线性规划常见题型及解法 均值不等式(含答案)
线性规划、基本不等式(易错题)含答案
线性规划、基本不等式(易错题)含答案一、线性规划1. 设x y 、满足00+1x y x y ≥⎧⎪≥⎨⎪≤⎩,则2x y x +-的取值范围是 .2.已知a>0,x,y 满足约束条件1+3(3)≥⎧⎪≤⎨⎪≥-⎩x x y y a x 若2=+z x y 的最小值为1,则a=( )A .14B .12C .1D .2 3. 变量x y 、满足约束条件2200x y x y y +≤⎧⎪-≥⎨⎪≥⎩,则使目标函数z ax y =+(0a >)取得最大值的最优解有无数个,则a 的值为 .4.如果实数x y 、满足30101x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,若直线10x ky +-=将可行域分成面积相等的两部分,则实数k 的值为 .5. 设x y 、满足约束条件360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,若目标函数z ax by =+(0a >,0b >)的最大值为12,则ab 的取值范围是( ) A. 3(0,]2 B. 3(0,)2 C. 3[,)2+∞ D. (0,)+∞二、不等式1.集合{22}A x x =-≤,2{,12}B y y x x ==--≤≤,则AB =( )A. RB. {0}x x ≠C. {0}D. ∅2.下列函数中,最小值为4的是( ) A. 4y x x =+ B. 4sin (0)sin y x x xπ=+<< C. 22x x y e e -=+ D. 3log 4log 3(01)x y x x =+<<3.若不等式x 2+ax+4≥0对一切x ∈(0,1]恒成立,则a 的取值范围是 .4.若a >0,b >0,且ln(a +b )=0,则1a +1b的最小值是( ) A.14B .1C .4D .8 5.函数y =x 2+2x -1(x >1)的最小值是( ) A .23+2 B .23-2 C .2 3 D .26.函数y=a x-1(a>0,a ≠1)的图象恒过定点A,若点A 在直线mx+ny-1=0上,其中mn>0,则+的最小值为( ) A.2 B.3 C.3+2 D.67.已知x >0,y >0,且2x +8y -xy =0,求(1)xy 的最小值;(2)x +y 的最小值.线性规划、不等式(参考答案)一、线性规划1、[-1,0]2、B3、 24、135、A 2【解析】画出不等式组表示的平面区域如图所示:当目标函数z=2x+y 表示的直线经过点A 时,z 取得最小值,而点A 的坐标为(1,-2a),所以2-2a=1,解得a=,故选B .二、不等式1、C2、C3、[-5,+∞)4、C5、A6、C7【解析】(1)∵x >0,y >0,∴xy =2x +8y ≥216xy ,即xy ≥8xy ,∴xy ≥8,即xy ≥64.当且仅当2x =8y ,即x =16,y =4时,“=”成立.∴xy 的最小值为64.(2)∵x >0,y >0,且2x +8y -xy =0,∴2x +8y =xy ,即2y +8x =1.∴x +y =(x +y )·⎝ ⎛⎭⎪⎫2y +8x =10+2x y +8y x ≥10+2 2x y ·8y x =18,当且仅当2x y =8y x ,即x =2y =12时“=”成立.∴x +y 的最小值为18.。
17、线性规划、均值不等式
满足C不等式组表示的点集记为不等式组B C,+的最小值为,且使得+C D满足约束条件的动点满足约束条件是不等式组+则不等式组所表示的平面区18.(2014•枣庄校级模拟)为保增长、促发展,某地计划投资甲、乙两项目,市场调研得知,甲项目每投资100万元需要配套电能2万千瓦,可提供就业岗位24个,增加GDP260万元;乙项目每投资100万元需要配套电能4万千瓦,可提供就业岗位32个,增加GDP200万元、已知该地为甲、乙两项目最多可投资3000万元,配套电能100万千瓦,并要求它们提供的就业岗位不少于800个如何安排甲、乙两项目的投资额,增加的GDP最大?19.(2015•滕州市校级模拟)已知不等式x2﹣5ax+b>0的解集为{x|x>4或x<1}(1)求实数a,b的值;(2)若0<x<1,f(x)=,求f(x)的最小值.21.(2015•广安模拟)在直角坐标系xOy中,O为坐标原点,点M的横纵坐标分别为茎叶图中位数和众数,若点N(x,y)的坐标满足,求•的最大值.满足解:,解得的最小值为,不等式组不等式组DA对应的区域面积为4×4=16,B对应的区域面积如图阴影部分面积为)=,S=2015•温江区校级模拟)某企业拟生产甲、乙两种产品,已知每件甲产品的利润为3万元,每件乙产品的利润为6.(2015•哈尔滨校级二模)设a>b>0,则a++的最小值为a++=+++b==a++的最小值为:7.(2015•安庆二模)设实数m,n满足m>0,n<0,且,解:因为(,所以5+当且仅当+=1(+)+2+2使得+使得=(=≥=,不时,∴=时,∴=∴最小值为10.(2015•黑龙江模拟)设x,y满足约束条件,则,解得二.填空题(共6小题)11.(2015•西安校级二模)已知满足条件的动点解:不等式组解得,=1S=满足约束条件x+,是不等式组表示的平面4=4,.(2015•温州一模)已知a,b∈R,若a(﹣,±;的取值范围是(﹣,+=2+浙江模拟)向量,)满足,17.(2014•安徽模拟)已知函数f(x)=a x﹣2﹣2(a>0且a≠1)的图象恒过定点A(m,n),则不等式组所表示的平面区∴不等式组为,)=3(2014•枣庄校级模拟)为保增长、促发展,某地计划投资甲、乙两项目,市场调研得知,甲项目每投资100万元需要配套电能2万千瓦,可提供就业岗位24个,增加GDP260万元;乙项目每投资100万元需要配套电能4万千瓦,可提供就业岗位32个,增加GDP200万元、已知该地为甲、乙两项目最多可投资3000万元,配套电能100万千瓦,并要求它们提供的就业岗位不少于800个如何安排甲、乙两满足得得>4或x<1}(1)求实数a,b的值;(2)若0<x<1,f(x)=,求f(x)的最小值.)由题意可得,解得=+,∴>>=+=++5+2当且仅当=即时,等号成立.20.(2014•肇庆模拟)广东省某家电企业根据市场调查分析,决定调整新产品生产方案,准备每周(按40个工时计算)生产空调机、彩电、冰箱共120台,且冰箱至少生产20台,已知生产这些家电产品满足y复习17、线性规划、均值不等式21.(2015•广安模拟)在直角坐标系xOy中,O为坐标原点,点M 的横纵坐标分别为茎叶图中位数和众数,若点N(x,y)的坐标满足,求•的最大值.•=23x+23y=,z=46•的最大值是.。
不等式线性规划知识点梳理及经典例题及解析
线性规划讲义【考纲说明】(1)了解线性规划的意义、了解可行域的意义;(2)掌握简单的二元线性规划问题的解法.(3)巩固图解法求线性目标函数的最大、最小值的方法;(4)会用画网格的方法求解整数线性规划问题.(5)培养学生的数学应用意识和解决问题的能力.【知识梳理】简单的线性规划问题一、知识点1. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划.二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验.3. 平移直线y=-kx+P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.积储知识:一. 1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=02. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B<0时,Ax0+By0+C<03. 点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax0+By0+C<0;当B<0时,Ax0+By0+C>0注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反,即:1.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的同侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)>02.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)<0 二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不.包括边界;②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地, 当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。
期末复习三 线性规划 均值不等式
期末复习三 线性规划 均值不等式 线性规划1.若点(1,3)和(-4,-2)在直线2x+y+m=0的两侧,则m 的取值范围是 ( ) A.m <-5或m >10 B.m=-5或m=10 C.-5<m <10 D.-5≤m ≤10 2.不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示)应是()3.已知点A (1,-1),B (5,-3),C (4,-5),则表示△ABC 的边界及其内部的约束条件是 .答案 ⎪⎩⎪⎨⎧≥-+≤--≤++01340132012y x y x y x4.已知⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0,求:(1)z =x +2y -4的最大值; (2)z =x 2+y 2-10y +25的最小值; (3)z =2y +1x +1的范围.5.若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-,,0,22,0a y x y y x y x 表示的平面区域是一个三角形,则a 的取值范围是( )A.a ≥34B.0<a ≤1C.1≤a ≤34D. 0<a ≤1或a ≥346.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -my +1≥0,且x +y 的最大值为9,则实数m 等于( )A .-2B .-1C .1D .27.设x ,y 满足约束条件,若目标函数z=ax+by (a >0,b >0)的值是最大值为12,则的最小值为( )A . B . C . D .48.当点M(x,y)在如图所示的三角形ABC内(含边界)运动时,目标函数z=kx+y取得最大值的一个最优解为(1,2),则实数k的取值范围是( )A.(-∞,-1]∪[1,+∞)B.[-1,1]C.(-∞,-1)∪(1,+∞)D.(-1,1) 均值不等式应用题1、围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元)。
线性规划常见题型及解法 均值不等式(含答案)
线性规划常见题型及解法一.基础知识:(一)二元一次不等式表示的区域二元一次不等式0>++C By Ax 表示直线0=++C By Ax 某一侧的所有点组成的区域,把直线画成虚线表示不包括边界, 0≥++C By Ax 所表示的区域应包括边界,故边界要画成实线.由于在直线0=++C By Ax 同一侧的所有点(x,y ),把它的坐标(x,y )代入C By Ax ++,所得的符号相同,所以只需在此直线的某一侧取一个特殊点(0,0y x ),从C By Ax ++00的正负即可判断0≥++C By Ax 表示直线哪一侧的平面区域。
通常代特殊点(0,0)。
(二)线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =A x +B y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =A x +B y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(4)用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值. (5) 利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数.然后,用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解. 最后,还要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解.线性规划是新教材中新增的内容之一,由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下常见题型。
线性规划题及答案
线性规划题及答案引言概述:线性规划是运筹学中的一种数学方法,用于寻觅最优解决方案。
在实际生活和工作中,线性规划问题时常浮现,通过对问题进行建模和求解,可以得到最优的决策方案。
本文将介绍一些常见的线性规划题目,并给出详细的答案解析。
一、生产规划问题1.1 生产规划问题描述:某工厂生产两种产品A和B,产品A每单位利润为100元,产品B每单位利润为150元。
每天工厂有8小时的生产时间,产品A每单位需要2小时,产品B每单位需要3小时。
问工厂每天应该生产多少单位的产品A 和产品B,才干使利润最大化?1.2 生产规划问题答案:设产品A的生产单位为x,产品B的生产单位为y,则目标函数为Max Z=100x+150y,约束条件为2x+3y≤8,x≥0,y≥0。
通过线性规划方法求解,得出最优解为x=2,y=2,最大利润为400元。
二、资源分配问题2.1 资源分配问题描述:某公司有两个项目需要投资,项目A每万元投资可获得利润2万元,项目B每万元投资可获得利润3万元。
公司总共有100万元的投资额度,问如何分配投资额度才干使利润最大化?2.2 资源分配问题答案:设投资项目A的金额为x万元,投资项目B的金额为y万元,则目标函数为Max Z=2x+3y,约束条件为x+y≤100,x≥0,y≥0。
通过线性规划方法求解,得出最优解为x=40,y=60,最大利润为240万元。
三、运输问题3.1 运输问题描述:某公司有两个仓库和三个销售点,每一个销售点的需求量分别为100、150、200,每一个仓库的库存量分别为80、120。
仓库到销售点的运输成本如下表所示,问如何安排运输方案使得总成本最小?3.2 运输问题答案:设从仓库i到销售点j的运输量为xij,则目标函数为Min Z=∑(i,j) cij*xij,约束条件为每一个销售点的需求量得到满足,每一个仓库的库存量不超出。
通过线性规划方法求解,得出最优的运输方案,使得总成本最小。
四、投资组合问题4.1 投资组合问题描述:某投资者有三种投资标的可选择,预期收益率和风险如下表所示。
第8课线性规划(经典例题练习、附答案)
第8课线性规划(经典例题练习、附答案)第8课线性规划◇考纲解读①从实际情境中抽象出⼆元⼀次不等式组;②了解⼆元⼀次不等式的⼏何意义,能⽤平⾯区域表⽰⼆元⼀次不等式组;③从实际情境中抽象出⼀些简单的⼆元线性规划问题,并能加以解决.◇知识梳理1.平⾯区域①⼆元⼀次不等式0Ax By C ++>在平⾯直⾓坐标系中表⽰0Ax By C ++=某⼀侧所有点组成的__________.②在直线的某⼀侧取⼀特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表⽰直线哪⼀侧的平⾯区域.(特殊地,当C ≠0时,常把_______作为此特殊点)王新敞③在坐标系中画不等式0Ax By C ++>所表⽰的平⾯区域时,把直线0Ax By C ++=画成虚线,表⽰区域__________边界直线.④在坐标系中画不等式0Ax By C ++≥所表⽰的平⾯区域时,把直线0Ax By C ++=画成实线,表⽰区域____________边界直线.2.线性规划:①求线性⽬标函数在线性约束条件下的最⼤值或最⼩值的问题,统称为________问题②满⾜线性约束条件的解(x ,y )叫做__________,由所有可⾏解组成的集合叫做__________.(类似函数的定义域);③使⽬标函数取得最⼤值或最⼩值的可⾏解叫做____________ 线性规划问题⼀般⽤图解法,其步骤如下:(1)根据题意,设出变量x 、y ;(2)找出线性约束条件;(3)确定线性⽬标函数z =f (x ,y );(4)画出可⾏域(即各约束条件所⽰区域的公共区域);(5)利⽤线性⽬标函数作平⾏直线系f (x ,y )=t (t 为参数);(6)观察图形,找到直线f (x ,y )=t 在可⾏域上使t 取得欲求最值的位置,以确定最优解,给出答案◇基础训练1.(2008⼭东青岛)若y x z y y x x y y x +=??-≥≤+≤2,11,则满⾜约束条件的最⼤值为()A .2B .3C .4D .52. (2008佛⼭⼀模)在平⾯直⾓坐标系中,不等式组0401x y x y x +≥??-+≥??≤?表⽰的平⾯区域⾯积是().A .3B .6C .92D .9 3.设实数x , y 满⾜的最⼤值是则x y y y x y x ,03204202??≤->-+≤-- _________4.(2008⼭东济宁)已知点(,)P x y 的坐标满⾜条件41x y y x x +≤??≥??≥?,点O 为坐标原点,那么||PO 的最⼤值等于_______,最⼩值等于____________.◇典型例题例1.已知实数x ,y 满⾜不等式组22021x y x y +-≥??≤??≤?,求22z x y =+-⼤值和最⼩值.例2.为迎接2008年奥运会召开,某⼯艺品加⼯⼚准备⽣产具收藏价值奥运会标志——“中国印·舞动的北京”和奥运会吉祥物——“福娃”.该⼚所⽤的主要原料为A 、B 两种贵重⾦属,已知⽣产⼀套奥运会标志需⽤原料A 和原料B 的量分别为4盒和3盒,⽣产⼀套奥运会吉祥物需⽤原料A 和原料B 的量分别为5盒和10盒.若奥运会标志每套可获利700元,奥运会吉祥物每套可获利1200元,该⼚⽉初⼀次性购进原料A 、B 的量分别为200盒和300盒.问该⼚⽣产奥运会标志和奥运会吉祥物各多少套才能使该⼚⽉利润最⼤,最⼤利润为多少?◇能⼒提升1.(2007⼴州⼆模)已知⽅程2x bx 10(b R 0)a a a +-=∈>、且有两个实数根,其中⼀个根在区间(1,2)内,则a -b 的取值范围为()A .()+∞-1,B .()1,-∞-C .()1,∞-D .()1,1-2.给出平⾯区域(包括边界)如图所⽰,若使⽬标函数(0)z ax y a =+>取得最⼤值的最优解有⽆穷多个,则a 的值为() A .14 B .35 C .4 D .533.(2008佛⼭⼆模)已知A 为xOy 平⾯内的⼀个区域.命题甲:点20(,){(,)|0}360x y a b x y x x y -+≤??∈≥??+-≤?;命题⼄:点A b a ∈),(.如果甲是⼄的充分条件,那么区域A的⾯积的最⼩值是(). A .1 B .2 C .3 D .44.(2008深圳⼆模)当点(,)M x y 在如图所⽰的三⾓形ABC 内(含边界)运动时,⽬标函数z kx y =+取得最⼤值的⼀个最优解为(1,2),则实数k 的取值范围是()A .(,1][1,)-∞-+∞B .[1,1]-C .(,1)(1,)-∞-+∞D .(1,1)-5.实数x ,y 满⾜不等式组00220y x y x y ≥??-≥??--≥?若ωω则,11+-=x y 的取值范围是 . 6.(2008韶关⼆模)某车间⽣产甲、⼄两种产品,已知制造⼀件甲产品需要A 种元件5个,B 种元件2个,制造⼀件⼄种产品需要A 种元件3个,B 种元件3个,现在只有A 种元件180个,B 种元件135个,每件甲产品可获利润20元,每件⼄产品可获利润15元,试问在这种条件下,应如何安排⽣产计划才能得到最⼤利润?2)第8课线性规划◇知识梳理1. ①平⾯区域,②原点,③不包括,④包括. 2. ①线性规划,②可⾏解,③最优解。
不等式与线性规划含答案
1 900②答案(1)①v76 000F=l=6.05时,解读(1)①当 2v121v+18+76 00076 00076 0001 900.=≤== 12118+22121+v18+18·v+2 vv/时.秒时等号成立,此时车流量最大为1 900辆当且仅当v=11 M/v76 00076 00076 00076 000=≤=2 000.l=5时,F==②当 2100v18+100+20+18v100+v18+·+2v18 vv当且仅当v=10 M/秒时等号成立,此时车流量最大为2 000辆/时,比①中的最大车流量增加100辆/时.
不等式与线性规划在高考中主要考查利用不等式的性质进行两数的大小比较、一元二次不等式的考情解读(1) 解法、基本不等式及线性规划问题.基本不等式主要考查求最值问题,线性规划主要考查直多与集合、函数等知识交汇命题,接求最优解和已知最优解求参数的值或取值范围问题.(2)以填空题的形式呈现,属中档题.1.四类不等式的解法(1)一元二次不等式的解法22的根,最0)≠+c=0(c>0(a≠0),再求相应一元二次方程axa+bx先化为一般形式ax++bx轴的位置关系,确定一元二次不等式的解集.后根据相应二次函数图象与x简单分式不等式的解法(2)xf;)g(x)>0(<0)①变形?>0(<0)?f(x gxxf0.
x-1 (1)不等式≤0的解集为________. 1x+222+1≤0,q:?x∈R,mxx+mx+1>0.若p∧q为真命题,则实数m的∈:(2)已知p?xR,00取值范围是______________________________________________________________.
ab≥(a>0,b≥>0). 22a+b3.二元一次不等式(组)和简单的线性规划
高考数学线性规划常见题型及解法[1]
高考数学线性规划常见题型与解法线性规划问题是高考的重点,也是常考题型,属于中等偏简单题,易得分,高考中要求会从实际问题中建立一格二元线性规划的模型,使实际问题得到解决。
现就常见题型与解决方法总结如下: 一、求线性目标函数的最值;例题:(2012年广东文5)已知变量,x y 满足条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最小值为 A.3 .1 C5 6解析:利用线性规划知识求解。
可行域如图阴影所示,先画出直线01:2l y x =-,平移直线0l ,当直线过点A 时,2z x y =+的值最小,得110,x x y =-⎧⎨--=⎩12,x y =-⎧⎨=-⎩min (1,2),12(2)5A z ∴--∴=-+⨯-=- 探究提高:本题主要考查线性规划求最值,同时考查学生的作图能力,数形结合思想与运算求解能力,难度适中。
二、求目标函数的取值范围;例题:(2012山东文6)设变量,x y 满足约束条件2224,41x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是解析:作出不等式组表示的区域,如图阴影部分所示,作直线30x y -=,并向上、向下平移,由图可得,当直线过点C 时,目标函数取得最大值,当直线过点A 是,目标函数取得最小值,由210,(2,0)240x y A x y ++=⎧⎨+-=⎩得;由4101,(,3)2402x y x y -+=⎧⎨+-=⎩得B 探究提高:本题设计有新意,作出可行域,寻求最优解条条件,取得目标函数的最大(小)值,进一步确定取值范围 三、求约束条件中参数的取值;例题:(2012福建文10)若直线2x y =上存在点(,)x y 满足条件-30-2-30,x y x y x m +≥⎧⎪≤⎨⎪≥⎩则实数m 的最大值为( )解析:在同一直角坐标系中函数2x y =的图像与30230x y x y +-≤⎧⎨--≤⎩,所表示的平面区域图阴影部分所示。
简单的线性规划问题与基本不等式作业及答案范文
简单的线性规划问题与基本不等式作业及答案一、选择题:1.(2009·福建高考)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于2,则a 的值为 ( ) A .-5 B .1 C .2 D .3 解析:不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0所围成的区域如图所示.则A (1,0),B (0,1),C (1,1+a )且a >-1,∵S △ABC =2,∴12(1+a )×1=2,解得a =3. 答案:D2.已知D 是由不等式组⎩⎪⎨⎪⎧x -2y ≥0,x +3y ≥0所确定的平面区域,则圆x 2+y 2=4在区域D 内的弧长为 ( ) A.π4 B.π2 C.3π4 D.3π2解析:如图,l 1、l 2的斜率分别是k 1=12,k 2=-13,不等式组表示的平面区域为阴影部分.∵tan ∠AOB =12+131-12×13=1,∴∠AOB =π4,∴弧长=π4·2=π2. 答案:B3.(2009·天津高考)设变量x 、y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的最小值为 ( ) A .6 B .7 C .8 D .23解析:约束条件 ⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3表示的平面区域如图易知过C (2,1)时,目标函数z =2x +3y 取得最小值.∴z min =2×2+3×1=7. 答案:B 4.(2009·陕西高考)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是 ( ) A .(-1,2) B .(-4,2) C .(-4,0] D .(-2,4) 解析:可行域为△ABC ,如图当a =0时,显然成立.当a >0时,直线ax +2y -z =0的斜率k =-a2>k AC =-1,a<2.当a <0时,k =-a2<k AB =2,∴a >-4. 综合得-4<a <2.答案:B5.(2009·湖北高考)在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为 ( ) A .2 000元 B .2 200元 C .2 400元 D .2 800元 解析:设需使用甲型货车x 辆,乙型货车y 辆,运输费用z 元,根据题意,得线性约束条件⎩⎪⎨⎪⎧20x +10y ≥100,0≤x ≤4,0≤y ≤8,求线性目标函数z =400x +300y 的最小值.解得当⎩⎪⎨⎪⎧x =4,y =2时,z min =2 200. 答案:B6.(2009·四川高考)某企业生产甲、乙两种产品.已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元 .该企业在一个生产周期内消耗A 原料不超过13吨、B 原料不超过18吨,那么该企业可获得最大利润是 ( ) A .12万元 B .20万元C .25万元D .27万元 解析:设该企业生产甲产品为x 吨,乙产品为y 吨,则该企业可获得利润为z =5x +3y ,且⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +y ≤13,2x +3y ≤18,联立⎩⎪⎨⎪⎧ 3x +y =13,2x +3y =18,解得⎩⎪⎨⎪⎧x =3,y =4.由图可知,最优解为P (3,4), ∴z 的最大值为z =5×3+3×4=27(万元).答案:D7.设x 、y 均为正实数,且32+x +32+y=1,则xy 的最小值为 ( ) A .4 B .4 3 C .9 D .16解析:由32+x +32+y =1可得xy =8+x +y . ∵x ,y 均为正实数,∴xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立), 即xy -2xy -8≥0, 可解得xy ≥4,即xy ≥16,故xy 的最小值为16. 答案:D 8.(2009·天津高考)设a >0,b >0.若3是3a 与3b 的等比中项,则1a +1b 的最小值为 ( ) A .8 B .4 C .1 D.14解析:∵3是3a 与3b 的等比中项,∴(3)2=3a ·3b . 即3=3a +b ,∴a +b =1. 此时1a +1b =a +b a +a +b b =2+(b a +a b )≥2+2=4(当且仅当a =b =12取等号). 答案:B9.已知不等式(x +y )(1x +ay )≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为 ( ) A .8 B .6 C .4 D .2 解析:(x +y )(1x +ay )=1+a ·x y +y x +a ≥a +1+2a ·x y ·y x =a +2 a +1,当且仅当a ·x y =yx等号成立, 所以(a )2+2a +1≥9,即(a )2+2a -8≥0,得a ≥2或a ≤-4(舍), 所以a ≥4,即a 的最小值为4.答案:C10.设a 、b 是正实数, 以下不等式①ab >2ab a +b ;②a >|a -b |-b ;③a 2+b 2>4ab -3b 2;④ab +2ab >2恒成立的序号为 ( ) A .①③ B .①④ C .②③ D .②④ 解析:∵a 、b 是正实数,∴①a +b ≥2ab ⇒1≥2aba +b ⇒ab ≥2aba +b. 当且仅当a =b 时取等号, ∴①不恒成立;②a +b >|a -b |⇒a >|a -b |-b 恒成立; ③a 2+b 2-4ab +3b 2=(a -2b )2≥0,当a =2b 时,取等号,∴③不恒成立; ④ab +2ab ≥2ab ·2ab =2 2>2恒成立. 答案:D11.若a 是2-b 与2+b 的等比中项,则2ab|a |+|b |的最大值为 ( )A. 2 B .1 C.24 D.22解析:∵a 是2-b 与2+b 的等比中项, ∴a 2=2-b 2⇒a 2+b 2=2.根据基本不等式知2ab|a |+|b |≤2|a |·|b ||a |+|b |≤a 2+b 22=1. 即2ab|a |+|b |的最大值为1. 答案:B 12.若a ,b 是正常数,a ≠b ,x ,y ∈(0,+∞),则a 2x +b 2y ≥(a +b )2x +y,当且仅当a x =by 时取等号.利用以上结论,函数f (x )=2x +91-2x(x ∈(0,12))取得最小值时x 的值为 ( )A .1 B.15 C .2 D.13解析:由a 2x +b 2y ≥(a +b )2x +y得,f (x )=222x +321-2x ≥(2+3)22x +(1-2x )=25.当且仅当22x =31-2x 时取等号,即当x =15时f (x )取得最小值25. 答案:B二、填空题:13.点(3,1)和(-4,6)在直线3x -2y +a =0的两侧,则a 的取值范围是________.解析:点(3,1)和(-4,6)在直线3x -2y +a =0的两侧, 说明将这两点坐标代入3x -2y +a 后,符号相反,所以(9-2+a )(-12-12+a )<0, 解之得-7<a <24. 答案:(-7,24) 14. 设m 为实数,若⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫⎩⎪⎨⎪⎧ x -2y +5≥03-x ≥0mx +y ≥0⊆{(x ,y )|x 2+y 2≤25},则m 的取值范围是____________. 解析:由题意知,可行域应在圆内,如图:如果-m >0,则可行域取到x <-5的点,不能在圆内; 故-m ≤0,即m ≥0.当mx +y =0绕坐标原点旋转时,直线过B 点时为边界位置.此时-m =-43,∴m =43.∴0≤m ≤43. 答案:0≤m ≤4315.(2010·太原模拟)若直线ax -by +2=0(a >0,b >0)和函数f (x )=a x +1+1(a >0且a ≠1)的图象恒过同一个定点,则当1a +1b 取最小值时,函数f (x )的解析式是________. 解析:函数f (x )=a x +1+1的图象恒过(-1,2),故12a +b =1,1a +1b =(12a +b )(1a +1b )=32+b a +a 2b ≥32+ 2.当且仅当b =22a 时取等号,将b =22a 代入12a +b =1得a =22-2,故f (x )=(22-2)x +1+1. 答案:f (x )=(22-2)x +1+116.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为________.解析:因为x >a ,所以2x +2x -a =2(x -a )+2x -a +2a ≥2 2(x -a )·2x -a+2a=2a +4,即2a +4≥7,所以a ≥32,即a 的最小值为32. 答案:32三、解答题:17.已知关于x 、y 的二元一次不等式组⎩⎪⎨⎪⎧x +2y ≤4,x -y ≤1,x +2≥0.(1)求函数u =3x -y 的最大值和最小值; (2)求函数z =x +2y +2的最大值和最小值. 解:(1)作出二元一次不等式组⎩⎪⎨⎪⎧x +2y ≤4,x -y ≤1,x +2≥0表示的平面区域,如图所示.由u =3x -y ,得y =3x -u ,得到斜率为3,在y 轴上的截距为-u ,随u 变化的一组平行线,由图可知,当直线经过可行域上的C 点时,截距-u 最大,即u 最小,解方程组⎩⎪⎨⎪⎧ x +2y =4,x +2=0,得C (-2,3), ∴u min =3×(-2)-3=-9.当直线经过可行域上的B 点时,截距-u 最小,即u 最大,解方程组⎩⎪⎨⎪⎧x +2y =4,x -y =1,得B (2,1), ∴u max =3×2-1=5.∴u =3x -y 的最大值是5,最小值是-9. (2)作出二元一次不等式组⎩⎪⎨⎪⎧x +2y ≤4,x -y ≤1,x +2≥0表示的平面区域,如图所示.由z =x +2y +2,得y =-12x +12z -1,得到斜率为-12,在y 轴上的截距为12z -1,随z 变化的一组平行线,由图可知,当直线经过可行域上的A 点时,截距12z -1最小,即z 最小,解方程组⎩⎪⎨⎪⎧x -y =1,x +2=0,得A (-2,-3), ∴z min =-2+2×(-3)+2=-6.当直线与直线x +2y =4重合时,截距12 z -1最大,即z 最大,∴z max =4+2=6.∴z =x +2y +2的最大值是6,最小值是-6.18.某人上午7时乘摩托艇以匀速v km/h(4≤v ≤20)从A 港出发到距50 km 的B 港去,然后乘汽车以匀速w km/h(30≤w ≤100)自B 港向距300 km 的C 市驶去.应该在同一天下午4至9点到达C 市.设乘摩托艇、汽车去所需要的时间分别是x h 、y h .若所需的经费p =100+3(5-y )+2(8-x )元,那么v 、w 分别为多少时,所需经费最少?并求出这时所花的经费.解:依题意⎩⎪⎨⎪⎧4≤50x ≤2030≤300y ≤1009≤x +y ≤14x >0,y >0,考查z =2x +3y 的最大值,作出可行域,平移直线2x +3y =0,当直线经过点(4,10)时,z 取得最大值38.故当v =12.5、w =30时所需要经费最少,此时所花的经费为93元. 19.已知a 、b 、c ∈(0,+∞)且a +b +c =1, 求证:(1a -1)(1b -1)(1c -1)≥8.证明:∵a 、b 、c ∈(0,+∞)且a +b +c =1, ∴(1a -1)(1b -1)(1c -1)=(1-a )(1-b )(1-c )abc=(b +c )(a +c )(a +b )abc ≥2bc ·2ac ·2ab abc =8. 当且仅当a =b =c =13时取等号.20.某造纸厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/米2,水池所有墙的厚度忽略不计. (1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水池的长和宽,使总造价最低,并求出最低总造价.解:(1)设污水处理池的宽为x 米,则长为162x 米. 则总造价 f (x )=400×(2x +2×162x )+248×2x +80×162=1 296x +1 296×100x+12 960 =1 296(x +100x)+12 960≥1 296×2 x ·100x+12 960=38 880(元), 当且仅当x =100x(x >0), 即x =10时取等号.∴当长为16.2米,宽为10米时总造价最低,最低总造价为38 880元. (2)由限制条件知⎩⎪⎨⎪⎧0<x ≤160<162x ≤16,∴1018≤x ≤16.设g (x )=x +100x (1018≤x ≤16), 由函数性质易知g (x )在[1018,16]上是增函数,∴当x =1018时(此时162x =16), g (x )有最小值,即f (x )有最小值1 296×(1018+80081)+12 960=38 882(元).∴当长为16米,宽为1018米时,总造价最低,为38 882元.21.为了提高产品的年产量,某企业拟在2010年进行技术改革.经调查测算,产品当年的产量x 万件与投入技术改革费用m 万元(m ≥0)满足x =3-km +1(k 为常数).如果不搞技术改革,则该产品当年的产量只能是1万件.已知2010年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元.由于市场行情较好,厂家生产的产品均能销售出去.厂家将每件产品的销售价格定为每件产品生产成本的1.5倍(生产成本包括固定投入和再投入两部分资金).(1)将2010年该产品的利润y 万元(利润=销售金额-生产成本-技术改革费用)表示为技术改革费用m 万元的函数;(2)该企业2010年的技术改革费用投入多少万元时,厂家的利润最大?解:(1)由题意可知,当m=0时,x=1(万件),∴1=3-k,∴k=2,∴x=3-2m+1,每件产品的销售价格为1.5×8+16xx(元),∴2010年的利润y=x·[1.5×8+16xx]-(8+16x)-m=-[16m+1+(m+1)]+29(元)(m≥0).(2)∵m≥0,∴16m+1+(m+1)≥216=8,∴y≤29-8=21,当16m+1=m+1,即m=3,y max=21.∴该企业2010年的技术改革费用投入3万元时,厂家的利润最大.。
线性规划题及答案
线性规划题及答案引言概述:线性规划是一种数学优化方法,用于在一组线性约束条件下寻觅使目标函数取得最大(最小)值的变量值。
在实际生活和工作中,线性规划往往被用于资源分配、生产计划、运输问题等方面。
本文将介绍一些常见的线性规划题目,并给出相应的答案。
一、资源分配问题1.1 问题描述:某公司有两个生产部门A和B,每天生产产品X和Y。
部门A 每天生产产品X需要消耗3个单位的资源,生产产品Y需要消耗2个单位的资源;部门B每天生产产品X需要消耗2个单位的资源,生产产品Y需要消耗4个单位的资源。
公司每天有20个单位的资源可供分配,如何分配资源才干使得产出最大化?1.2 解答:设部门A每天生产产品X的数量为x,生产产品Y的数量为y;部门B每天生产产品X的数量为u,生产产品Y的数量为v。
根据题目描述,可以建立如下线性规划模型:Maximize Z = 3x + 2y + 2u + 4vSubject to:3x + 2y + 2u + 4v <= 20x, y, u, v >= 0通过线性规划求解器可以得到最优解。
二、生产计划问题2.1 问题描述:某工厂有两个生产车间,每天生产产品P和Q。
车间1每天生产产品P需要花费5个单位的时间,生产产品Q需要花费3个单位的时间;车间2每天生产产品P需要花费4个单位的时间,生产产品Q需要花费6个单位的时间。
工厂每天有40个单位的时间可供分配,如何安排生产计划才干使得产量最大化?2.2 解答:设车间1每天生产产品P的数量为x,生产产品Q的数量为y;车间2每天生产产品P的数量为u,生产产品Q的数量为v。
根据题目描述,可以建立如下线性规划模型:Maximize Z = 5x + 3y + 4u + 6vSubject to:5x + 3y + 4u + 6v <= 40x, y, u, v >= 0通过线性规划求解器可以得到最优解。
三、运输问题3.1 问题描述:某公司有两个仓库和三个销售点,每一个仓库有一定数量的产品可供销售点购买。
均值不等式及线性规划问题
均值不等式及线性规划问题学习目标:1.理解均值不等式,能用均值不等式解决简单的最值问题;2.能运用不等式的性质和均值不等式证明简单的不等式.学习重点:均值不等式的理解.学习难点:均值不等式的应用.内容解析:一、均值不等式如果是正数,那么(当且仅当时取“=”).我们称的算术平均数,称的几何平均数,因而,此定理又可叙述为:两个正数的算术平均值不小于它们的几何平均值.注:[1] 定理适用的范围:;[2]“当且仅当”的含义:等价条件.推广:1.如果,那么(当且仅当时取等号).均值不等式的应用:不等式的证明、求最值.注:[1] 可以使用均值不等式的条件:正,定,等;[2] 积为定值时,和有最小值;和为定值时,积有最大值.二、不等式证明1.证明不等式的方法(1) 比较法:作差法和作商法两种.作商法应在两个数的符号相同时使用.(2) 综合法.从题目的条件出发,寻找证明的中间结论.(3) 分析法.从要证的结论出发,寻找可以推得此结论的条件.2.几个常用的重要不等式①.②,.③,.例1. 下列函数中,最小值是2的是( )A .1y x x =+ B .33x x y -=+C .1lg (110)lg y x x x =+<< D .1sin (0)sin 2y x x x π=+<<例2.设,x y R ∈,且5x y +=,则33x y+的最小值是( ) A. B. C. D.例3.在约束条件24120x y x y x +≤⎧⎪-≤⎨⎪+≥⎩下,目标函数3z x y =-( )A .有最大值3,最小值3-B .有最大值5,最小值3-C .有最大值5,最小值9-D .有最大值3,最小值9-例4.已知点(,)P x y 的坐标满足条件4,,1,x y y x x +≤⎧⎪≥⎨⎪≥⎩点O 为坐标原点,那么22y x z +=的最小值等于____________,最大值等于_____________例5.已知,,求证:.例6.已知,求证:.例7.已知,且,求的最小值.例8. 求证:.例9.求证:.例10.求下列函数的最值.(1) ;(2) ;(3)练习1.如果0,0a b <>,那么,下列不等式中正确的是( )A .11a b < B <C .22a b < D . ||||a b >2.不等式102x x +≤-的解集为( )A .{|12}x x -≤≤B .{|12}x x -≤<C .{|1x x ≤-或2}x ≥D .{|1x x ≤-或2}x >3. 当x>1时,不等式x+11-x ≥a 恒成立,则实数a 的取值范围是 A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3] 4.已知点(3,1)和(4-,6)在直线320x y a -+=的两侧,则实数a 的取值范围是( ) A . 7a <-或24a > B . 7a =或24a = C . 724a -<< D .247a -<<5.如果0a >且1a ≠,32log (1),log (1)a a M a N a =+=+,则( )A . M N >B . M N <C . M N =D .,M N 的大小与a 值有关6.已知不等式22210x x k -+->对一切实数x 恒成立,则实数k 的取值范围是( )A . (B .(,)-∞+∞C . )+∞D .(2,2)-7.正数,a b 满足3ab a b =++,则a b 的取值范围是__________.8. 已知正整数b a ,满足304=+b a ,使得b a 11+取最小值时,则a=_______,b=_______ 9.解关于x 的不等式223()0x m m x m -++>.10.建造一个容积为48003m ,深为3m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为150元和120元,那么怎样设计水池能使总造最低,最低总造价为多少元?。
高二数学线性规划试题答案及解析
高二数学线性规划试题答案及解析1.已知满足不等式组,使目标函数取得最小值的解(x,y)有无穷多个,则m的值是A.2B.-2C.D.【答案】D【解析】画出可行域,目标函数z=mx+y,取得最小值的最优解有无数个知取得最优解必在边界上而不是在顶点上,目标函数中系数必为负,最小值应在边界3x-2y+1=0上取到,即mx+y=0应与直线3x-2y+1=0平行,进而计算可得m值.【考点】线性规划2.若x,y满足则的最大值是.【答案】 10【解析】根据线性约束条件划出可行域,由目标函数得,即只需求直线在轴上的最大值即可。
【考点】线性规划求最值问题。
3.在平面直角坐标系中,若不等式组(a为常数)所表示的平面区域的面积等于2,则实数a的值为.【答案】3【解析】由题意得:不等式组(a为常数)所表示的平面区域必须为一个封闭图形.直线恒过定点所以平面区域为三角形,面积为【考点】线性规划4.已知实数满足条件,则的最大值为.【答案】10【解析】作出满足约束条件下的平面区域,如图所示.由图可知点目标函数经过点时取得最大值,且最大值为.【考点】简单的线性规划.5.若实数满足,则的取值范围是( )A.B.C.D.【答案】A【解析】表示单位圆,表示单位圆上的点与点形成的直线的斜率.显然当与圆相切时,如图所示,可知 .【考点】线性规划求最值.6.不等式组所围成的平面区域的面积是 .【答案】2【解析】根据题意作出不等式组所表示的平面区域(如下图)直线的斜率都为,而直线的斜率都为1,所以该区域为正方形区域,其中该正方形的边长为,所以该平面区域的面积为.【考点】1.二元一次不等式表示的平面区域问题;2.两直线垂直的判定.7.设变量满足则目标函数的最小值为( )A.2B.4C.6D.以上均不对【解析】因为变量满足,符合的x,y的可行域如图所示的阴影部分,目标函数. 其中的最小值即为直线CD在y轴的截距最小.所以通过移动直线CD可知过点B是符合题意.又因为B(1,0).所以.故选A.【考点】1.线性规划问题.2.作图的能力.3.对比归纳的思想.4.复杂问题简单化的转化过程.8.已知实数满足,且目标函数的最大值为6,最小值为1, 其中的值为( )A.1B.2C.3D.4【答案】B【解析】本题为线性规划含有带参数直线问题.需要对含参直线的斜率以及b进行讨论.另外借助选项,观察4个选项都是正数,所以.这样可以减少讨论情况 .利用现行约束条件作出可行域.当讨论(ⅰ):若无论我们都可以作图,若则表示虚线下方无最大值不合题意.所以建立方程组和分别代入目标函数可以得出.(ⅱ):同理当时,结合图像仍然会得如上的方程组.所以.所以答案为D.【考点】线性规划、分类讨论思.9.下列坐标对应的点中,落在不等式表示的平面区域内的是A.(0,0)B.(2,4)C.(-1,4)D.(1,8)【答案】A【解析】把选项中的点的坐标代入不等式检验,得点(0,0)符合题意,故选A【考点】本题考查了二元一次不等式表示平面区域点评:只需在这条直线的某一侧取一个特殊点(x0,y0) ,以Ax0+By0+C的正负情况便可判断Ax+by+C>0 表示这一直线哪一侧的平面区域,特殊地,当C≠0 时,常把原点作为此特殊点.10.已知实数x,y满足,若取得最大值时的最优解有无数个,则a的值为()A.0B.2C.-1D.【解析】先画出可行域,该可行域是一个三角形,因为取得最大值时的最优解有无数个,根据图象可知应该与边界平行,所以【考点】本小题主要考查简单线性规划.点评:目标函数的最优解有无数多个,处理方法一般是:①将目标函数的解析式进行变形,化成斜截式②分析Z与截距的关系,是符号相同,还是相反③根据分析结果,结合图形做出结论④根据斜率相等求出参数.11.(本题满分12分)某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按40个工时计算)生产空调器、彩电、冰箱共120台,且冰箱至少生产20台.已知生产这些家电产品每台所需工时和每台产值如下表:432【答案】【解析】设每周生产空调台、彩电台、则生产冰箱台,产值(千元). (2分)目标函数为(6分)所以题目中包含的限制条件为即: 可行域如图.(10分)解方程组得点的坐标为所以(千元) (12分)【考点】线性规划的最优解运用点评:解决该试题的关键是能根据题意抽象出不等式,同时结合二元一次不等式组表示的区域,平移法得到最值,属于基础题。
线性规划题及答案
线性规划题及答案引言概述:线性规划是一种数学优化方法,用于在给定约束条件下寻找使目标函数最大或最小的变量值。
在实际生活和工作中,线性规划经常被应用于资源分配、生产计划、运输问题等方面。
本文将介绍一些常见的线性规划题目,并给出相应的答案。
一、资源分配问题1.1 约束条件:某公司有两种产品A和B,生产一单位产品A需要耗费2个单位的资源X和1个单位的资源Y,生产一单位产品B需要耗费1个单位的资源X和3个单位的资源Y。
公司每天可用资源X和资源Y分别为10个单位和12个单位。
假设产品A的利润为3万元,产品B的利润为4万元,问如何分配资源才能使公司利润最大化?1.2 目标函数:设生产产品A的单位数为x,生产产品B的单位数为y,则目标函数为Maximize 3x + 4y。
1.3 答案:通过线性规划计算,最优解为生产产品A 4个单位,生产产品B 2个单位,公司利润最大化为20万元。
二、生产计划问题2.1 约束条件:某工厂生产两种产品C和D,生产一单位产品C需耗费2个单位的资源M和3个单位的资源N,生产一单位产品D需耗费4个单位的资源M和2个单位的资源N。
工厂每天可用资源M和资源N分别为8个单位和10个单位。
产品C的利润为5万元,产品D的利润为6万元,问如何安排生产计划以最大化利润?2.2 目标函数:设生产产品C的单位数为x,生产产品D的单位数为y,则目标函数为Maximize 5x + 6y。
2.3 答案:经过线性规划计算,最佳生产计划为生产产品C 2个单位,生产产品D 2个单位,工厂利润最大化为22万元。
三、运输问题3.1 约束条件:某公司有三个仓库分别存储产品E、F和G,每个仓库的存储容量分别为100、150和200个单位。
产品E、F和G的单位运输成本分别为2元、3元和4元,需求量分别为80、120和150个单位。
问如何安排运输计划以最小化总成本?3.2 目标函数:设从仓库i运输产品j的单位数为xij,则目标函数为Minimize2x11 + 3x12 + 4x13 + 2x21 + 3x22 + 4x23 + 2x31 + 3x32 + 4x33。
线性规划与均值不等式习题
不等式及线性规划练习1,已知x ≠0,当x 取什么值时,x 2+281x 的值最小?最小值是多少? 2. 若x>0,求9()4f x x x =+的最小值;3.若x<0,求9()4f x x x =+的最大值.4.求9()45f x x x =+-(x>5)的最小值 5.若x>0,y>0,且281x y+=,求x+y 的最小值.6.若1->x ,则x 为何值时11++x x 有最小值,最小值为几?7、若10,x x x <+求的最大值8.若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A.12 B.22a b + C.2ab D.a9.设,,5,33x y x y x y ∈+=+R 且则的最小值是( )A. 10B.C.10. 若x , y 是正数,且141x y+=,则xy 有 ( ) A.最大值16 B.最小值116 C.最小值16 D.最大值11611. 下列函数中,最小值为4的是 ( ) A.4y x x=+ B.4sin sin y x x =+ (0)x π<<C.e 4e x x y -=+ D.3log 4log 3x y x =+12.画出不等式组⎪⎩⎪⎨⎧≤≤-≤++≤--030302x y x y x ,表示的平面区域,并求其面积。
13.若点(1,3)和(-4,-2)在直线02=++m y x 的两侧,则m 的取值范围是14.求22z x y =+的最大值和最小值,使式中的x ,y 满足约束条件27043120230x y x y x y -+⎧⎪--⎨⎪+-⎩≥≤≥.15.画出不等式组⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x 表示的平面区域16.已知点(),P x y 在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-022,01,02y x y x 表示的平面区域上运动,则z x y =-的取值范围是.A []2,1-- .B []2,1- .C []1,2- .D []1,217.已知变量x y ,满足约束条件20170x y x x y -+⎧⎪⎨⎪+-⎩≤,≥,≤,则y x 的取值范围是.A 965⎛⎫ ⎪⎝⎭, .B [)965⎛⎤-∞+∞ ⎥⎝⎦ ,, .C (][)36-∞+∞ ,, .D [36], 18.已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是19.已知,x y 满足约束条件()(6)015x y x y x -+-⎧⎨⎩≥≤≤,则y x 的最大值为 20. 原点和点(1,1)在直线0x y a +-=的两侧,则a 的取值范围是21.已知204025x y x y x y -+⎧⎪+-⎨⎪--⎩≥≥≤0,则221025z x y y =+-+的最小值为22.设变量x y ,满足约束条件142x y x y y --⎧⎪+⎨⎪⎩≥,≤,≥则目标函数24z x y =+的最大值为.A 10.B 12 .C 13 .D 1423.设变量,x y 满足约束条件2211x y x y x y -⎧⎪--⎨⎪+⎩≤≥≥,则y x z 32+=的最大值为24.求下列函数的最值:()113y x x =+-()3x <;()2121y x x =+-()1x > 25.求最小值()1231()1x x f x x -+=+()1x >-26.已知1>a 那么11-+a a 的最小值是 .A 12-a a .B 15+ .C 3 .D 2 27.已知正数a 、b 满足13=++b a ab ,则ab 的最大值是28.下列函数中,y 的最小值为4的是.A 4y x x =+ .B 2y = .C 4x x y e e -=+ .D 4sin (0)sin y x x x π=+<< 29.已知:x 、y R +∈,280x y xy +-=,求x y +的最小值30.下列结论正确的是 .A 当0x >且1x ≠时,则1lg 2lg x x +≥ .B 当0x >2≥ .C 当x ≥2时,1x x +的最小值为2 .D 当02x <≤时,1x x-无最大值、。
线性规划的常见题型及其解法(教师版,题型全,归纳好)
线性规划的常见题型及其解法答案■書步趋绍丹祈・・・・・线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数 列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖别致.归纳起来常见的命题探究角度有: 1.求线性目标函数的最值. 2 .求非线性目标函数的最值. 3 .求线性规划中的参数. 4 .线性规划的实际应用.本节主要讲解线性规划的常见基础类题型.x + y > 3,【母题一】已知变量x ,y 满足约束条件 x -y >- 1, 则目标函数z = 2x + 3y 的取值范围为()2x — y w 3,A. [7 , 23]B. [8 , 23]C. [7 , 8]D. [7 , 25]aI ' i I 」 求这类目标函数的最值常将函数z = ax + by 转化为直线的斜截式:y = — bx + b ,通过求直线的截距£的最值,间接求出z 的最值.bx + y > 3,【解析】画出不等式组 x — y >— 1,表示的平面区域如图中阴影部分所示,2x — y w 3,由目标函数z = 2x + 3y 得y =— |x + £,平移直线y = — /知在点B 处目标函数取到最小值,解方程组x + y= 3, x = 2,得所以B(2,1) , Z min= 2X 2+ 3X 1= 7,在点A处目标函数取到最大值,解方程2x—y = 3, y = 1,9°1 z == X _2x — 11 2⑵z = x 2 + y 2的几何意义是可行域上的点到原点0的距离的平方.结合图形可知,可行域上的点到原点的距离中,d min = | 0C = _'2 , d max = | 0B =29.• 2< z <29.(3) z = x 2 + y 2 + 6x — 4y + 13= (x + 3)2+ ( y — 2)2的几何意义是:x - y = —1,x yx = 4,得y = 5,所以 A (4,5) , Z max = 2X 4+ 3X 5= 23.【答案】Ax — 4y + 3< 0,【母题二】变量x , y 满足3x + 5y — 25W 0,x > 1,(1) 设z =^7,求z 的最小值;(2) 设z = x 2 + y 2,求z 的取值范围;2 2(3) 设z = x + y + 6x — 4y + 13,求z 的取值范围.I '■ i 7」 点(x , y )在不等式组表示的平面区域内,y 1 y — 01=2 •Y 表示点(x , y )和夕连线 x — 2的斜率;x 2+ y 2表示点(x , y )和原点距离的平方; x 2 + y 2 + 6x — 4y + 13= (x + 3)2+ (y — 2)2表示点(x , y )和点(一3,2)的距离的平方.x — 4y + 3< 0,【解析】(1)由约束条件 3x + 5y — 25W 0,作出(x , y )的可行域如图所示.x > 1,x = 1,由3x + 5y — 25= 0, 由 x = 1,x — 4y + 3 = 0,22解得A 1,-.解得Q1,1).x — 4y + 3 = 0,由解得B (5,2)3x + 5y — 25= 0, ••• z 的值即是可行域中的点与2 0连线的斜率,观察图形可知Z min =2 - 0 1X -=1 2 5—2可行域上的点到点(一3,2)的距离的平方.结合图形可知,可行域上的点到(一3,2)的距离中, d min = 1 —( —3) = 4,d max=一3 —5 + 2 —2 = 8••• 16W z w 64.=75:5 •技15============== = ========= i•求目标函数的最值的一般步骤为:一画二移三求•其关键是准确作出可行域,理解目标函数的意义.2 .常见的目标函数有:⑴截距型:形如z= ax+ by.求这类目标函数的最值常将函数z = ax+ by转化为直线的斜截式:y=—器+乍,通过求直线的截距乍的最值,间接求出z的最值.(2) 距离型:形一:如z = ''(x —a)2+ (y —b)2,z = ;X + y2+ Dx+ Ey+ F,此类目标函数常转化为点(x,y) 与定点的距离;2 2 2 2形二:z = (x—a) + (y—b) , z= x + y + Dx+ Ey+ F,此类目标函数常转化为点(x,y)与定点的距离的平方.(3) 斜率型:形如z= y, z = _b, z= J, z = ay_b,此类目标函数常转化为点(x, y)与定点所在x cx —d cx—d x直线的斜率.【提醒】注意转化的等价性及几何意义.■题里丹斫■■■■■角度一:求线性目标函数的最值1. (2014 •新课标全国n卷)设x ,y满足约束条件A. 10B. 8C. 3D. 2 【解析】作出可行域如图中阴影部分所示,x+y —7w 0,x —3y + 1w 0, 则z = 2x—y的最大值为()由z = 2x —y 得y = 2x — z ,作出直线y = 2x ,平移使之经过可行域,观察可知,当直线经过点 时,对应的Z 值最大.故 Z max = 2X 5— 2= &【答案】B3. (2013 •高考陕西卷)若点(x , y )位于曲线y = | x |与y = 2所围成的封闭区域,贝U 2x — y 的最小值为 ( )A .— 6C. 0【解析】如图,曲线 y = |x |与y = 2所围成的封闭区域如图中阴影部分, 令z = 2x — y ,则y = 2x — z ,作直线y = 2x ,在封闭区域内平行移动直线 y = 2x ,当经过点(一2,2)时,z 取得最小值,此时 z = 2X ( — 2) — 2 = — 6.A (5,2)2. (2015 ••高考天津卷)设变里x , y满足约束条件 x — y + 3> 0, 2x + y — 3< 0,值为()A . 3B. 4C. 18D. 40则目标函数Z = X + 6y 的最大B.— 2D. 2X + 2>0,【答案】C(0,3)时,z 取得最大值18.【答案】A角度二:求非线性目标的最值上一动点,则直线OM斜率的最小值为()A. 21C—3【解析】已知的不等式组表示的平面区域如图中阴影所示,显然当点M与点A重合时直线—1),故OM斗率的最小值为一1.【解析】COM勺斜率最小,由直线方程x+ 2y—1 = 0和3x + y—8= 0,解得A(3 ,0< x w 25•已知实数x, y满足y w2,x w ;'2y,2x + y—1则z=P-的取值范围【解】由不等式组画出可行域如图中阴影部分所示,d® M 4 5.目标函数z=空芒!二=2+片的取值范围可转化为点(x, y)与(1 , —1)所在直线的斜率加上2的取值范围,由图形知,A点坐标为(.2 , 1),则点(1 , —1)与(2,1)所在直线的斜率为 2 2 + 2,点(0,0)与(1 , —1)所在直线的斜率为—1,所以z的取值范围为(—R,1] U [2 , 2+ 4,+^).【答案】(―汽1] U [2,2+ 4 ,+^°)4. (2013 •高考山东卷)在平面直角坐标系xOy中,M为不等式组2x—y—2>0,x + 2y—1> 0,3x+ y—8W0所表示的区域B.D.28 5x +y <26. (2015 •郑州质检)设实数x , y 满足不等式组 y — x < 2,y > 1,A . [1,2] C. [ '2, 2]【解析】如图所示,的平方.从图中可知最短距离为原点到直线 BC 的距离,其值为1;最远的距离为 AO 其值为2,故x 2+ y 2 的取值范围是[1,4]【答案】Bx > 0,7. (2013 •高考北京卷)设D 为不等式组 2x — y < 0,x +y —3<0之间的距离的最小值为【解析】作出可行域,如图中阴影部分所示,不等式组表示的平面区域是△ ABC 的内部(含边界),x 2+ y 2表示的是此区域内的点 (x , y )到原点距离则根据图形可知,点 耳1,0)到直线2x — y = 0的距离最小,d =|2% 1- 0|— 巒22+ 1,故最小距离为2-^. 5 5【答案】2 ,5 5x > 1,&设不等式组 x — 2y + 3> 0, y > x 所表示的平面区域是 Q 1,平面区域 Q 2与Q 1关于直线3x — 4y —9= 0对称.对于 Q 1中的任意点A 与Q 2中的任意点B, |AB 的最小值等于( ) A.B. 4则x 2+ y 2的取值范围是()B. [1 , 4] D [2 , 4]所表示的平面区域,区域D 上的点与点(1,0)x>1【解析】不等式组x—2y+ 3>0y> x解方程组X 1,得X 1.点A(I,I)到直线3x —4y—9= 0的距离d= |3—:—9| = 2,则| AEB的最小y= x y = 1 5值为4.【答案】B角度三:求线性规划中的参数【解析】不等式组表示的平面区域如图所示.1 5 4 1 5 5 k 4 7甌,4),所以AB中点D^, 2 •当y=kx+3过点2,2时,2= 2+3所以k=3•【解析】A12D. 2,所表示的平面区域如图所示,9.若不等式组x > 0,x + 3y > 4,3x+ y <4值是()7A.34C.34所表示的平面区域被直线y = kx + 3分为面积相等的两部分,则k的B.D.由于直线y = kx + 4过定点0,3 •因此只有直线过AB中点时,直线y= kx + £能平分平面区域.因为A(1,1),x+y —2> 0,10. (2014 •咼考北京卷)若x, y满足kx —y + 2》0,y> 0,且z = y —x的最小值为一4,贝U k的值为A.B.—2C.x + y —2> 0,【解析】D作出线性约束条件kx—y + 2>0, 的可行域.当k > 0时,图②^-2=0 (- £昭直线x + y —2= 0的右上方、直线kx —y+ 2= 0的右下方的区域,显然此时z= y —x无最小值.当k v—1时,z= y —x取得最小值2;当k=—1时,z= y—x取得最小值—2,均不符合题意.当一1v k v 0时,如图②所示,此时可行域为点A(2,0), B —£ 0 , qo,2)所围成的三角形区域,当直线z = y—x经过点B —£ 0时,有最小值,即——k =—4?【答案】Dx + y —2<0,11. (2014 •高考安徽卷)x, y满足约束条件x —2y —2<0,2x —y+ 2> 0.若z = y—ax取得最大值的最优解不唯一,则实数a的值为() 1A. §或—11 B.2 或C. 2 或1D. 2 或一1【解析】法一:由题中条件画出可行域如图中阴影部分所示,可知A(0,2) , B(2,0) , C —2, —2),则Z A= 2, Z B=— 2a, z c= 2a—2,要使目标函数取得最大值的最优解不唯一,只要Z A=Z B>Z C或Z A=Z C>Z B 或Z B= z c>Z A,解得a=— 1 或a= 2.意,故a =- 1或a = 2.【答案】D当4W s <5时,可行域是△ OAC 及其内部,此时,z max = &【答案】Dy > 0,13. (2015 •通化一模)设x , y 满足约束条件x y+ 丄< 1, 3a 4a '法二:目标函数 z = y — ax 可化为 y = ax + z ,令 I o : y = ax ,平移I o ,则当I 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性规划常见题型及解法一.基础知识:(一)二元一次不等式表示的区域二元一次不等式0>++C By Ax 表示直线0=++C By Ax 某一侧的所有点组成的区域,把直线画成虚线表示不包括边界, 0≥++C By Ax 所表示的区域应包括边界,故边界要画成实线.由于在直线0=++C By Ax 同一侧的所有点(x,y ),把它的坐标(x,y )代入C By Ax ++,所得的符号相同,所以只需在此直线的某一侧取一个特殊点(0,0y x ),从C By Ax ++00的正负即可判断0≥++C By Ax 表示直线哪一侧的平面区域。
通常代特殊点(0,0)。
(二)线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =A x +B y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =A x +B y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(4)用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值. (5) 利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数.然后,用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解. 最后,还要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解.线性规划是新教材中新增的内容之一,由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下常见题型。
一、求线性目标函数的取值范围例1、 若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5]二、求可行域的面积例2、不等式组260302x yx yy+-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为()A、4B、1C、5D、无穷大三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0) x y x yx y x yx y x yx y x y+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件5503x yx yx+≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+a y=0,要使目标函数z=x+a y(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D五、求非线性目标函数的最值例5、已知x、y满足以下约束条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2C、13,45D、5解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为45,选 C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于230230x y mx y m-++>⎧⎨-+-<⎩由右图可知3330mm+>⎧⎨-<⎩,习题精选精讲3故0<m <3,选 C线性规划的实际应用在科学研究、工程设计、经济管理等方面,我们都会碰到最优化决策的实际问题,而解决这类问题的理论基础是线性规划。
利用线性规划研究的问题,大致可归纳为两种类型:第一种类型是给定一定数量的人力、物力资源,问怎样安排运用这些资源,能使完成的任务量最大,的效益最大,第二种类型是给定一项任务,问怎样统筹安排,能使完成这项任务的人力、物力资源量最小。
例1、某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m 3,第二种有56m 3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产一个衣柜可获利10元.木器厂在现有木料条件下,圆桌和衣柜各生产多少,才使获得利润最多?产 品 木料(单位m 3) 第 一 种第 二 种 圆 桌 0.18 0.08 衣 柜0.090.28解:设生产圆桌x 只,生产衣柜y 个,利润总额为z 元,那么⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+005628.008.07209.018.0y x y x y x 而z =6x +10y .如上图所示,作出以上不等式组所表示的平面区域,即可行域.作直线l :6x +10y =0,即l :3x +5y =0,把直线l 向右上方平移至l 1的位置时,直线经过可行域上点M,且与原点距离最大,此时z =6x +10y 取最大值解方程组⎩⎨⎧=+=+5628.008.07209.018.0y x y x ,得M 点坐标(350,100).答:应生产圆桌350只,生产衣柜100个,能使利润总额达到最大.指出:资源数量一定,如何安排使用它们,使得效益最好,这是线性规划中常见的问题之一 (2)利用图象,在线性约束条件下找出决策变量,使线性目标函数达到最大(或最小).2.线性规划问题的一般数学模型是:已知⎪⎪⎩⎪⎪⎨⎧≤+++≤+++≤+++nm nm n n m m m m b x a x a x a b x a x a x a b x a x a x a 22112222212*********(这n 个式子中的“≤”也可以是“≥”或“=”号)其中a ij (i =1,2,…,n , j =1,2,…,m ),b i (i =1,2,…,n )都是常量,x j (j =1,2,…,m ) 是非负变量,求z =c 1x 1+c 2x 2+…+c m x m 的最大值或最小值,这里c j (j =1,2,…,m )是常量.(3)线性规划的理论和方法主要在以下两类问题中得到应用:一是在人力、物力资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.线性规划中整点最优解的求解策略在工程设计、经营管理等活动中,经常会碰到最优化决策的实际问题,而解决此类问题一般以线性规划为其重要的理论基础。
然而在实际问题中,最优解 (x,y) 通常要满足x,y ∈N ,这种最优解称为整点最优解,下面通过具体例子谈谈如何求整点最优解 .1.平移找解法作出可行域后,先打网格,描出整点,然后平移直线l ,直线l 最先经过或最后经过的那个整点便是整点最优解.例1、某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m 3,第二种有56m 3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产一个衣柜可获利10元.木器厂在现有木料条件下,圆桌和衣柜各生产多少,才使获得利润最多? 产 品 木料(单位m 3) 第 一 种第 二 种 圆 桌 0.18 0.08 衣 柜0.090.28解:设生产圆桌x 只,生产衣柜y 个,利润总额为z 元,那么⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+005628.008.07209.018.0y x y x y x 而z =6x +10y .如图所示,作出以上不等式组所表示的平面区域,即可行域.作直线l :6x +10y =0,即l :3x +5y =0,把直线l 向右上方平移至l 1的位置时,直线经过可行域上点M,且与原点距离最大,此时z =6x +10y 取最大值。
解方程组⎩⎨⎧=+=+5628.008.07209.018.0y x y x ,得M 点坐标(350,100).答:应生产圆桌350只,生产衣柜100个,能使利润总额达到最大.点评:本题的最优点恰为直线0.18x +0.09y =72和0.08x +0.28y =56的交点M 。
例 2 有一批钢管,长度都是4000mm ,要截成500mm 和600mm 两种毛坯,且这两种毛坯按数量比不小于31配套,怎样截最合理?解:设截500mm 的钢管x 根,600mm 的y 根,总数为z 根。
根据题意,得 ,目标函数为,作出如图所示的可行域内的整点,作一组平行直线x+y=t ,经过可行域内的点且和原点距离最远的直线为过B (8,0)的直线,这时x+y=8.由于x,y 为正整数,知(8,0)不是最优解。
显然要往下平移该直线,在可行域内找整点,使x+y=7,可知点(2,5),(3,4),(4,3),(5,2),(6,1)均为最优解.答:略.点评:本题与上题的不同之处在于,直线x+y=t 经过可行域内且和原点距离最远的点B (8,0)并不符合题意,此时必须往下平移该直线,在可行域内找整点,比如使x+y=7,从而求得最优解。
从这两例也可看到,平移找解法一般适用于其可行域是有限区域且整点个数又较少,但作图要求较高。
二、整点调整法先按“平移找解法”求出非整点最优解及最优值,再借助不定方程的知识调整最优值,最后筛选出整点最优解.A BCx y O 1l3l 2l习题精选精讲5例3.已知,x y 满足不等式组230236035150x y x y x y -->⎧⎪+-<⎨⎪--<⎩,求使x y +取最大值的整数,x y .解:不等式组的解集为三直线1l :230x y --=,2l :2360x y +-=,3l :35150x y --=所围成的三角形内部(不含边界),设1l 与2l ,1l 与3l ,2l 与3l 交点分别为,,A B C ,则,,A B C 坐标分别为153(,)84A ,(0,3)B -,7512(,)1919C -, 作一组平行线l :x y t +=平行于0l :0x y +=,当l 往0l 右上方移动时,t 随之增大, ∴当l 过C 点时x y +最大为6319,但不是整数解,又由75019x <<知x 可取1,2,3, 当1x =时,代入原不等式组得2y =-, ∴1x y +=-;当2x =时,得0y =或1-, ∴2x y +=或1;当3x =时,1y =-, ∴2x y +=,故x y +的最大整数解为20x y =⎧⎨=⎩或31x y =⎧⎨=-⎩. 3.逐一检验法由于作图有时有误差,有时仅有图象不一定就能准确而迅速地找到最优解,此时可将若干个可能解逐一校验即可见分晓.例4 一批长4000mm 的条形钢材,需要将其截成长分别为518mm 与698mm 的甲、乙两种毛坯,求钢材的最大利用率.解:设甲种毛坯截 x 根,乙种毛坯截 y 根,钢材的利用率为P ,则 ①,目标函数为②,线性约束条件①表示的可行域是图中阴影部分的整点.②表示与直线518x+698y=4000平行的直线系。