2017广州中考数学(解析)
2017年中考数学真题试题(含答案)
2017年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣12017【答案】A.2.一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.4【答案】B.3.单项式32xy的次数是()A.1 B.2 C.3 D.4【答案】D.4.如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°【答案】B.5.世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×104【答案】B.6.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【答案】C.7.一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C.8.把不等式组231345xx x+>⎧⎨+≥⎩的解集表示在数轴上如下图,正确的是()A.B.C.D.【答案】B.9.如图,已知点A在反比例函数kyx=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.4yx=B.2yx=C.8yx=D.8yx=-【答案】C.10.观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067 【答案】D.二、填空题(本大题共8小题,每小题4分,共32分)11.5的相反数是 . 【答案】﹣5. 12.一组数据2,3,2,5,4的中位数是 .【答案】3.13.方程1201x x-=-的解为x = . 【答案】2.14.已知一元二次方程230x x k -+=有两个相等的实数根,则k = .【答案】94. 15.已知菱形的两条对角线的长分别是5cm ,6cm ,则菱形的面积是 cm 2.【答案】15.16.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB =2米,BC =18米,则旗杆CD 的高度是 米.【答案】3.42.17.从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为 .【答案】16. 18.如图,在Rt △ABC 中,∠C =90°,点D 是AB 的中点,ED ⊥AB 交AC 于点E .设∠A =α,且tanα=13,则tan2α= .【答案】34.三、解答题19.(1)计算:101()4sin 60(3 1.732)122----+; (2)先化简,再求值:2261213x x x x x +-⋅-++,其中x =2. 【答案】(1)1;(2)21x -,2. 20.如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .【答案】证明见解析.21.某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A ,B ,C (A 等:成绩大于或等于80分;B 等:成绩大于或等于60分且小于80分;C 等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A 等所在的扇形的圆心角等于 度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【答案】(1)作图见解析;(2)108;(3)800.22.如图,已知点E ,F 分别是平行四边形ABCD 对角线BD 所在直线上的两点,连接AE ,CF ,请你添加一个条件,使得△ABE ≌△CDF ,并证明.【答案】证明见解析.四、解答题23.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【答案】(1)60(020)80(2080)xyx x<<⎧=⎨-+≤≤⎩;(2)40元或60元.五、解答题24.如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若ADAB=13,求sin C;(2)求证:DE是⊙O的切线.【答案】(1)13;(2)证明见解析. 六、解答题 25.如图,抛物线2y x bx c =++经过点A (﹣1,0),B (0,﹣2),并与x 轴交于点C ,点M 是抛物线对称轴l 上任意一点(点M ,B ,C 三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P 1,P 2,使得△MP 1P 2与△MCB 全等,并求出点P 1,P 2的坐标;(3)在对称轴上是否存在点Q ,使得∠BQC 为直角,若存在,作出点Q (用尺规作图,保留作图痕迹),并求出点Q 的坐标.【答案】(1)22y x x =--;(2)P 1(﹣1,0),P 2(1,﹣2)或P 1(2,0),P 2(52,74);(3)点Q 的坐标是:(1227-+1227--.。
2017年广东省中考数学试卷(含答案解析版)
(完整版)2017年广东省中考数学试题与参考答案
2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 5的相反数是( ) A. B.5 C.- D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。
2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×B.0.4×C.4×D.4× 3.已知,则的补角为( )A. B. C. D. 4.如果2是方程的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆 7.如题7图,在同一平面直角坐标系中,直线与双曲线 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( ) A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2)15159101010910101070A ∠=︒A ∠110︒70︒30︒20︒230x x k -+=11(0)y k x k =≠22(0)k y k x=≠题7图8.下列运算正确的是( )A. B. C. D.9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①;②;③; ④,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知,则整式的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .223a a a +=325·a a a =426()a a =424a a a +=ABF ADF S S =△△4CDF CBF S S =△△2ADF CEF S S =△△2ADF CDF S S =△△720︒ab ÷431a b ÷=863a b ÷-三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:.18.先化简,再求值,其中x =√5 .19.学校团委组织志愿者到图书馆整理一批新进的图书。
2017年广州市中考数学试题(附含答案解析)(K12教育文档)
2017年广州市中考数学试题(附含答案解析)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年广州市中考数学试题(附含答案解析)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年广州市中考数学试题(附含答案解析)(word版可编辑修改)的全部内容。
2017年广州市中考数学试卷一、选择题(共10小题;共50分)1。
如图,数轴上两点,表示的数互为相反数,则点表示的数是A。
B。
C。
D。
无法确定2. 如图,将正方形中的阴影三角形绕点顺时针旋转后,得到图形为A。
B.C。
D。
3. 某人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁),,,,,.这组数据的众数,平均数分别为A。
,B。
, C. ,D。
, 4。
下列运算正确的是A。
B.C。
D。
()5. 关于的一元二次方程有两个不相等的实数根,则的取值范围是A. B。
C. D.6. 如图,是的内切圆,则点是的A. 三条边的垂直平分线的交点B。
三条角平分线的交点C. 三条中线的交点D. 三条高的交点7。
计算,结果是A。
B。
C。
D.8. 如图,,分别是平行四边形的边,上的点,,,将四边形沿翻折,得到,交于点,则的周长为A。
B。
C。
D。
9。
如图,在中,是直径,是弦,,垂足为,连接,,,则下列说法中正确的是A。
B.C。
D.10. ,函数与在同一直角坐标系中的大致图象可能是A. B.C。
D.二、填空题(共6小题;共30分)11. 如图,四边形中,,,则.12. 分解因式:.13. 当时,二次函数有最小值.14. 如图,中,,,,则.15。
2017年广东省珠海市中考数学试卷(含答案)
2017年广东省珠海市中考数学试卷(含答案)分析:根据圆周角定理和垂径定理,可以得到∠AOD=2∠ACD=2×70°=140°,因为∠CAB=20°,所以∠AOD=180°-∠CAB=160°。
解答:解:根据圆周角定理和垂径定理,可以得到∠AOD=2∠ACD=2×70°=140°,因为∠CAB=20°,所以∠AOD=180°-∠CAB=160°。
故选A。
点评:本题考查了圆周角定理和垂径定理,解题的关键是理解这两个定理的含义和应用。
解答:解:由对称性可知,对称轴过(2,)点,又因为对称轴平行于y轴,所以对称轴方程为x=2。
抛物线的方程为y=a(x-1)(x-3),代入(1,)或(3,)可得a=1/2。
抛物线的方程为y=1/2(x-1)(x-3)。
2×1/2=1.故答案为:1.点评:此题考查了二次函数的性质,需要掌握对称轴的求法以及二次函数的一般式.17.(7分)如图,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A处。
渔船从A处沿XXX方向航行一段距离后,到达位于小岛南偏东60°方向的B处。
求:1)渔船从A到B的航行过程中与小岛M之间的最小距离(结果用根号表示);2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间(结果精确到0.1小时)。
解析:(1)过点M作MD⊥XXX于点D,根据∠AME的度数求出∠AMD=∠MAD=45°,再根据AM的值求出和特殊角的三角函数值即可求出答案;2)在Rt△DMB中,根据∠BMF=60°,得出∠DMB=30°,再根据MD的值求出MB的值,最后根据路程÷速度=时间,即可得出答案。
解答:(1)过点M作MD⊥XXX于点D。
AME=45°。
2017年中考数学试题分项版解析汇编第02期专题01实数含解析20170816117
专题1:实数一、选择题1.(2017北京第4题)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a4B.bd0 C. a b D.b c0【答案】C.考点:实数与数轴2.(2017天津第1题)计算(3)5的结果等于()A.2 B.2C.8 D.8【答案】A.【解析】试题分析:根据有理数的加法法则即可得原式-2,故选A.3.(2017天津第4题)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263108B.1.263107C.12.63106D.126.3105【答案】B.【解析】试题分析:学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,n的值为这个数的整数位数减1,所以12630000=1.263107.故选B.4.(2017福建第1题)3的相反数是()A.-3 B.1C.133D.3【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A.5.(2017福建第3题)用科学计数法表示136 000,其结果是()A.0.136106B.1.36105C.136103D.136106【答案】B【解析】13600=1.36×105,故选B.6.(2017河南第1题)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.7.(2017河南第2题)2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为()A.74.41012B.7.441013C.74.41013D.7.441014【答案】B.考点:科学记数法.8.(2017湖南长沙第1题)下列实数中,为有理数的是()A.3B.C.32D.1【答案】D【解析】试题分析:根据实数的意义,有理数为有限小数和有限循环小数,无理数为无限不循环小数,可知1是有理数.故选:D9.(2017广东广州第1题)如图1,数轴上两点A,B表示的数互为相反数,则点B表示的()A.-6 B.6 C.0 D.无法确定【答案】B【解析】试题分析:-6的相反数是6,A点表示-6,所以,B点表示6.故选答案B.考点:相反数的定义10.(2017湖南长沙第3题)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826106B.8.26107C.82.6106D.8.26108【答案】B考点:科学记数法的表示较大的数111.(2017山东临沂第1题)的相反数是()2007 11A.B.C.2017 D.201720072007【答案】A【解析】试题分析:根据只有符号不同的两数互为相反数,可知的相反数为.1120072007故选:A112.(2017山东青岛第1题)的相反数是().8A.8 B.8 C.18D.18【答案】C 【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:1的相反数是818.故选:C考点:相反数定义13. (2017四川泸州第1题)7的绝对值为()A.7B.7C.17D.17【答案】A.【解析】试题分析:根据绝对值的性质可得-7的绝对值为7,故选A.14. (2017四川泸州第2题) “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567103B.56.7104C.5.67105D.0.567106【答案】C.15.(2017山东滨州第1题)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.16. (2017江苏宿迁第1题)5的相反数是11A.5B.C.D.555【答案】D.【解析】试题分析:根据只有符号不同的两个数互为相反数可得5的相反数是-5,故选D.17. .(2017山东日照第1题)﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.18. (2017辽宁沈阳第1题)7的相反数是()A.-7B.C.D.74177【答案】A.【解析】试题分析:根据“只有符号不同的两个数互为相反数”可得7的相反数是-7,故选A.考点:相反数.19.(2017山东日照第3题)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.考点:科学记数法—表示较大的数.20. (2017辽宁沈阳第3题) “弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。
专题10 四边形-2017年中考数学试题分项版解析汇编(解析版)
专题10:四边形一、选择题1.(2017北京第6题)若正多边形的一个内角是150°,则该正多边形的边数是( )A . 6B . 12C . 16D .18【答案】B .【解析】试题分析:设多边形的边数为n ,则有(n -2)×180°=n ×150°,解得:n =12.故选B .考点:多边形的内角与外角2. (2017河南第7题)如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC = C .AC BD = D .12∠=∠【答案】C .考点:菱形的判定.3. (2017湖南长沙第10题)如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 20【答案】D【解析】试题分析:根据菱形的对角线互相垂直,可知OA =3,OB =4,根据勾股定理可知AB =5,所以菱形的周长为4×5=20.故选:D考点:菱形的性质4. (2017湖南长沙第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn 的值为( ) A .22 B .21 C .215- D .随H 点位置的变化而变化【答案】B【解析】试题分析:设正方形ABCD 的边长为2a ,正方形的周长为m =8a ,设CM =x ,DE =y ,则DM =2a -x ,EM =2a -y ,∵∠EMG =90°,∴∠DME +∠CMG =90°.∵∠DME +∠DEM =90°,∴∠DEM =∠CMG ,又∵∠D =∠C =90°△DEM ∽△CMG , ∴CG CM MG DM DE EM ==,即22CG x MG a x y a y==-- ∴CG =(2)(2)=,x a x x a y CG MG y y--= △CMG 的周长为CM +CG +MG =24ax x y-在Rt △DEM 中,DM 2+DE 2=EM 2即(2a -x )2+y 2=(2a -y )2整理得4ax -x 2=4ay∴CM +MG +CG =2444ax x ay a y y-===n . 所以12n m = 故选:B .考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理5. (2017山东临沂第7题)一个多边形的内角和是外角和的2倍,这个多边形是( )A .四边形B .五边形C .六边形D .八边形【答案】C【解析】试题分析:根据多边形的外角和为360°,可知其内角和为720°,因此可根据多边形的内角和公式(n -2)·180°=720°,解得n =6,故是六边形.故选:C考点:多边形的内外角和6. (2017山东临沂第12题)在ABC V 中,点D 是边BC 上的点(与B 、C 两点不重合),过点D 作DE AC ∥,DF AB ∥,分别交AB ,AC 于E 、F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形C .若BD CD =,则四边形AEDF 是菱形D .若AD 平分BAC ∠,则四边形AEDF 是菱形【答案】D【解析】试题分析:根据题意可知:DE AC ∥,DF AB ∥,可得四边形AEDF 是平行四边形.若AD ⊥BC ,则四边形AEDF 是平行四边形,不一定是矩形;选项A 错误;若AD 垂直平分BC ,则四边形AEDF 是菱形,不一定是矩形;选项B 错误;若BD =CD ,则四边形AEDF 是平行四边形,不一定是菱形;选项C 错误;若AD 平分∠BAC ,则四边形AEDF 是菱形;正确.故选:D考点:特殊平行四边形的判定7. (2017山东青岛第7题)如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23B .23C .721D .7212 【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. (2017四川泸州第11题)如图,在矩形ABCD 中,点E 是边BC 的中点,AE BD ⊥,垂足为F ,则tan BDE ∠的值是 ( )A .24B .14C .13D .23【答案】A .【解析】试题分析:由AD ∥BC 可得△ADF ∽△EBF ,根据相似三角形的性质可得AD AF DF EB EF BF== ,因点E 是边BC 的中点且AD =BC ,所以AD AF DF EB EF BF ===2,设EF =x ,可得AF =2x ,在Rt △ABE 中,由射影定理可得BF =2x ,再由AD AF DF EB EF BF ===2可得DF =22x ,在Rt △DEF 中,tan BDE ∠=2422EF x DF x == ,故选A . 9. (2017江苏苏州第10题)如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .283B .243C .323D .3238-【答案】A .【解析】试题分析:作,,DH AB PK AB FL AB ⊥⊥⊥在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点 423,3AF EF EL ∴==∴=,P 是F E 的中点,32PK ∴= 43DH = 1373322PP CD ∴-= 高为4 7382832S ∴=⨯=L K H故答案选A .考点:平行四边形的面积,三角函数. 10.(2017江苏苏州第7题)如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为A .30B .36C .54D .72【答案】B .【解析】试题分析:∠ABE =3601=3652︒⨯︒ 故答案选B . 考点:多边形的外角,等腰三角形的两底角相等11.(2017浙江台州第10题) 如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE BF =,将,AEH CFG ∆∆分别沿,EH FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AE EB 为 ( )A . 53B .2C . 52D .4 【答案】A考点:1、菱形的性质,2、翻折变换(折叠问题)二、填空题1.(2017天津第17题)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .【答案】5.【解析】试题分析:连结AC ,根据正方形的性质可得A 、E 、C 三点共线,连结FG 交AC 于点M ,因正方形ABCD 和正方形EFCG 的边长分别为3和1,根据勾股定理可求得EC =FG =2,AC =32,即可得AE =22,因P 为AE 的中点,可得PE =AP =2,再由正方形的性质可得GM =EM =22,FG 垂直于AC ,在Rt △PGM 中,PM =322,由勾股定理即可求得PG =5.2.(2017福建第15题)两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD =∠ODC =180°-108°=72°,∴∠COD =36°,∴∠AOB =360°-108°-108°-36°=108°.D C3.(2017广东广州第16题)如图9,平面直角坐标系中O 是原点,OABC 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论:①F 是OA 的中点;②OFD ∆与BEG ∆相似;③四边形DEGF 的面积是203;④453OD =;其中正确的结论是 .(填写所有正确结论的序号)【答案】①③【解析】试题分析:如图,分别过点A 、B 作AN OB ⊥ 于点N ,BM x ⊥ 轴于点M在OABC 中,(80)(34)(114)137A C B OB ∴= ,,,,,D E 、 是线段AB 的三等分点, 12OD BD ∴= ,CB OF ODF BDC ∴∆∆111222OF OD OF BC OA BC BD ∴==∴==, F ∴ 是OA 的中点,故①正确.(34)5C OC OA ∴=≠ ,,OABC ∴ 不是菱形.,DOF COD EBG ODF COD EBG ∴∠≠∠=∠∠≠∠=∠(40)17,F CF OC CFO COF ∴=<∴∠>∠ ,,DFO EBG ∴∠≠∠故OFD ∆ 和BEG ∆ 不相似.则②错误;由①得,点G 是AB 的中点,FG ∴ 是OAB ∆ 的中位线1137,22FG OB FG OB ∴== D E 、 是OB 的三等分点,1373DE ∴= 1118416222OAB S OB AN OA BM ∆=⋅=⋅=⨯⨯= 解得:1162AN OB= ,DF FG ∴ 四边形DEGH 是梯形()551202121223DEGF DE FG h S OB h OB AN -∴==⋅=⋅=四边形 则③正确 113733OD OB == ,故④错误. 综上:①③正确.考点: 平行四边形和相似三角形的综合运用4.(2017广东广州第11题)如图6,四边形ABCD 中,0//,110AD BC A ∠=,则B ∠=___________.【答案】70°【解析】试题分析:两直线平行,同旁内角互补,可得:B ∠=180°-110°=70°考点:平行线的性质5.(2017山东临沂第18题)在ABCD Y 中,对角线AC ,BD 相交于点O .若4AB =,10BD =,3sin 5BDC ∠=,则ABCD Y 的面积是 .【答案】24【解析】试题分析:作OE ⊥CD 于E ,由平行四边形的性质得出OA =OC ,OB =OD =12BD =5,CD =AB =4,由sin ∠BDC =35,证出AC ⊥CD ,OC =3,AC =2OC =6,得出▱ABCD 的面积=CD •AC =24. 故答案为:24.考点:1、平行四边形的性质,2、三角函数,3、勾股定理6.(2017山东青岛第13题)如图,在四边形 ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连接BE 、ED 、BD ,若∠BAD =58°,则∠EBD 的度数为__________度.【答案】32 【解析】 试题分析:如下图由∠ABC =∠ADC =90°,E 为对角线AC 的中点,可知A ,B ,C ,D 四点共圆,圆心是E ,直径AC 然后根据圆周角定理由∠BAD =58°,得到∠BED =116°,然后根据等腰三角形的性质可求得∠EBD =32°. 故答案为:32.考点:1、圆周角性质定理,2、等腰三角形性质7.(2017山东滨州第16题)如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 周长的大小为___________.ABCDHQGFE【答案】8.【解析】由折叠的性质可得DH =EH ,设AH =x ,则DH =EH =8-x ,在Rt △AEH 中,根据勾股定理可得2224(8)x x +=- ,解得x =3,即可得AH =3,EH =5;根据已知条件易证△AEH ∽△BFE ,根据相似三角形的性质可得AH AE EH BE BF EF == ,即3452BF EF ==,解得BF =83 ,EF =103,所以△EBF 的周长为2+83+103=8. 8.(2017江苏宿迁第15题)如图,正方形CD AB 的边长为3,点E 在边AB 上,且1BE =.若点P 在对角线D B 上移动,则PA +PE 的最小值是 .【答案】10.9.(2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 .【答案】3105. 【解析】试题分析:如图,过点C 作MN ⊥BG ,分别交BG 、EF 于点M 、N ,根据旋转的旋转可得AB =BG =EF =CD =5,AD =GF =3,在Rt △BCG 中,根据勾股定理求得CG =4,再由1122BCG S BC CG BG CM =⋅=⋅ ,即可求得CM =125 ,在Rt △BCM 中,根据勾股定理求得BM =22221293()55BC CM -=-=,根据已知条件和辅助线作法易知四边形BENMW 为矩形,根据矩形的旋转可得BE =MN =3,BM =EN =95,所以CN =MN -CM =3-125=35,在Rt △ECN 中,根据勾股定理求得EC =22223990310()()55255CN EN +=+==.考点:四边形与旋转的综合题.10.(2017江苏苏州第18题)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).【答案】745. 【解析】试题分析:连接AG ,设DG =x ,则 G=4+x ''AB =B在'Rt AB G ∆ 中,22492(4)1x x x +=+⇒= ,则5,7AB BC =='254974'55CC BB +∴==考点:旋转的性质 ,勾股定理 .11. (2017山东菏泽第11题)菱形ABCD 中, 60=∠A ,其周长为cm 24,则菱形的面积为____2cm . 【答案】183. 【解析】试题分析:如图,连接BD ,作DE ⊥AB ,已知菱形的周长为cm 24,根据菱形的性质可得AB =6;再由 60=∠A ,即可判定△ABD 是等边三角形;求得DE =33,所以菱形的面积为:6×33=183.12. (2017浙江湖州第13题)已知一个多边形的每一个外角都等于72,则这个多边形的边数是 . 【答案】5考点:多边形的外角和三、解答题1. (2017北京第20题) 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.【答案】,,,AEF CFM ANF AEF FGC CFM S S S S S ∆∆∆∆∆;;S . 【解析】试题分析:由矩形的对角线的性质,对角线把矩形分成两个面积相等的三角形计算即可. 本题解析:由矩形对角线把矩形分成两个面积相等的两部分可得:(),()ADC ANF FGC ABC AEF FMC NFGD EBMF S S S S S S S S ∆∆∆∆∆=-+=-+矩形矩形 ,∴,,ADC ABC ANF AEF FGC FMC S S S S S S ∆∆∆∆∆∆=== , ∴NFGD EBMF S S =矩形矩形 . 考点:矩形的性质,三角形面积计算.2. (2017北京第22题)如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长. 【答案】(1)证明见解析.(2)3. 【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解.本题解析:(1)证明:∵E 为AD 中点,A D =2BC ,∴BC =ED , ∵AD ∥BC , ∴四边形ABCD 是平行四边形,∵AD =2BE , ∠ABD =90°,AE =DE ∴BE =ED , ∴四边形ABCD 是菱形.(2)∵AD ∥BC ,AC 平分∠BAD ∴∠BAC =∠DAC =∠BCA ,∴BA =BC =1, ∵AD =2BC =2,∴sin ∠ADB =12,∠ADB =30°, ∴∠DAC =30°, ∠ADC =60°.在RT △ACD 中,AD =2,CD =1,AC = 3 .考点:平行线性质,菱形判定,直角三角形斜边中线定理.3. (2017天津第24题)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A .(1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标; (2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).【答案】(1)点A ’的坐标为(2,1);(2)1;(3)3333(,)22--或2333(,)22- . 【解析】试题分析:(1)因点)0,3(A ,点)1,0(B ,可得OA =3 ,OB =1,根据折叠的性质可得△A ’OP ≌△AOP ,由全等三角形的性质可得OA ’=OA =3,在Rt △A ’OB 中,根据勾股定理求得'A B 的长,即可求得点A的坐标;(2)在Rt △AOB 中,根据勾股定理求得AB =2,再证△BOP 是等边三角形,从而得∠OPA =120°.在判定四边形OPA ’B 是平行四边形,根据平行四边形的性质即可得B A '的长; 试题解析:(1)因点)0,3(A ,点)1,0(B , ∴OA =3 ,OB =1.根据题意,由折叠的性质可得△A ’OP ≌△AOP .∴OA ’=OA =3,由OB B A ⊥',得∠A ’BO =90°.在Rt △A ’OB 中,22''2A B OA OB =-=, ∴点A ’的坐标为(2,1). (2) 在Rt △AOB 中,OA =3 ,OB =1, ∴222AB OA OB =+= ∵当P 为AB 中点, ∴AP =BP =1,OP =12AB =1. ∴OP =OB =BP , ∴△BOP 是等边三角形 ∴∠BOP =∠BPO =60°, ∴∠OPA =180°-∠BPO =120°. 由(1)知,△A ’OP ≌△AOP ,∴∠OPA ’=∠OPA =120°,P ’A =PA =1,又OB =PA ’=1,∴四边形OPA ’B 是平行四边形. ∴A ’B =OP =1. (3)3333(,)22--或2333(,)22- .4. (2017福建第24题)如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长; (Ⅱ)若2AP =,求CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)CF =324【解析】试题分析:(Ⅰ)分情况CP =CD 、PD =PC 、DP =DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由AP =2 ,从而可得CF =324. 试题解析:(Ⅰ)在矩形ABCD 中,AB =6,AD =8,∠ADC =90°,∴DC =AB =6, AC =22AD DC + =10;要使△PCD 是等腰三角形,有如下三种情况: (1)当CP =CD 时,CP =6,∴AP =AC -CP =4 ;(2)当PD =PC 时,∠PDC =∠PCD ,∵∠PCD +∠PAD =∠PDC +∠PDA =90°,∴∠PAD =∠PDA ,∴PD =PA ,∴PA =PC ,∴AP =2AC,即AP =5;(3)当DP =DC 时,过D 作DQ ⊥AC 于Q ,则PQ =CQ ,∵S △ADC =12 AD ·DC =12AC ·DQ ,∴DQ =245AD DC AC = ,∴CQ =22185DC DQ -= ,∴PC =2CQ =365 ,∴AP =AC -PC =145. 综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,∵四边形ABCD 和PEFD 都是矩形,∴∠ADC =∠PDF =90°,即∠ADP +∠PDC =∠PDC +∠CDF ,∴∠ADP =∠CDF ,∵∠BCD =90°,OE =OD ,∴OC =12 ED ,在矩形PEFD 中,PF =DE ,∴OC =12PF ,∵OP =OF =12PF ,∴OC =OP =OF ,∴∠OCF =∠OFC ,∠OCP =∠OPC ,又∵∠OPC +∠OFC +∠PCF =180°,∴2∠OCP +2∠OCF =180°,∴∠PCF =90°,即∠PCD +∠FCD =90°,在Rt △ADC 中,∠PCD +∠PAD =90°,∴∠PAD =∠FCD ,∴△ADP ∽△CDF ,∴34CF CD AP AD == ,∵AP =2 ,∴CF =324.5. (2017广东广州第24题)如图13,矩形ABCD 的对角线AC ,BD 相交于点O ,COD ∆关于CD 的对称图形为CED ∆.(1)求证:四边形OCED 是菱形;(2)连接AE ,若6cm AB =,5BC cm =. ①求sin EAD ∠的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP ,一动点Q 从点O 出发,以1/cm s 的速度沿线段OP 匀速运动到点P ,再以1.5cm /s 的速度沿线段PA 匀速运动到点A ,到达点A 后停止运动.当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q 走完全程所需的时间.【答案】(1)详见解析;(2)①2sin 3EAD ∠= ②32AP =和Q 走完全程所需时间为32s 【解析】(2)①连接OE ,直线OE 分别交AB 于点F ,交DC 于点GCOD ∆ 关于CD 的对称图形为CED ∆,OE DC DC AB ∴⊥ ,OF AB EF AD ∴⊥在矩形ABCD 中,G 为DC 的中点,且O 为AC 的中点OG ∴ 为CAD ∆ 的中位线 52OG GE ∴==同理可得:F 为AB 的中点,532OF AF ==, 22223593()22AE EF AF ∴=+=+= 32sin sin 932EAD AEFEAD AEF ∠=∠∴∠=∠==②过点P 作PM AB ⊥ 交AB 于点MQ ∴ 由O 运动到P 所需的时间为3s由①可得,23AM AP = ∴ 点O 以1.5/cm s 的速度从P 到A 所需的时间等于以 1/cm s 从M 运动到A 即:11OP PA OP MA t t t OP MA =+=+=+ Q ∴ 由O 运动到P 所需的时间就是OP +MA 和最小.如下图,当P 运动到1P ,即1PO AB 时,所用时间最短. 3t OP MA ∴=+=在11Rt APM ∆ 中,设112,3AM x APx == 2222211115(3)=(2)+()22AP AM PM x x =+∴ 解得:12x = 32AP ∴= 32AP ∴=和Q 走完全程所需时间为32s考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置6. (2017山东青岛第24题)(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。
2017年中考数学试题分项版解析汇编(第01期)专题15应用题课件
专题15 应用题一、选择题1.1.某美术社团为练习素描,他们第一次用某美术社团为练习素描,他们第一次用120元买了买了若干本资料,第二次用240元在同一家商店买同一样的资料,这次商家每本优惠4元,结果比上次多买了20本。
求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是(本资料,列方程正确的是( ))A.240120-=4-20x x B.240120-=4+20x x C.120240-=4-20x x D.120240-=4+20x x2.2.如图,某小区计划在一块长为如图,某小区计划在一块长为32m 32m,宽为,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm xm,则下面所列方程正确的是(,则下面所列方程正确的是(,则下面所列方程正确的是( )A .(32-2x 32-2x))(20-x 20-x))=570B =570 B..32x+2×20x=32×2032x+2×20x=32×20-570C -570C -570C..(32-x 32-x))(20-x 20-x))=32×20=32×20-570D -570 D -570 D..32x+2×20x 32x+2×20x-2x -2x 2=570 3.3.某商店今年某商店今年1月份的销售额是2万元,万元,33月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是(每月的增长率是( )A .20%B .25%C .50%D .62.5%4.4.王叔叔从市场上买一块长王叔叔从市场上买一块长80cm 80cm,宽,宽70cm 的矩形铁皮,准备制作一个工具箱,如图,他将矩形铁皮的四个角各剪掉一个边长cm x 的正方形后,剩余的部分刚好能围成一个底面积为23000cm 的无盖长方形工具箱,根据题意列方程为根据题意列方程为( ) ( )A.()()80703000x x --=B.2807043000x ?=C.()()8027023000x x --=D.()28070470803000x x ?-+=5.5.某工厂现在平均每天比原计划多生产某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,下面列出的方程正确的是(台机器,根据题意,下面列出的方程正确的是( ) A .60048040x x =- B .600480+40x x=C .600480+40xx =D .600480-40xx =二、填空题二、填空题 1.A 1.A、、B 两地之间的路程为2380米,甲、乙两人分别从A 、B 两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A 、B 之间的C 地相遇,相遇后,甲立即返回A 地,乙继续向A 地前行.甲到达A 地时停止行走,乙到达A 地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示,则乙到达A 地时,甲与A 地相距的路程是距的路程是 米.米.2.2.经过两次连续降价,某药品销售单价由原来的经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是据题意可列方程是 .3.3.我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x ,y 人,则可以列方程组人,则可以列方程组 ..4.4.一台空调标价一台空调标价2000元,若按6折销售仍可获利20%20%,则这台空调的进价是,则这台空调的进价是,则这台空调的进价是 元.元. 三、解答题三、解答题1.1.根据衢州市统计局发布的统计数据显示,衢州市近根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,所示,20162016年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示。
2017--2019近几年广州中考数学情考点分析及建议
2017--2019近几年广州中考数学情考点分析及建议近几年考情分析引言2019年广州中考数学试卷整体难度保持稳定,在稳定的基础上注重数学基础知识的考查,更加重视数学素养和数学方法。
选择填空题考法常规,考查范围以基础知识为主。
解答题部分,17-23题题型结构稳定,着重考查学生的“四基”。
24-25题着重考查学生的“代几”综合运用能力、作图探究能力、图形变换、数形结合思想的运用。
本次命题依据考试大纲,着力体现新课标的教学理念,突出对学生基本数学素养的评价,既考查了四基——基础知识、基本技能、基本数学思想方法和基本活动经验,又突出课本核心内容,关注学生研究的结果,也重视研究的过程。
2019广州中考数学命题,有利于培养学生对知识点的综合运用能力、动手作图能力与运算能力,有助于学生构建知识体系。
本次命题不设置偏题,确保了试题的科学性、公平性和严谨性。
一、整体评价试卷难度稳定,整体布局与往年的广州中考类似。
选择填空考法常规,但计算量增大;解答题梯度明显,区分度很高,注重知识接洽,请求学生具备计算本领、多个知识点灵活运用本领、作图本领等数学基本头脑和本领。
二、试卷特点试卷题型分为选择题、填空题、解答题,在分值分布和题型特征方面与往年相似。
今年函数部分分值降低,压轴题与以往同等,考查一题函数、一题几何的模式。
函数压轴题,考查含参问题、函数过定点的问题,注重初高衔接;另一道压轴题,以等边三角形为背景的翻折问题,通过构造“辅助圆”解决最值问题。
今年的试题主要特点:①重视基础,考查灵活运用知识点的本领;②突显学生作图本领,加强着手本领;③注重知识点交汇;④常规但不俗套;⑤注重学生计算本领的考查;⑥相比往年,今年减少了分类讨论头脑的考查。
今年第10题,难度不大,但涉及的知识点较多,考查一元二次方程根的判别式、根与系数的关系、平方差公式以及整体思想等知识点。
第16题,则是引入“半角模型”和“三垂直模型”的构造,以及利用函数求最值问题,强调了学生平时在研究过程中,对常见的典型几何模型的归纳,以及函数思想解决最值问题。
2017-2021年广东中考数学真题分类汇编之二次函数
2017-2021年广东中考数学真题分类汇编之二次函数一.选择题(共8小题)1.(2018•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根2.(2021•深圳)二次函数y=ax2+bx+1的图象与一次函数y=2ax+b在同一平面直角坐标系中的图象可能是()A.B.C.D.3.(2020•广东)如图,抛物线y=ax2+bx+c的对称轴是直线x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个4.(2020•深圳)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根5.(2020•广东)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+3 6.(2021•广州)抛物线y=ax2+bx+c经过点(﹣1,0)、(3,0),且与y轴交于点(0,﹣5),则当x=2时,y的值为()A.﹣5B.﹣3C.﹣1D.5 7.(2021•广东)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记p =,则其面积S=.这个公式也被称为海伦﹣秦九韶公式.若p=5,c=4,则此三角形面积的最大值为()A.B.4C.2D.5 8.(2021•广东)设O为坐标原点,点A、B为抛物线y=x2上的两个动点,且OA⊥OB.连接点A、B,过O作OC⊥AB于点C,则点C到y轴距离的最大值()A.B.C.D.1二.填空题(共4小题)9.(2018•广州)已知二次函数y=x2,当x>0时,y随x的增大而(填“增大”或“减小”).10.(2017•广州)当x=时,二次函数y=x2﹣2x+6有最小值.11.(2021•广东)把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为.12.(2020•广州)对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x=mm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.三.解答题(共8小题)13.(2021•深圳)某科技公司销售高新科技产品,该产品成本为8万元,销售单价x(万元)与销售量y(件)的关系如表所示:x(万元)10121416y(件)40302010(1)求y与x的函数关系式;(2)当销售单价为多少时,有最大利润,最大利润为多少?14.(2021•广东)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x元(50≤x≤65),y表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.15.(2018•广东)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.16.(2017•广州)已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A (﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.17.(2017•深圳)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.18.(2021•广州)已知抛物线y=x2﹣(m+1)x+2m+3.(1)当m=0时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点E(﹣1,﹣1)、F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.19.(2020•广东)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ 相似时,请直接写出所有满足条件的点Q的坐标.20.(2018•广州)已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=﹣的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求的值.2017-2021年广东中考数学真题分类汇编之二次函数参考答案与试题解析一.选择题(共8小题)1.(2018•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【考点】二次函数图象与系数的关系;抛物线与x轴的交点.【专题】函数及其图象.【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b>0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b=0,不是2a+b<0,错误;C、当x=﹣1时,y=a﹣b+c<0,∴3a+c=a﹣b+c<0,所以C正确;D、由图可知,抛物线y=ax2+bx+c与直线y=3有一个交点,可得:ax2+bx+c﹣3=0,此方程有一个实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,Δ=b2﹣4ac>0时,抛物线与x轴有2个交点;Δ=b2﹣4ac=0时,抛物线与x 轴有1个交点;Δ=b2﹣4ac<0时,抛物线与x轴没有交点.2.(2021•深圳)二次函数y=ax2+bx+1的图象与一次函数y=2ax+b在同一平面直角坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【专题】二次函数图象及其性质;几何直观.【分析】由二次函数y=ax2+bx+c的图象得到字母系数的正负以及对称轴,与一次函数y =2ax+b的图象得到的字母系数的正负以及与x轴的交点相比较看是否一致.【解答】解:A、由抛物线可知,a>0,b<0,c=1,对称轴为直线x=﹣,由直线可知,a>0,b<0,直线经过点(﹣,0),故本选项符合题意;B、由抛物线可知,对称轴为直线x=﹣,直线不经过点(﹣,0),故本选项不符合题意;C、由抛物线可知,对称轴为直线x=﹣,直线不经过点(﹣,0),故本选项不符合题意;D、由抛物线可知,对称轴为直线x=﹣,直线不经过点(﹣,0),故本选项不符合题意;故选:A.【点评】本题考查二次函数和一次函数的图象,解题的关键是明确一次函数和二次函数性质.3.(2020•广东)如图,抛物线y=ax2+bx+c的对称轴是直线x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【考点】二次函数图象与系数的关系;抛物线与x轴的交点.【专题】二次函数图象及其性质;推理能力.【分析】根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.【点评】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.4.(2020•深圳)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根【考点】二次函数图象与系数的关系;抛物线与x轴的交点;根的判别式.【专题】二次函数图象及其性质;推理能力.【分析】根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B进行判断;x=1时,y<0,可对C进行判断;根据抛物线y=ax2+bx+c与直线y=n+1无交点,可对D进行判断.【解答】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣=﹣1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,故B正确;C.∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(﹣1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.5.(2020•广东)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+3【考点】二次函数图象与几何变换.【专题】二次函数图象及其性质;推理能力.【分析】先求出y=(x﹣1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.【解答】解:二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x﹣2)2+2.故选:C.【点评】本题主要考查的是函数图象的平移,求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.6.(2021•广州)抛物线y=ax2+bx+c经过点(﹣1,0)、(3,0),且与y轴交于点(0,﹣5),则当x=2时,y的值为()A.﹣5B.﹣3C.﹣1D.5【考点】二次函数的性质;二次函数图象上点的坐标特征.【专题】二次函数图象及其性质;几何直观.【分析】根据抛物线与x轴两交点,及与y轴交点可画出大致图象,根据抛物线的对称性可求y=﹣5.【解答】解:如图∵抛物线y=ax2+bx+c经过点(﹣1,0)、(3,0),且与y轴交于点(0,﹣5),∴可画出上图,∵抛物线对称轴x==1,∴点(0,﹣5)的对称点是(2,﹣5),∴当x=2时,y的值为﹣5.故选:A.【点评】本题考查了抛物线的图象与性质、二次函数图象上点的坐标特征等知识,画出图象利用对称性是解题的关键.7.(2021•广东)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记p =,则其面积S=.这个公式也被称为海伦﹣秦九韶公式.若p=5,c=4,则此三角形面积的最大值为()A.B.4C.2D.5【考点】二次函数的最值;代数式求值.【专题】二次根式;运算能力.【分析】根据公式算出a+b的值,代入公式即可求出解.【解答】解:∵p=,p=5,c=4,∴5=,∴a+b=6,∴a=6﹣b,∴S=======,当b=3时,S有最大值为=2.故选:C.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,表示出相应的三角形的面积.8.(2021•广东)设O为坐标原点,点A、B为抛物线y=x2上的两个动点,且OA⊥OB.连接点A、B,过O作OC⊥AB于点C,则点C到y轴距离的最大值()A.B.C.D.1【考点】二次函数的最值;二次函数图象上点的坐标特征.【专题】二次函数图象及其性质;圆的有关概念及性质;图形的相似;推理能力;应用意识.【分析】分别作AE、BF垂直于x轴于点E、F,设OE=a,OF=b,由抛物线解析式可得AE=a2,BF=b2,作AH⊥BH于H,交y轴于点G,连接AB交y轴于点D,设点D(0,m),易证△ADG∽△ABH,所以,即.可得m=ab.再证明△AEO∽△OFB,所以,即,可得ab=1.即得点D为定点,坐标为(0,1),得DO=1.进而可推出点C是在以DO为直径的圆上运动,则当点C到y轴距离为此圆的直径的一半,即时最大.【解答】解:如图,分别作AE、BF垂直于x轴于点E、F,设OE=a,OF=b,由抛物线解析式为y=x2,则AE=a2,BF=b2,作AH⊥BF于H,交y轴于点G,连接AB交y轴于点D,设点D(0,m),∵DG∥BH,∴△ADG∽△ABH,∴,即.化简得:m=ab.∵∠AOB=90°,∴∠AOE+∠BOF=90°,又∠AOE+∠EAO=90°,∴∠BOF=∠EAO,又∠AEO=∠BFO=90°,∴△AEO∽△OFB.∴,即,化简得ab=1.则m=ab=1,说明直线AB过定点D,D点坐标为(0,1).∵∠DCO=90°,DO=1,∴点C是在以DO为直径的圆上运动,∴当点C到y轴距离为=时,点C到y轴的距离最大.故选:A.【点评】本题考查了二次函数结合动点问题背景下的最值求法,涉及相似三角形,圆周角定理,此题难度较大,关键是要找出点D为定点,确定出点C的轨迹为一段优弧,再求最值.二.填空题(共4小题)9.(2018•广州)已知二次函数y=x2,当x>0时,y随x的增大而增大(填“增大”或“减小”).【考点】二次函数的性质.【专题】常规题型.【分析】根据二次函数的二次项系数a以及对称轴即可判断出函数的增减性.【解答】解:∵二次函数y=x2,开口向上,对称轴为y轴,∴当x>0时,y随x的增大而增大.故答案为:增大.【点评】本题主要考查了二次函数的性质,解答本题的关键是求出二次函数的对称轴为y 轴,开口向上,此题难度不大.10.(2017•广州)当x=1时,二次函数y=x2﹣2x+6有最小值5.【考点】二次函数的最值.【专题】推理填空题.【分析】把x2﹣2x+6化成(x﹣1)2+5,即可求出二次函数y=x2﹣2x+6的最小值是多少.【解答】解:∵y=x2﹣2x+6=(x﹣1)2+5,∴当x=1时,二次函数y=x2﹣2x+6有最小值5.故答案为:1、5.【点评】此题主要考查了二次函数的最值,要熟练掌握,确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.11.(2021•广东)把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为y=2x2+4x.【考点】二次函数图象与几何变换.【专题】二次函数图象及其性质;应用意识.【分析】可根据二次函数图象左加右减,上加下减的平移规律进行解答.【解答】解:把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为:y=2(x+1)2+1﹣3,即y=2x2+4x故答案为y=2x2+4x.【点评】本题考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.12.(2020•广州)对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=10.0mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x=mm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.【考点】二次函数的应用.【专题】二次函数图象及其性质;应用意识.【分析】构建二次函数,利用二次函数的性质即可解决问题.【解答】解:设y=(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2=3a2﹣60.0a+300.02,∵a=3>0,∴当x=﹣=10.0时,y有最小值,设w=(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2=nx2﹣2(x1+x2+…+x n)x+(x12+x22+…+x n2),∵n>0,∴当x=﹣=时,w有最小值.故答案为10.0,.【点评】本题考查二次函数的性质,解题的关键是学会构建二次函数解决最值问题.三.解答题(共8小题)13.(2021•深圳)某科技公司销售高新科技产品,该产品成本为8万元,销售单价x(万元)与销售量y(件)的关系如表所示:x(万元)10121416y(件)40302010(1)求y与x的函数关系式;(2)当销售单价为多少时,有最大利润,最大利润为多少?【考点】二次函数的应用.【专题】二次函数的应用;应用意识.【分析】(1)通过表格数据可以判断y与x之间的函数关系式为一次函数关系,设出函数解析式用待定系数法求函数解析式即可;(2)根据销售利润等于单件的利润与销售件数的乘积列出函数关系式,根据二次函数的性质求最值即可.【解答】解:(1)由表格中数据可知,y与x之间的函数关系式为一次函数关系,设y=kx+b(k≠0),则,解得:,∴y与x的函数关系式y=﹣5x+90;(2)设该产品的销售利润为w,由题意得:w=y(x﹣8)=(﹣5x+90)(x﹣8)=﹣5x2+130x﹣720=﹣5(x﹣13)2+125,∵﹣5<0,∴当x=13时,w最大,最大值为125(万元),答:当销售单价为13万元时,有最大利润,最大利润为125万元.【点评】本题考查一次函数的性质及待定系数法求函数解析式,关键是根据销售利润等于单件的利润与销售件数的乘积,列出函数关系式.14.(2021•广东)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x元(50≤x≤65),y表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.【考点】二次函数的应用;分式方程的应用.【专题】二次函数的应用;应用意识.【分析】(1)设猪肉粽每盒进价a元,则豆沙粽每盒进价(a﹣10)元,根据商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同列出方程,解方程即可;(2)由题意得,当x=50时,每天可售出100盒,当猪肉粽每盒售价x元(50≤x≤65)时,每天可售[100﹣2(x﹣50)]盒,列出每天销售猪肉粽的利润y与猪肉粽每盒售价x 元的函数关系式,根据二次函数的性质及x的取值范围求利润的最大值.【解答】解:(1)设猪肉粽每盒进价a元,则豆沙粽每盒进价(a﹣10)元,则,解得:a=40,经检验a=40是方程的解,∴猪肉粽每盒进价40元,豆沙粽每盒进价30元,(2)由题意得,当x=50时,每天可售出100盒,当猪肉粽每盒售价x元(50≤x≤65)时,每天可售[100﹣2(x﹣50)]盒,∴y=x[100﹣2(x﹣50)]﹣40×[100﹣2(x﹣50)]=﹣2x2+280x﹣8000,配方,得:y=﹣2(x﹣70)2+1800,∵x<70时,y随x的增大而增大,∴当x=65时,y取最大值,最大值为:﹣2×(65﹣70)2+1800=1750(元).答:y关于x的函数解析式为y=﹣2x2+280x﹣8000(50≤x≤65),且最大利润为1750元.【点评】本题考查了二次函数的应用以及分式方程的解法,关键是根据题意列出每天销售猪肉粽的利润y与猪肉粽每盒售价x元的函数关系式.15.(2018•广东)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】函数及其图象.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数的解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,所以M1(3,6);②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴∠OCE=60°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,所以M2(,﹣2),综上所述M的坐标为(3,6)或(,﹣2).【点评】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键.16.(2017•广州)已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A (﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.【考点】待定系数法求二次函数解析式;一次函数的性质;待定系数法求一次函数解析式;二次函数的性质.【分析】(1)根据题意求得顶点B的坐标,然后根据顶点公式即可求得m、n,从而求得y1的解析式;(2)分两种情况讨论:当y1的解析式为y1=﹣x2﹣2x时,抛物线与x轴的交点(0,0)或(﹣2,0),y2经过(﹣2,0)和A,符合题意;当y1=﹣x2﹣2x+8时,解﹣x2﹣2x+8=0求得抛物线与x轴的交点坐标,然后根据A的坐标和y2随着x的增大而增大,求得y1与y2都经过x轴上的同一点(﹣4,0),然后根据待定系数法求得即可.【解答】解:(1)∵抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A (﹣1,5),点A与y1的顶点B的距离是4.∴B(﹣1,1)或(﹣1,9),∴﹣=﹣1,=1或9,解得m=﹣2,n=0或8,∴y1的解析式为y1=﹣x2﹣2x或y1=﹣x2﹣2x+8;(2)①当y1的解析式为y1=﹣x2﹣2x时,抛物线与x轴交点是(0,0)和(﹣2,0),∵y1的对称轴与y2交于点A(﹣1,5),∴y1与y2都经过x轴上的同一点(﹣2,0),把(﹣1,5),(﹣2,0)代入得,解得,∴y2=5x+10.②当y1=﹣x2﹣2x+8时,解﹣x2﹣2x+8=0得x=﹣4或2,∵y2随着x的增大而增大,且过点A(﹣1,5),∴y1与y2都经过x轴上的同一点(﹣4,0),把(﹣1,5),(﹣4,0)代入得,解得;∴y2=x+.【点评】本题考查了一次函数的性质,二次函数的性质,待定系数法求一次函数和二次函数的解析式,根据题意求得顶点坐标是解题的关键.17.(2017•深圳)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.【考点】二次函数综合题.【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)由条件可求得点D到x轴的距离,即可求得D点的纵坐标,代入抛物线解析式可求得D点坐标;(3)由条件可证得BC⊥AC,设直线AC和BE交于点F,过F作FM⊥x轴于点M,则可得BF=BC,利用平行线分线段成比例可求得F点的坐标,利用待定系数法可求得直线BE解析式,联立直线BE和抛物线解析式可求得E点坐标,则可求得BE的长.【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)由题意可知C(0,2),A(﹣1,0),B(4,0),∴AB=5,OC=2,∴S△ABC=AB•OC=×5×2=5,∵S△ABC=S△ABD,∴S△ABD=×5=,设D(x,y),∴AB•|y|=×5|y|=,解得|y|=3,当y=3时,由﹣x2+x+2=3,解得x=1或x=2,此时D点坐标为(1,3)或(2,3);当y=﹣3时,由﹣x2+x+2=﹣3,解得x=﹣2(舍去)或x=5,此时D点坐标为(5,﹣3);综上可知存在满足条件的点D,其坐标为(1,3)或(2,3)或(5,﹣3);(3)∵AO=1,OC=2,OB=4,AB=5,∴AC==,BC==2,∴AC2+BC2=AB2,∴△ABC为直角三角形,即BC⊥AC,如图,设直线AC与直线BE交于点F,过F作FM⊥x轴于点M,由题意可知∠FBC=45°,∴∠CFB=45°,∴CF=BC=2,∴=,即=,解得OM=2,=,即=,解得FM=6,∴F(2,6),且B(4,0),设直线BE解析式为y=kx+m,则可得,解得,∴直线BE解析式为y=﹣3x+12,联立直线BE和抛物线解析式可得,解得或,∴E(5,﹣3),∴BE==.【点评】本题为二次函数的综合应用,涉及待定系数法、三角形面积、勾股定理及其逆定理、平行线分线段成比例、函数图象的交点、等腰直角三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中求得D点的纵坐标是解题的关键,在(3)中由条件求得直线BE的解析式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度.18.(2021•广州)已知抛物线y=x2﹣(m+1)x+2m+3.(1)当m=0时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点E(﹣1,﹣1)、F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.【考点】二次函数综合题.【专题】综合题;函数思想;待定系数法;函数的综合应用;运算能力;应用意识.【分析】(1)当m=0时,抛物线为y=x2﹣x+3,将x=2代入得y=5,故点(2,4)不在抛物线上;(2)抛物线y=x2﹣(m+1)x+2m+3的顶点为(,),而=﹣(m﹣3)2+5,即得m=3时,纵坐标最大,此时顶点移动到了最高处,顶点坐标为:(2,5);(3)求出直线EF的解析式为y=2x+1,由得直线y=2x+1与抛物线y=x2﹣(m+1)x+2m+3的交点为:(2,5)和(m+1,2m+3),因(2,5)在线段EF上,由已知可得(m+1,2m+3)不在线段EF上,即是m+1<﹣1或m+1>3,或(2,5)与(m+1,2m+3)重合,可得抛物线顶点横坐标x顶点=<﹣或x顶点=>或x顶点=1.【解答】解:(1)当m=0时,抛物线为y=x2﹣x+3,将x=2代入得y=4﹣2+3=5,∴点(2,4)不在抛物线上;(2)抛物线y=x2﹣(m+1)x+2m+3的顶点为(,),化简得(,),顶点移动到最高处,即是顶点纵坐标最大,而=﹣(m﹣3)2+5,∴m=3时,纵坐标最大,即是顶点移动到了最高处,此时顶点坐标为:(2,5);(3)设直线EF解析式为y=kx+b,将E(﹣1,﹣1)、F(3,7)代入得:,解得,∴直线EF的解析式为y=2x+1,由得:或,∴直线y=2x+1与抛物线y=x2﹣(m+1)x+2m+3的交点为:(2,5)和(m+1,2m+3),而(2,5)在线段EF上,∴若该抛物线与线段EF只有一个交点,则(m+1,2m+3)不在线段EF上,或(2,5)与(m+1,2m+3)重合,∴m+1<﹣1或m+1>3或m+1=2(此时2m+3=5),∴此时抛物线顶点横坐标x顶点=<﹣或x顶点=>或x顶点===1.【点评】本题考查二次函数的综合应用,涉及图象上点坐标特征,顶点坐标,抛物线与线段交点等知识,解题的关键是用m的代数式表示抛物线与直线交点的坐标.19.(2020•广东)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ 相似时,请直接写出所有满足条件的点Q的坐标.【考点】二次函数综合题.【专题】二次函数图象及其性质;等腰三角形与直角三角形;图形的相似;推理能力;应用意识.【分析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.【解答】解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,。
中考数学专题复习《实数》检测题真题(含答案)
中考专题复习实 数1、有理数:像3、53-、119……这样的 或 。
2、数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注意上述规定的 三要素缺一不可)。
3、相反数:只有 不同的两个数,如a 的相反数是 ,0的相反数仍是 。
若a 与b 互为相反数,则 .4、绝对值:正数的绝对值是它 ,负数的绝对值是它的 ,0的绝对值是0.任何实数的绝对值都是 ,a ≧0.互为相反数的两个数的绝对值相等,a =a -。
5、倒数: 没有倒数。
正数的倒数是正数,负数的倒数是负数。
若a 与b 互为倒数,则 .6、有理数的四则混合运算:(1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行;(4)如有括号,先做括号内的运算,按 ,中括号, 依次进行。
7、乘方:求n 个 的积的运算,叫做乘方,乘方的结果叫做 。
在a n中,a 叫做 ,n 叫做 。
8、科学记数法:把一个数写做 的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。
9、平方根:如果一个数的平方等a ,那么这个数叫做a 的 或 ,0的平方根是0,负数 平方根。
a 的平方根记为a ±(a ≧0),读作“正负根号a ”,a 叫做被开方数。
10、算术平方根:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,0的算术平方根为0。
a 的算术平方根记为a (a ≧0),读作“根号a ”,a 叫做被开方数。
11、立方根:如果一个数的立方等于a ,那么这个数叫做a 的 或 ,0的立方 根是0,正数的立方根是正数,负数的立方根是负数。
3a -=3a ,a 的立方根记为3a ,读作“三次根号a ”,a 叫做 ,3是 。
知识回顾12、无理数:像2、33、……这样的 。
13、实数: 和 统称为实数。
实数与数轴上的点 。
1.(2017湖南长沙,1)下列实数中,为有理数的是( ) A .B .C .D .12.(2017广东广州,1)如图1,数轴上两点表示的数互为相反数,则点表示的( )A . -6B .6C . 0D .无法确定3.(2017湖南长沙,3)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( ) A .B .C .D .4.(2017山东临沂,1)的相反数是( ) A .B .C .2017D .5.(2017浙江宁波,4)实数的立方根是 .6.(2017重庆A 卷,13)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 . 7.(2017重庆A 卷,14)计算:|﹣3|+(﹣1)2= . 8.(2017江苏徐州,9)的算术平方根是 . 9.(2017浙江嘉兴,17(1))计算:.10.(2017浙江台州,17)计算:.基础检测考点精讲1.有理数概念【例题1】(2017河南,1)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.【考点】有理数的大小比较.【变式】(2017重庆A卷,14)计算:|﹣3|+(﹣1)2= .【答案】4.【解析】|﹣3|+(﹣1)2=4【考点】有理数的混合运算.【例题2】(2017天津,1)计算的结果等于()A.2 B. C.8 D.【答案】A.【解析】根据有理数的加法法则即可得原式-2,故选A.【变式】(2017山东滨州,1)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.【例题3】(2017山东日照,3)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4640万有8位,所以可以确定n=8﹣1=7.4640万=4.64×107.故选:C.【考点】科学记数法—表示较大的数.【变式】(2017辽宁沈阳,3)“弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。
2017-2021年广东中考数学真题分类汇编之方程与不等式
2017-2021年广东中考数学真题分类汇编之方程与不等式一.选择题(共11小题)1.(2018•广东)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥2.(2021•广州)方程=的解为()A.x=﹣6B.x=﹣2C.x=2D.x=6 3.(2021•深圳)《九章算术》“盈不足”一卷中有这样一个问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”意思是:“今有好田1亩,价值300钱;坏田7亩,价值500钱.今共买好、坏田1顷(1顷=100亩),总价值10000钱.问好、坏田各买了多少亩?设好田买了x亩,坏田买了y亩,则下面所列方程组正确的是()A.B.C.D.4.(2020•枣庄)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=7 5.(2019•广东)已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12﹣2x1=0C.x1+x2=2D.x1•x2=2 6.(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程组正确的是()A.B.C.D.7.(2018•广东)不等式3x﹣1≥x+3的解集是()A.x≤4B.x≥4C.x≤2D.x≥2 8.(2017•深圳)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330B.(1﹣10%)x=330C.(1﹣10%)2x=330D.(1+10%)x=3309.(2021•深圳)不等式x+1>2的解集在数轴上表示为()A.B.C.D.10.(2020•广州)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个11.(2019•广州)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.=B.=C.=D.=二.填空题(共6小题)12.(2021•广州)方程x2﹣4x=0的实数解是.13.(2021•深圳)已知方程x2+mx﹣3=0的一个根是1,则m的值为.14.(2020•广州)方程=的解是.15.(2021•广东)若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,则符合条件的一个方程为.16.(2021•广东)二元一次方程组的解为.17.(2018•广州)方程=的解是.三.解答题(共3小题)18.(2021•广东)解不等式组.19.(2021•广州)民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”“广东技工”“南粤家政”三项培训工程,今年计划新增加培训共100万人次.(1)若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次;(2)“粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业,据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?20.(2019•广州)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.2017-2021年广东中考数学真题分类汇编之方程与不等式参考答案与试题解析一.选择题(共11小题)1.(2018•广东)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥【考点】根的判别式.【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴Δ=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.2.(2021•广州)方程=的解为()A.x=﹣6B.x=﹣2C.x=2D.x=6【考点】解分式方程.【专题】计算题;分式方程及应用;运算能力.【分析】求解分式方程,根据方程的解得结论.【解答】解:去分母,得x=2x﹣6,∴x=6.经检验,x=6是原方程的解.故选:D.【点评】本题考查了解分式方程,掌握解分式方程的一般步骤是解决本题的关键.3.(2021•深圳)《九章算术》“盈不足”一卷中有这样一个问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”意思是:“今有好田1亩,价值300钱;坏田7亩,价值500钱.今共买好、坏田1顷(1顷=100亩),总价值10000钱.问好、坏田各买了多少亩?设好田买了x亩,坏田买了y亩,则下面所列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用;应用意识.【分析】设他买了x亩好田,y亩坏田,根据总价=单价×数量,结合购买好田坏田一共是100亩且共花费了10000元,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设他买了x亩好田,y亩坏田,∵共买好、坏田1顷(1顷=100亩).∴x+y=100;∵今有好田1亩,价值300钱;坏田7亩,价值500钱,购买100亩田共花费10000钱,∴300x+y=10000.联立两方程组成方程组得:.故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.4.(2020•枣庄)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=7【考点】分式方程的解.【专题】新定义.【分析】所求方程利用题中的新定义化简,求出解即可.【解答】解:根据题意,得=﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.【点评】此题考查了解分式方程,弄清题中的新定义是解本题的关键.5.(2019•广东)已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12﹣2x1=0C.x1+x2=2D.x1•x2=2【考点】根与系数的关系.【专题】一元二次方程及应用.【分析】由根的判别式Δ=4>0,可得出x1≠x2,选项A不符合题意;将x1代入一元二次方程x2﹣2x=0中可得出x12﹣2x1=0,选项B不符合题意;利用根与系数的关系,可得出x1+x2=2,x1•x2=0,进而可得出选项C不符合题意,选项D符合题意.【解答】解:∵Δ=(﹣2)2﹣4×1×0=4>0,∴x1≠x2,选项A不符合题意;∵x1是一元二次方程x2﹣2x=0的实数根,∴x12﹣2x1=0,选项B不符合题意;∵x1,x2是一元二次方程x2﹣2x=0的两个实数根,∴x1+x2=2,x1•x2=0,选项C不符合题意,选项D符合题意.故选:D.【点评】本题考查了根与系数的关系以及根的判别式,逐一分析四个选项的正误是解题的关键.6.(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】常规题型.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x个,小房间有y个,由题意得:,故选:A.【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.7.(2018•广东)不等式3x﹣1≥x+3的解集是()A.x≤4B.x≥4C.x≤2D.x≥2【考点】解一元一次不等式.【专题】计算题;一元一次不等式(组)及应用.【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.8.(2017•深圳)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330B.(1﹣10%)x=330C.(1﹣10%)2x=330D.(1+10%)x=330【考点】由实际问题抽象出一元一次方程.【分析】设上个月卖出x双,等量关系是:上个月卖出的双数×(1+10%)=现在卖出的双数,依此列出方程即可.【解答】解:设上个月卖出x双,根据题意得(1+10%)x=330.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,理解题意找到等量关系是解决本题的关键.9.(2021•深圳)不等式x+1>2的解集在数轴上表示为()A.B.C.D.【考点】解一元一次不等式;在数轴上表示不等式的解集.【专题】一元一次不等式(组)及应用;几何直观;运算能力.【分析】先移项、合并同类项解出不等式的解集,再在数轴上表示出来即可.【解答】解:因为x+1>2,所以x>1,在数轴上表示为:故选:D.【点评】此题考查一元一次不等式的解法及在数轴上表示不等式的解集,关键是解出不等式的解集.10.(2020•广州)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个【考点】根的判别式;一次函数的性质.【专题】一元二次方程及应用;运算能力;推理能力.【分析】利用一次函数的性质得到a≤0,再判断Δ=22﹣4a>0,从而得到方程根的情况.【解答】解:∵直线y=x+a不经过第二象限,∴a≤0,当a=0时,关于x的方程ax2+2x+1=0是一元一次方程,解为x=﹣,当a<0时,关于x的方程ax2+2x+1=0是一元二次方程,∵Δ=22﹣4a>0,∴方程有两个不相等的实数根.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.也考查了一次函数的性质.11.(2019•广州)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【专题】分式方程及应用.【分析】设甲每小时做x个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.【解答】解:设甲每小时做x个零件,可得:,故选:D.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.二.填空题(共6小题)12.(2021•广州)方程x2﹣4x=0的实数解是x1=0,x2=4.【考点】解一元二次方程﹣因式分解法.【专题】一次方程(组)及应用;运算能力.【分析】方程利用因式分解法求出解即可.【解答】解:方程x2﹣4x=0,分解因式得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4.故答案为:x1=0,x2=4.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.13.(2021•深圳)已知方程x2+mx﹣3=0的一个根是1,则m的值为2.【考点】一元二次方程的解.【专题】一元二次方程及应用;推理能力.【分析】根据一元二次方程的解把x=1代入一元二次方程得到关于m的一次方程,然后解一次方程即可.【解答】解:把x=1代入x2+mx﹣3=0得12+m﹣3=0,解得m=2.故答案是:2.【点评】本题考查了一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14.(2020•广州)方程=的解是x=.【考点】解分式方程.【专题】分式方程及应用;运算能力.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程=,去分母得:2x=3,解得:x=,经检验,分式方程的解为x=.故答案为:x=.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.15.(2021•广东)若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,则符合条件的一个方程为x2﹣2=0(答案不唯一).【考点】一元二次方程的定义.【专题】一元二次方程及应用;推理能力.【分析】根据一元二次方程的定义解决问题即可,注意答案不唯一.【解答】解:∵若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,∴满足条件的方程可以为:x2﹣2=0(答案不唯一),故答案为:x2﹣2=0(答案不唯一).【点评】本题考查一元二次方程的定义,解题的关键是理解题意,灵活运用所学知识解决问题.16.(2021•广东)二元一次方程组的解为.【考点】解二元一次方程组.【专题】一次方程(组)及应用;运算能力.【分析】直接利用加减消元法求解可得问题的答案.【解答】解:,①×2﹣②,得:3y=﹣6,即y=﹣2,将y=﹣2代入②,得:2x+(﹣2)=2,解得:x=2,所以方程组的解为.故答案为.【点评】本题考查的是解二元一次方程组,利用加减消元法把方程组化为一元方程是解答此题的关键.17.(2018•广州)方程=的解是x=2.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+6=4x,解得:x=2,经检验x=2是分式方程的解,故答案为:x=2【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.三.解答题(共3小题)18.(2021•广东)解不等式组.【考点】解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式2x﹣4>3(x﹣2),得:x<2,解不等式4x>,得:x>﹣1,则不等式组的解集为﹣1<x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(2021•广州)民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”“广东技工”“南粤家政”三项培训工程,今年计划新增加培训共100万人次.(1)若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次;(2)“粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业,据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?【考点】一元一次不等式的应用;一元一次方程的应用.【专题】一次方程(组)及应用;一元一次不等式(组)及应用;应用意识.【分析】(1)设“南粤家政”今年计划新增加培训x万人次,则“粤菜师傅”今年计划新增加培训2x万人次,根据今年计划新增加培训共100万人次,即可得出关于x的一元一次方程,解之即可得出结论;(2)设李某的年工资收入增长率为m,利用李某今年的年工资收入=李某去年的年工资收入×(1+增长率),结合预计李某今年的年工资收入不低于12.48万元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最小值即可得出结论.【解答】解:(1)设“南粤家政”今年计划新增加培训x万人次,则“粤菜师傅”今年计划新增加培训2x万人次,依题意得:31+2x+x=100,解得:x=23.答:“南粤家政”今年计划新增加培训23万人次.(2)设李某的年工资收入增长率为m,依题意得:9.6(1+m)≥12.48,解得:m≥0.3=30%.答:李某的年工资收入增长率至少要达到30%.【点评】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.20.(2019•广州)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.【考点】一元二次方程的应用.【专题】方程思想;一元二次方程及应用.【分析】(1)2020年全省5G基站的数量=目前广东5G基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,根据2020年底及2022年底全省5G基站数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)1.5×4=6(万座).答:计划到2020年底,全省5G基站的数量是6万座.(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,依题意,得:6(1+x)2=17.34,解得:x1=0.7=70%,x2=﹣2.7(舍去).答:2020年底到2022年底,全省5G基站数量的年平均增长率为70%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.考点卡片1.由实际问题抽象出一元一次方程审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程.(1)“总量=各部分量的和”是列方程解应用题中一个基本的关系式,在这一类问题中,表示出各部分的量和总量,然后利用它们之间的等量关系列方程.(2)“表示同一个量的不同式子相等”是列方程解应用题中的一个基本相等关系,也是列方程的一种基本方法.通过对同一个量从不同的角度用不同的式子表示,进而列出方程.2.一元一次方程的应用(一)一元一次方程解应用题的类型有:(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).(二)利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.列一元一次方程解应用题的五个步骤1.审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.2.设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.3.列:根据等量关系列出方程.4.解:解方程,求得未知数的值.5.答:检验未知数的值是否正确,是否符合题意,完整地写出答句.3.解二元一次方程组(1)用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x (或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y的值用“{”联立起来,就是方程组的解.(2)用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,用的形式表示.4.由实际问题抽象出二元一次方程组(1)由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.(2)一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数值要相符.(3)找等量关系是列方程组的关键和难点,有如下规律和方法:①确定应用题的类型,按其一般规律方法找等量关系.②将问题中给出的条件按意思分割成两个方面,有“;”时一般“;”前后各一层,分别找出两个等量关系.③借助表格提供信息的,按横向或纵向去分别找等量关系.④图形问题,分析图形的长、宽,从中找等量关系.5.一元二次方程的定义(1)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.(2)概念解析:一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.(3)判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.6.一元二次方程的解(1)一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.(2)一元二次方程一定有两个解,但不一定有两个实数解.这x1,x2是一元二次方程ax2+bx+c =0(a≠0)的两实数根,则下列两等式成立,并可利用这两个等式求解未知量.ax12+bx1+c=0(a≠0),ax22+bx2+c=0(a≠0).7.解一元二次方程-因式分解法(1)因式分解法解一元二次方程的意义因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).(2)因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.8.根的判别式利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.9.根与系数的关系(1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=,反过来也成立,即=﹣(x1+x2),=x1x2.(3)常用根与系数的关系解决以下问题:①不解方程,判断两个数是不是一元二次方程的两个根.②已知方程及方程的一个根,求另一个根及未知数.③不解方程求关于根的式子的值,如求,x12+x22等等.④判断两根的符号.⑤求作新方程.⑥由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.10.一元二次方程的应用1、列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.2、列一元二次方程解应用题中常见问题:(1)数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.(2)增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.(3)形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.(4)运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.【规律方法】列一元二次方程解应用题的“六字诀”1.审:理解题意,明确未知量、已知量以及它们之间的数量关系.2.设:根据题意,可以直接设未知数,也可以间接设未知数.3.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.4.解:准确求出方程的解.。
2017年广东省中考数学试卷(带完整解析)
2017年广东省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是()A.B.5 C.﹣ D.﹣52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×10103.已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.806.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)8.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a49.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2+a=.12.一个n边形的内角和是720°,则n=.13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b0.(填“>”,“<”或“=”)14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.15.已知4a+3b=1,则整式8a+6b﹣3的值为.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H 两点间的距离为.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:|﹣7|﹣(1﹣π)0+()﹣1.18.先化简,再求值:(+)•(x2﹣4),其中x=.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C 重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.2017年广东省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是()A.B.5 C.﹣ D.﹣5【考点】14:相反数.【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:D.2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:4000000000=4×109.故选:C.3.已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°【考点】IL:余角和补角.【分析】由∠A的度数求出其补角即可.【解答】解:∵∠A=70°,∴∠A的补角为110°,故选A4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣2【考点】A3:一元二次方程的解.【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.【解答】解:∵2是一元二次方程x2﹣3x+k=0的一个根,∴22﹣3×2+k=0,解得,k=2.故选:B.5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.80【考点】W5:众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选B.6.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选D.7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)【考点】G8:反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故选:A.8.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a4【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据整式的加法和幂的运算法则逐一判断即可.【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【考点】M6:圆内接四边形的性质.【分析】先根据补角的性质求出∠ABC的度数,再由圆内接四边形的性质求出∠ADC的度数,由等腰三角形的性质求得∠DAC的度数.【解答】解:∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC==65°,故选C.10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④【考点】LE:正方形的性质.【分析】由△AFD≌△AFB,即可推出S△ABF =S△ADF,故①正确,由BE=EC=BC=AD,AD∥EC,推出===,可得S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,由此即可判断.【解答】解:∵四边形ABCD是正方形,∴AD∥CB,AD=BC=AB,∠FAD=∠FAB,在△AFD和△AFB中,,∴△AFD≌△AFB,=S△ADF,故①正确,∴S△ABF∵BE=EC=BC=AD,AD∥EC,∴===,=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,∴S△CDF故②③错误④正确,故选C.二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2+a=a(a+1).【考点】53:因式分解﹣提公因式法.【分析】直接提取公因式分解因式得出即可.【解答】解:a2+a=a(a+1).故答案为:a(a+1).12.一个n边形的内角和是720°,则n=6.【考点】L3:多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则(n﹣2)•180°=720°,解得n=6.13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b<0.(填“>”,“<”或“=”)【考点】2A:实数大小比较;29:实数与数轴.【分析】首先根据数轴判断出a、b的符号和二者绝对值的大小,根据“异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值”来解答即可.【解答】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离大,∴|a|>|b|,∴a+b<0.故答案为:<.14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【考点】X4:概率公式.【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.【解答】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是,故答案为:15.已知4a+3b=1,则整式8a+6b﹣3的值为﹣1.【考点】33:代数式求值.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H 两点间的距离为.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,根据AH=,计算即可.【解答】解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:|﹣7|﹣(1﹣π)0+()﹣1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解答】解:原式=7﹣1+3=9.18.先化简,再求值:(+)•(x2﹣4),其中x=.【考点】6D:分式的化简求值.【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求解可得.【解答】解:原式=[+]•(x+2)(x﹣2)=•(x+2)(x﹣2)=2x,当x=时,原式=2.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【考点】9A:二元一次方程组的应用.【分析】设男生志愿者有x人,女生志愿者有y人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设男生志愿者有x人,女生志愿者有y人,根据题意得:,解得:.答:男生志愿者有12人,女生志愿者有16人.四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.【解答】解:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【考点】L8:菱形的性质.【分析】(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A在线段BF的垂直平分线上,进而证明AD⊥BF;(2)设AD⊥BF于H,作DG⊥BC于G,证明DG=CD.在直角△CDG中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解答】(1)证明:如图,连结DB、DF.∵四边形ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=FA.在△BAD与△FAD中,,∴△BAD≌△FAD,∴DB=DF,∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,∴AD是线段BF的垂直平分线,∴AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=BF.∵BF=BC,BC=CD,∴DG=CD.在直角△CDG中,∵∠CGD=90°,DG=CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表人数组边体重(千克)A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=52(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于144度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C 组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.【解答】解:(1)①调查的人数为:40÷20%=200(人),∴m=200﹣12﹣80﹣40﹣16=52;②C组所在扇形的圆心角的度数为×360°=144°;故答案为:52,144;(2)九年级体重低于60千克的学生大约有×1000=720(人).五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式;T7:解直角三角形.【分析】(1)将点A、B代入抛物线y=﹣x2+ax+b,解得a,b可得解析式;(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P点坐标;(3)由P点的坐标可得C点坐标,A、B、C的坐标,利用勾股定理可得BC长,利用sin∠OCB=可得结果.【解答】解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,,解得,a=4,b=﹣3,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)∵点C在y轴上,所以C点横坐标x=0,∵点P是线段BC的中点,∴点P横坐标x P==,∵点P在抛物线y=﹣x2+4x﹣3上,∴y P=﹣3=,∴点P的坐标为(,);(3)∵点P的坐标为(,),点P是线段BC的中点,∴点C的纵坐标为2×﹣0=,∴点C的坐标为(0,),∴BC==,∴sin∠OCB===.24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【考点】S9:相似三角形的判定与性质;M2:垂径定理;MC:切线的性质;MN:弧长的计算.【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C 重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【考点】SO:相似形综合题.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBC=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBC=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBC=∠DCE=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y= []2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.2017年7月3日。
广东省深圳市2017年中考数学真题试卷(含答案)
2017年广东省深圳市中考数学试卷一、选择题1.-2的绝对值是( )A .-2B .2C .−12D .122.图中立体图形的主视图是( )A .B .C .D .3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为( ) A .8.2×105B .82×105C .8.2×106D .82×1074.观察下列图形,其中既是轴对称又是中心对称图形的是( )A .B .C .D .5.下列选项中,哪个不可以得到 l 1//l 2 ?( )A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180∘第5题图 第8题图6.不等式组 {3−2x <5x −2<1 的解集为( ) A .x >−1B .x <3C .x <−1或 x >3D .−1<x<37.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出 x 双,列出方程( )A .10%x =330B .(1−10%)x =330C .(1−10%)2x =330D .(1+10%)x =3308.如图,已知线段 AB ,分别以 A 、B 为圆心,大于 12AB 为半径作弧,连接弧的交点得到直线 l ,在直线 l 上取一点 C ,使得 ∠CAB =25∘ ,延长 AC 至 M ,求 ∠BCM 的度数为( ) A .40∘B .50∘C .60∘D .70∘9.下列哪一个是假命题()A.五边形外角和为360∘B.切线垂直于经过切点的半径C.(3,−2)关于y轴的对称点为(−3,2)D.抛物线y=x2−4x+2017对称轴为直线x=2 10.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差11.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60∘,然后在坡顶D测得树顶B的仰角为30∘,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()mA.20√3B.30C.30√3D.40第11题图第12题图12.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE.下列结论:①AQ⊥DP;②OA2=OE·OP;③SΔAOD=S四边形OECF;④当BP=1时,tan∠OAE=1316.其中正确结论的个数是()A.1B.2C.3D.4二、填空题13.因式分解:a3−4a=.14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.15.阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=−1,那么(1+i)·(1−i)=.16.如图,在RtΔABC中,∠ABC=90∘,AB=3,BC=4,RtΔMPN,∠MPN=90∘,点P 在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.三、解答题17.计算|√2−2|−2cos45∘+(−1)−2+√8.18.先化简,再求值:(2xx−2+xx+2)÷xx2−4,其中x=−1.19.深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y(1)学生共人,x=,y=;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有人.20.一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.21.如图一次函数y=kx+b与反比例函数y=mx(x>0)交于A(2,4)、B(a,1),与x轴,y轴分别交于点C、D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=mx(x>0)的表达式;(2)求证:AD=BC.22.如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是弧CBD上任意一点,AH= 2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE·HF的值.23.如图,抛物线y=ax2+bx+2经过点A(−1,0),B(4,0),交y 轴于点C:(1)求抛物线的解析式(用一般式表示).(2)点D为y轴右侧抛物线上一点,是否存在点D使SΔABC=23SΔABD,若存在请直接给出点D坐标;若不存在请说明理由.(3)将直线BC绕点B顺时针旋转45∘,与抛物线交于另一点E,求BE的长.答案解析部分1.【答案】B【解析】【解答】解:依题可得:|-2|=2.故答案为B.【分析】根据正数和0的绝对值是它们本身,负数的绝对值是它的相反数.2.【答案】A【解析】【解答】解:主视图是指从前往后看所得到的平面图形.由此可得出正确答案.故答案为A.【分析】由主视图的定义即可选出正确答案.3.【答案】C【解析】【解答】解:8200000=8.2×106.故答案为C.【分析】科学记数法的定义:将一个数字表示成a×10n的形式;其中1≤|a|<10,n为整数.由此可得出正确答案.4.【答案】D【解析】【解答】解:A为中心对称图形,B为轴对称图形,C为中心对称图形,D是轴对称图形又是中心对称图形.故答案为D.【分析】轴对称图形:是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴;中心对称图形:如果把一个图形绕某一点旋转180度后能与自身重合,这个图形就是中心对称图形;根据它们的定义即可得出答案.5.【答案】C【解析】【解答】解:A. ∵∠1=∠2.∴l1//l2.B.∵∠2=∠3.∴l1//l2.C.∠3=∠5并不能得到l1//l2.D.∵∠3+∠4=180∠.∴l1//l2.故答案选C.【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;从而得出答案.6.【答案】D【解析】【解答】解:解第一个不等式得:x>-1.解第二个不等式得:x<3.∴原不等式组的解集为:-1<x<3.故答案为D.【分析】解两个不等式,根据“大小小大取中间”,从而得出答案.7.【答案】D【解析】【解答】解:依题可得:x(1+10%)=330.故答案为D.【分析】根据题意即可列出方程.8.【答案】B【解析】【解答】解:依题可得:l是AB的垂直平分线,∴CA=CB,∵∠CAB=25°,∴∠CAB=∠CBA=25°∴∠BCM=25°+25°=50°.故答案为B.【分析】依题可得l是AB的垂直平分线,再由垂直平分线上的点到两端点的距离相等,从而得到∠CAB 为等腰三角形,在根据三角形的外角即可得出答案.9.【答案】C【解析】【解答】解:A.多边形的外角和为360°,故本选项正确.B.切线垂直于过切点的半径,故本选项正确.C.(3,-2)关于y的对称点为(-3,-2),故本选项错误.D.抛物线y=x2-4x+2017对称轴为直线x=2.故本选项正确.故答案为C.【分析】根据多边形的外角和定理,切线的性质,点的坐标特征,以及抛物线的顶点坐标公式即可得出答案.10.【答案】B【解析】【解答】解:中位数:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数);结合题意可知答案为B.【分析】根据中位数的定义即可得出答案.11.【答案】B【解析】【解答】解:在Rt∠DEC中,∵CD=20,DE=10.∴ ∠DCE=30°,∠CDE=60°.∴ ∠CDF=30°.又∵∠BDF=30°.∠BCA=60°.∴ ∠BCD=30°.∠BDC=60°.在Rt∠BCD中,∴ tan60°=BC DC.∴ BC=DCtan60°=20√3.在Rt∠BAC中,∴ sin60°=BA BC.∴ BA=BCsin60°=20√3×√32=30(m).故AB的高度为30m.【分析】依题可得CD=20,DE=10.∠BDF=30°.∠BCA=60°.在Rt∠BCD中和Rt∠BAC中,利用锐角三角函数即可求出CB,BA12.【答案】C【解析】【解答】解:①∵正方形ABCD 的边长是3,BP=CQ.∴∠DAP∠∠ABQ.∴∠P=∠Q.∴∠P+∠QAB=∠Q+∠QAB=90°.∴AQ∠DP.故①正确.②在Rt∠DAP中,AO∠DP.∴∠AOD∠∠POA∴AOPO=ODOA.∴OA2=PO.OD.∵OD≠OE.故②错误.③∵正方形ABCD 的边长是3,BP=CQ.∴∠QCF∠∠PBE.∴CF=BE.∵BC=DC.∴DF=CE.∴∠ADF∠∠DEC.∴S∠ADF-S∠DOF=S∠DEC-S∠DOF.∴S ΔAOD =S 四边形OECF. 故③正确.④∵BP=1时,AP=4. ∴∠AOP∠∠DAP. ∴PB EB =PA DA =43.BE=34 ∴QE=134∴∠QOP∠∠PAD.∴QO PA =OE AD =QE PD =1345. 解得QO=135,OE=3920,AO=5-QO=125∴tanOAE=OE OA =1316. 故④正确. 故答案为C.【分析】①由正方形 ABCD 的边长是3, BP=CQ 易证∠DAP∠∠ABQ ,可得∠P=∠Q ,∠P+∠QAB=∠Q+∠QAB=90°;AQ∠DP.故①正确.②在Rt∠DAP 中,AO∠DP 可得∠AOD∠∠POA ;根据相似三角形的性质可得OA 2=PO.OD.OD≠OE;故②错误.③由正方形 ABCD 的边长是3, BP=CQ 易证∠QCF∠∠PBE ;∠ADF∠∠DEC ;所以S ∠ADF -S ∠DOF =S ∠DEC -S ∠DOF ;即S ΔAOD =S 四边形OECF.故③正确.④由题可证∠AOP∠∠DAP ,求出BE=34,QE=134,从而得到∠QOP∠∠PAD ,利用相似三角形的性质易得QO=135,OE=3920,AO=5-QO=125;所以tanOAE=OE OA =1316;故④正确.13.【答案】a (a+2)(a-2)【解析】【解答】解:原式=a (a+2)(a-2).故答案为a (a+2)(a-2).【分析】根据因式分解的提公因式法和公式法中的平方差公式即可得出答案.14.【答案】23【解析】【解答】解:依题可得任意摸两个球的情况有:黑1白,黑1黑2,黑2白三种情况,摸到1黑1白的情况有2种,所以P=23.故答案为23.【分析】依题可得任意摸两个球的情况有:黑1白,黑1黑2,黑2白三种情况,摸到1黑1白的情况有2种,从而得出答案.15.【答案】2【解析】【解答】解:原式=1-i 2.∵i 2=-1.∴原式=1-(-1).=2. 故答案为2.【分析】根据平方差公式即可得出式子,再把i 2=-1代入即可求出答案.16.【答案】3【解析】【解答】解:如图:作PQ∠AB 于点Q ,PR∠BC 于点R ,∵∠ABC=∠MPN=90°. ∴∠PEB+∠PFB=180°. 又∵∠PEB+∠PEQ=180°. ∴∠PFB=∠PEQ. ∴∠QPE∠∠RPF. ∵PE=2PF. ∴PQ=2PR=2BQ. ∴∠AQP∠∠ABC.∴AQ :QP :AP=AB :BC :AC=3:4:5. 设PQ=4x ,∴AQ=3x ,AP=5x ,PR=BQ=2x. ∴AB=AQ+BQ=5x=3.∴x=35.∴AP=5x=3. 故答案为3.【分析】如图:作PQ∠AB 于点Q ,PR∠BC 于点R ,由题易得∠PFB=∠PEQ ;可得∠QPE∠∠RPF ;∠AQP∠∠ABC ;根据相似三角形的性质与已知条件即可求出AP.17.【答案】解:原式=2-√2-2×√22+1+2√2.=3.【解析】【分析】根据二次根式,负指数幂,绝对值,特殊角的三角函数值等性质计算即可得出答案.18.【答案】解:原式=2x (x+2)+x (x−2)(x−2)(x+2)×(x−2)(x+2)x =2x 2+4x+x 2−2x x =3x 2+2x x=3x+2.∵x=-1.∴原式=3×(-1)+2 =-1.【解析】【分析】根据分式的加减乘除运算法则即可化简该分式,将x 的值代入即可得出答案.19.【答案】(1)120;0.25;0.2(2)解:补全的条形统计图如下:(3)500【解析】【解答】解:(1)18÷0.15=120(人)x=30÷120=0.25.m=120×0.4=48.y=1-0,25-0.4-0.15=0.2.n=120×0.2=24(3)2000×0.25=500(人)【分析】(1)根据频数÷频率=总数;频率=频数÷总数;频数=总数×频率即可补全统计表.(2)由(1)中的数据即可补全条形统计图.(3)根据2000乘以共享单车的频率即可求出人数.20.【答案】(1)解:设长为x 厘米,则宽为28-x 厘米;依题可列方程得:x (28-x )=180.化简得:x 2-28x+180=0.解得:x 1=10(舍去),x 2=18.答:长为18厘米,宽为10厘米.(2)解:设长为y 厘米,宽为28-y 厘米,依题可列方程得:y (28-y )=200.化简得:y 2-28y+200=0.∵∠=b 2-4ac=282-4×200=-16<0.∴原方程无解.∴不能围成面积为200平方厘米的矩形.【解析】【分析】(1)设长为x 厘米,则宽为28-x 厘米;依题可列方程得:x (28-x )=180.求解即可得出答案.(2)设长为y 厘米,宽为28-y 厘米,依题可列方程得:y (28-y )=200.由根的判别式可知此方程无解;故不能围成面积为200平方厘米的矩形21.【答案】(1)解:将A (2,4)代入y=m x .∴ m=2×4=8.∴ 反比例函数解析式为y=8x.∴将B (a ,1)代入上式得a=8.∴B (8,1).将A (2,4),B (8,1)代入y=kx+b 得:{2k +b =48k +b =1. ∴{k =−12b =5∴一次函数解析式为:y=-12x+5. (2)证明:由(1)知一次函数解析式为y=-12x+5.∴C (10,0),D (0,5). 如图,过点A 作AE∠y 轴于点E ,过B 作BF∠x 轴于点F.∴E (0,4),F (8,0).∴AE=2,DE=1,BF=1,CF=2∴在Rt∠ADE 和Rt∠BCF 中,根据勾股定理得:AD=√AE 2+DE 2=√5,BC=√CF 2+BF 2=√5.∴AD=BC.【解析】【分析】(1)将A (2,4)代入y=m x 求出m 得到反比例函数解析式;再将B (a ,1)代入得a ,将A (2,4),B (8,1)代入y=kx+b 得一个二元一次方程组求解即可得一次函数解析式.(2)由(1)可得C (10,0),D (0,5);如图,过点A 作AE∠y 轴于点E ,过B 作BF∠x 轴于点F ;从而得到E (0,4),F (8,0);AE=2,DE=1,BF=1,CF=2在Rt∠ADE 和Rt∠BCF 中,根据勾股定理得AD=BC.22.【答案】(1)解:连接OC ,在Rt∠COH 中,∵CH=4,OH=r-2,OC=r.∴ (r-2)2+42=r 2.∴ r=5(2)解:∵弦CD 与直径AB 垂直,∴ 弧AD=弧AC=12弧CD. ∴ ∠AOC=12∠COD. ∴∠CMD=12∠COD. ∴ ∠CMD=∠AOC.∴sin∠CMD=sin∠AOC.在Rt∠COH 中,∴sin∠AOC=CH OC =45. ∴sin∠CMD=45. (3)解:连接AM ,∴∠AMB=90°.在Rt∠AMB 中,∴∠MAB+∠ABM=90°.在Rt∠EHB 中,∴∠E+∠ABM=90°.∴∠MAB=∠E.∵弧BM=弧BM ,∴∠MNB=∠MAB=∠E.∵∠EHM=∠NHF.∴∠EHM∠∠NHF∴HE HN =HM HF. ∴HE.HF=HM.HN.∵AB 与MN 交于点H ,∴HM.HN=HA.HB=HA.(2r-HA )=2×(10-2)=16.∴HE.HF=16.【解析】【分析】(1)连接OC ,在Rt∠COH 中,根据勾股定理即可r.(2)根据垂径定理即可得出弧AD=弧AC=12弧CD ;再根据同弧所对的圆周角等于圆心角的一半;得出 ∠CMD=∠AOC ;在Rt∠COH 中,根据锐角三角函数定义即可得出答案.(3)连接AM ,则∠AMB=90°.在Rt∠AMB 中和Rt∠EHB 中,根据同角的余角相等即可∠MAB=∠E ;再由三角形相似的判定和性质即可得HE.HF=HM.HN.又由AB 与MN 交于点H ,得出HM.HN=HA.HB=HA.(2r-HA )=2×(10-2)=16;从而求出HE.HF=16.23.【答案】(1)解:依题可得:{a −b +2=016a +4b +2=0解得:{a =−12b =32∴y=-12x 2+32x+2. (2)解:依题可得:AB=5,OC=2,∴S ∠ABC =12AB×OC=12×2×5=5. ∵S ∠ABC =23S ∠ABD. ∴S ∠ABD =32×5=152. 设D (m ,-12m 2+32m+2)(m >0). ∵S ∠ABD =12AB|y D |=152.| 12×5×|-12m 2+32m+2|=152. ∴m=1或m=2或m=-2(舍去)或m=5∴D 1(1,3),D 2(2,3),D 3(5,-3).(3)解:过C 作CF∠BC 交BE 于点F ;过点F 作FH∠y 轴于点H.∵∠CBF=45°,∠BCF=90°.∴CF=CB.∵∠BCF=90°,∠FHC=90°.∴∠HCF+∠BCO=90°,∠HCF+∠HFC=90°∴∠HFC=∠OCB.∵{∠CHF =∠COB ∠HFC =∠OCB FC =CB∴∠CHF∠∠BOC (AAS ).∴HF=OC=2,HC=BO=4,∴F (2,6).设直线BE 解析式为y=kx+b.∴{2k +b =64k +b =0解得{k =−3b =12∴直线BE 解析式为:y=-3x+12. ∴{y =−12x 2+32x +2y =−3x +12解得:x 1=5,x 2=4(舍去)∴E (5,-3).BE=√(5−4)2+(−3−0)2=√10.【解析】【分析】(1)用待定系数法求二次函数解析式.(2)依题可得:AB=5,OC=2,求出S ∠ABC =12AB×OC=12×2×5=5;根据S ∠ABC =23S ∠ABD ;求出S ∠ABD =32×5=152. 设D (m ,-12m 2+32m+2)(m >0).根据三角形的面积公式得到一个关于m 的方程,求解即可. (3)过C 作CF∠BC 交BE 于点F ;过点F 作FH∠y 轴于点H ;根据同角的余角相等得到∠HFC=∠OCB ;再根据条件得到∠CHF∠∠BOC (AAS );利用其性质可求出HF=OC=2,HC=BO=4,从而得到F (2,6);用待定系数法求直线BE 解析式;再把抛物线解析式和直线BE 解析式联立得到方程组求E 点坐标,再根据勾股定理求出BE 长.。
2017广州中考数学点评
2017广州中考数学点评基本功与技巧性的完美结合!今年试卷依旧遵循《广州市初中毕业生学业考试数学考试大纲》的规定,突出对学生基本数学素养的评价,既考核了基本知识、基本方法和基本数学思想方法,又突出教材中最基础、最核心的重点内容。
试题顺应教材改革,删去梯形以及圆与圆位置关系的考察,着重于基础知识的深化利用,利于学生发挥。
下面从考查内容及难度、试题特点两个方面,对试卷做具体的分析,最后给予初二学生一些学习建议。
一、考察内容及难度分析2017广州中考数学科试题考核一览表整份试卷总体分析:今年广州中考题,根据考试难易程度分析,前21题,依旧重基础,要求对常规题型熟练掌握,22题,23题作为中等题,在重视基础知识的同时也要求灵活运用,对于大部分后进生的来说,既是机遇也是挑战。
24题,25题着重在传统经典题型中考出新鲜感,对学生的综合分析能力提出了更高的要求,对于部分优等生而言,还是能够拉开差距。
对于现在处于中等或偏下的升初三学生来说,仅仅满足于学校的教学和考试难度(特别往往期末区统考会比较简单),不尝试冲击难度更大的题型,一旦中考21-23中等难度题型难度上升,拿不下这部分分数,中考成绩就会大幅下降。
根据考核知识点分析,七年级考查4题,八年级考查了6题,九年级考查了7题,跨年级综合有8题。
数据说明,一方面,初二的内容在中考中占据非常重的比例,如整式乘除,因式分解,分式方程与分式化简,全等三角形的判定与性质,特殊四边形的判定与性质,尺规作图,一次函数的综合应用,而这几部分学得不好,会直接影响初三的学习;另一方面,本年中考着力考查学生作图能力,借综合大题为载体,通过作图能力的要求进一步加深学生的平面/空间思维。
建议即将升初三的学生,如果初二知识学得不牢固,要利用好暑假的时间,查漏补缺,拓展思维的广度;同时,注意综合作图能力的扎实和提高。
二、重点试题命题特点分析今年试题最大的亮点之一,就是多处考察学生作图能力以及几何分析能力。
2017年广州中考数学试卷及答案
2017年广州中考数学试卷及答案即将迎来2017年中考了,对于初三学生而言,要如何做好数学的复习呢?下面便是店铺整理的2017年中考数学试卷,希望对你有所帮助!2017年广州中考数学试卷一、选择题.(本大题共10小题,每小题3分,满分30分.)1.(3分)(2016•广州)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( )A.支出20元B.收入20元C.支出80元D.收入80元2.(3分)(2016•广州)如图所示的几何体左视图是( )3.(3分)(2016•广州)据统计,2015年广州地铁日均客运量均为6 590 000人次,将6 590 000用科学记数法表示为( )4456A.6.59×10 B.659×10 C.65.9×10 D.6.59×104.(3分)(2016•广州)某个密码锁的密码由三个数字组成,每个数字都是0﹣9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是( )5.(3分)(2016•广州)下列计算正确的是( )A. B.xy÷32 226C.2 D.(xy)=xy6.(3分)(2016•广州)一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是( )A.v=320tB.v=C.v=20tD.v=7.(3分)(2016•广州)如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD=( )A.3B.4C.4.8D.58.(3分)(2016•广州)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是( )2A.ab>0 B.a﹣b>0 C.a+b>0 D.a+b>09.(3分)(2016•广州)对于二次函数y=﹣+x﹣4,下列说法正确的是( )A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7)D.图象与x轴有两个交点10.(3分)(2016•广州)定义运算:a⋆b=a(1﹣b).若a,b是方程x ﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为( )A.0B.1C.2D.与m有关二.填空题.(本大题共六小题,每小题3分,满分18分.)211.(3分)(2016•广州)分解因式:2a+ab=.12.(3分)(2016•广州)代数式有意义时,实数x的取值范围是. 213.(3分)(2016•广州)如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为 cm.14.(3分)(2016•广州)分式方程的解是 .15.(3分)(2016•广州)如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点,AB=12,OP=6,则劣弧AB的长为 .16.(3分)(2016•广州)如图,正方形ABCD的边长为1,AC,BD 是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形②△AED≌△GED③∠DFG=112.5°④BC+FG=1.5其中正确的结论是 .三、解答题17.(9分)(2016•广州)解不等式组并在数轴上表示解集.18.(9分)(2016•广州)如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.19.(10分)(2016•广州)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?20.(10分)(2016•广州)已知A=(1)化简A;(2)若点P(a,b)在反比例函数y=﹣的图象上,求A的值.21.(12分)(2016•广州)如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法) (a,b≠0且a≠b)22.(12分)(2016•广州)如图,某无人机于空中A处探测到目标B,D,从无人机A上看目标B,D的俯角分别为30°,60°,此时无人机的飞行高度AC为60m,随后无人机从A处继续飞行30m到达A′处,(1)求A,B之间的距离;(2)求从无人机A′上看目标D的俯角的正切值.23.(12分)(2016•广州)如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.224.(14分)(2016•广州)已知抛物线y=mx+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当25.(14分)(2016•广州)如图,点C为△ABD的外接圆上的一动点(点C不在上,且不与点B,D重合),∠ACB=∠ABD=45°(1)求证:BD是该外接圆的直径;(2)连结CD,求证:AC=BC+CD;222(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM,AM,BM三者之间满足的等量关系,并证明你的结论.2017年广东省广州市中考数学试卷参考答案一、选择题.1.C2.A3.D4.A5.D6.B7.D8.C9.B10.A二.填空题11.a(2a+b)12. x≤913. 1314. x=﹣115.8π.16.①②③.三、解答题17.解:解不等式2x<5,得:x<,解不等式3(x+2)≥x+4,得:x≥﹣1,∴不等式组的解集为:﹣1≤x<,将不等式解集表示在数轴上如图:18.解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴AO=OB,∵AB=AO,∴AB=AO=BO,∴△ABO是等边三角形,∴∠ABD=60°.19.解:(1)由题意可得,甲组的平均成绩是:乙组的平均成绩是:丙组的平均成绩是:(分), (分), (分),从高分到低分小组的排名顺序是:丙>甲>乙;(2)由题意可得,甲组的平均成绩是:乙组的平均成绩是:丙组的平均成绩是:由上可得,甲组的成绩最高.20.解:(1)A=, (分), (分), (分),(2)∵点P(a,b)在反比例函数y=﹣的图象上,∴ab=﹣5,∴A==﹣.21.解:图象如图所示,∵∠EAC=∠ACB,∴AD∥CB,∵AD=BC,∴四边形ABCD是平行四边形,∴AB∥CD.22.解:(1)由题意得:∠ABD=30°,∠ADC=60°,在Rt△ABC中,AC=60m,∴AB===120(m);(2)过A′作A′E⊥BC交BC的延长线于E,连接A′D,则A′E=AC=60,CE=AA′=30,在Rt△ABC中,AC=60m,∠ADC=60°,∴DC=∴DE=50AC=20,==.. ,∴tan∠AA′D=tan∠A′DC=答:从无人机A′上看目标D的俯角的正切值是23.解:(1)设直线AD的解析式为y=kx+b,将A(,),D(0,1)代入得:,解得:.故直线AD的解析式为:y=x+1;(2)∵直线AD与x轴的交点为(﹣2,0),∴OB=2,∵点D的坐标为(0,1),∴OD=1,∵y=﹣x+3与x轴交于点C(3,0),∴OC=3,∴BC=5∵△BOD与△BCE相似,∴∴==或或,,,或CE=,∴BE=2,CE=∴E(2,2),或(3,).24.(1)解:当m=0时,函数为一次函数,不符合题意,舍去;当m≠0时,2∵抛物线y=mx+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B,22∴△=(1﹣2m)﹣4×m×(1﹣3m)=(1﹣4m)>0,∴1﹣4m≠0,∴m≠;(2)证明:∵抛物线y=mx+(1﹣2m)x+1﹣3m,2∴y=m(x﹣2x﹣3)+x+1,抛物线过定点说明在这一点y与m无关,2显然当x﹣2x﹣3=0时,y与m无关,解得:x=3或x=﹣1,当x=3时,y=4,定点坐标为(3,4);当x=﹣1时,y=0,定点坐标为(﹣1,0),∵P不在坐标轴上,∴P(3,4);(3)解:|AB|=|xA﹣xB|=====||=|﹣4|,∵∴≤<4,∴﹣≤﹣4<0,,|=,∴0<|﹣4|≤∴|AB|最大时,|解得:m=8,或m=(舍去),,∴当m=8时,|AB|有最大值此时△ABP的面积最大,没有最小值,则面积最大为:|AB|yP=×25.解:(1)∵=,×4=.∴∠ACB=∠ADB=45°,∵∠ABD=45°,∴∠BAD=90°,∴BD是△ABD外接圆的直径;(2)在CD的延长线上截取DE=BC,连接EA,∵∠ABD=∠ADB,∴AB=AD,∵∠ADE+∠ADC=180°,∠ABC+∠ADC=180°,∴∠ABC=∠ADE,在△ABC与△ADE中,,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE=90°,∵=∴∠ACD=∠ABD=45°,∴△CAE是等腰直角三角形,∴AC=CE,∴AC=CD+DE=CD+BC;(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF 与AF交于点F,连接BF,由对称性可知:∠AMB=ACB=45°,∴∠FMA=45°,∴△AMF是等腰直角三角形,∴AM=AF,MF=AM,∵∠MAF+∠MAB=∠BAD+∠MAB,∴∠FAB=∠MAD,在△ABF与△ADM中,,∴△ABF≌△ADM(SAS),∴BF=DM,在Rt△BMF中,∵BM+MF=BF,∴BM+2AM=DM.。
03填空题知识点分类-广东省省卷五年(2017-2021)中考数学真题分类汇编(含答案,32题)
03填空题知识点分类一.平方根(共1小题)1.(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x= .二.非负数的性质:算术平方根(共2小题)2.(2020•广东)若+|b+1|=0,则(a+b)2020= .3.(2018•广东)已知+|b﹣1|=0,则a+1= .三.实数大小比较(共1小题)4.(2017•广东)已知实数a,b在数轴上的对应点的位置如图所示,则a+b 0.(填“>”,“<”或“=”)四.代数式求值(共2小题)5.(2020•广东)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为 .6.(2017•广东)已知4a+3b=1,则整式8a+6b﹣3的值为 .五.同类项(共1小题)7.(2020•广东)如果单项式3x m y与﹣5x3y n是同类项,那么m+n= .六.整式的混合运算—化简求值(共1小题)8.(2019•广东)已知x=2y+3,则代数式4x﹣8y+9的值是 .七.因式分解-提公因式法(共2小题)9.(2020•广东)分解因式:xy﹣x= .10.(2020•宿迁)分解因式:a2+a= .八.因式分解-运用公式法(共1小题)11.(2019•云南)分解因式:x2﹣2x+1= .九.分式的化简求值(共1小题)12.(2021•广东)若x+=且0<x<1,则x2﹣= .一十.负整数指数幂(共1小题)13.(2019•广东)计算:20190+()﹣1= .一十一.解二元一次方程组(共1小题)14.(2021•广东)二元一次方程组的解为 .一十二.一元二次方程的定义(共1小题)15.(2021•广东)若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,则符合条件的一个方程为 .一十三.反比例函数图象上点的坐标特征(共1小题)16.(2018•广东)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x 轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为 .一十四.二次函数图象与几何变换(共1小题)17.(2021•广东)把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为 .一十五.平行线的性质(共1小题)18.(2019•广东)如图,已知a∥b,∠1=75°,则∠2= .一十六.多边形内角与外角(共2小题)19.(2019•广东)一个多边形的内角和是1080°,这个多边形的边数是 .20.(2017•广东)一个n边形的内角和是720°,则n= .一十七.平行四边形的性质(共1小题)21.(2021•广东)如图,在▱ABCD中,AD=5,AB=12,sin A=.过点D作DE⊥AB,垂足为E,则sin∠BCE= .一十八.圆周角定理(共1小题)22.(2018•广东)同圆中,已知所对的圆心角是100°,则所对的圆周角是 .一十九.点与圆的位置关系(共2小题)23.(2021•广东)在△ABC中,∠ABC=90°,AB=2,BC=3.点D为平面上一个动点,∠ADB =45°,则线段CD长度的最小值为 .24.(2020•广东)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为 .二十.切线的性质(共1小题)25.(2018•广东)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为 .(结果保留π)二十一.扇形面积的计算(共1小题)26.(2021•广东)如图,等腰直角三角形ABC中,∠A=90°,BC=4.分别以点B、点C为圆心,线段BC长的一半为半径作圆弧,交AB、BC、AC于点D、E、F,则图中阴影部分的面积为 .二十二.圆锥的计算(共1小题)27.(2020•广东)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为 m.二十三.作图—基本作图(共1小题)28.(2020•广东)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为 .二十四.利用轴对称设计图案(共1小题)29.(2019•广东)如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是 (结果用含a,b代数式表示).二十五.翻折变换(折叠问题)(共1小题)30.(2017•广东)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为 .二十六.解直角三角形的应用-仰角俯角问题(共1小题)31.(2019•广东)如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是 米(结果保留根号).二十七.概率公式(共1小题)32.(2017•广东)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是 .参考答案与试题解析一.平方根(共1小题)1.(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x= 2 .【解析】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.二.非负数的性质:算术平方根(共2小题)2.(2020•广东)若+|b+1|=0,则(a+b)2020= 1 .【解析】解:∵≥,|b+1|≥0,+|b+1|=0,∴a﹣2=0,a=2,b+1=0,b=﹣1,∴(a+b)2020=1.故答案为:1.3.(2018•广东)已知+|b﹣1|=0,则a+1= 2 .【解析】解:∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.三.实数大小比较(共1小题)4.(2017•广东)已知实数a,b在数轴上的对应点的位置如图所示,则a+b > 0.(填“>”,“<”或“=”)【解析】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离小,∴|a|<|b|,∴a+b>0.故答案为:>.四.代数式求值(共2小题)5.(2020•广东)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为 7 .【解析】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2=15﹣8=7,故答案为:7.6.(2017•广东)已知4a+3b=1,则整式8a+6b﹣3的值为 ﹣1 .【解析】解:∵4a+3b=1,∴8a+6b﹣3=2(4a+3b)﹣3=2×1﹣3=﹣1;故答案为:﹣1.五.同类项(共1小题)7.(2020•广东)如果单项式3x m y与﹣5x3y n是同类项,那么m+n= 4 .【解析】解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.六.整式的混合运算—化简求值(共1小题)8.(2019•广东)已知x=2y+3,则代数式4x﹣8y+9的值是 21 .【解析】解:∵x=2y+3,∴x﹣2y=3,则代数式4x﹣8y+9=4(x﹣2y)+9=4×3+9=21.故答案为:21.七.因式分解-提公因式法(共2小题)9.(2020•广东)分解因式:xy﹣x= x(y﹣1) .【解析】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).10.(2020•宿迁)分解因式:a2+a= a(a+1) .【解析】解:a2+a=a(a+1).故答案为:a(a+1).八.因式分解-运用公式法(共1小题)11.(2019•云南)分解因式:x2﹣2x+1= (x﹣1)2 .【解析】解:x2﹣2x+1=(x﹣1)2.九.分式的化简求值(共1小题)12.(2021•广东)若x+=且0<x<1,则x2﹣= ﹣ .【解析】解:∵0<x<1,∴x<,∴x﹣<0,∵x+=,∴(x+)2=,即x2+2+=,∴x2﹣2+=﹣4,∴(x﹣)2=,∴x﹣=﹣,∴x2﹣=(x+)(x﹣)=×(﹣)=﹣,故答案为:﹣.一十.负整数指数幂(共1小题)13.(2019•广东)计算:20190+()﹣1= 4 .【解析】解:原式=1+3=4.故答案为:4.一十一.解二元一次方程组(共1小题)14.(2021•广东)二元一次方程组的解为 .【解析】解:,①×2﹣②,得:3y=﹣6,即y=﹣2,将y=﹣2代入②,得:2x+(﹣2)=2,解得:x=2,所以方程组的解为.故答案为.一十二.一元二次方程的定义(共1小题)15.(2021•广东)若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,则符合条件的一个方程为 x2﹣2=0(答案不唯一) .【解析】解:∵若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,∴满足条件的方程可以为:x2﹣2=0(答案不唯一),故答案为:x2﹣2=0(答案不唯一).一十三.反比例函数图象上点的坐标特征(共1小题)16.(2018•广东)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x 轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为 (2,0) .【解析】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A3(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);以此类推…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).一十四.二次函数图象与几何变换(共1小题)17.(2021•广东)把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为 y=2x2+4x .【解析】解:把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为:y=2(x+1)2+1﹣3,即y=2x2+4x故答案为y=2x2+4x.一十五.平行线的性质(共1小题)18.(2019•广东)如图,已知a∥b,∠1=75°,则∠2= 105° .【解析】解:∵直线c直线a,b相交,且a∥b,∠1=75°,∴∠3=∠1=75°,∴∠2=180°﹣∠3=180°﹣75°=105°.故答案为:105°一十六.多边形内角与外角(共2小题)19.(2019•广东)一个多边形的内角和是1080°,这个多边形的边数是 8 .【解析】解:设多边形边数有x条,由题意得:180(x﹣2)=1080,解得:x=8,故答案为:8.20.(2017•广东)一个n边形的内角和是720°,则n= 6 .【解析】解:依题意有:(n﹣2)•180°=720°,解得n=6.故答案为:6.一十七.平行四边形的性质(共1小题)21.(2021•广东)如图,在▱ABCD中,AD=5,AB=12,sin A=.过点D作DE⊥AB,垂足为E,则sin∠BCE= .【解析】解:如图,过点B作BF⊥EC于点F,∵DE⊥AB,AD=5,sin A==,∴DE=4,∴AE==3,在▱ABCD中,AD=BC=5,AB=CD=12,∴BE=AB﹣AE=12﹣3=9,∵CD∥AB,∴∠DEA=∠EDC=90°,∠CEB=∠DCE,∴tan∠CEB=tan∠DCE,∴===,∴EF=3BF,在Rt△BEF中,根据勾股定理,得EF2+BF2=BE2,∴(3BF)2+BF2=92,解得,BF=,∴sin∠BCE===.故答案为:.一十八.圆周角定理(共1小题)22.(2018•广东)同圆中,已知所对的圆心角是100°,则所对的圆周角是 50° .【解析】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.一十九.点与圆的位置关系(共2小题)23.(2021•广东)在△ABC中,∠ABC=90°,AB=2,BC=3.点D为平面上一个动点,∠ADB =45°,则线段CD长度的最小值为 .【解析】解:如图所示.∵∠ADB=45°,AB=2,作△ABD的外接圆O(因求CD最小值,故圆心O在AB的右侧),连接OC,当O、D、C三点共线时,CD的值最小.∵∠ADB=45°,∴∠AOB=90°,∴△AOB为等腰直角三角形,∴AO=BO=sin45°×AB=.∵∠OBA=45°,∠ABC=90°,∴∠OBE=45°,作OE⊥BC于点E,∴△OBE为等腰直角三角形.∴OE=BE=sin45°•OB=1,∴CE=BC﹣BE=3﹣1=2,在Rt△OEC中,OC===.当O、D、C三点共线时,CD最小为CD=OC﹣OD=.故答案为:.24.(2020•广东)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为 2﹣2 .【解析】解:如图,连接BE,BD.由题意BD==2,∵∠MBN=90°,MN=4,EM=NE,∴BE=MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2﹣2.(也可以用DE≥BD﹣BE,即DE≥2﹣2确定最小值)故答案为2﹣2.二十.切线的性质(共1小题)25.(2018•广东)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为 π .(结果保留π)【解析】解:连接OE,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=2,OE⊥BC,易得四边形OECD为正方形,∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.二十一.扇形面积的计算(共1小题)26.(2021•广东)如图,等腰直角三角形ABC中,∠A=90°,BC=4.分别以点B、点C为圆心,线段BC长的一半为半径作圆弧,交AB、BC、AC于点D、E、F,则图中阴影部分的面积为 4﹣π .【解析】解:等腰直角三角形ABC中,∠A=90°,BC=4,∴∠B=∠C=45°,∴AB=AC=BC=2∵BE=CE=BC=2,∴阴影部分的面积S=S△ABC﹣S扇形BDE﹣S扇形CEF=2﹣×2=4﹣π,故答案为4﹣π.二十二.圆锥的计算(共1小题)27.(2020•广东)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为 m.【解析】解:如图,连接OA,OB,OC,则OB=OA=OC=1m,因此阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:m,而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=,解得,r=(m),故答案为:.二十三.作图—基本作图(共1小题)28.(2020•广东)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为 45° .【解析】解:∵四边形ABCD是菱形,∴AD=AB,∴∠ABD=∠ADB=(180°﹣∠A)=75°,由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°,故答案为45°.二十四.利用轴对称设计图案(共1小题)29.(2019•广东)如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是 a+8b (结果用含a,b代数式表示).【解析】解:方法1、如图,由图可得,拼出来的图形的总长度=5a+4[a﹣2(a﹣b)]=a+8b故答案为:a+8b.方法2、∵小明用9个这样的图形(图1)拼出来的图形∴口朝上的有5个,口朝下的有四个,而口朝上的有5个,长度之和是5a,口朝下的有四个,长度为4[b﹣(a﹣b)]=8b﹣4a,即:总长度为5a+8b﹣4a=a+8b,故答案为a+8b.二十五.翻折变换(折叠问题)(共1小题)30.(2017•广东)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为 .【解析】解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.二十六.解直角三角形的应用-仰角俯角问题(共1小题)31.(2019•广东)如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是 (15+15) 米(结果保留根号).【解析】解:过点B作BE⊥AB于点E,在Rt△BEC中,∠CBE=45°,BE=15;可得CE=BE×tan45°=15米.在Rt△ABE中,∠ABE=30°,BE=15,可得AE=BE×tan30°=15米.故教学楼AC的高度是AC=15米.答:教学楼AC的高度是(15)米.二十七.概率公式(共1小题)32.(2017•广东)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是 .【解析】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是,故答案为:。
2017广州中考数学(解析)
2017年广东省广州市中考数学试卷满分:150分 版本:北师大版一、选择题(每小题3分,共10小题,合计48分)1.(2017广东广州)如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数为( )A .-6B .6C .0D .无法确定答案:B ,解析:∵只有符号不同的两个数互为相反数,∴-6的相反数是6,即点B 表示6. 2.(2017广东广州)如图2,将正方形ABCD 中的阴影三角绕点A 顺时针...旋转90°后,得到的图形为( )A. B. C. D.答案:A ,解析:选项A 是原阴影三角形绕点A 顺时针旋转90°后得到的;选项B 是原阴影三角形绕点A 顺时针(或逆时针)旋转180°后得到的;选项C 不能由原阴影三角形绕点A 旋转一定度数得到;选项A 是原阴影三角形绕点A 顺时针旋转270°后得到的. 3.(2017广东广州)某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15.这组数据中的众数,平均数分别为( ) A .12,14B .12,15C .15,14D .15,13答案:C ,解析:该组数据中,15出现的次数最多,故众数是15;该组数据的平均数x -=16(12+13+14+15×3)=14. 4.(2017广东广州)下列运算正确的是( )A .362a b a b ++= B . 2233a b a b++⨯= C 2a a = D .|a |=a (a ≥0)答案:D ,解析:()333==2236a b a b a b+⨯++⨯,故选项A 不正确;22233a b a b ++⨯=,故选项B ()()200a a a a a a ≥⎧⎪==⎨-<⎪⎩,故选项C 不正确,选项D 正确.5.(2017广东广州)关于x 的一元二次方程x 2+8x +q =0有两个不相等的实数根,则q 的取值范围是( )A .q <16B .q >16C .q ≤4D .q ≥4答案:A ,解析:根据一元二次方程根的判别式,得△=82-4q >0,解得q <16. 6.(2017广东广州)如图,⊙O 是△ABC 的内切圆,则点O 是△ABC 的( ) A .三条边的垂直平分线的交点 B .三条角平分线的交点 C .三条中线的交点D .三条高的交点答案:B ,解析:如图,三角形内切圆的圆心是三个内角平分线的交点.7.(2017广东广州)计算()232b a b ag ,结果是( )A .a 5b 5B .a 4b 5C .ab 5D .a 5b 6答案:A ,解析:原式=a 6b 3·2ba=a 5b 5.8.(2017广东广州)如图,E ,F 分别是ABCD 的边AD ,BC 上的点,EF =6,∠DEF =60°,将四边形EFCD 沿EF 翻折,得到 EFC ’D ’,ED ’交BC 于点G ,则△GEF 的周长为( )A .6B .12 C.18 D.24答案:C ,解析:由折叠的性质可知,∠GEF =∠DEF =60°.又∵AD ∥BC ,∴∠GFE =∠DEF =60°,∴△GEF 是等边三角形.∵EF =6,∴△GEF 的周长为18.9.(2017广东广州)如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD ,垂足为E ,连接CO ,AD ,∠BAD =20°,则下列说法中正确的是( )A .AD =2OB B .CE =EOC .∠OCE =40°D .∠BOC =2∠BAD答案:D ,解析:如图,连接OD .∵AD 是非直径的弦,OB 是半径,∴AD ≠2OB ,故选项A 不正确;∵AB⊥CD,∴»»=BC BD,∴∠COB=∠BOD=2∠BAD=40°,故选项D正确;∵∠OCE=180°-90°-40°=50°,∴∠COB≠∠OCE,∴CE≠EO,故选项B,C不正确.10.(2017广东广州)a≠0,函数y=ax与y=-ax2+a同一直角坐标系中的大致图象可能是()A. B. C. D. 答案:D,解析:由下表可知,选项D符合题意.a>0 a<0函数y=ax图像位于第一、三象限图像位于第二、四象限y=-ax2+a开口向下,与y轴的交点(0,a)在y轴的正半轴开口向上,与y轴的交点(0,a)在y轴的负半轴二、填空题:(每小题3分,共6小题,合计18分)11.(2017广东广州)如图,四边形ABCD中,AD∥BC,∠A=110°,则∠B=.答案:70°,解析:∵AD∥BC,∴∠B=180°-∠A=180°-110°=70°. 12.(2017广东广州)分解因式:xy2-9x=.答案:.x(y+3)(y-3) 解析:原式=x(x2-9)=x(y+3)(y-3).13.(2017广东广州)当x=时,二次函数y=x2-2x+6有最小值.答案:1 5 解析:∵y=x2-2x+6=(x-1)2+5,∴当x=1时,y最小值=5.14.(2017广东广州)如图,Rt△ABC中,∠C=90°,BC=15,tanA=158,则AB=.答案:17,解析:∵tanA=BCAC,即158=15AC,∴AC=8.根据勾股定理,得AB22AC BC+22815+17.15.(2017广东广州)如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是5,则圆锥的母线l = .答案:35 解析:圆锥的侧面展开图是扇形,且扇形的弧长等于圆锥底面圆的周长,扇形的半径长等于圆锥的母线长,即120180lπ⨯=2π×5,解得l =35. 16.(2017广东广州)如图,平面直角坐标系中O 是原点,□ABCD 的顶点A ,C 的坐标分别是(8,0),(3,4),点D ,E 把线段OB 三等分,延长CD ,CE 分别交OA ,AB 于点F ,G ,连接FG ,则下列结论:①F 是OA 的中点;②△OFD 与△BEG 相似;③四边形DEGF 的面积是203;④OD =453;其中正确的结论是 .(填写所有正确结论的序号)答案:①③ 解析:∵BC ∥OA ,且点D ,E 是OB 的三等分点,∴12BC BD OF OD ==,∴OF =12BC =12OA ,∴点F 是OA 的中点,故①正确;易证点G 是AB 的中点,∴S △COF =S △BCG =14S □OABC ,∴S 四边形AFCG =12 S □OABC .由点A ,C 的坐标可知S □OABC =8×4=32,S △CDE =13S △BOC =13×12S □OABC =163.∵FG 是△AOB 的中位线,∴S △AFG =14S △AFG =14×12S □OABC =4,∴S 四边形DEGF =S 四边形AFCG -S △CDE -S △AFG =12S □OABC -S △CDE -S △AFG =16-163-4=203,故③正确;由平行四边形的性质可知点B 的坐标为(11,4),则OB 22114+137,∴OD =13OB 137,故④不正确.由于△OFD 与△BEG相似的条件不充足,故②不正确.三、解答题:本大题共9个小题,满分102分.17.(本小题满分9分)解方程组:5,2311x y x y +=⎧⎨+=⎩.思路分析:利用加减消元法或代入消元法求解. 解:①×3,得3x +3y =15③, ③-②,得 x =4.将x =4代入①,得 y =1.∴方程组得解为=4,1x y ⎧⎨=⎩. 18.(2017广东广州)(本小题满分9分)如图,点E ,F 在AB 上,AD =BC ,∠A =∠B ,AE =BF . 求证:△ADF ≌△BCE.思路分析:根据SAS 证明两个三角形全等. 证明:∵AE =BF , ∴AE +EF =BF +EF , 即AF =BE .在△ADF 和△BCE 中,AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ADF ≌△BCE (SAS ).19.(2017广东广州)(本小题满分10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间 (单位:小时),将学生分成五类:A 类(0≤t ≤2),B 类(2<t ≤4),C 类(4<t ≤6),D 类(6<t ≤8),E 类(t >8),绘制成尚不完整的条形统计图如图11.根据以上信息,解答下列问题:(1)E 类学生有_________人,补全条形统计图; (2)D 类学生人数占被调查总人数的__________%;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.思路分析:(1)∵全班人数为50,∴E类学生人数为50-(2+3+22+18)=5;(2)D类学生人数占被调查人数的百分比为1850×100%=36%;(3)先列举所有可能的结果,再利用概率计算公式求解.解:(1)5,补全条形统计图如图所示:(2)36;(3)该班做义工时间在0≤t≤4的学生有5人,其中A类(0≤t≤2)的学生有2人,B类(0≤t≤2)的学生有3人.设这5人分别为A1,A2,B1,B2,B3,从中任选2人,所有可能的结果为:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),共10种,其中两人都在2<t≤4的结果有3种:(B1,B2),(B1,B3),(B2,B3),∴P(这2人做义工时间都在2<t≤4)=3 10.20.(2017广东广州)(本小题满分10分)如图12,在Rt△ABC中,∠B=90°,∠A=30°,AC=23.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D;(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2-a(a-1),再求T的值.思路分析:(1)按照线段垂直平分线的尺规作图方法作图;(2)通过解直角三角形求出△ADE的周长为a,再化简、代入求值.解:(1)如图所示:(2)∵DE是线段AC的垂直平分线,∴∠AED=90°,AE=12AC=12×33.在RtADE中,∠A=30°,AE3,∴DE=AE·tanA333=1,AD=2DE=2.∴a=AD+DE+AE==3T=(a+1)2-a(a-1)=a2+2a+1-a2+a=3a+1=3(+1=21.(2017广东广州)(本小题满分12分)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的43倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.思路分析:(1)根据“乙队筑路总公里数是甲队筑路总公里数的43倍”求解;(2)根据“甲队比乙队多筑路20天”列分式方程求解,注意检验.解:(1)60×43=80(公里),即乙队筑路的总公里数为80公里.(2)设甲队每天筑路8x公里,乙队每天筑路5x公里,根据题意,得60802058x x-=解得x=1 10.经检验,x=110是原方程的解且符合题意,1 10×8=45.答:乙队平均每天筑路45公里.22.(2017广东广州)(本小题满分12分)将直线y=3x+1向下平移1个单位长度,得到直线y=3x+m,若反比例函数y=kx的图象与直线y=3x+m相交于点A,且点A的纵坐标是3.(1)求m和k的值;(2)结合图象求不等式3x+m>kx的解集.思路分析:(1)将直线y=3x+1向下平移1个单位长度后得到直线y=3x+1-1,故3x+m=3x+1-1,从而求得m的值和点A的坐标,将点A代入y=kx可得到k的值;(2)直线y=3x+m在双曲线y=kx上方时x的取值范围,即为不等式3x+m>kx的解集.解:(1)根据题意,得3x +m =3x +1-1,解得m =0.∴y =3x .将y =3代入y =3x ,得3x =3,解得x =1,∴点A 的坐标为(1,3). 将(1,3)代入y =kx,得k =3. (2)如图,可知不等式3x +m >kx的解集为-1<x <0或x >1.23.(2017广东广州)(本小题满分12分)已知抛物线y 1=-x 2+mx +n ,直线y 2=kx +b ,y 1的对称轴与y 2交于点A (-1,5),点A 与y 1的顶点B 的距离是4. (1)求y 1的解析式;(2)若y 2随着x 的增大而增大,且y 1与y 2都经过x 轴上的同一点,求y 2的解析式.思路分析:(1)由“y 1的对称轴经过点A (-1,5)”可知对称轴为x =-1,从而求得m 的值,进而可用含n 的式子表示出顶点B 的坐标,再由“点A 与y 1的顶点B 的距离是4”求得n 的值;(2)由(1)中所求y 1的函数解析式求得y 2与x 轴的交点,利用待定系数法求出y 2的解析式.注意“y 2随着x 的增大而增大”这一条件的限制.解:(1)∵y 1的对称轴与y 2交于点A (-1,5), ∴y 1的对称轴为x =-1. ∴()21m-⨯-=-1,解得m =-2.∴y 1=-x 2-2x +n =-(x +1)2+n +1. ∴顶点B 的坐标为(-1,n +1).∵AB =4,∴|(n +1)-5|=4,解得n 1=0,n 2=8. 当n =0时,y 1=-x 2-2x ;当n =8时,y 1=-x 2-2x +8. 即y 1的解析式为y 1=-x 2-2x 或y 1=-x 2-2x +8. (2)当y 1=-x 2-2x 时,将y =0代入y 1=-x 2-2x ,得x 1=0,x 2=-2,∴y 1与x 轴的交点为(0,0),(-2,0). ∵y 2随x 的增大而增大,∴k >0.①当y2经过A(-1,5),(0,0)时,则有5,k bb-+=⎧⎨=⎩,解得5,kb=-⎧⎨=⎩,∴y2=-5x.(不合题意,舍去).②当y2经过A(-1,5),(-2,0)时,则有5,20k bk b-+=⎧⎨-+=⎩,解得5,10kb=⎧⎨=⎩,∴y2=5x+10.当y1=-x2-2x+8时,将y=0代入y1=-x2-2x+8,得x1=2,x2=-4,∴y1与x轴的交点为(2,0),(-4,0).①当y2经过A(-1,5),(2,0)时,则有5,20k bk b-+=⎧⎨+=⎩,解得5,3103kb⎧=-⎪⎪⎨⎪=⎪⎩,∴y2=53-x+103.(不合题意,舍去).②当y2经过A(-1,5),(-4,0)时,则有5,40k bk b-+=⎧⎨-+=⎩,解得5,3203kb⎧=⎪⎪⎨⎪=⎪⎩,∴y2=53x+203.综上可知,y2的解析式为y2=5x+10或y2=53x+203.24.(2017广东广州)(本小题满分14分)如图,矩形ABCD的对角线AC,BD相交于点O,△COD 关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC5.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动.当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.思路分析:(1)根据矩形的性质和轴对称的性质证明四边形OCED的四条边都相等;(2)①连接OE,设直线OE交AB于点F,交DC于点G,可知∠EAD=∠AEF,在△AEF中求得sin∠AEF即可;②过点P作PM⊥AB,垂足为点M. Q由O运动到P所需时间就是OP+MA最小.解:(1)证明:∵四边形ABCD是为矩形,∴AC =BD .∵AC 与BD 交于点O ,且△COD 与△CED 关于CD 对称, ∴DO =CO ,且DO =DE ,OC =EC , ∴DO =OC =EC =ED , ∴四边形OCED 是菱形.(2)①连接OE ,设直线OE 交AB 于点F ,交DC 于点G . ∵△COD 与△CED 关于CD 对称,∴OE ⊥DC . ∵DC ∥AB ,∴OF ⊥AB ,EF ∥AD .∵G 为DC 的中点,O 为AC 的中点,∴OG 是△CAD 的中位线,∴OG =GE =5. 同理可得OF=52,AF =3,∴AE =222235819=3==242EF AF ⎛⎫++ ⎪ ⎪⎝⎭. ∵∠EAD =∠AEF ,∴sin ∠EAD =sin ∠AEF =32932AF AE ==.①过点P 作PM ⊥AB ,垂足为点M . ∴Q 由O 运动到P 所需时间为3s . 由①可知AM =23AP . ∴点Q 以1.5cm /s 的速度从点P 到A 所需时间等同于以1cm /s 的速度从M 运动到A , 即t =t OP +t PA =111OP MA OP MA++=, ∴Q 由O 运动到P 所需时间就是OP +MA 最小. 如图,当P 运动到P 1,即P 1O ∥AB 时,所用时间最短. ∴t =3=11OP MA +=3s . 在Rt △AP 1M 1中,设AM 1=2x ,则AP 1=3x ,∵AP 12=AM 12+P 1M 12,∴(3x )2=(2x )2+25⎝⎭,解得x 1=12,x 2=-12(舍去),∴AP =32. 答:AP 的长为32cm ,点Q 走完全程需时3s .25.(2017广东广州)(本小题满分14分)如图14,AB 是⊙O 的直径,»»AC BC ,AB =2,连接AC .(1)求证:∠CAB =45°;(2)若直线l 为⊙O 的切线,C 是切点,在直线L 上取一点D ,使BD =AB ,BD 所在的直线与AC 所在的直线相交于点E ,连接AD .①试探究AE 与AD 之间的数量关系,并证明你的结论;②EB CD 是否为定值?若是,请求出这个定值;若不是,请说明理由. 思路分析:(1)连接BC ,根据“同弧所对的圆周角等于圆角角的一半”求解;(2)①当BD =AB 时,有∠ABD 为锐角和∠ABD 为钝角两种情形;②分D 在点C 左侧或D 在点C 右侧两种情况求解.解:(1)证明:如图,连接BC .∵AB 是⊙O 的直径,∴∠ACB =90°.∵AC =BC ,∴∠CAB =∠CBA =12(180°-90°)=45°. (2)①当∠ABD 为锐角时,如图所示,作BF ⊥l 于F .由(1)可知△ABC 为等腰直角三角形.∵O 是AB 的中点,∴CO =AO =BO ,∴△COB 为等腰直角三角形.∵l 是⊙O 的切线,∴OC ⊥l .∵BF ⊥l ,∴四边形OBEC 为矩形.∴AB =2BF ,∴BD =2BF ,∴∠BDF =30°,∴∠DBA =30°,∴∠BDA =∠BAD =75°,∠CBE =15°,∠CEB =90°-15°=75°,∴∠CEB =∠DEA ,∴AD =AE .②当∠ABD 为钝角时,如图所示,同样BF =12BD ,∠BDC =30°, ∴∠ABD =150°,∠AEB =90°-∠CBE =15°,∠ADB =12(180°-150°)=15°, ∴∠AED =∠ADE ,∴AE =AD .②当D 在C 左侧时,由①可知CD ∥AB ,∠ACD =∠BAE ,∠DAC =∠EBA =30°,∴△CAD ∽△BAE ,∴2AC CD BA AE ==AE 2CD . ∵BA =BD ,∠BAD =∠BDA =15°,∴∠IBE =30°.在Rt △IBE 中,BE =2EI =2×22AE 2AE 22=2CD . ∴2EB CD=. 当D 在C 右侧时,过E 走EI ⊥AB 与I .由①可知∠ADC =∠BEA =15°.∵AB ∥CD ,∴∠EAB =∠ACD ,∴△ACD ∽△BAE ,∴2AC CD BA AE ==AE 2CD . ∵BA =BD ,∠BAD =∠BDA =15°,∴∠IBE =30°.在Rt △IBE 中,BE =2EI =2×22AE 2AE 22=2CD . ∴2EB CD=.综上所述,EBCD为定值,其值为2.。
2017年中考数学试题(含答案解析) (39)
2017年广东省深圳市中考数学试卷一、选择题1.(3分)﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.2.(3分)图中立体图形的主视图是()A. B. C.D.3.(3分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106D.82×1074.(3分)观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.(3分)下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°6.(3分)不等式组的解集为()A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<37.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=3308.(3分)如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°9.(3分)下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=210.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差11.(3分)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B 的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()m.A.20B.30 C.30D.4012.(3分)如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC 交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题13.(3分)因式分解:a3﹣4a=.14.(3分)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.15.(3分)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)=.16.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC 上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.三、解答题17.(5分)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.18.(6分)先化简,再求值:(+)÷,其中x=﹣1.19.(7分)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y(1)学生共人,x=,y=;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有人.20.(8分)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.21.(8分)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.22.(9分)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.23.(9分)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC =S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.2017年广东省深圳市中考数学试卷参考答案与试题解析一、选择题1.(3分)(2017•深圳)﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.故选B.【点评】本题考查了绝对值的定义,关键是利用了绝对值的性质.2.(3分)(2017•深圳)图中立体图形的主视图是()A. B. C.D.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有一个小正方体,在中间.故选A.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)(2017•深圳)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106D.82×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将8200000用科学记数法表示为:8.2×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•深圳)观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、是中心对称图形,不是轴对称图形,选项不符合题意;B、是轴对称图形,不是中心对称图形,选项不符合题意;C、是中心对称图形,不是轴对称图形,选项不符合题意;D、是中心对称图形,也是轴对称图形,选项符合题意.故选D.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5.(3分)(2017•深圳)下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°【分析】分别根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∵∠1=∠2,∴l1∥l2,故本选项错误;B、∵∠2=∠3,∴l1∥l2,故本选项错误;C、∠3=∠5不能判定l1∥l2,故本选项正确;D、∵∠3+∠4=180°,∴l1∥l2,故本选项错误.故选C.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.6.(3分)(2017•深圳)不等式组的解集为()A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<3【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3﹣2x<5,得:x>﹣1,解不等式x﹣2<1,得:x<3,∴不等式组的解集为﹣1<x<3,故选:D.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(3分)(2017•深圳)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=330【分析】设上个月卖出x双,等量关系是:上个月卖出的双数×(1+10%)=现在卖出的双数,依此列出方程即可.【解答】解:设上个月卖出x双,根据题意得(1+10%)x=330.故选D.【点评】本题考查了由实际问题抽象出一元一次方程,理解题意找到等量关系是解决本题的关键.8.(3分)(2017•深圳)如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.9.(3分)(2017•深圳)下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=2【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、五边形外角和为360°是真命题,故A不符合题意;B、切线垂直于经过切点的半径是真命题,故B不符合题意;C、(3,﹣2)关于y轴的对称点为(﹣3,2)是假命题,故C符合题意;D、抛物线y=x2﹣4x+2017对称轴为直线x=2是真命题,故D不符合题意;故选:C.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(3分)(2017•深圳)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差【分析】由于要使使用该共享单车50%的人只花1元钱,根据中位数的意义分析即可【解答】解:根据中位数的意义,故只要知道中位数就可以了.故选B.【点评】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.11.(3分)(2017•深圳)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C 处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()m.A.20B.30 C.30D.40【分析】先根据CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由锐角三角函数的定义即可得出结论.【解答】解:在Rt△CDE中,∵CD=20m,DE=10m,∴sin∠DCE==,∴∠DCE=30°.∵∠ACB=60°,DF∥AE,∴∠BGF=60°∴∠ABC=30°,∠DCB=90°.∵∠BDF=30°,∴∠DBF=60°,∴BC===20m,∴AB=BC•sin60°=20×=30m.故选B.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.12.(3分)(2017•深圳)如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】由四边形ABCD是正方形,得到AD=BC,∠DAB=∠ABC=90°,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据相似三角形的性质得到AO2=OD•OP,由OD≠OE,得到OA2≠OE•OP;故②错误;根据全等三角形的性质得到CF=BE,DF=CE,于是得到S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;根据相似三角形的性质得到BE=,求得QE=,QO=,OE=,由三角函数的定义即可得到结论.【解答】解:∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,,∴△DAP≌△ABQ,∵∠Q +∠QAB=90°, ∴∠P +∠QAB=90°, ∴∠AOP=90°, ∴AQ ⊥DP ; 故①正确;∵∠DOA=∠AOP=90°,∠ADO +∠P=∠ADO +∠DAO=90°, ∴∠DAO=∠P , ∴△DAO ∽△APO , ∴,∴AO 2=OD•OP , ∵AE >AB , ∴AE >AD , ∴OD ≠OE ,∴OA 2≠OE•OP ;故②错误; 在△CQF 与△BPE 中,∴△CQF ≌△BPE , ∴CF=BE , ∴DF=CE ,在△ADF 与△DCE 中,,∴△ADF ≌△DCE ,∴S △ADF ﹣S △DFO =S △DCE ﹣S △DOF , 即S △AOD =S 四边形OECF ;故③正确; ∵BP=1,AB=3, ∴AP=4,∵△AOP ∽△DAP , ∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴,∴QO=,OE=,∴AO=5﹣QO=,∴tan∠OAE==,故④正确,故选C.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.二、填空题13.(3分)(2017•深圳)因式分解:a3﹣4a=a(a+2)(a﹣2).【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.14.(3分)(2017•深圳)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所摸到1黑1白的情况,再利用概率公式即可求得答案.【解答】解:依题意画树状图得:∵共有6种等可能的结果,所摸到的球恰好为1黑1白的有4种情况,∴所摸到的球恰好为1黑1白的概率是:=.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.解题时注意:概率=所求情况数与总情况数之比.15.(3分)(2017•深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)=2.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:2【点评】本题考查新定义型运算,解题的关键是正确理解新定义,本题属于基础题型.16.(3分)(2017•深圳)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=3.【分析】如图作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,可得2x+3x=3,求出x即可解决问题.【解答】解:如图作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ,∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,∴2x+3x=3,∴x=,∴AP=5x=3.故答案为3.【点评】本题考查相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.三、解答题17.(5分)(2017•深圳)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.【分析】因为<2,所以|﹣2|=2﹣,cos45°=,=2,分别计算后相加即可.【解答】解:|﹣2|﹣2cos45°+(﹣1)﹣2+,=2﹣﹣2×+1+2,=2﹣﹣+1+2,=3.【点评】本题考查了有关负整数指数、特殊的三角函数值、乘方等知识的计算,属于常考题型,此类计算题要细心,熟练掌握特殊角的三角函数值,明确实数的运算法则.18.(6分)(2017•深圳)先化简,再求值:(+)÷,其中x=﹣1.【分析】根据分式的运算法则即可求出答案.【解答】解:当x=﹣1时,原式=×=3x+2=﹣1【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7分)(2017•深圳)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y(1)学生共120人,x=0.25,y=0.2;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有500人.【分析】(1)根据B类学生坐公交车、私家车的人数以及频率,求出总人数,再根据频数与频率的关系一一解决即可;(2)求出m、n的值,画出条形图即可;(3)用样本估计总体的思想即可解决问题;【解答】解:(1)由题意总人数==120人,x==0.25,m=120×0.4=48,y=1﹣0.25﹣0.4﹣0.15=0.2,n=120×0.2=24,(2)条形图如图所示,(3)2000×0.25=500人,故答案为500.【点评】本题考查条形图、频率分布表、样本估计总体等知识,解题的关键是记住频率=,频率之和为1,属于中考常考题型.20.(8分)(2017•深圳)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.【分析】(1)设出矩形的一边长为未知数,用周长公式表示出另一边长,根据面积列出相应方程求解即可.(2)同样列出方程,若方程有解则可,否则就不可以.【解答】解:(1)设矩形的长为x厘米,则另一边长为(28﹣x)厘米,依题意有x(28﹣x)=180,解得x1=10(舍去),x2=18,28﹣x=28﹣18=10.故长为18厘米,宽为10厘米;(2)设矩形的长为x厘米,则宽为(28﹣x)厘米,依题意有x(28﹣x)=200,即x2﹣28x+200=0,则△=282﹣4×200=784﹣800<0,原方程无解,故不能围成一个面积为200平方厘米的矩形.【点评】考查一元二次方程的应用;用到的知识点为:长方形的长=周长的一半﹣宽.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.(8分)(2017•深圳)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.【分析】(1)先确定出反比例函数的解析式,进而求出点B的坐标,最后用待定系数法求出直线AB的解析式;(2)由(1)知,直线AB的解析式,进而求出C,D坐标,构造直角三角形,利用勾股定理即可得出结论.【解答】解:(1)将点A(2,4)代入y=中,得,m=2×4=8,∴反比例函数的解析式为y=,将点B(a,1)代入y=中,得,a=8,∴B(8,1),将点A(2,4),B(8,1)代入y=kx+b中,得,,∴,∴一次函数解析式为y=﹣x+5;(2)∵直线AB的解析式为y=﹣x+5,∴C(10,0),D(0,5),如图,过点A作AE⊥y轴于E,过点B作BF⊥x轴于F,∴E(0,4),F(8,0),∴AE=2,DE=1,BF=1,CF=2,在Rt△ADE中,根据勾股定理得,AD==,在Rt△BCF中,根据勾股定理得,BC==,∴AD=BC.【点评】此题是反比例函数与一次函数交点坐标问题,主要考查了待定系数法,勾股定理,解(1)的关键是掌握待定系数法求函数的解析式,解(2)的关键是构造直角三角形.22.(9分)(2017•深圳)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.【分析】(1)在Rt△COH中,利用勾股定理即可解决问题;(2)只要证明∠CMD=△COA,求出sin∠COA即可;(3)由△EHM∽△NHF,推出=,推出HE•HF=HM•HN,又HM•HN=AH•HB,推出HE•HF=AH•HB,由此即可解决问题.【解答】解:(1)如图1中,连接OC.∵AB⊥CD,∴∠CHO=90°,在Rt△COH中,∵OC=r,OH=r﹣2,CH=4,∴r2=42+(r﹣2)2,∴r=5.(2)如图1中,连接OD.∵AB⊥CD,AB是直径,∴==,∴∠AOC=∠COD,∵∠CMD=∠COD,∴∠CMD=∠COA,∴sin∠CMD=sin∠COA==.(3)如图2中,连接AM.∵AB是直径,∴∠AMB=90°,∴∠MAB+∠ABM=90°,∵∠E+∠ABM=90°,∴∠E=∠MAB,∴∠MAB=∠MNB=∠E,∵∠EHM=∠NHF∴△EHM∽△NHF,∴=,∴HE•HF=HM•HN,∵H M•HN=AH•HB,∴HE•HF=AH•HB=2•(10﹣2)=16.【点评】本题考查圆综合题、垂径定理、勾股定理、相似三角形的判定和性质、相交弦定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考压轴题.23.(9分)(2017•深圳)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC =S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)由条件可求得点D到x轴的距离,即可求得D点的纵坐标,代入抛物线解析式可求得D点坐标;(3)由条件可证得BC⊥AC,设直线AC和BE交于点F,过F作FM⊥x轴于点M,则可得BF=BC,利用平行线分线段成比例可求得F点的坐标,利用待定系数法可求得直线BE解析式,联立直线BE 和抛物线解析式可求得E点坐标,则可求得BE的长.【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)由题意可知C(0,2),A(﹣1,0),B(4,0),∴AB=5,OC=2,∴S△ABC=AB•OC=×5×2=5,∵S△ABC =S△ABD,∴S△ABD=×5=,设D(x,y),∴AB•|y|=×5|y|=,解得|y|=3,当y=3时,由﹣x2+x+2=3,解得x=1或x=2,此时D点坐标为(1,3)或(2,3);当y=﹣3时,由﹣x2+x+2=﹣3,解得x=﹣2(舍去)或x=5,此时D点坐标为(5,﹣3);综上可知存在满足条件的点D,其坐标为(1,3)或(2,3)或(5,﹣3);(3)∵AO=1,OC=2,OB=4,AB=5,∴AC==,BC==2,∴AC2+BC2=AB2,∴△ABC为直角三角形,即BC⊥AC,如图,设直线AC与直线BE交于点F,过F作FM⊥x轴于点M,由题意可知∠FBC=45°,∴∠CFB=45°,∴CF=BC=2,∴=,即=,解得OM=2,=,即=,解得FM=6,∴F(2,6),且B(4,0),设直线BE解析式为y=kx+m,则可得,解得,∴直线BE解析式为y=﹣3x+12,联立直线BE和抛物线解析式可得,解得或,∴E(5,﹣3),∴BE==.【点评】本题为二次函数的综合应用,涉及待定系数法、三角形面积、勾股定理及其逆定理、平行线分线段成比例、函数图象的交点、等腰直角三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中求得D点的纵坐标是解题的关键,在(3)中由条件求得直线BE的解析式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度.参与本试卷答题和审题的老师有:1987483819;星期八;gbl210;zhjh;CJX;三界无我;HLing;2300680618;王学峰;ZJX;sd2011;szl;神龙杉;弯弯的小河;tcm123;HJJ;星月相随;Ldt(排名不分先后)菁优网2017年7月22日。
2017全国中考数学真题分类-数的开方和二次根式(选择题+填空题+解答题)解析版
2017全国中考数学真题分类知识点06数的开方和二次根式(选择题+填空题+解答题)解析版一、选择题1. (2017山东滨州,4,3分)下列计算:(1)()2=2,(2)=2,(3)(-)2=12,(4)1=-,其中结果正确的个数为A .1B .2C .3D .4答案:D ,解析:(1)根据“2a =”可知2=2成立;(2a =2成立;(3)根据“(ab )2=a 2b 2”可知,计算(-2,可将-2(4)根据“(a +b )(a -b )=a 2-b 2”,=22-=2-3=-1.2. (2017四川广安,5,3分)要使二次根式2x -4 在实数范围内有意义,则x 的取值范围是( )A .x >2B .x ≥2C .x <2D .x =2答案:B ,解析:∵二次根式42-x 有意义,∴2x -4≥0,解得x ≥2.故选B .3. (2017山东枣庄4,3分)实数a ,b 在数轴上对应的点的位置如图所示,化简a 的结果是A .-2a +bB .2a -bC .-bD .b答案:A ,解析:如图所示: a <0,a -b <0,则|a |a -(a -b )=-2a +b .故选A .4. (2017四川泸州,9,3分)已知三角形的三边长分别为a ,b ,c ,求其面积问题,中外数学家曾进行过深入研究.古希腊的几何学家海伦(Heron ,约公元50年)给出求其面积的海伦公式S p =2a b c ++;我国南宋时期数学家秦九韶(约1202—1261)曾利用三角形的三边求其面积的秦九韶公式S =12.若一个三角形的三边长分别为2,3,4,则其面积是( )A .8B .4C .2D .2答案:B ,解析:∵a =2,b =3,c =4,∴p =2a b c ++=2342++=92,得4.5. (2017四川成都,3x 的取值范围是A .x ≥1B .x >1C .x ≤1D .x <1答案:A ,解析:由x -1≥0得.x ≥1. 6. (2017重庆,5,4分)估计110+的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间 答案:B 解析:先找出与10相邻的两个完全平方数,然后开方,可以确定10在被夹的这两个数之间,之后再利用不等式性质①确定出110+的取值范围.∵9<9<10,∴16109<<,则3<10<4 ,∴3+1<110+<4+1,即4<110+<5,故110+在4与5之间,故选择B .7. (2017山东济宁,6,31在实数范围内有意义,则x 满足的条件是A .12x ≥B .12x ≤C .12x =D .12x ≠答案:C ,解析:根据“a ≥0”,所以2x -1≥0,1-2x ≥0,由此可得12x =. 8. (2017重庆B ,5,4分)估计113+的值在A .2到3之间B .3到4之间C .4到5之间D .5到6之间 答案:C ,解析:∵3<13<4,∴4<13+1<5,故答案为C .9. 6.(2017江苏连云港,6,3A B 26C .228±=D 3答案:D ,解析:根据“实数与数轴上的点是一一对应”,A 错误;8表示8的算术平方根,化简结果为228=故B 、 C 选项错误;∵2.8<8<2.93,因此D 选项正确.10. 5.(2017江苏淮安,5,3分)下列式子为最简二次根式的是( )AB C D答案:A ,解析:根据最简二次根式的定义可知,5是最简二次根式;12的被开方数12中含有开得尽方的因数4,不是最简二次根式;2a 的被开方数2a 中含有开得尽方的因式2a ,不是最简二次根式;1a 的被开方数1a 中含有分母a ,不是最简二次根式.11. (2017山东潍坊,9,3分)若代数式12--x x 有意义,则实数x 的取值范围是( ) A .x ≥1 B .x ≥2 C .x >1 D .x >2答案:B ,解析:由题意,得⎩⎨⎧>-≥-,01,02x x 解得x ≥2.12. 4.(2017浙江温州,4,4分)下列选项中的整数,与最接近的是A .3B .4C .5D .6答案:B ,解析: ∵4.1<<4.2, ∴ 最接近的是4.13. 3.(2017甘肃酒泉,3,3分)4的平方根是( )A.16B.2C.2D.2 答案:C ,解析:根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得2x =a ,则x 就是a 的平方根.此题中,∵(±2)2=4,∴4的平方根是±2.故选C .14. 7.(2017湖北黄冈,7,3分)16的算术平方根是 .答案:4,解析:16164=.15. 2.(2017湖北荆门,2,3分)在函数y 25x -中,自变量x 的取值范围是( ) A .x >5 B .x ≥5 C .x ≠5 D .x <5答案:A ,解析:这里自变量的取值范围应满足:(1)分母不为0;(2)被开方数不能是负数.所以x -5>.解得x >5.故选A .16.1.(2017江苏泰州,1,3分)2的算术平方根是( )A.2 2 C.2 D.2答案:B ,解析:根据算术平方根的定义可知,2的算术平方根是2.17. 6.(2017山东烟台,6,3分)如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序如下:则输出结果应为( )A. 12B. 132C. 172D. 252答案:C 23(3)642-=172. 18. 6.(2017天津,3分)38A .4和5之间B .5和6之间C .6和7之间D .7和8之间答案:C ,解析:由36<38<49,可得6387,故选C .19. (2017湖南邵阳,1,3分)25 的算术平方根是( )A . 5B . ±5C .-5D .25答案:A ,解析:根据算术平方根的概念做出判断. 如果正数x 的平方等于a (a >0),则正数x 就是a 的算术平方根,由此即可解决问题.20. (2017湖南邵阳,5,3分)函数 y =5-x 中,自变量 x 的取值范围在数轴上表示正确的是( )A .B .C .D .答案:B ,解析:二次根式的被开方数必须为非负数,所以x -5≥0;解不等式x -5≥0,得x ≥5,所以,在数轴上从5向右画,并且用实心点,故选B .21. 11.(2017呼和浩特,31-2xx 的取值范围为_______________. 答案:x <12,解析:根据1-2x >0,解得,x <12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年广东省广州市中考数学试卷满分:150分 版本:北师大版一、选择题(每小题3分,共10小题,合计48分)1.(2017广东广州)如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数为( )A .-6B .6C .0D .无法确定答案:B ,解析:∵只有符号不同的两个数互为相反数,∴-6的相反数是6,即点B 表示6. 2.(2017广东广州)如图2,将正方形ABCD 中的阴影三角绕点A 顺时针...旋转90°后,得到的图形为( )A. B. C. D.答案:A ,解析:选项A 是原阴影三角形绕点A 顺时针旋转90°后得到的;选项B 是原阴影三角形绕点A 顺时针(或逆时针)旋转180°后得到的;选项C 不能由原阴影三角形绕点A 旋转一定度数得到;选项A 是原阴影三角形绕点A 顺时针旋转270°后得到的. 3.(2017广东广州)某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15.这组数据中的众数,平均数分别为( ) A .12,14B .12,15C .15,14D .15,13答案:C ,解析:该组数据中,15出现的次数最多,故众数是15;该组数据的平均数x -=16(12+13+14+15×3)=14. 4.(2017广东广州)下列运算正确的是( )A .362a b a b ++= B . 2233a b a b++⨯= C 2a a = D .|a |=a (a ≥0) 答案:D ,解析:()333==2236a b a b a b+⨯++⨯,故选项A 不正确;22233a b a b ++⨯=,故选项B ()()200a a a a a a ≥⎧⎪==⎨-<⎪⎩,故选项C 不正确,选项D 正确.5.(2017广东广州)关于x 的一元二次方程x 2+8x +q =0有两个不相等的实数根,则q 的取值范围是( )A .q <16B .q >16C .q ≤4D .q ≥4答案:A ,解析:根据一元二次方程根的判别式,得△=82-4q >0,解得q <16. 6.(2017广东广州)如图,⊙O 是△ABC 的内切圆,则点O 是△ABC 的( ) A .三条边的垂直平分线的交点 B .三条角平分线的交点 C .三条中线的交点D .三条高的交点答案:B ,解析:如图,三角形内切圆的圆心是三个内角平分线的交点.7.(2017广东广州)计算()232b a b a,结果是( ) A .a 5b 5B .a 4b 5C .ab 5D .a 5b 6答案:A ,解析:原式=a 6b 3·2b a=a 5b 5. 8.(2017广东广州)如图,E ,F 分别是ABCD 的边AD ,BC 上的点,EF =6,∠DEF =60°,将四边形EFCD 沿EF 翻折,得到 EFC ’D ’,ED ’交BC 于点G ,则△GEF 的周长为( )A .6B .12 C.18 D.24答案:C ,解析:由折叠的性质可知,∠GEF =∠DEF =60°.又∵AD ∥BC ,∴∠GFE =∠DEF=60°,∴△GEF 是等边三角形.∵EF =6,∴△GEF 的周长为18.9.(2017广东广州)如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD ,垂足为E ,连接CO ,AD ,∠BAD =20°,则下列说法中正确的是( )A .AD =2OB B .CE =EOC .∠OCE =40°D .∠BOC =2∠BAD答案:D ,解析:如图,连接OD .∵AD 是非直径的弦,OB 是半径,∴AD ≠2OB ,故选项A 不正确;∵AB⊥CD,∴=BC BD,∴∠COB=∠BOD=2∠BAD=40°,故选项D正确;∵∠OCE=180°-90°-40°=50°,∴∠COB≠∠OCE,∴CE≠EO,故选项B,C不正确.10.(2017广东广州)a≠0,函数y=ax与y=-ax2+a同一直角坐标系中的大致图象可能是()A. B. C. D. 答案:D,解析:由下表可知,选项D符合题意.a>0 a<0函数y=ax图像位于第一、三象限图像位于第二、四象限y=-ax2+a开口向下,与y轴的交点(0,a)在y轴的正半轴开口向上,与y轴的交点(0,a)在y轴的负半轴二、填空题:(每小题3分,共6小题,合计18分)11.(2017广东广州)如图,四边形ABCD中,AD∥BC,∠A=110°,则∠B=.答案:70°,解析:∵AD∥BC,∴∠B=180°-∠A=180°-110°=70°. 12.(2017广东广州)分解因式:xy2-9x=.答案:.x(y+3)(y-3) 解析:原式=x(x2-9)=x(y+3)(y-3).13.(2017广东广州)当x=时,二次函数y=x2-2x+6有最小值.答案:1 5 解析:∵y=x2-2x+6=(x-1)2+5,∴当x=1时,y最小值=5.14.(2017广东广州)如图,Rt△ABC中,∠C=90°,BC=15,tanA=158,则AB=.答案:17,解析:∵tanA=BCAC,即158=15AC,∴AC=8.根据勾股定理,得AB22AC BC+22815+17.15.(2017广东广州)如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是5,则圆锥的母线l = .答案:35 解析:圆锥的侧面展开图是扇形,且扇形的弧长等于圆锥底面圆的周长,扇形的半径长等于圆锥的母线长,即120180lπ⨯=2π×5,解得l =35. 16.(2017广东广州)如图,平面直角坐标系中O 是原点,□ABCD 的顶点A ,C 的坐标分别是(8,0),(3,4),点D ,E 把线段OB 三等分,延长CD ,CE 分别交OA ,AB 于点F ,G ,连接FG ,则下列结论:①F 是OA 的中点;②△OFD 与△BEG 相似;③四边形DEGF 的面积是203;④OD =453;其中正确的结论是 .(填写所有正确结论的序号)答案:①③ 解析:∵BC ∥OA ,且点D ,E 是OB 的三等分点,∴12BC BD OF OD ==,∴OF =12BC =12OA ,∴点F 是OA 的中点,故①正确;易证点G 是AB 的中点,∴S △COF =S △BCG =14S □OABC ,∴S 四边形AFCG =12 S □OABC .由点A ,C 的坐标可知S □OABC =8×4=32,S △CDE =13S △BOC =13×12S □OABC=163.∵FG 是△AOB 的中位线,∴S △AFG =14S △AFG =14×12S □OABC =4,∴S 四边形DEGF =S 四边形AFCG-S △CDE -S △AFG =12S □OABC -S △CDE -S △AFG =16-163-4=203,故③正确;由平行四边形的性质可知点B 的坐标为(11,4),则OB 22114+137,∴OD =13OB 137,故④不正确.由于△OFD 与△BEG 相似的条件不充足,故②不正确.三、解答题:本大题共9个小题,满分102分. 17.(本小题满分9分)解方程组:5,2311x y x y +=⎧⎨+=⎩.思路分析:利用加减消元法或代入消元法求解. 解:①×3,得3x +3y =15③, ③-②,得 x =4.将x =4代入①,得 y =1.∴方程组得解为=4,1x y ⎧⎨=⎩. 18.(2017广东广州)(本小题满分9分)如图,点E ,F 在AB 上,AD =BC ,∠A =∠B ,AE =BF . 求证:△ADF ≌△BCE .思路分析:根据SAS 证明两个三角形全等. 证明:∵AE =BF , ∴AE +EF =BF +EF , 即AF =BE .在△ADF 和△BCE 中,AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ADF ≌△BCE (SAS ).19.(2017广东广州)(本小题满分10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间 (单位:小时),将学生分成五类:A 类(0≤t ≤2),B 类(2<t ≤4),C 类(4<t ≤6),D 类(6<t ≤8),E 类(t >8),绘制成尚不完整的条形统计图如图11.根据以上信息,解答下列问题:(1)E 类学生有_________人,补全条形统计图; (2)D 类学生人数占被调查总人数的__________%;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.思路分析:(1)∵全班人数为50,∴E类学生人数为50-(2+3+22+18)=5;(2)D类学生人数占被调查人数的百分比为1850×100%=36%;(3)先列举所有可能的结果,再利用概率计算公式求解.解:(1)5,补全条形统计图如图所示:(2)36;(3)该班做义工时间在0≤t≤4的学生有5人,其中A类(0≤t≤2)的学生有2人,B类(0≤t≤2)的学生有3人.设这5人分别为A1,A2,B1,B2,B3,从中任选2人,所有可能的结果为:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),共10种,其中两人都在2<t≤4的结果有3种:(B1,B2),(B1,B3),(B2,B3),∴P(这2人做义工时间都在2<t≤4)=3 10.20.(2017广东广州)(本小题满分10分)如图12,在Rt△ABC中,∠B=90°,∠A=30°,AC =23.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D;(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2-a(a-1),再求T的值.思路分析:(1)按照线段垂直平分线的尺规作图方法作图;(2)通过解直角三角形求出△ADE的周长为a,再化简、代入求值.解:(1)如图所示:(2)∵DE是线段AC的垂直平分线,∴∠AED=90°,AE=12AC=12×33在RtADE中,∠A=30°,AE3DE=AE·tanA333=1,AD=2DE=2.∴a=AD+DE+AE==3T=(a+1)2-a(a-1)=a2+2a+1-a2+a=3a+1=3(+1=+10.21.(2017广东广州)(本小题满分12分)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的43倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.思路分析:(1)根据“乙队筑路总公里数是甲队筑路总公里数的43倍”求解;(2)根据“甲队比乙队多筑路20天”列分式方程求解,注意检验.解:(1)60×43=80(公里),即乙队筑路的总公里数为80公里.(2)设甲队每天筑路8x公里,乙队每天筑路5x公里,根据题意,得60802058x x-=解得x=1 10.经检验,x=110是原方程的解且符合题意,1 10×8=45.答:乙队平均每天筑路45公里.22.(2017广东广州)(本小题满分12分)将直线y=3x+1向下平移1个单位长度,得到直线y=3x+m,若反比例函数y=kx的图象与直线y=3x+m相交于点A,且点A的纵坐标是3.(1)求m和k的值;(2)结合图象求不等式3x+m>kx的解集.思路分析:(1)将直线y=3x+1向下平移1个单位长度后得到直线y=3x+1-1,故3x+m=3x+1-1,从而求得m的值和点A的坐标,将点A代入y=kx可得到k的值;(2)直线y=3x+m在双曲线y=kx上方时x的取值范围,即为不等式3x+m>kx的解集.解:(1)根据题意,得3x +m =3x +1-1,解得m =0.∴y =3x .将y =3代入y =3x ,得3x =3,解得x =1,∴点A 的坐标为(1,3). 将(1,3)代入y =kx,得k =3. (2)如图,可知不等式3x +m >kx的解集为-1<x <0或x >1.23.(2017广东广州)(本小题满分12分)已知抛物线y 1=-x 2+mx +n ,直线y 2=kx +b ,y 1的对称轴与y 2交于点A (-1,5),点A 与y 1的顶点B 的距离是4. (1)求y 1的解析式;(2)若y 2随着x 的增大而增大,且y 1与y 2都经过x 轴上的同一点,求y 2的解析式.思路分析:(1)由“y 1的对称轴经过点A (-1,5)”可知对称轴为x =-1,从而求得m 的值,进而可用含n 的式子表示出顶点B 的坐标,再由“点A 与y 1的顶点B 的距离是4”求得n 的值;(2)由(1)中所求y 1的函数解析式求得y 2与x 轴的交点,利用待定系数法求出y 2的解析式.注意“y 2随着x 的增大而增大”这一条件的限制.解:(1)∵y 1的对称轴与y 2交于点A (-1,5), ∴y 1的对称轴为x =-1. ∴()21m-⨯-=-1,解得m =-2.∴y 1=-x 2-2x +n =-(x +1)2+n +1. ∴顶点B 的坐标为(-1,n +1).∵AB =4,∴|(n +1)-5|=4,解得n 1=0,n 2=8. 当n =0时,y 1=-x 2-2x ;当n =8时,y 1=-x 2-2x +8. 即y 1的解析式为y 1=-x 2-2x 或y 1=-x 2-2x +8. (2)当y 1=-x 2-2x 时,将y =0代入y 1=-x 2-2x ,得x 1=0,x 2=-2,∴y 1与x 轴的交点为(0,0),(-2,0). ∵y 2随x 的增大而增大,∴k >0.①当y2经过A(-1,5),(0,0)时,则有5,k bb-+=⎧⎨=⎩,解得5,kb=-⎧⎨=⎩,∴y2=-5x.(不合题意,舍去).②当y2经过A(-1,5),(-2,0)时,则有5,20k bk b-+=⎧⎨-+=⎩,解得5,10kb=⎧⎨=⎩,∴y2=5x+10.当y1=-x2-2x+8时,将y=0代入y1=-x2-2x+8,得x1=2,x2=-4,∴y1与x轴的交点为(2,0),(-4,0).①当y2经过A(-1,5),(2,0)时,则有5,20k bk b-+=⎧⎨+=⎩,解得5,3103kb⎧=-⎪⎪⎨⎪=⎪⎩,∴y2=53-x+103.(不合题意,舍去).②当y2经过A(-1,5),(-4,0)时,则有5,40k bk b-+=⎧⎨-+=⎩,解得5,3203kb⎧=⎪⎪⎨⎪=⎪⎩,∴y2=53x+203.综上可知,y2的解析式为y2=5x+10或y2=53x+203.24.(2017广东广州)(本小题满分14分)如图,矩形ABCD的对角线AC,BD相交于点O,△COD 关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC5.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段P A匀速运动到点A,到达点A后停止运动.当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.思路分析:(1)根据矩形的性质和轴对称的性质证明四边形OCED的四条边都相等;(2)①连接OE,设直线OE交AB于点F,交DC于点G,可知∠EAD=∠AEF,在△AEF中求得sin∠AEF 即可;②过点P作PM⊥AB,垂足为点M. Q由O运动到P所需时间就是OP+MA最小.解:(1)证明:∵四边形ABCD是为矩形,∴AC =BD .∵AC 与BD 交于点O ,且△COD 与△CED 关于CD 对称, ∴DO =CO ,且DO =DE ,OC =EC , ∴DO =OC =EC =ED , ∴四边形OCED 是菱形.(2)①连接OE ,设直线OE 交AB 于点F ,交DC 于点G . ∵△COD 与△CED 关于CD 对称,∴OE ⊥DC . ∵DC ∥AB ,∴OF ⊥AB ,EF ∥AD .∵G 为DC 的中点,O 为AC 的中点,∴OG 是△CAD 的中位线,∴OG =GE =52. 同理可得OF =52,AF =3,∴AE =222235819=3==242EF AF ⎛⎫++ ⎪ ⎪⎝⎭. ∵∠EAD =∠AEF ,∴sin ∠EAD =sin ∠AEF =32932AF AE ==.①过点P 作PM ⊥AB ,垂足为点M . ∴Q 由O 运动到P 所需时间为3s . 由①可知AM =23AP . ∴点Q 以1.5cm /s 的速度从点P 到A 所需时间等同于以1cm /s 的速度从M 运动到A , 即t =t OP +t P A =111OP MA OP MA++=, ∴Q 由O 运动到P 所需时间就是OP +MA 最小. 如图,当P 运动到P 1,即P 1O ∥AB 时,所用时间最短. ∴t =3=11OP MA +=3s . 在Rt △AP 1M 1中,设AM 1=2x ,则AP 1=3x ,∵AP 12=AM 12+P 1M 12,∴(3x )2=(2x )2+252⎛ ⎝⎭,解得x1=12,x2=-12(舍去),∴AP=32.答:AP的长为32cm,点Q走完全程需时3s.25.(2017广东广州)(本小题满分14分)如图14,AB是⊙O的直径,AC BC,AB=2,连接AC.(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线L上取一点D,使BD=AB,BD所在的直线与AC 所在的直线相交于点E,连接AD.①试探究AE与AD之间的数量关系,并证明你的结论;②EBCD是否为定值?若是,请求出这个定值;若不是,请说明理由.思路分析:(1)连接BC,根据“同弧所对的圆周角等于圆角角的一半”求解;(2)①当BD=AB时,有∠ABD为锐角和∠ABD为钝角两种情形;②分D在点C左侧或D在点C右侧两种情况求解.解:(1)证明:如图,连接BC.∵AB是⊙O的直径,∴∠ACB=90°.∵AC=BC,∴∠CAB=∠CBA=12(180°-90°)=45°.(2)①当∠ABD为锐角时,如图所示,作BF⊥l于F.由(1)可知△ABC为等腰直角三角形.∵O是AB的中点,∴CO=AO=BO,∴△COB为等腰直角三角形. ∵l是⊙O的切线,∴OC⊥l.∵BF⊥l,∴四边形OBEC为矩形.∴AB =2BF ,∴BD =2BF ,∴∠BDF =30°,∴∠DBA =30°,∴∠BDA =∠BAD =75°,∠CBE =15°,∠CEB =90°-15°=75°,∴∠CEB =∠DEA ,∴AD =AE .②当∠ABD 为钝角时,如图所示,同样BF =12BD ,∠BDC =30°, ∴∠ABD =150°,∠AEB =90°-∠CBE =15°,∠ADB =12(180°-150°)=15°, ∴∠AED =∠ADE ,∴AE =AD .②当D 在C 左侧时,由①可知CD ∥AB ,∠ACD =∠BAE ,∠DAC =∠EBA =30°, ∴△CAD ∽△BAE ,∴2AC CD BA AE ==AE 2CD . ∵BA =BD ,∠BAD =∠BDA =15°,∴∠IBE =30°.在Rt △IBE 中,BE =2EI =2×22AE 2AE 22=2CD . ∴2EB CD=. 当D 在C 右侧时,过E 走EI ⊥AB 与I .由①可知∠ADC =∠BEA =15°.∵AB ∥CD ,∴∠EAB =∠ACD ,∴△ACD ∽△BAE ,∴2AC CD BA AE ==AE 2. ∵BA =BD ,∠BAD =∠BDA =15°,∴∠IBE =30°.在Rt △IBE 中,BE =2EI =2×22AE 2AE 22=2CD . ∴2EB CD=.综上所述,EBCD为定值,其值为2.。