第七章 模板合成法(仿生合成)
模板合成法

模板合成法
模板合成法是指根据给定的输入和模板,将模板中的变量替换为输入中对应的值,从而生成最终的输出结果。
该方法常用于生成自然语言中的文本,如邮件、新闻报道、推文等。
模板合成法的基本步骤包括:
1. 定义模板:确定需要生成的文本的格式和结构,并在其中使用占位符(即变量)表示将来替换的部分。
2. 准备输入数据:获取输入数据,该数据包含了要插入到模板中的具体信息。
3. 变量替换:根据输入数据,将模板中的占位符替换为实际的值。
4. 生成输出结果:将替换完成的模板输出为最终的文本结果。
模板合成法的优势在于可以灵活地根据输入生成不同的文本,同时可以保持一致的文本格式和结构。
它可以应用于各种应用场景,如自动化邮件回复、文本生成任务等。
模板合成

1.前言在过去的二十年中超分子化学为化合物分子结构的合成提供了重要依据,并使得化合物分子结构的合成有了重要进展,合成了包括分子笼、分子螺旋、分子轮烷和分子链条在内的特殊分子结构。
人们熟知的化学主要是研究以共价键相结合的分子合成和结构,性质和交换规律。
超分子化学定义为分子间弱相互作用和分子组成的化学。
这些弱的相互作用包括静电作用、氢键、范得华力、短程排斥力等。
为了说明配位饱和的分子间相互作用而形成的有组织的实体,早在20世纪30年代就引入了超分子这个名词。
更广义的配位化学可以定义为研究两个以上的分子通过结合作用而形成的另一种新化合物的化学。
不难设想配位化学和超分子化学有着天然的血缘关系。
可以认为广义的配位化学是超分子化学的一个研究领域[1]。
从超分子化学的新观点研究分子的合成和组成在我国日益受到重视。
化学模板有助于提供组装的物种和创造有序的组装过程[2],但是其最大的困难在于克服热力学第二定律所要求的无序。
因此,对于组装的本质和规律,有很多基础性的研究待深入进行。
化学模板合成方法作为近年来涌现出的众多超分子化合物合成方法中的一种,是一种将具有某些特殊相关性的分子器件组装在一起的合成[3]。
可作为模板剂的有阳离子、阴离子和中性离子。
相比阳离子模板和中性离子模板[4, 5 ],阴离子模板在化学合成方面的开发很少,部分原因是基于阴离子的一些内在性质的考虑,比如阴离子对体系PH值的灵敏性以及它相对较高的溶剂自由能[6]。
然而,这些局限性并没有影响到阴离子模板合成的发展,并且在过去的几年中阴离子指导合成化合物的种类和数量都有所增加。
阴离子模板分为热力学模板和动力学模板两种[7]。
在热力学模板中阴离子被绑定到产物中,这个产物是在热力学控制的特殊平衡下产生的。
通过这样的方法使平衡朝着产物的方向转变,就能获得较高产率的产品。
在动力学模板中,反应在不可逆转的条件下快速进行并且很快结束,因此,在整个过程中需要稳定反应以得到产品。
模板法合成介孔材料

Group NO.3 Reporter: 朱 敏
Other members:王楠 王有亮 周艳玲 夏荣森
主要内容
1 2 3
介孔材料简介 模板法介绍 模板法合成机理
3.1 3.2 3.3
液晶模板机理 协同作用机理
广义液晶模板机理
3.4 氢键π-π堆积协同作用机理
介孔材料介绍
1992年Mobil公司使用表面活性剂带正电荷的季铵盐作为模板剂,首次 合成了有序介孔材料 M41S系列
硅源
然后再向其中逐滴加入无机源,通过 溶胶凝胶工艺或水热处理后,进行过 滤、洗涤等处理;
最后经过煅烧或萃取去除有机物, 得到孔径分布窄且有序的介孔材 料。
模板剂
自组装
溶剂
Temperature℃
CTAB Concentration( Wt% )
C. J. Brinker, Y. Lu, A. Sellinger,H. Fan, Adv. Mater., 1999,11, 579
远低于形成液晶相所需浓度,没有硅酸盐存在时只有 胶团而无液晶相;
2 合成温度:﹥70℃
胶束不能稳定存在;
3 PH=12-14
在没有表面活性剂存在时,硅酸盐自己不会发生缩聚 生成固相。
--- Monnier A et al,Science 261,1993
协同作用机理(cooperative formation mechanism)
Thank you & Happy New Year!
-----Frank Hoffmann et al. Angew. Chem. Int. Ed. 45, 3216, 2006
高浓度合成有序介孔材料
无机合成简明教程复习笔记(考研+期末)

无机合成简明教程复习笔记一、第一章●无机合成十大热点/前沿领域1.特种结构无机材料的制备2.软化学合成●硬化学:在超高温、超高压、强辐射、无重力、仿地心、仿宇宙等条件下探索新物质合成●软化学:采取迂回步骤,在较温和条件下实现化学反应过程,以制备相关材料的化学领域●方法:前驱体法、溶胶-凝胶法、溶剂热合成法、插入反应、离子交换过程、熔体(助溶剂)法、酶促合成骨骼和人齿反应、拓扑化学过程及一些电化学过程●特点●不需用高纯金属作原料●制成的合金是具有一定颗粒度的粉末,在使用时无需碾碎●产品本身具有高活性●产品具有良好的表面性质和优良的吸放氢性能●合成方法简单●有可能降低成本●为废旧储氢合金的回收再生开辟了新途径3.极端条件下合成4.杂化材料的制备5.特殊聚集态材料合成6.特种功能材料的分子设计●概念:其指开展特定结构无机化合物或功能无机材料的分子设计、裁剪与分子工程学的研究●步骤:以特定的功能为导向➡️在分子水平上实现结构设计和构建➡️研究分子构建的形成和组装规律➡️对特定性能的材料进行定向合成7.仿生合成●概念:其指在分子水平上模拟生物的功能,将生物的功能原理用于化学,借以改善现有的和创造崭新的化学原理和工艺科学●仿生膜●选择性通透作用●低能耗、低成本和单极效率高●适合热敏物质分离●应用广泛、装置简单、操作方便、不污染环境8.纳米粉体材料制备●化学制备方法●水热-溶剂热法●热分解法●微乳液法●高温燃烧合成法●模板合成法●电解法●化学沉淀法●化学还原法●溶胶-凝胶法●避免高温引起相分离9.组合化学●其是一门将化学合成、组合理论、计算机辅助设计及机器人结合为一体的技术●基本思想和主要过程●设想和定义●选择相关元素●构建化合物库●并行处理技术●加工过程●高通量分析●将新材料及合成与分析数据送交用户10.绿色合成●方法和实例●热化学循环分解水●水热-溶剂热合成●超临界二氧化碳和成●绿色电解合成●低热固相合成●固相合成四个阶段●扩散●反应●成核●生长●五个特点●具有潜伏期●无化学平衡●拓扑化学控制原理●分步反应●嵌入反应●定义:指在制造和应用化学产品时有效利用原料(最好可再生),消除废物和避免使用有毒的、危险的试剂与溶剂●核心和主要特点(原子经济反应)●无毒无害原料,可再生资源●环境友好产品,回归自然,废物回收利用●无毒无害催化剂●无毒无害溶剂二、第二章●Ellingham 图1.吉布斯-亥姆霍兹方程2.如何理解:设(x,y)( x,y分别为两种物质),位于金属氧化物线段之下的温度区间,x可用于还原金属氧化物,而本身被还原为y3.应用●古代制铜器●金属锌制备●耦合反应1.概念:原来不能单独自发进行的反应A,在反应B的帮助下合并,合并在一起的总反应可以进行,这种情况称之为耦合反应2.应用实例●单质磷的制备●四氯化钛的制备●氧化法制备硫酸铜●泡佩克斯图1.概念:它是相关电对的电极材料-参加反应各物种浓度-温度-溶液酸度图●电极反应类型●既有氢离子或氢氧根离子参加,又有电子参加,这时的泡佩克斯图为一直线,斜率为(-m/n)*0.059,截距为E池●电极反应只有电子得失,没有氢离子或氢氧根离子参加,其图形为平行于横坐标的直线●电极反应有氢离子或氢氧根离子参加,但没有电子得失,其图形为平行于纵坐标的直线2.性质●直线上方为氧化态的稳定区,下方为还原态的稳定区●直线左边是物种离子的稳定区,右边是沉淀的稳定区3.应用●判断氧化还原反应进行的方向和顺序●对角线规律●两条直线间的距离越大,E池越大,➡️G越负,则反应自发进行的趋势越大●对同时存在的几个反应,氧化还原反应进行的顺序可按直线之间距离的大小排序(从大到小)●确定水的稳定区●如图,凡是泡佩克斯图落在j-k之间的氧化剂或还原剂都不会与水反应●可判断物种在水中存在的区域,或者提供制备的条件●湿法冶金中的应用●在电化学中的应用●热力学相图1.一致熔融化合物2.不一致熔融化合物三、第三章●低温合成1.物态●物质的第四态:等离子态,升高温度(数百万度)●物质的第五态:波色-爱因斯坦凝聚(超导态和超流态),温度低至临界温度2.低温温区划分●普冷区:环境温度到120k●深冷区:120k到绝对零度●普冷与低温的分界线:123k3.低温获得●恒温低温浴●制冷产生低温P78●低温恒温器●储存液化气体装置●高压气体钢瓶●气体钢瓶的颜色●气体钢瓶的安全使用●原因:钢瓶内部填充的气体压力很大,并且有的气体具有可燃性和助燃性,故钢瓶具有一定的易燃易爆性●注意点●气瓶必须连接压力调节器,经降压后,再流出使用●安装调节器,配管一定要用合适的,安装后试接口,不漏气方可使用●保持清洁,防污秽侵入,防漏气●小心使用,不可过度用力●易燃气体钢瓶应装单向阀门,防止回火●避免和电器电线接触,以免产生电弧使气体受热发生危险●瓶内气体不可用尽,即压力表指压不可为0,否则可能混入空气,重装气体时会有危险●气体附近必须有灭火器➡️,且工作场所通风良好4.低温的测量●蒸气压温度计●低温热电偶●低温热电阻温度计5.应用●稀有气体合成●KrF2的低温放电合成● XeO4的低温水解合成●在高氙酸盐中缓慢滴入零下五摄氏度的浓硫酸,生成四氧化氙气体●真空升华得纯品,储存于零下78摄氏度的冷凝容器中●XeF2的低温光化学合成P84●RnF2的光化学合成●金属,非金属同液氨的反应●碱金属及其化合物同液氨的反应●U型汞鼓泡管主要作为液氨蒸发的出口,并在所有的液氨蒸发后,阻止气体进入杜瓦瓶●碱土金属同液氨反应●某些化合物在液氨中的反应●非金属同液氨的反应●液氨中配合物的生成●低温下挥发性化合物的合成●二氧化三碳的合成●氯化氰的合成●磷化氢的合成●实验结束时不断的使氢气通过烧瓶,同时使烧瓶中的物质冷却,直至磷完全凝固。
构建碳基化合物的模板合成方法

构建碳基化合物的模板合成方法碳基化合物是一类重要的有机化合物,其构建方法对于有机合成领域具有重要意义。
在有机合成中,模板合成方法是一种常用且有效的方法,能够帮助合成化学家们在复杂的有机合成过程中快速构建碳基化合物的骨架结构。
本文将介绍一些常见的碳基化合物模板合成方法,并探讨其优势和应用。
一、模板合成方法的基本原理模板合成方法是一种利用模板分子的特定结构来引导有机合成反应的方法。
在反应过程中,模板分子与反应物发生特定的相互作用,使得反应物选择性地结合在模板分子上,从而形成目标产物。
模板合成方法的关键在于选择合适的模板分子,使其能够与反应物发生特定的相互作用,并通过适当的条件促使反应发生。
二、模板合成方法的应用1. 模板合成方法在天然产物合成中的应用天然产物合成是有机化学领域的一个重要研究方向。
许多天然产物具有复杂的结构和生物活性,合成起来非常具有挑战性。
模板合成方法可以帮助合成化学家们在天然产物合成中快速构建复杂的碳基骨架。
通过选择适当的模板分子,可以引导反应物的选择性结合,从而实现目标产物的合成。
2. 模板合成方法在药物合成中的应用药物合成是另一个重要的有机合成领域。
许多药物分子具有特定的结构和生物活性,其合成过程要求高效、高选择性和高产率。
模板合成方法可以帮助合成化学家们在药物合成中快速构建目标分子的骨架结构。
通过选择适当的模板分子,可以引导反应物的选择性结合,从而实现药物分子的合成。
三、常见的模板合成方法1. 模板合成方法之分子内模板法分子内模板法是一种常见的模板合成方法,其基本原理是通过在反应物中引入一个模板基团,使得反应物在反应过程中选择性地与该模板基团发生特定的相互作用。
通过适当的反应条件,可以实现目标产物的合成。
2. 模板合成方法之分子间模板法分子间模板法是另一种常见的模板合成方法,其基本原理是通过引入一个模板分子,使其与反应物发生特定的相互作用。
通过适当的反应条件,可以实现反应物在模板分子上的选择性结合,并形成目标产物。
仿生合成

在作者之前发表的文献中, 他证明了K58是由KP1和 KR9(都隶属于角蛋白) 的同源蛋白组合成,所以 认为其组装过程也跟角蛋 白纤维的形成相似,先是 形成二聚体,然后是四聚 体,八聚体,十六聚体最 后形成一个,成熟的大约 为10nm宽花丝
由于K58蛋白 质是由许多的富含 酸性氨基酸残基的 单体组装而成的, 在其表面必定会有 许多的无序排列氨 基酸。这些羧基, 提供负电荷,吸引 和螯合钙离子。诱 导了ACC得形成。
明显看出,晶 体的形貌从捆 束状(图a)变为 哑铃形(图b、 c)最后变为花 束状(图d)
a-d 分别表示晶体生长时间1 h, 2 h, 4 h, 8 h。
图中看出e和f 并没有很明显 的变化,唯有 在反应一周时 间的g图中, 球形的趋势才 更加明显。
e f g分别表示晶体生长时间12 h, 24 h, 1 week。 h为在空白培养皿上生长的晶体
双韧带主要是指在贝壳中负责 链接壳以及壳的打开与合闭的的 结构
几乎所有的双 韧带的微观结构 都是由一个外部 蛋白和文石纤维 层组成的,,文石纤维很 可能就是由前者 (蛋白)控制合 成
实验步骤
1.蛋白质底物的制备 从双韧带中提取出K58之后,将它用3%的乙酸清洗进 行脱钙处理。 2.晶体的制备 将K58放置在不同的细胞培养皿上,80 mL 10 mM (CaCl2),10 mL硫酸, (NH4HCO3)粉末。这些反应分别进 行1 h, 2 h, 4 h, 8 h,12 h, 24 h, and 1 week。 3.表征 4cm-1分辨率的傅里叶红外。 20kV下的SEM,乙醇溶液中超声10分钟TEM。 以及200kV的SAED表征。
模拟生物的环境 进行合成实验
空白对比(无K58模板) 条件对比(结晶时间)
仿生合成技术

90年代以来,出现了一种模仿生物矿化中无机物在有机物调制下形成过程的新合成方法———仿生合成。
利用仿生合成技术制备的纳米微粒、薄膜、多孔材料等物质具有特殊的物理和化学性能,潜在着广阔的应用前景,这使得无机材料的仿生合成技术已成为材料化学研究的前沿和热点。
仿生合成技术简介仿生合成技术(Biomimetic Synthesis)是一种崭新的无机材料合成技术。
90年代中期,当科学家们注意到生物矿化进程中分子识别、分子自组装和复制构成了五彩缤纷的自然界,并开始有意识地利用这一自然原理来指导特殊材料的合成时,仿生合成的概念才被提出。
仿生合成技术模仿了无机物在有机物调制下形成的机理,合成过程中先形成有机物的自组装体,使无机先驱物于自组装聚集体和溶液的相界面发生化学反应,在自组装体的模板作用下,形成无机P有机复合体,再将有机物模板去除后即可得到具有一定形状的有组织的无机材料。
模板在仿生合成技术中起到举足轻重的地位,模板的千变万化,是制备结构、性能迥异的无机材料的前提。
目前用作模板的物质主要是表面活性剂,因为它们在溶液中可以形成胶束、微乳、液晶和囊泡等自组装体,生物大分子和生物中的有机质也是被选择的模板,此外利用先进光电技术制造的模板也被用来合成特殊的无机材料。
仿生合成技术的出现与应用为制备具有各种特殊物理、化学性能的无机材料提供了广阔的前景。
利用有机大分子作模板剂控制无机材料结构的仿生技术被视为近年来化学发展的新动态,通过调变聚合物的大小和修饰胶体颗粒表面对无机材料形成初期实行“裁剪”,化学途径能够获得介观尺度的无机有机材料。
近几年无机材料的仿生合成已成为材料化学的研究前沿和热点,尽管目前有关仿生合成的机理尚有待进一步证实和探索,但相信在不久的将来,通过仿生事成技术,更多的多功能无机材料将会诞生。
仿生合成材料的应用前景仿生合成材料是具有特殊性能的新型材料,有着特殊的物理、化学性能和潜在的广阔应用前景。
微米级仿生合成材料是极好的隔热隔声材料;具有纳米级精细孔结构的分子筛,可以根据粒子大小对细颗粒进行准确的分类,如筛选细菌与病毒;与催化剂相结合,这种材料可以实现反应与分离过程的有效耦合,如用于高渗透通量、高分离精度的纯净水生产装置;仿生合成的磷灰石材料是性能优异的新骨组织构造基架,有望用于骨移植的外科手术中;仿生合成制取的纳米材料在光电子等其它领域同样存在广阔的应用前景。
10.纳米材料的模板合成

软模板合成纳米材料
模板法因能够在限制性介质环境中设计 出孔径和孔道尺寸可控的模板模型, 可在其 中有效地嵌入各种纳米粒子, 并可控制其形 状、尺寸大小, 还能防止团聚的发生, 因而 近几年在制备各种材料的各种形状和尺寸 的纳米结构材料方面得到了很大的发展, 在 纳米器件和功能材料方面具有广阔的潜在 应用前景。
软模板合成纳米材料
表面活性剂首先在溶液中形成棒状胶束,规则地排列成为六 角结构的液晶相,当加入无机硅源物质后,无机硅聚阴离子就沉 积在六角棒状胶束的周围,从而形成以液晶相为模板的有机-无机 复合物。
软模板合成纳米材料
模板法( 包括硬模板和软模板法) 是制备 纳米结构材料的常用方法, 可用来制备多种 物质的各种形状( 如: 球形粒子、一维纳米 棒、纳米线、纳米管以及二维有序阵列等) 的纳米结构。
Cao et al. Ceria Hollow Nanospheres Produced by a Template-Free Microwave-Assisted Hydrothermal Method for Heavy Metal Ion Removal and Catalysis. J. Phys. Chem. C 2010, 114, 9865–9870.
多孔阳极氧化铝膜
紧靠铝基体表面是一层薄而致密的阻挡层 (barrier layer),上面则形成较厚的多孔层,多孔 层的膜胞是六角密堆排列,每个膜胞中心存在纳 米尺度的孔,且孔大小均匀,与基体表面垂直, 彼此之间相互平行。
硬模板合成纳米材料的实例
NANO LETTERS 2004 Vol. 4, No. 3 513-516
软模板合成纳米材料
利用模板合成技术人们已经制得了各种 物质包括金属、氧化物、硫属化合物、无 机盐以及复合材料的球形粒子、一维纳米 棒、纳米线、纳米管以及二维有序阵列等 各种形状的纳米结构材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)温度升高使非离子活性剂的聚集数明显升高
对离子型活性剂的聚集数影响不大
34
八、增溶作用 当溶液中表面活性剂的浓度达到或超过CMC时, 原来不溶于水或微溶于水的物质(有机物)的溶解 度显著增加
C 表面活性剂
35
8.1 胶束的增溶方式
(a)增溶于疏水内核中 (b)增溶于胶束的定向表面活性剂分子之间, 形成“栅栏”结构 (c)增溶物“吸附”于胶束的表面
(d)增溶于非离子型表面活性剂胶束的亲水基
的“外壳”中
36
8.2 表面活性剂溶液的特性(Mcbain假说)
在CMC以上浓度发生
所得系统是均相系统
溶质以整体进入胶束
37
第二节 模板合成法 一、液相沉淀反应中颗粒的形成阶段:
第一阶段是晶核形成阶段
第二阶段是晶核生长阶段
模板法:干预反应体系的动力学过程,决定颗粒
如矿泉水,井水, 无机盐溶液等
Ⅰ
Ⅱ
溶质为可溶性有机化合 物:醇、醛、酸、酯
Ⅲ
c
溶质为表面活性剂
14
四、表面活性剂 4.1 基本概念
表面活性物质:能使溶剂(主要指水)的表面张力降低
的物质
d / dc 0
表面活性剂:在低浓度下就能显著降低水的表面 张力的物质
表面非活性物质:使水的表面张力增加的物质
d / dc 0
表面活性:表面活性物质有使溶剂表面张力降低的能
力,这种性质称为表面活性
15
4.2 表面活性剂结构上的双亲性特点 亲水基团:-OH、-COOH、-COO-、-SO3憎水基团:烷基、苯基。
H2 H2 H2 H2 H2 H2 C C C C C C C C C C C C H2 H2 H2 H2 H2 H2 C H2 H2 C C H2 H2 C C H2 O C OH
时,其非极性部分会互相吸引,
自发形成憎水基向里、亲水基向
外的有序聚集体( 正相胶束)
22
6.2 临界胶束浓度 ( CMC )
表面活性剂溶液中开始
形成胶束的最低浓度。
CMC
单位:摩尔浓度(mol/dm3)或百分浓度 CMC越小说明该表面活性剂形成胶束能力越强
23
6.3 胶束形成的过程
表面活性剂浓度变大 C 《 CMC C < CMC
40
3.2 软模板类型
各种有序聚合物:
液晶、胶团、微乳状液、囊泡、
高分子的自组织结构、生物大分子等。
41
【例】六方相中孔分子筛形成机理
表面活性剂首先在溶液中形成棒状胶束 规则地排列成为六角结构的液晶相, 无机硅聚阴离子沉积在六角棒状胶束的周围,形成
以液晶相为模板的有机-无机复合物。
42
【例】软模板控制聚苯胺的形貌
一)阴离子表面活性剂
利用十二烷基苯磺酸钠为结构指导剂,通过过硫酸 铵引发苯胺聚合制备十二烷基苯磺酸掺杂的聚苯 胺亚微米管
43
塌陷(A)和未塌陷(B)的聚苯胺亚微米管的SEM照片。
44
二)阳离子表面活性剂
以十六烷基三甲基溴化铵为结构指导剂、盐酸
作掺杂剂、过硫酸铵作氧化剂制备网状聚苯胺 纳米纤维。
45
有序平行排列;
孔径在5至200nm 范
围内调节;
孔密度可高达1011 个/cm2。
49
利用AAO模板合成纳米材料
电抛光
阳极氧化
纳米棒
纳米粒子
沉积 Al 纳米有序阵列复合结构 纳米管 纳米丝
50
CdS nanowires produced in AAO templates with the diameter of 20nm (a), 30nm (b, c), and 50nm (d), respectively.
随介质的pH可成阳或阴离子型。 氨基酸型
+ R-NHCH2-CH2COO-
20
(二)非离子表面活性剂
在水溶液中不解离,不带电。 结构组成: ①亲水基团 (甘油、聚乙二醇、山梨醇); ②亲油基团(长链脂肪酸、长链脂肪醇、烷基或
芳基);
21
六、 胶束的基本概念(胶团)
6.1 定义:
两亲分子溶解在水中达一定浓度
表面活性剂 C12H25SO3Na C12H25SO3Na C12H25SO3Na C12H25O(C2H4O)6H C12H25O(C2H4O)12H C12H25O(C2H4O)23H C10H21O(C2H4O)8CH3 C10H21O(C2H4O)8CH3 温度 聚集数 40 54 25 80 NaCl(0.1N) 25 112 H2O 25 400 H2O 25 81 H2O 25 40
18
羧酸盐
2、阳离子表面活性剂 在水中解离后,起活性作用的是阳离子基团
R-NH2· 伯胺盐型 HCl CH3 | R-N+-CH3Cl| CH3
+
季胺盐型
CH3 | C16H33-N+-CH3Br- | CH3 十六烷基溴化铵
19
R-(NC5H5) Cl 吡啶盐型
3、两性表面活性剂
分子结构上同时具有带正负电荷的亲水基团,
除去模板后可以得到纳米材料。
分子筛,多孔氧化铝膜,聚合物纤维,纳米碳管
47
4.1 硬模板法特点:
1) 较高的稳定性,强的限域作用; 2) 后处理过程复杂; 3) 反应物与模板的相容性影响纳米结构的形貌
4) 硬模板结构比较单一, 形貌变化较少
48
硬模板:多孔氧化铝膜(AAO)
结构特点:
孔洞为六边形或圆形且垂直于膜面;
5
6
1.3 对于溶液,溶质的加入将改变溶液的表面张力
Ⅰ
Ⅱ Ⅲ
c
7
二、溶液表面张力的类型 2.1 第Ⅰ类曲线
Ⅰ
特点: 随浓度 c 增加而增加
溶质:无机盐、不挥发性的酸、
Ⅱ Ⅲ
碱、含多-OH的有机物
c
0 kc
8
2.2 第Ⅱ类曲线
特点: 随浓度 c 增加而
下降,开始下降快一些, 逐渐减慢。 溶质:非离子型极性有机物,
结构、尺寸及其分布
38
二、 模板合成法原理:
利用基质材料结构中的空隙或外表面作为模板进行 合成。 优点:调控尺寸、形状、分散性、周期性
39
三、软模板合成法原理
由表面活性剂构成的胶团或反相胶团作为模板 3.1 软模板法工艺流程
表面活性剂→胶团(空腔) ↓物质(离子) 空腔内反应 ↓ 洗涤或煅烧 ↓ Nanomaterials
51
硬模板法合成的不同长径比的金纳米材料
52
Fe纳米线的AAO模板合成
200 180 160
l/d
140
Aspect ratio
120 100 80 60 40 0 2 4 6 8
t/min
Fe纳米线的局部放大TEM照片
纳米线的长径比与沉积时间 53 近似成正比
通过电沉积和氧化作用在六方形的有序AAO 纳米孔道
Ⅰ
Ⅱ Ⅲ
c 醇、酸、醛、酮、醚、酯类等。
9
2.3 第Ⅲ类曲线
特点:初始低浓度时, 随浓度增加急剧下降,但
到一定浓度后几乎不再变化。
溶质:表面活性剂
Ⅰ
有8个以上碳的有机酸盐、
有机胺盐、磺酸盐、苯磺
Ⅱ Ⅲ
酸盐等。
c
10
三、溶液的表面吸附
3.1 表面吸附 一种物质自动浓集到另一种物质表面上的过程。 有吸附能力的物质称为吸附剂
12
3.4 正吸附:溶质在表面层的浓度大于溶液本体浓度 溶质的加入引起溶剂的表面张力降低
Surface active substance
C>CB 溶质 溶剂 C:表面相浓度
正吸附
CB:本体相浓度
表面层中溶剂分子比溶质分子所受到的指向溶液内 部的引力要大 13
1. 负吸附──表面张力增大Ⅰ 2. 正吸附──表面张力减小Ⅱ,Ⅲ
被吸附的物质称为吸附质
3.2 溶液表面吸附: 溶液表面层的组成与本体溶液组成不同的现象
11
3.3 负吸附:溶质在表面层的浓度小于溶液本体浓度 溶质的加入引起溶剂的表面张力升高
Surface inactive substance
C<CB
负吸附
溶质
溶剂 C:表面相浓度 CB:本体相浓度
表面层中溶质分子比溶剂分子所受到的指向溶液内 部的引力要大
硬模板:碳纳米管(carbon nanotubes)
用于制备碳化物纳米棒的反应路线示意图
56
碳纳米管
以碳纳米管为模板合成的 GaN纳米线
57
硬模板:外延模板法
“外延模板法”制备单晶GaN 纳米管的过程示意图
58
A) TEM images of Ag/SiO2 coaxial nanocables that were prepared by directly coating silver nanowires with an amorphous silica sheath using the sol-gel method. B) TEM image of silica nanotubes prepared by selectively dissolving the silver cores of Ag/SiO2 nanocables in an ammonia solution with~pH 11.
蒸气
f≠0
液体
f=0
4
1.2 在恒温恒压下,纯液体表面张力是一恒定值 纯物质分子间的相互作用力越强, 越大
对于气液界面有:
(金属键)> (离子键)> (极性键)> (非极性键)