最新新课标高一数学人教版必修1教案全集教师资格试讲必备
新课标高一数学人教版必修1教案全集
课题:§1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。
另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P-P内容 23二、新课教学(一)集合的有关概念 1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2. 一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3. 思考1:课本P的思考题,并再列举一些集合例子和不能构成集合的例子,3对学生的例子予以讨论、点评,进而讲解下面的问题。
4. 关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样 5. 元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A (2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作aA(或a A)(举例)6. 常用数集及其记法非负整数集(或自然数集),记作N *正整数集,记作N或N;+整数集,记作Z 有理数集,记作Q 实数集,记作R (二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
新人教版高中数学必修一全套教案
第一章集合与函数概念§1.1集合1.1.1集合的含义与表示(第一课时)教学目标:1.理解集合的含义。
2.了解元素与集合的表示方法及相互关系。
3.熟记有关数集的专用符号。
4.培养学生认识事物的能力。
教学重点:集合含义教学难点:集合含义的理解教学方法:尝试指导法教学过程:引入问题(I)提出问题问题1:班级有20名男生,16名女生,问班级一共多少人?问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?讨论问题:按小组讨论。
归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(板书标题)。
复习问题x-<问题3:在小学和初中我们学过哪些集合?(数集,点集)(如自然数的集合,有理数的集合,不等式73的解的集合,到一个定点的距离等于定长的点的集合,到一条线段的两个端点距离相等的点的集合等等)。
(II)讲授新课1.集合含义通过以上实例,指出:(1)含义:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。
说明:在初中几何中,点,线,面都是原始的,不定义的概念,同样集合也是原始的,不定义的概念,只可描述,不可定义。
(2)表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
问题4:由此上述例中集合的元素分别是什么?2. 集合元素的三个特征由以上四个问题可知,集合元素具有三个特征:(1)确定性:设A是一个给定的集合,a是某一具体的对象,则a或者是A的元素,或者不是A的元素,两种情况必有一种而且只有一种成立。
如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)若a是集合A中的元素,则称a属于集合A,记作a∈A;若a不是集合A的元素,则称a不属于集合A,记作a∉A。
高中数学面试试讲教案
高中数学面试试讲教案【篇一:教师资格证试讲高中数学教案一】教案一(人教版必修一第一单元课时1:集合的含义与表示)一、题目:集合的含义与表示二、教学时间:45分钟三、授课人数:四、课时:1课时五、课型:六、教学目标:l.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力.2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3. 情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.七、教学重点.难点:重点:集合的含义与表示方法.难点:表示法的恰当选择.八、学法与教学用具:1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2. 教学用具:投影仪.九、教学思路:(一)创设情景,揭示课题1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.2. 接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.(二)研探新知1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)海南省在2004年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点(7)方程的所有实数根;(8)不等式x?3?0的所有解;(9)国兴中学2004年9月入学的高一学生的全体.2.教师组织学生分组讨论:这9个实例的共同特征是什么?3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.4.教师指出:集合常用大写字母a,b,c,d,?表示,元素常用小写字母a,b,c,d?表示.(三)质疑答辩,排难解惑,发展思维1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.教师组织引导学生思考以下问题:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.4.教师提出问题,让学生思考(1)如果用a表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a,b与集合a分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.如果a是集合a的元素,就说a属于集合a,记作a?a.如果a不是集合a的元素,就说a不属于集合a,记作a?a.(2)如果用a表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合a的关系分别是什么?请用数学符号分别表示.(3)让学生完成教材第6页练习第1题.5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1a组第1题.6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:(1)要表示一个集合共有几种方式?(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?(3)如何根据问题选择适当的集合表示法?使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
新人教版高中数学试讲教案
新人教版高中数学试讲教案
授课对象:新人教师
教学目标:
1. 熟悉新人教版高中数学的课程内容和教学理念
2. 掌握如何设计一堂生动有趣的数学课程
3. 提高教学技巧和方法
教学准备:
1. 课程教材:新人教版高中数学教材
2. 课程教具:黑板、彩色粉笔、投影仪等
3. 课程准备:设计教学内容和教学活动
教学过程:
一、导入(5分钟)
通过提出一个有趣的问题或者引用一段相关的故事,引起学生的兴趣,准备好课堂氛围。
二、学习新知识(20分钟)
根据课程内容,介绍新的数学知识点,帮助学生理解概念和方法,并通过例题进行讲解。
适时提问学生,引导他们思考和解答问题。
三、练习与巩固(15分钟)
布置一些练习题或者给学生一些小组讨论的题目,帮助学生巩固所学知识,并提高解决问题的能力。
四、课堂互动(10分钟)
开展一些互动环节,让学生展示他们的学习成果,分享思考过程,并互相讨论交流。
五、整理与总结(5分钟)
对本节课的教学内容进行总结,强调重点和难点,澄清学生对知识点的疑惑,确保学生对所学内容有清晰的理解。
教学反思:
通过观察学生的学习情况和反馈,总结教学过程中的不足和改进之处,提高自己的教学水平和能力。
教学评估:
收集学生的学习成绩和反馈意见,对教学效果进行评估和分析,为下一次课程的设计和教学提供参考。
教学结束。
这是一份简单的新人教版高中数学试讲教案范本,希望能帮助新人教师更好地进行数学教学。
人教版高一数学必修一全套教案
陕西省宝鸡市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(12小题,每小题3分,共36分。
) (共12题;共36分)1. (3分) (2019八下·岱岳期末) 下列式子运算正确的是()A .B .C .D .2. (3分) (2019八上·海口期中) 下列算式中错误的是A .B .C .D .3. (3分) (2020八上·岑溪期末) 如图工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A . 两点之间线段最短B . 两点确定一条直线C . 三角形具有稳定性D . 长方形的四个角都是直角4. (3分) (2017八下·临泽期末) 下面平行四边形不具有的性质是()A . 对角线互相平分B . 两组对边分别相等C . 对角线相等D . 相邻两角互补5. (3分)已知四边形ABCD是平行四边形,对角线AC与BD相交于点O,下列结论中不正确的是()A . 当AB=BC时,四边形ABCD是菱形B . 当AC⊥BD时,四边形ABCD是菱形C . 当OA=OB时,四边形ABCD是矩形D . 当∠ABD=∠CBD时,四边形ABCD是矩形6. (3分)(2020·鹿城模拟) 下列说法正确的是()A . 对角线相互垂直的四边形是菱形B . 矩形的对角线互相垂直C . 一组对边平行的四边形的是平行四边形D . 四边相等的四边形是菱形7. (3分)园丁住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,这块草坪的面积是()A . 24米2B . 36米2C . 48米2D . 72米28. (3分) (2019九上·海曙开学考) 一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A . 平均数B . 众数C . 中位数D . 方差9. (3分) (2020九上·北京月考) 下列函数中,y是x的正比例函数的是()A . y=6x﹣1B .C . y=x2D .10. (3分) (2019八下·廉江期末) 下面哪个点在函数y=2x+4的图象上()A . (2,1)B . (-2,1)C . (2,0)D . (-2,0)11. (3分)(2017·浙江模拟) 如图,在▱ABCD中,E、F分别是AD、CD边上的点,连接BE、AF,它们相交于点G,延长BE交CD的延长线于点H,下列结论错误的是()A .B .C .D .12. (3分)(2020·宁波模拟) 矩形ABCD中,AB=6,BC=8,则点A到BD的距离是()A . 4B . 4.6C . 4.8D . 5二、填空题(6小题,每小题3分,共18分。
人教版高一数学必修一教案(优秀4篇)
人教版高一数学必修一教案(优秀4篇)人教版高一数学必修一教案篇一教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
课型:新授课教学重点:集合的交集与并集的概念;教学难点:集合的交集与并集“是什么”,“为什么”,“怎样做”;教学过程:一、引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P9思考题),引入并集概念。
二、新课教学1、并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)记作:A∪B 读作:“A并B”即:A∪B={x|x∪A,或x∪B}Venn图表示:说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。
例题1求集合A与B的并集① A={6,8,10,12} B={3,6,9,12}② A={x|-1≤x≤2} B={x|0≤x≤3}(过度)问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。
2、交集一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。
记作:A∩B 读作:“A交B”即:A∩B={x|∪A,且x∪B}交集的Venn图表示说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。
例题2求集合A与B的交集③ A={6,8,10,12} B={3,6,9,12}④ A={x|-1≤x≤2} B={x|0≤x≤3}拓展:求下列各图中集合A与B的并集与交集(用彩笔图出)说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集3、例题讲解例3(P12例1):理解所给集合的含义,可借助venn图分析例4 P12例2):先“化简”所给集合,搞清楚各自所含元素后,再进行运算。
人教版高中数学必修1全册教案
人教版高中数学必修1全册教案一、教学目标本教案旨在帮助学生:1. 掌握高中数学的基本概念和基本工具;2. 培养数学思维和解决问题的能力;3. 培养学生合作研究和自主研究的能力;4. 提高学生对数学的兴趣和研究动机。
二、教学内容本教案涵盖了人教版高中数学必修1全册的所有内容,包括但不限于以下几个单元:1. 数与式2. 二次函数与一元二次方程3. 三角函数与解三角形4. 平面坐标系与参数方程5. 二次函数与简单二次方程6. 平面向量初步三、教学方法针对不同的教学内容,本教案采用了多种教学方法,如:1. 讲授法:通过教师的讲解、示范和解释,帮助学生理解数学的概念和原理;2. 实践法:通过实际的例题、练和探究活动,培养学生解决问题的能力;3. 小组合作研究:组织学生进行小组合作研究,提高学生的交流和合作能力;4. 自主研究:引导学生进行自主研究,培养学生的自主研究和自我管理能力;四、教学评估本教案采用多种形式的教学评估方式,如:1. 课堂练:通过课堂上的小测验和练,检验学生对知识的掌握情况;2. 作业布置:通过作业的批改和评价,评估学生的研究效果;3. 期中考试:通过期中考试,评估学生对整个教学内容的掌握情况;4. 期末考试:通过期末考试,评估学生对整个学期的研究效果。
五、教学资源本教案所需的教学资源包括但不限于以下几个方面:1. 课本和教辅材料:学生使用的教科书和相关教辅材料;2. 多媒体设备:投影仪、电脑等多媒体设备;3. 实验器材:实验课时所需的实验器材;4. 额外参考资料:学生自主研究时所需的额外参考资料。
以上是本教案的主要内容和要点,请根据需要进行调整和补充。
教师在教学过程中应根据学生的实际情况和学习进度,灵活运用教学方法和评估方式,以达到最佳的教学效果。
高中数学人教A版必修1第一章《12函数及其表示通用》优质课公开课教案教师资格证面试试讲教案
高中数学人教A版必修1第一章《12函数及其表示通用》优质课公开课教案教师资格证面试试讲教案高中数学人教A版必修1第一章《函数及其表示通用》优质课公开课教案一、教学目标1. 理解函数的定义,能够用恰当的方式描述函数的特点;2. 掌握用图象和方程表示函数的方法;3. 能够利用函数式关系解决实际问题。
二、教学重难点1. 函数的定义和特点;2. 函数图象和函数方程的表示方法;3. 实际问题转化为函数式关系的解决方法。
三、教学准备1. 教师准备(1)白板、黑板笔;(2)教材、教辅资料和多媒体资源。
2. 学生准备(1)预习上述知识点;(2)听课和做笔记。
四、教学过程1. 探究新课(15分钟)(1)引入新知识,谈论函数在什么情况下会出现;(2)引导学生讨论什么是自变量和因变量;(3)通过举例子,引导学生了解函数的定义。
2. 学习新知(30分钟)(1)教师讲解并示范如何用图象和方程表示函数;(2)指导学生进行练习,巩固理论知识。
3. 整合知识(20分钟)(1)教师通过例题展示如何将实际问题转化为函数式关系;(2)鼓励学生提问,并进行讨论。
4. 拓展延伸(15分钟)(1)教师展示一些有趣的数学问题,引导学生思考并解决;(2)鼓励学生独立思考和探索,发展数学思维。
五、课堂小结(10分钟)(1)教师对本节课进行总结,回顾重要概念和方法;(2)鼓励学生提问,解决疑惑。
六、作业布置(5分钟)(1)布置相关习题,巩固所学知识;(2)要求学生自主学习,并提出问题。
七、教学反思本节课通过启发学生的思维、解决实际问题,激发了学生的学习兴趣和积极性。
在教学过程中,我注意提问的方式和节奏的掌握,使得学生能够主动思考和回答问题。
同时,我也鼓励学生们互相合作,共同解决问题,培养了他们的团队合作精神。
总结起来,本节课培养了学生的数学思维和解决问题的能力,使他们对函数及其表示通用有了更深入的理解。
在今后的教学中,我将继续提倡学生自主学习和探索,培养他们的创造力和分析能力。
【精品】(578)新课标人教A版高中数学必修1全套教案
(578)新课标人教A 版高中数学必修1全套教案高中数学教案必修全套(人教A版)【必修1教案|全套】目录第一章函数与集合的概念 (1)1.1 集合 (3)1.1.1 集合的含义与表示 (3)1.1.2 集合间的基本关系 (27)1.1.3 集合的基本运算 (45)1.2 函数及其表示 (77)1.2.1 函数的概念 (77)1.2.2 函数的表示法 (101)1.3 函数的基本性质 (151)1.3.1 单调性与最大(小)值 (151)1.3.2 奇偶性 (195)本章复习 (213)第二章基本初等函数(Ⅰ) (235)2.1 指数函数 (237)2.1.1 指数与指数幂的运算 (237)第1课时指数与指数幂的运算(1) (238)第2课时指数与指数幂的运算(2) (251)第3课时指数与指数幂的运算(3) (266)2.1.2 指数函数及其性质 (282)第1课时指数函数及其性质(1) (283)第2课时指数函数及其性质(2) (300)第3课时指数函数及其性质(3) (310)2.2 对数函数 (329)2.2.1 对数与对数运算 (329)第1课时对数与对数运算(1) (330)第2课时指数与指数幂的运算(2) (343)第3课时指数与指数幂的运算(3) (357)2.3 幂函数 (386)第三章函数的应用 (401)3.1 函数与方程 (402)3.1.1 方程的根与函数的零点 (402)第2课时方程的根与函数的零点 (417)3.1.2 用二分法求方程的近似解 (427)3.2 函数模型及其应用 (449)3.2.1 几类不同增长的函数模型 (449)第2课时几类不同增长的函数模型 (466)3.2.2 函数模型的应用举例 (480)第1课时函数模型的应用实例 (480)第2课时函数模型的应用举例 (490)第一章函数与集合的概念本章教材分析通过本章的学习,使学生会使用最基本的集合语言表示有关的数学对象,并能在自然语言、图形语言、集合语言之间进行转换,体会用集合语言表达数学内容的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.通过本章的学习,使学生不仅把函数看成变量之间的依赖关系,同时还会用集合与对应的语言刻画函数,为后续学习奠定基础.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识,培养学生的抽象概括能力,增强学生应用数学的意识.课本力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,强调从实例出发,让学生对集合和函数概念有充分的感性认知基础,再用集合与对应语言抽象出函数概念.课本突出了集合和函数概念的背景教学,这样比较符合学生的认识规律.教学中要高度重视数学概念的背景教学.课本尽量创设使学生运用集合语言和数学符号进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,用图象表示函数,帮助学生借助直观图示认识抽象概念.课本在例题、习题的教学中注重运用集合和函数的观点研究、处理数学问题,这一观点,一直贯穿到以后的数学学习中.在例题和习题的编排中,渗透了分类讨论思想,让学生体会到分类讨论思想在生活中和数学中的广泛运用,这是学生在初中阶段所缺少的.函数的表示是本章的主要内容之一,课本重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念.在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.课本将函数推广到了映射,体现了由特殊到一般的思维规律,有利于学生对函数概念学习的连续性.在教学中,要坚持循序渐进,逐步渗透数形结合、分类讨论这方面的训练.对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不作提倡,要准确把握这方面的要求,防止拔高教学.重视函数与信息技术整合的要求,通过电脑绘制简单函数动态图象,使学生初步感受到信息技术在函数学习中的重要作用.为了体现课本的选择性,在练习题安排上加大了弹性,教师应根据学生实际情况,合理地取舍.本章教学时间约需13课时,具体分配如下(仅供参考):1.1 集合1.1.1 集合的含义与表示整体设计教学分析集合论是现代数学的一个重要的基础.在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础.课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,结合实例给出元素、集合的含义,课本注重体现逻辑思考的方法,如抽象、概括等.值得注意的问题:由于本小节的新概念、新符号较多,建议教学时先引导学生阅读课本,然后进行交流,让学生在阅读与交流中理解概念并熟悉新符号的使用.在信息技术条件较好的学校,可以利用网络平台让学生交流学习概念后的认识;也可以由教师给出问题,让学生读后回答问题,再由教师给出评价.这样做的目的是培养学生主动学习的习惯,提高阅读与理解、合作与交流的能力.在处理集合问题时,根据需要,及时提示学生运用集合语言进行表述.三维目标1.通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.2.了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.重点难点教学重点:集合的基本概念与表示方法.教学难点:选择恰当的方法表示一些简单的集合.课时安排1课时设计方案(一)教学过程导入新课思路1.军训前学校通知:8月15日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合.思路2.首先教师提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆、举例和互相交流自己举的例子.与此同时,教师对学生的活动给予评价.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.推进新课新知探究提出问题①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”②下面请班上身高在 1.75以上的男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.④如果用A表示高一(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?⑤世界上最高的山能不能构成一个集合?⑥世界上的高山能不能构成一个集合?⑦问题⑥说明集合中的元素具有什么性质?⑧由实数1、2、3、1组成的集合有几个元素?⑨问题⑧说明集合中的元素具有什么性质?⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?讨论结果:①能.②能.③我们把研究的对象统称为“元素”,那么把一些元素组成的总体叫“集合”.④a是集合A的元素,b不是集合A的元素.学生得出元素与集合的关系有两种:属于和不属于.⑤能,是珠穆朗玛峰.⑥不能.⑦确定性.给定的集合,它的元素必须是明确的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合的确定性.⑧3个.⑨互异性.一个给定集合的元素是互不相同的,即集合中的元素是不重复出现的,这就是集合的互异性.⑩集合M和N相同.这说明集合中的元素具有无序性,即集合中的元素是没有顺序的.可以发现:如果两个集合中的元素完全相同,那么这两个集合是相等的.提出问题阅读课本P3中:数学中一些常用的数集及其记法.快速写出常见数集的记号.活动:先让学生阅读课本,教师指定学生展示结果.学生写出常用数集的记号后,教师强调:通常情况下,大写的英文字母N、Z、Q、R不能再表示其他的集合,这是专用集合表示符号,类似于110、119等专用电话号码一样.以后,我们会经常用到这些常见的数集,要求熟练掌握.讨论结果:常见数集的专用符号.N:非负整数集(或自然数集)(全体非负整数的集合);N*或N+:正整数集(非负整数集N内排除0的集合);Z:整数集(全体整数的集合);Q:有理数集(全体有理数的集合);R:实数集(全体实数的集合).提出问题①前面所说的集合是如何表示的?②阅读课本中的相关内容,并思考:除字母表示法和自然语言之外,还能用什么方法表示集合?③集合共有几种表示法?活动:①学生回顾所学的集合并作出总结.教师提示可以用字母或自然语言来表示.②教师可以举例帮助引导:例如,24的所有正约数构成的集合,把24的所有正约数写在大括号“{}”内,即写出为{1,2,3,4,6,8,12,24}的形式,这种表示集合的方法是列举法.注意:大括号不能缺失;有些集合所含元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可用列举法表示,如:从1到100的所有整数组成的集合:{1,2,3,…,100},自然数集N:{0,1,2,3,4,…,n,…};区分a与{a}:{a}表示一个集合,该集合只有一个元素,a表示这个集合的一个元素;用列举法表示集合时不必考虑元素的前后次序;相同的元素不能出现两次.又例如,不等式x-3>2的解集,这个集合中的元素有无数个,不适合用列举法表示.可以表示为{x∈R|x-3>2}或{x|x-3>2},这种表示集合的方法是描述法.③让学生思考总结已经学习了的集合表示法.讨论结果:①方法一(字母表示法):大写的英文字母表示集合,例如常见的数集N、Q,所有的正方形组成的集合记为A等等;方法二(自然语言):用文字语言来描述出的集合,例如“所有的正方形”组成的集合等等.②列举法:把集合中的全部元素一一列举出来,并用大括号“{}”括起来表示集合,这种表示集合的方法叫做列举法;描述法:在大括号内先写上表示这个集合元素的一般符号及其取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.注:在不致混淆的情况下,也可以简写成列举法的形式,只是去掉竖线和元素代表符号,例如:所有直角三角形的集合可以表示为{x|x是直角三角形},也可以写成{直角三角形}.③表示一个集合共有四种方法:字母表示法、自然语言、列举法、描述法.应用示例思路11.下列各组对象不能组成集合的是( )A.大于6的所有整数B.高中数学的所有难题1图象上所有的点C.被3除余2的所有整数 D.函数y=x活动:学生先思考、讨论集合元素的性质,教师指导学生此类选择题要逐项判断.判断一组对象能否构成集合,关键是看是否满足集合元素的确定性.在选项A、C、D中的元素符合集合的确定性;而选项B中,难题没有标准,不符合集合元素的确定性,不能构成集合.答案:B变式训练1.下列条件能形成集合的是( )A.充分小的负数全体B.爱好足球的人C.中国的富翁D.某公司的全体员工答案:D2.2007浙江宁波高三第一次“十校联考”,理1在数集{2x,x2-x}中,实数x的取值范围是.分析:实数x的取值满足集合元素的互异性,则2x≠x2-x,解得x≠0且x≠3,∴实数x的取值范围是{x|x<0或0<x<3或x>3}.答案:{x|x<0或0<x<3或x>3}点评:本题主要考查集合的含义和元素的性质.当所指的对象非常明确时就能构成集合,若元素不明确,没有判断的标准就不能构成集合.2.用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合.活动:学生先思考或讨论列举法的形式,展示解答过程.当学生出现错误时,教师及时加以纠正.利用相关的知识先明确集合中的元素,再把元素写入大括号“{}”内,并用逗号隔开.所给的集合均是用自然语言给出的.提示学生注意以下方面:(1)自然数中包含零;(2)解一元二次方程有公式法和分解因式法,方程x2=x的根是x=0,x=1;(3)除去1和本身外没有其他约数的正整数是质数,1~20以内的所有质数是2、3、5、7、11、13、17、19.解:(1)设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9}.(2)设方程x2=x的所有实数根组成的集合为B,那么A={0,1}.(3)设由1~20以内的所有质数组成的集合为C,那么C={2,3,5,7,11,13,17,19}.点评:本题主要考查集合表示法中的列举法.通过本题可以体会利用集合表示数学内容的简洁性和严谨性,以后我们尽量用集合来表示数学内容.如果一个集合是有限集,并且元素的个数较少时,通常选择列举法表示,其特点是非常显明地表示出了集合中的元素,是常用的表示法;列举法表示集合的步骤:(1)用字母表示集合;(2)明确集合中的元素;(3)把集合中所有元素写在大括号“{}”内,并写成A={……}的形式.变式训练用列举法表示下列集合:(1)所有绝对值等于8的数的集合A;(2)所有绝对值小于8的整数的集合B.答案:(1)A={-8,8};(2)B={-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7}.3.试分别用列举法和描述法表示下列集合:(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.活动:先让学生回顾列举法表示集合的步骤,思考描述法的形式,再找学生到黑板上书写.当学生出现错误时,教师指导学生书写过程.用描述法表示集合时,要用数学符号表示集合元素的特征.大于10小于20的所有整数用数学符号可以表示为10<x<20,x∈Z.(重点引导用描述法表示集合)用描述法表示集合时,用一个小写英文字母表示集合中的元素,作为集合中元素的代表符号,找到集合中元素的共同特征,并把共同特征用数学符号来表达,然后写在大括号“{}”内,在大括号内先写上集合中元素的代表符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.在(1)中利用条件中现有元素代表符号x,集合中元素的共同特征就是满足方程x2-2=0.在(2)的条件中没有元素代表符号,故要先设出,用一个小写英文字母表示即可;集合中元素的共同特征有两个:一是大于10小于20(用不等式表示),二是整数(用元素与集合的关系符号“∈”来表示).解:(1)设方程x2-2=0的实根为x,它满足条件x2-2=0,因此,用描述法表示为A={x∈R|x2-2=0}.方程x2-2=0的两个实数根为2,2-,因此,用列举法表示为A={2,2-}.(2)设大于10小于20的整数为x,它满足条件x∈Z,且10<x<20,因此,用描述法表示为B={x∈Z|10<x<20}.大于10小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为B={11,12,13,14,15,16,17,18,19}.描述法表示集合的步骤:(1)用字母分别表示集合和元素;(2)用数学符号表达集合元素的共同特征;(3)在大括号内先写上集合中元素的代表符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.并写成A={…|…}的形式.描述法适合表示有无数个元素的集合.注意:当集合中的元素个数较少时,通常用列举法表示,否则用描述法表示.思路21.(1)A={1,3},判断元素3,5和集合A的关系,并用符号表示.(2)所有素质好的人能否表示为集合?(3)A={2,2,4}表示是否准确?(4)A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一集合? 活动:如果学生没有解题思路,让学生思考以下知识:(1)元素与集合的关系及其符号表示;(2)集合元素的性质;(3)两个集合相同的定义.解:(1)根据元素与集合的关系有两种:属于(∈)和不属于(∉),知3属于集合A,即3∈A,5不属于集合A,即5∉A.(2)由于素质好的人标准不可量化,不符合集合元素的确定性,故A 不能表示为集合.(3)表示不准确,不符合集合元素的互异性,应表示为A={2,4}.(4)因其元素相同,A 与B 表示同一集合.变式训练1.数集{3,x,x 2-2x}中,实数x 满足什么条件?解:集合元素的特征说明{3,x,x 2-2x}中元素应满足⎪⎩⎪⎨⎧-≠-≠≠,23,2,322x x x x x x 即⎪⎩⎪⎨⎧≠--≠≠,032,3,322x x x x x 也就是⎪⎩⎪⎨⎧-≠≠≠,1,0,3x x x 即满足x≠-1,0,3. 2.方程ax 2+5x+c=0的解集是{21,31},则a=________,c=_______. 分析:方程ax 2+5x+c=0的解集是{21,31},那么21、31是方程的两根, 即有⎪⎪⎩⎪⎪⎨⎧=•-=+,3121,53121a c a 得⎩⎨⎧==-1,c -6,a 那么a=-6,c=-1.答案:6 -13.集合A中的元素由关于x的方程kx2-3x+2=0的解构成,其中k∈R,若A中仅有一个元素,求k的值.解:由于A中元素是关于x的方程kx2-3x+2=0(k∈R)的解,2,知A中有一个元素,符合题设;若k=0,则x=3若k≠0,则方程为一元二次方程,9时,kx2-3x+2=0有两相等的实数根,此时A中有一当Δ=9-8k=0即k=8个元素.9.综上所述k=0或k=84.2006山东高考,理1定义集合运算:A⊙B={z|z=xy(x+y),x∈A,y∈B},设集合A={0,1},B={2,3},则集合A⊙B的所有元素之和为…( ) A.0 B.6 C.12 D.18分析:∵x∈A,∴x=0或x=1.当x=0,y∈B时,总有z=0;当x=1时,若x=1,y=2时,有z=6;当x=1,y=3时,有z=12.综上所得,集合A⊙B的所有元素之和为0+6+12=18.答案:D注意:①判断元素与此集合的关系时,用列举法表示的集合,只需观察这个元素是否在集合中即可.用符号∈,表示,注意这两个符号的左边写元素,右边写集合,不能互换它们的位置,否则没有意义.②如果有明确的标准来判断元素在集合中,那么这些元素就能构成集合,否则不能构成集合.③用列举法表示的集合,直接观察它们的元素是否完全相同,如果完全相同,那么这两个集合就相等,否则不相等.2.用列举法表示下列集合:(1)小于5的正奇数组成的集合;(2)能被3整除且大于4小于15的自然数组成的集合;(3)方程x2-9=0的解组成的集合;(4){15以内的质数};6∈Z,x∈Z}.(5){x|x3活动:教师指导学生思考列举法的书写格式,并讨论各个集合中的元素.明确各个集合中的元素,写在大括号内即可.提示学生注意:(2)中满足条件的数按从小到大排列时,从第二个数起,每个数比前一个数大3;(4)中除去1和本身外没有其他的约数的正整数是质数;(5)中3-x是6的约数,6的约数有±1,±2,±3,±6.解:(1)满足题设条件小于5的正奇数有1、3,故用列举法表示为{1,3};(2)能被3整除且大于4小于15的自然数有6、9、12,故用列举法表示为{6,9,12};(3)方程x2-9=0的解为-3、3,故用列举法表示为{-3,3};(4)15以内的质数有2、3、5、7、11、13,故该集合用列举法表示为{2,3,5,7,11,13};6∈Z的x有3-x=±1、±2、±3、±6,解之,得x=2、4、(5)满足3x1、5、0、6、-3、9,故用列举法表示为{2,4,1,5,0,6,-3,9}.变式训练用列举法表示下列集合:(1)x2-4的一次因式组成的集合;(2){y|y=-x2-2x+3,x∈R,y∈N};(3)方程x2+6x+9=0的解集;(4){20以内的质数};(5){(x,y)|x2+y2=1,x∈Z,y∈Z};(6){大于0小于3的整数};(7){x∈R|x2+5x-14=0};(8){(x,y)|x∈N且1≤x<4,y-2x=0};(9){(x,y)|x+y=6,x∈N,y∈N}.思路分析:用列举法表示集合的关键是找出集合中的所有元素,要注意不重不漏,不计次序地用“,”隔开放在大括号内.解:(1)因x2-4=(x-2)(x+2),故符合题意的集合为{x-2,x+2};(2)y=-x2-2x+3=-(x+1)2+4,即y≤4.又y∈N,∴y=0、1、2、3、4,故{y|y=-x2-2x+3,x∈R,y∈N}={0,1,2,3,4};(3)由x2+6x+9=0得x1=x2=-3,∴方程x2+6x+9=0的解集为{-3};(4){20以内的质数}={2,3,5,7,11,13,17,19};(5)因x∈Z,y∈Z,则x=-1、0、1时,y=0、1、-1,那么{(x,y)|x2+y2=1,x∈Z,y∈Z}={(-1,0),(0,1),(0,-1),(1,0)};(6){大于0小于3的整数}={1,2};(7)因x2+5x-14=0的解为x1=-7,x2=2,则{x∈R|x2+5x-14=0}={-7,2};(8)当x∈N且1≤x<4时,x=1、2、3,此时y=2x,即y=2、4、6,那么{(x,y)|x∈N且1≤x<4,y-2x=0}={(1,2),(2,4),(3,6)};(9){(x,y)|x+y=6,x∈N,y∈N}={(0,6)(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.点评:本题主要考查集合的列举法表示.列举法适用于元素个数有限个并且较少的集合.用列举法表示集合:先明确集合中的元素,再把元素写在大括号内并用逗号隔开,相同的元素写成一个.3.用描述法分别表示下列集合:(1)二次函数y=x2图象上的点组成的集合;(2)数轴上离原点的距离大于6的点组成的集合;(3)不等式x-7<3的解集.活动:让学生思考用描述法的形式如何表示平面直角坐标系中的点?如何表示数轴上的点?如何表示不等式的解?学生板书,教师在其他学生中间巡视,及时帮助思维遇到障碍的同学.必要时,教师可提示学生:(1)集合中的元素是点,它是坐标平面内的点,集合元素代表符号用有序实数对(x,y)来表示,其特征是满足y=x2;(2)集合中元素是点,而数轴上的点可以用其坐标表示,其坐标是一个实数,集合元素代表符号用x来表示,其特征是对应的实数绝对值大于6;(3)集合中的元素是实数,集合元素代表符号用x来表示,把不等式化为x<a的形式,则这些实数的特征是满足x<a.解:(1)二次函数y=x2上的点(x,y)的坐标满足y=x2,则二次函数y=x2图象上的点组成的集合表示为{(x,y)|y=x2};(2)数轴上离原点的距离大于6的点组成的集合等于绝对值大于6的实数组成的集合,则数轴上离原点的距离大于6的点组成的集合表示为{x∈R||x|>6}; (3)不等式x-7<3的解是x<10,则不等式x-7<3的解集表示为{x|x<10}.点评:本题主要考查集合的描述法表示.描述法适用于元素个数是有限个并且较多或无限个的集合.用描述法表示集合时,集合元素的代表符号不能随便设,点集的元素代表符号是(x,y),数集的元素代表符号常用x.集合中元素的公共特征属性可以用文字直接表述,最好用数学符号表示,必须抓住其实质.变式训练用描述法表示下列集合:(1)方程2x+y=5的解集;(2)小于10的所有非负整数的集合;(3)方程ax+by=0(ab≠0)的解;(4)数轴上离开原点的距离大于3的点的集合;(5)平面直角坐标系中第Ⅱ、Ⅳ象限点的集合;(6)方程组⎩⎨⎧==+1y -x 1,y x 的解的集合;(7){1,3,5,7,…};(8)x 轴上所有点的集合;(9)非负偶数;(10)能被3整除的整数.解:(1){(x,y)|2x+y=5};(2){x|0≤x<10,x∈Z };(3){(x,y)|ax+by=0(ab≠0)};(4){x||x|>3};(5){(x,y)|xy<0};(6){(x,y)|⎩⎨⎧==+1y -x 1y x };(7){x|x=2k-1,k ∈N *};(8){(x,y)|x ∈R ,y=0};(9){x|x=2k,k ∈N };(10){x|x=3k,k ∈Z }.知能训练课本P 5练习1、2.【补充练习】1.下列对象能否组成集合:(1)数组1、3、5、7;(2)到两定点距离的和等于两定点间距离的点;(3)满足3x-2>x+3的全体实数;(4)所有直角三角形;(5)美国NBA的著名篮球明星;(6)所有绝对值等于6的数;(7)所有绝对值小于3的整数;(8)中国男子足球队中技术很差的队员;(9)参加2008年奥运会的中国代表团成员.答案:(1)(2)(3)(4)(6)(7)(9)能组成集合,(5)(8)不能组成集合.2.(口答)说出下面集合中的元素:(1){大于3小于11的偶数};(2){平方等于1的数};(3){15的正约数}.答案:(1)其元素为4,6,8,10;(2)其元素为-1,1;(3)其元素为1,3,5,15.3.用符号∈或∉填空:(1)1______N,0______N,-3______N,0.5______N,2______N;(2)1______Z,0______Z,-3______Z,0.5______Z,2______Z;(3)1______Q,0______Q,-3______Q,0.5______Q,2______Q;(4)1______R,0______R,-3______R,0.5______R,2______R.答案:(1)∈∈∉∉∉(2)∈ ∈ ∈ ∉ ∉(3)∈ ∈ ∈ ∈ ∉(4)∈ ∈ ∈ ∈ ∈4.判断正误:(1)所有属于N 的元素都属于N *. ( )(2)所有属于N 的元素都属于Z . ( )(3)所有不属于N *的数都不属于Z . ( )(4)所有不属于Q 的实数都属于R . ( )(5)不属于N 的数不能使方程4x=8成立. ( ) 答案:(1)× (2)√ (3)× (4)√ (5)√5.分别用列举法、描述法表示方程组⎩⎨⎧==+273y -2x 2,y 3x 的解集.解:因⎩⎨⎧==+273y -2x 2,y 3x 的解为⎩⎨⎧==-7.y 3,x用描述法表示该集合为{(x,y)|⎩⎨⎧==+273y -2x 2y 3x };用列举法表示该集合为{(3,-7)}.拓展提升问题:集合A={x|x=a+2b,a ∈Z ,b ∈Z },判断下列元素x=0、121-、231-与集合A 之间的关系.活动:学生先思考元素与集合之间有什么关系,书写过程,将元素x 化为a+2b 的形式,再判断a 、b 是否为整数.描述法表示集合的优点是突出显示了集合元素的特征,那么判断一个元素是否属于集合时,转化为判断这个元素是否满足集合元素的特征即可.解:由于x=a+b 2,a ∈Z ,b ∈Z ,∴当a=b=0时,x=0.∴0∈A. 又121-=2+1=1+2,当a=b=1时,a+b2=1+2,∴121-∈A. 又231-=3+2,当a=3,b=1时,a+b2=3+2,而3∉Z, ∴231-∉A.∴0∈A,121-∈A,231-∉A.点评:本题考查集合的描述法表示以及元素与集合间的关系. 课堂小结本节学习了:(1)集合的概念;(2)集合的表示法;(3)利用列举法和描述法表示集合的步骤.作业课本P 11习题1.1A 组2、3、4.设计感想集合语言是现代数学的基本语言,在高中数学课程中,它也是学习、掌握和使用数学语言的基础.由于集合的概念较难理解,因此设计时采用渐进式学习,而集合的列举法和描述法的形式比较容易接受,在设计时注重让学生自己学习,重点引导学生学习这两种方法的应用.同时通过。
人教版高中数学必修1精品教案(整套)
人教版高中数学必修1精品教案(整套)课题:集合的含义与表示(1)课型:新授课教学目标:(1)了解集合、元素的概念,体会集合中元素的三个特征;(2)理解元素与集合的“属于”和“不属于”关系;(3)掌握常用数集及其记法;教学重点:掌握集合的基本概念;教学难点:元素与集合的关系;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流;(3)非负奇数;(4)方程210x+=的解;(5)某校2007级新生;(6)血压很高的人;(7)著名的数学家;(8)平面直角坐标系内所有第三象限的点(9)全班成绩好的学生。
对学生的解答予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
(4)集合相等:构成两个集合的元素完全一样。
5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:a∉A例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A4∉A,等等。
人教版高一数学必修一全套教案
1.1.1集合的含义与表示(一)【课型】新授课【教学目标】(1)了解集合、元素的概念,体会集合中元素的三个特征;(2)理解元素与集合的“属于”和“不属于”关系;(3)掌握常用数集及其记法;【教学重点】掌握集合的基本概念;【教学难点】元素与集合的关系;【教学过程】一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-5内容二、新课教学(一)集合的有关概念1.一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。
思考1:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流;(3)非负奇数;x+=的解;(4)方程210(5)某校2007级新生;(6)血压很高的人;(7)著名的数学家;(8)平面直角坐标系内所有第三象限的点(9)全班成绩好的学生。
对学生的解答予以讨论、点评,进而讲解下面的问题。
2.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
(4)集合相等:构成两个集合的元素完全一样。
3.元素与集合的关系;(1)如果a是集合A的元素,就说a属于A,记作:a∈A(2)如果a不是集合A的元素,就说a不属于A,记作:a∉A例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A,4∉A,等等。
4.集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C…表示;集合的元素用小写的拉丁字母a,b,c,…表示。
新课标人教A版高中数学必修1全册教案完整版
第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。
高中数学必修1教案 最新人教版高一数学必修一教案(大全(优秀11篇)
高中数学必修1教案最新人教版高一数学必修一教案(大全(优秀11篇)高中数学必修一教案全套篇一本节课力的合成,是在学生了解力的基本性质和常见几种力的基础上,通过等效替代思想,研究多个力的合成方法,是对前几节内容的深化。
本节重点介绍力的合成法则——平行四边形定则,但实际这是所有矢量运算的共同工具,为学习其他矢量的运算奠定了基础。
更重要的是,力的合成是解决力学问题的基础,对今后牛顿运动定律、平衡问题、动量与能量问题的理解和应用都会产生重要影响。
因此,这节课承前启后,在整个高中物理学习中占据着非常重要的地位。
二、教学目标定位为了让学生充分进行实验探究,体验获取知识的过程,本节内容分两课时来完成,今天我说课的内容为本节内容的第一课时。
根据上述教材分析,考虑到学生的实际情况,在本节课的教学过程中,我制定了如下教学目标:一、知识与技能.理解合力、分力、力的合成的概念。
理解力的合成本质上是从等效的角度进行力的替代。
.探究求合力的方法——力的平行四边形定则,会用平行四边形定则求合力。
二、过程与方法.通过学习合力和分力的概念,了解物理学常用的方法——等效替代法。
.通过实验探究方案的设计与实施,体验科学探究的过程。
三、情感态度与价值观.培养学生的合作精神,激发学生学习兴趣,形成良好的学习方法和习惯。
.培养认真细致、实事求是的实验态度。
根据以上分析确定本节课的重点与难点如下:一、重点.合力和分力的概念以及它们的关系。
.实验探究力的合成所遵循的法则。
二、难点平行四边形定则的理解和运用。
三、重、难点突破方法——教法简介本堂课的重、难点为实验探究力的合成所遵循的法则——平行四边形定则,为了实现重难点的突破,让学生真正理解平行四边形定则,就要让学生亲自体验规律获得的过程。
因此,本堂课在学法上采用学生自主探究的实验归纳法——通过重现获取知识和方法的思维过程,让学生亲自去体验、探究、归纳总结。
体现学生主体性。
实验归纳法的步骤如下。
新人教版高中数学必修一全套教案
新人教版高中数学必修一全套教案第一章集合与函数概念§1.1集合1.1.1集合的含义与表示(第一课时)教学目标:1.理解集合的含义。
2.了解元素与集合的表示方法及相互关系。
3.熟记有关数集的专用符号。
4.培养学生认识事物的能力。
教学重点:集合含义教学难点:集合含义的理解教学方法:尝试指导法教学过程:引入问题(I)提出问题问题1:班级有20名男生,16名女生,问班级一共多少人?问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?讨论问题:按小组讨论。
归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(板书标题)。
复习问题x-<问题3:在小学和初中我们学过哪些集合?(数集,点集)(如自然数的集合,有理数的集合,不等式73的解的集合,到一个定点的距离等于定长的点的集合,到一条线段的两个端点距离相等的点的集合等等)。
(II)讲授新课1.集合含义通过以上实例,指出:(1)含义:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。
说明:在初中几何中,点,线,面都是原始的,不定义的概念,同样集合也是原始的,不定义的概念,只可描述,不可定义。
(2)表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
问题4:由此上述例中集合的元素分别是什么?2. 集合元素的三个特征由以上四个问题可知,集合元素具有三个特征:(1)确定性:设A是一个给定的集合,a是某一具体的对象,则a或者是A的元素,或者不是A的元素,两种情况必有一种而且只有一种成立。
如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)若a是集合A中的元素,则称a属于集合A,记作a∈A;若a不是集合A的元素,则称a不属于集合A,记作a∉A。
新课标人教版实验高一数学必修1A教案(全知识点+典型例题讲解)
高中数学必修1A(人教实验版)目录§1集合 (3)§2函数及其表示 (10)§3函数的基本性质 (16)§4指数与指数函数 (22)§5对数与对数函数 (28)§6函数的应用 (34)§1集合一、一周知识概述本周主要学习了集合含义与表示,集合基本关系,集合基本运算三个方面,集合表示法一般含有列举法和描述法两种,通过学习要了解这两种方法的区别与联系,在此之外还学习了集合间的包含关系与相等关系,以及集合间的并集、交集、补集的含义,通过本部分的学习,同学们要了解集合的含义,能用Venn图表示集合的关系及运算。
二、重难点知识归纳(一)元素与集合的含义元素: 研究的对象集合: 一些元素组成的总体(简称集)属于: 如果a是集合A的元素,就说a属于(belong to)集合A,记作;如果a不是集合A中的元素,就说a不属于(not belong to)集合A,记作。
(二)列举法与描述法列举法: 把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.描述法: 用集合所含元素的共同特征表示集合的方法称为描述法.在学习过程中,我们要学会如何选择表示法表示集合,列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法。
一般情况下,对有限集,在元素不太多的情况下,宜采用列举法,它具有直观明了的特点;对无限集,一般采用描述法表示。
(三)子集、真子集、空集子集: 一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集(subset),记作(或),读做“A包含于B”(或“B包含A”).真子集: 如果集合,但存在元素,且,我们称集合A是集合B的真子集(proper subset),记作(或).空集: 不含任何元素的集合叫做空集(empty set),记作,并规定:空集是任何集合的子集Venn图: 在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn图.学习这几个概念时,应注意以下几点:①若集合A是集合B的真子集,那么集合A必是集合B的子集,反之则不一定。
人教版高一数学必修一全套教案
1.1.1集合的含义与表示(一)【课型】新授课【教学目标】(1)了解集合、元素的概念,体会集合中元素的三个特征;(2)理解元素与集合的“属于”和“不属于”关系;(3)掌握常用数集及其记法;【教学重点】掌握集合的基本概念;【教学难点】元素与集合的关系;【教学过程】一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-5内容二、新课教学(一)集合的有关概念1.一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。
思考1:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流;(3)非负奇数;x+=的解;(4)方程210(5)某校2007级新生;(6)血压很高的人;(7)著名的数学家;(8)平面直角坐标系内所有第三象限的点(9)全班成绩好的学生。
对学生的解答予以讨论、点评,进而讲解下面的问题。
2.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
(4)集合相等:构成两个集合的元素完全一样。
3.元素与集合的关系;(1)如果a是集合A的元素,就说a属于A,记作:a∈A(2)如果a不是集合A的元素,就说a不属于A,记作:a∉A例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A,4∉A,等等。
4.集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C…表示;集合的元素用小写的拉丁字母a,b,c,…表示。
人教版高一必修1数学教案:精品全套讲解
人教版高一必修1数学教案:精品全套讲解第一章:函数与导数教学目标•了解函数的概念和性质•掌握初等函数的概念及其图像特征•理解导数的概念和基本性质•学会求函数的导数及应用教学时数:8课时教学内容1.函数的概念和性质–函数的定义:自变量、因变量、定义域、值域–函数的性质:单调性、奇偶性、周期性2.初等函数的概念及其图像特征–指数函数–对数函数–幂函数–三角函数–反三角函数3.导数的概念和基本性质–导数的定义–导数的基本计算法则–导数的几何意义:切线和法线4.求函数的导数及应用–常数函数、幂函数、指数函数和对数函数的导数–三角函数和反三角函数的导数–复合函数的求导–高阶导数的定义和计算教学方法1.探究法:引导学生通过实例观察和分析,总结函数和导数的性质。
2.讲授法:通过讲解和示范,解释函数和导数的概念和计算方法。
3.练习法:让学生进行练习题,巩固所学内容。
4.演示法:利用计算机软件、动画等多媒体手段,展示函数和导数的图像和计算过程。
教学资源•教科书:人教版高一数学必修1•多媒体教学软件:PPT、Geogebra、Wolfram Alpha 等教学评估1.课堂练习:通过课堂练习,检验学生对函数和导数的理解情况。
2.作业批改:批改学生完成的作业,纠正他们的错误并给予指导。
3.小组合作项目:让学生分小组,进行关于函数和导数的探究性学习任务,评估他们的合作和表现。
教学反思本章内容较为抽象,学生对函数和导数的概念可能不容易理解。
因此,在教学过程中要注意通过实际例子和图像来帮助学生进行具体的分析和推理。
同时,巩固练习的环节也需要加强,帮助学生巩固所学的知识和技能。
在评估环节,要注重学生的合作和表现,引导他们通过合作和交流来提高对函数和导数的理解能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学人教版教案教师资格试讲必备课题:§1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。
另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),收集于网络,如有侵权请联系管理员删除也简称集。
3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A 的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作∈a∉A(或a A)(举例)6.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
(1)列举法:把集合中的元素一一列举出来,写在大括号内。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;例1.(课本例1)思考2,引入描述法说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
(2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变收集于网络,如有侵权请联系管理员删除化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…;例2.(课本例2)说明:(课本P5最后一段)思考3:(课本P6思考)强调:描述法表示集合应注意集合的代表元素{(x,y)|y= x2+3x+2}与{y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。
辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。
下列写法{实数集},{R}也是错误的。
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(三)课堂练习(课本P6练习)三、归纳小结本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。
四、作业布置书面作业:习题1.1,第1- 4题五、板书设计(略)课题:§1.2集合间的基本关系教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课型:新授课教学目的:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用Venn图表达集合间的关系;(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn图表达集合间的关系。
收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除教学难点:弄清元素与子集 、属于与包含之间的区别;教学过程:六、 引入课题1、 复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N ;(2);(3)-1.5 R2、 类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)七、 新课教学(一) 集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:)(A B B A ⊇⊆或读作:A 包含于(is contained in )B ,或B 包含(contains )A 当集合A 不包含于集合B 时,记作A B用Venn 图表示两个集合间的“包含”关系)(A B B A ⊇⊆或(二)A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即 ⎩⎨⎧⊆⊆⇔=AB B A B A 练习结论:任何一个集合是它本身的子集(三) 真子集的概念若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper subset )。
⊆收集于网络,如有侵权请联系管理员删除记作: A B (或B A )读作:A 真包含于B (或B 真包含A )举例(由学生举例,共同辨析)(四) 空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(empty set ),记作:∅规定: 空集是任何集合的子集,是任何非空集合的真子集。
(五) 结论:○1A A ⊆ ○2B A ⊆,且C B ⊆,则C A ⊆ (六) 例题(1)写出集合{a ,b}的所有的子集,并指出其中哪些是它的真子集。
(2)化简集合A={x|x-3>2},B={x|x ≥5},并表示A 、B 的关系;(七) 课堂练习(八) 归纳小结,强化思想两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;(九) 作业布置1、书面作业:习题1.1 第5题2、 提高作业:○1 已知集合}5|{<<=x a x A ,x x B |{=≥}2,且满足B A ⊆,求实数a 的取值范围。
○2 设集合}{}{}{矩形平行四边形四边形===,C ,B A , }{正方形=D ,试用Venn 图表示它们之间的关系。
板书设计(略)课题:§1.3集合的基本运算教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
课型:新授课教学重点:集合的交集与并集、补集的概念;教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;教学过程:八、引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P9思考题),引入并集概念。
九、新课教学1.并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A 与B的并集(Union)记作:A∪B 读作:“A并B”即:A∪B={x|x∈A,或x∈B}Venn图表示:说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。
例题(P9-10例4、例5)说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。
问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除部分)还应是我们所关心的,我们称其为集合A 与B 的交集。
2. 交集一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集(intersection )。
记作:A ∩B读作:“A 交B ” 即: A ∩B={x|∈A ,且x ∈B}交集的Venn 图表示说明:两个集合求交集,结果还是一个集合,是由集合A 与B 的公共元素组成的集合。
例题(P 9-10例6、例7)拓展:求下列各图中集合A 与B 的并集与交集说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集3. 补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U 。
补集:对于全集U 的一个子集A ,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementary set ),简称为集合A 的补集,记作:C U A即:C U A={x|x ∈U 且x ∈A}A收集于网络,如有侵权请联系管理员删除 补集的Venn 图表示说明:补集的概念必须要有全集的限制例题(P 12例8、例9)4. 求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法。
5. 集合基本运算的一些结论:A ∩B ⊆A ,A ∩B ⊆B ,A ∩A=A ,A ∩∅=∅,A ∩B=B ∩AA ⊆A ∪B ,B ⊆A ∪B ,A ∪A=A ,A ∪∅=A,A ∪B=B ∪A(C U A )∪A=U ,(C U A )∩A=∅若A ∩B=A ,则A ⊆B ,反之也成立若A ∪B=B ,则A ⊆B ,反之也成立若x ∈(A ∩B ),则x ∈A 且x ∈B若x ∈(A ∪B ),则x ∈A ,或x ∈B6. 课堂练习7. (1)设A={奇数}、B={偶数},则A ∩Z=A ,B ∩Z=B ,A ∩B=∅8. (2)设A={奇数}、B={偶数},则A ∪Z=Z ,B ∪Z=Z ,A ∪B=Z9. ___;__________C B A _____,__________C B A }25x 0x |x {C }3x 1|x {B }2x 4|x {A )4(__________B A }Z 21m |m {B }Z 2n |n {A )3(==≥≤=≤≤-=≤≤-==∈+=∈= 那么,或,,集合,则,集合 十、归纳小结(略)十一、作业布置3、书面作业:P13习题1.1,第6-12题4、提高内容:(1)已知X={x|x2+px+q=0,p2-4q>0},A={1,3,5,7,9},B={1,4,7,10},且X=∅=,试求p、q;AXBX,(2)集合A={x|x2+px-2=0},B={x|x2-x+q=0},若A B={-2,0,1},求p、q;(3)A={2,3,a2+4a+2},B={0,7,a2+4a-2,2-a},且A B ={3,7},求B课题:§1.2.1函数的概念教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学过程:十二、引入课题1.复习初中所学函数的概念,强调函数的模型化思想;2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国2003年4月份非典疫情统计:收集于网络,如有侵权请联系管理员删除3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.十三、新课教学(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题1.求函数定义域课本P20例1解:(略)说明:收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除○1 函数的定义域通常由问题的实际背景确定,如果课前三个实例; ○2 如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3 函数的定义域、值域要写成集合或区间的形式. 巩固练习:课本P 22第1题 2.判断两个函数是否为同一函数课本P 21例2 解:(略)说明:○1 构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。