO →+OP →)=-a -12b +12c .AE →=AP →+PE →=AO →+OP →+12(PO →+OC →)=-a +c +12(-c +b )=-a +12b +12c .EF→=12CB →=12OA →=12a .基向量的选择和使用方法(1)尽可能选择具有垂直关系的,从同一起点出发的三个向量作为基底. (2)用基向量表示一个向量时,如果此向量的起点是从基底的公共点出发的,一般考虑加法,否则考虑减法;如果此向量与一个易求的向量共线,可用数乘.[跟进训练]2.点P 是矩形ABCD 所在平面外一点,且P A ⊥平面ABCD ,M ,N 分别是PC ,PD 上的点,且PM →=23PC →,PN →=ND →,则满足MN →=xAB →+yAD →+zAP →的实数x ,y ,z 的值分别为( )A .-23,16,16B .23,-16,16。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

百度文库高三第一轮复习资料(个人汇编请注意保密)引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。

不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

此外,基础内容还增加了向量、算法、概率、统计等内容。

选修课程有4个系列:系列1:由2个模块组成。

选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。

选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。

选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。

选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。

系列3:由6个专题组成。

选修3—1:数学史选讲。

选修3—2:信息安全与密码。

选修3—3:球面上的几何。

选修3—4:对称与群。

选修3—5:欧拉公式与闭曲面分类。

选修3—6:三等分角与数域扩充。

系列4:由10个专题组成。

选修4—1:几何证明选讲。

选修4—2:矩阵与变换。

选修4—3:数列与差分。

选修4—4:坐标系与参数方程。

选修4—5:不等式选讲。

选修4—6:初等数论初步。

选修4—7:优选法与试验设计初步。

选修4—8:统筹法与图论初步。

选修4—9:风险与决策。

选修4—10:开关电路与布尔代数。

2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算必修1数学知识点第一章:集合与函数概念§1.1.1、集合1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。

集合三要素:确定性、互异性、无序性。

2、只要构成两个集合的元素是一样的,就称这两个集合相等。

3、常见集合:正整数集合:*N或+N,整数集合:Z,有理数集合:Q,实数集合:R.4、集合的表示方法:列举法、描述法.§1.1.2、集合间的基本关系1、一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的子集。

记作BA⊆.2、如果集合BA⊆,但存在元素Bx∈,且Ax∉,则称集合A是集合B的真子集.记作:A B.3、把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、如果集合A中含有n个元素,则集合A有n2个子集,21n-个真子集.§1.1.3、集合间的基本运算1、一般地,由所有属于集合A或集合B的元素组成的集合,称为集合A与B的并集.记作:BA .2、一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.记作:BA .3、全集、补集?{|,}UC A x x U x U=∈∉且§1.2.1、函数的概念1、设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数()xf和它对应,那么就称BAf→:为集合A到集合B的一个函数,记作:()Axxfy∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、注意函数单调性的证明方法:(1)定义法:设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.步骤:取值—作差—变形—定号—判断 格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…(2)导数法:设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数. §1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称. 知识链接:函数与导数1、函数)(x f y =在点0x 处的导数的几何意义: 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 2、几种常见函数的导数①'C 0=;②1')(-=n n nxx ;③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 3、导数的运算法则 (1)'()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()(0)u u v uv v v v-=≠. 4、复合函数求导法则复合函数(())y f g x =的导数和函数(),()y f u u g x ==的导数间的关系为x u x y y u '''=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.解题步骤:分层—层层求导—作积还原. 5、函数的极值 (1)极值定义:极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值;极值是在0x 附近所有的点,都有)(x f >)(0x f ,则)(0x f 是函数)(x f 的极小值. (2)判别方法:①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,0②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. 6、求函数的最值(1)求()y f x =在(,)a b 内的极值(极大或者极小值) (2)将()y f x =的各极值点与(),()f a f b 比较,其中1>a10<<a图 象性 质 (1)定义域:R(2)值域:(0,+∞)(3)过定点(0,1),即x=0时,y=1(4)在 R 上是增函数 (4)在R 上是减函数(5)0,1xx a >>;0,01xx a <<<(5)0,01xx a ><<;0,1xx a <>最大的一个为最大值,最小的一个为极小值。

注:极值是在局部对函数值进行比较(局部性质);最值是在整体区间上对函数值进行比较(整体性质)。

第二章:基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算1、 一般地,如果a x n=,那么x 叫做a 的n 次方根。

其中+∈>N n n ,1. 2、 当n 为奇数时,a a n n =;当n 为偶数时,a a n n=. 3、 我们规定: ⑴m n mna a=()1,,,0*>∈>m Nn m a ;⑵()01>=-n aan n; 4、 运算性质: ⑴()Q s r a aa a sr sr∈>=+,,0;⑵()()Q s r a a a rs sr∈>=,,0;⑶()()Q r b a b a ab rr r∈>>=,0,0.§2.1.2、指数函数及其性质 1、记住图象:()1,0≠>=a a a y x2、性质:§2.2.1、对数与对数运算1、指数与对数互化式:log xa a N x N =⇔=;2、对数恒等式:log a NaN =.3、基本性质:01log =a ,1log =a a .4、运算性质:当0,0,1,0>>≠>N M a a 时: ⑴()N M MN a a a log log log +=;⑵N M N M a a a log log log -=⎪⎭⎫⎝⎛; ⑶M n M a na log log =.5、换底公式:abb c c a log log log =()0,1,0,1,0>≠>≠>b c c a a .6、重要公式:log log n ma a mb b n=7、倒数关系:ab b a log 1log =()1,0,1,0≠>≠>b b a a .§2..2.2、对数函数及其性质1、记住图象:()1,0log ≠>=a a x y a2、性质: §2.3、幂函数1、几种幂函数的图象:1>a10<<a图象1111性 质 (1)定义域:(0,+∞)(2)值域:R(3)过定点(1,0),即x=1时,y=0 (4)在 (0,+∞)上是增函数 (4)在(0,+∞)上是减函数(5)0log ,1>>x x a ; 0log ,10<<<x x a(5)0log ,1<>x x a ; 0log ,10><<x x ay=a xy0<a<1a>11y=log a x oyx第三章:函数的应用§3.1.1、方程的根与函数的零点 1、方程()0=x f 有实根⇔函数()x f y =的图象与x 轴有交点 ⇔函数()x f y =有零点. 2、 零点存在性定理:如果函数()x f y =在区间[]b a , 上的图象是连续不断的一条曲线,并且有()()0<⋅b f a f ,那么函数()x f y =在区间()b a ,内有零点,即存在()b a c ,∈,使得()0=c f ,这个c 也就是方程()0=x f 的根. §3.1.2、用二分法求方程的近似解 1、掌握二分法.§3.2.1、几类不同增长的函数模型 §3.2.2、函数模型的应用举例1、解决问题的常规方法:先画散点图,再用适当的函数拟合,最后检验.必修2数学知识点第一章:空间几何体 1、空间几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。

相关文档
最新文档