3.3火焰探测器
建筑工程施工现场消防安全技术规范文
建筑工程施工现场消防安全技术规范文1. 引言本文旨在规范建筑工程施工现场的消防安全管理,保障工地人员生命财产安全,防止火灾事故的发生。
施工单位应按照本规范进行组织和实施消防安全工作。
2. 施工现场消防设施规划与布置2.1 施工现场应根据工程规模和特性,制定消防设施规划,并合理布置各类消防设备。
2.2 消防水源应保证充足,并配置消防水泵、消防水枪等必要设备。
2.3 施工现场应设立合理的消防通道,保证人员疏散和消防车辆通行。
2.4 消防设施的安装应符合相关标准,保证其可靠性和有效性。
3. 施工现场消防设备配置3.1 施工现场应根据工程性质,配置适当的消防设备,如灭火器、灭火器具等。
3.2 消防设备应存放在易于取用的位置,并经常进行检查和维护,确保其正常使用。
3.3 施工现场各类设备、机械应安装烟雾报警器、火焰探测器等消防设备,并保持其敏感度和可靠性。
4. 施工现场消防组织与管理4.1 施工单位应制定消防管理制度,明确各岗位的责任和义务。
4.2 每个施工单位应配备专职或兼职的消防安全管理人员,并定期组织消防培训。
4.3 施工现场应张贴消防安全标志,明确消防器材的位置和使用方法。
4.4 施工单位应定期组织消防演练,检验和提升人员的应急处置能力。
5. 施工现场火源控制与危险物品管理5.1 施工现场应严格控制火源,禁止在易燃环境中使用明火。
5.2 施工单位应对易燃易爆场所和设备进行分类管理,并采取有效的防火措施。
5.3 危险物品应分类存放,标明名称、危险性和防火措施,并设置专人负责管理。
5.4 施工单位应建立健全应急救援制度,确保火灾事故及时处理和疏散人员安全。
6. 施工现场防火安全巡查与整改6.1 施工单位应定期进行消防安全巡查,重点检查易燃易爆物品存放、电气线路和用电设备的安全情况。
6.2 发现消防安全隐患应立即采取相应措施整改,并记录整改情况。
6.3 施工现场工作人员应积极参与消防安全巡查,发现问题及时报告。
火焰探测器技术参数
火焰探测器技术参数
火焰探测器是一种用于实时探测火灾的设备,其技术参数包括以下几个方面:
1. 探测器类型:火焰探测器主要分为光电式、热式、气体式和紫外线式等多种类型。
2. 探测范围:火焰探测器的探测范围一般由其安装高度和探测器灵敏度决定,可达到数十至数百平方米。
3. 灵敏度:火焰探测器的灵敏度是指其能够探测到的最小火源热辐射功率,通常在0.1-1.0kW/m2之间。
4. 响应时间:火焰探测器的响应时间是指从探测到火灾信号到发出报警信号的时间,一般在3-10秒之间。
5. 报警方式:火焰探测器的报警方式一般分为声光报警和信号输出报警两种。
6. 工作电源:火焰探测器的工作电源一般为交流电源或直流电源,也有采用电池供电的探测器。
7. 工作温度:火焰探测器的工作温度一般在-10℃至50℃之间,也有特殊要求时需进行特殊设计。
8. 抗干扰能力:火焰探测器应具备一定的抗干扰能力,能够稳定工作在复杂环境中,如强光、电磁干扰等。
以上是火焰探测器的一些技术参数,对于用户在选购、使用和维护火焰探测器时都有参考价值。
- 1 -。
3.3火灾探测器的使用与选择解析
1.相关规范 ① 为确保探测效果,探测器周围0.5m内,不应有遮挡 物。 ② 探测器至墙壁、梁边的水平距离,应 ≥ 0.5m≤ 安装
间距的一半。
2.安装间距的确定
两探测器的水平距离和垂直距离称安装间距,分 别用a和b表示。
安装间距a、b的确定方法有如下:
1)计算法 2)经验法
3.3 火灾探测器的使用与选择
(一)探测器种类的选择
1、根据火灾特点,环境条件及安装场确定。
2.根据房间高度选探测器。
1)根据火灾特点、环境条件及安装场所确定探测器种类
火灾发展的4个阶段:
前期:火灾尚未形成,少量烟,基本无损失;
早期:火灾开始形成,烟量增大,温度上升,损失较小; 中期:火灾已形成,温度很高,燃烧加速,较大损失;
(只)
注意安全修正系数的选取应根据设计者的实际经验,并 考虑发生火灾对人和财产的损失程度、火灾危险性大小、 疏散及扑救火灾的难易程度及对社会的影响大小等多种因 素。而一个探测器的保护面积和保护半径的大小与其探测 器的类型、探测区域的面积、房间高度及屋顶坡度都有一 定的联系。下表是常用的探测器保护面积、保护半径与其 他参量的相互关系。
正方形组合布置法
安装间距a=b,完全无“死角”.
例:某学院吸烟室地面面积为 9m×13.5m, 房间高度为 3m,平顶棚,属于二级保护对象,试:①确定探测器 类型;②求探测器数量;③进行探测器布置。 解:①由表查得应选感温探测器 ②k取1,由表查得A=20m2 ,R=3.6m 9 13.5 N= =6.075 只,取6只(因有些厂家 1 20 产品K可取1~1.2,为布置方便取6只)
案例1 某阶梯教室
地面面积为30m×40m,房间高4.5m,房顶坡 度为12°,二级保护建筑,请:
杜拉格火焰探测器手册
English 122009-04/2011 DURAG GmbHKollaustraße 105 · D-22453 Hamburg · Tel. +49 40 / 55 42 18-0 · Fax +49 40 / 58 41 54D-LE 603Flame SensorsD-LE 603Table of Contents1.Flame Monitoring Equipment / Burner Management Systems (1)2.UV Flame Sensors D-LE 603 UH and D-LE 603 US (1)2.1.General Information (1)2.2.Functional Description (2)2.3.Start-Up (2)2.4.Front Panel (3)2.5.Block diagram (3)2.6.Replacing UV Cells (4)3.UV Flame Sensors D-LE 603 UA and D-LE 603 UAF (6)3.1.General Information (6)3.2.Functional Description (6)3.3.Programmable Sensor Controls (7)3.4.Gain Setting (8)3.5.Test Plug for Input Gain Modulation (8)3.6.Setting the High-Pass Filter (9)3.7.Remote Change-Over (Gain Switch) (10)3.8.Block Diagram (11)4.IR Flame Sensors D-LE 603 IG and D-LE 603 IS (12)4.1.General Information (12)4.2.Functional Description (12)4.3.Programmable Sensor Controls (13)4.4.Logarithmic input amplifier (14)4.5.Setting a Brightness Threshold (15)4.6.Linear Input Amplifier (15)4.7.Gain Setting (16)4.8.Setting the Input Filter (16)4.9.Setting the High-Pass Filter (17)4.10.Block Diagram (18)5.IR Flame Sensors D-LE 603 ISE and D-LE 603 ISO (19)5.1.General Information (19)5.2.Functional Description (19)5.3.Programmable Sensor Controls (20)5.4.Gain Setting (21)5.5.Setting the High-Pass Filter (22)5.6.Block Diagram (23)6.Pulse Reduction Setting (24)7.Mounting the Flame Sensor (26)8.Mechanical Mounting System (26)9.Installation of the Flame Sensor (27)10.Safety Information (27)11.Maintenance / Service (28)12.Technical data of the D-LE 603 (28)13.Wiring Diagram (29)14.Overview of Available Models (30)15.Optional Accessories (31)16.Dimensional Drawing: D-LE 603 Flame Sensor Housing (32)17.D-LE 603.../94Ex and /95Ex Housing for Hazardous Areas .. (33)17.1.Adjusting the Flame Scanner D-LE 603.../94Ex and D-LE 603.../95Ex (34)18.D-LE 603 ... /96 Ex for Class I, Div. 2, Group A,B,C&D (35)D-LE 60319.D-LE 603 ... /97 Ex for Hazardous Areas Zone 2 . (36)20.Dimensional Drawing: D-ZS 033-I Swivel Mount (37)21. Dimensional Drawing: D-ZS 033-III Swivel Mount (38)22.Dimensional Drawing: D-ZS 133 Ball Valve (39)23.Certificates (40)23.1.ATEX Certificate (40)23.2.UL-Listing (41)23.3.CUL-Listing (41)23.4.FM-Listing (42)23.5.EC Declaration of Conformity (43)Diagrams(Fig. 1)Front panel of the D-LE 603 UH/US (3)(Fig. 2)Block diagram: D-LE 603 UH/US (3)(Fig. 3)Replacing the UV-cell in the D-LE 603 UH (4)(Fig. 4)Replacing the UV-cell in the D-LE 603 US (5)(Fig. 5)Front panel of the D-LE 603 UAF/UA (7)(Fig. 6)Gain settings on the D-LE 603 UA/UAF (8)(Fig. 7)Controls for the high-pass filter on the D-LE 603 UA/UAF (9)(Fig. 8)Example of a remote-controlled change-over in the D-LE 603 UA/UAF (10)(Fig. 9)Block diagram: D-LE 603 UA/UAF (11)(Fig. 10)Front panel of the D-LE 603 IG/IS (13)(Fig. 11)Controls for the logarithmic input amplifier on the D-LE 603 IG/IS (14)(Fig. 12)Logarithmic input curve of the D-LE 603 IG/IS (14)(Fig. 13)Controls for the linear amplifier on the D-LE 603 IS/IG (15)(Fig. 14)Controls for adjusting the high-pass filter on the D-LE 603 IG/IS (17)(Fig. 15)Block diagram: D-LE 603 IG/IS (18)(Fig. 16)Front panel of the D-LE 603 ISE/ISO (20)(Fig. 17)Gain settings on the D-LE 603 ISE/ISO (21)(Fig. 18)Controls for adjusting the high-pass filter on the D-LE 603 ISE/ISO (22)(Fig. 19)Block diagram: D-LE 603 ISE/ISO (23)(Fig. 20)Controls on the D-LE 603 UA/UAF for adjusting pulse reduction (24)(Fig. 21)Controls on the D-LE 603 IG/IS for adjusting pulse reduction (24)(Fig. 22)Controls on the D-LE 603 ISE/ISO for adjusting pulse reduction (25)(Fig. 23)D-LE 603 wiring diagram (29)(Fig. 24)Dimensional drawing: D-LE 603 flame sensor housing (32)(Fig. 25)Dimensional drawing: explosion-proof housing (33)(Fig. 26)Adjusting an explosion-proof flame sensor D-LE 603.../94Ex or D-LE 603.../95Ex .. (34)(Fig. 27)Dimensional drawing: D-LE 603.../96Ex .. (35)(Fig. 28)Dimensional drawing: D-LE 603.../97Ex .. (36)(Fig. 29)Dimensional drawing: D-ZS 033-I swivel mount (37)(Fig. 30)Dimensional drawing: D-ZS 033-III swivel mount (38)(Fig. 31)Dimensional drawing: D-ZS 133 ball valve (39)D-LE 603Tables(Table 1) Determining pulse reduction via the voltage signal from the test plug (25)(Table 2)Various flame sensor cables (copper cable) (27)(Table 3)Selection Criteria for the D-LE 603 (30)(Table 4)Overview of available models (30)D-LE 603 Page 11. Flame Monitoring Equipment / Burner Management Systems DURAG flame monitoring and burner management equipment are safety systems which consist of a controller and an optical flame sensor. These devices are suitable and approved for monitoring single and multi-burner applications of varying capacities, using a variety of fuels and combustion techniques. In order that the flame monitoring or burner management system may be adapted to local conditions, different ultraviolet (UV) and infrared (IR) flame sensors are available. If a parallel mounting of two flame sensors is necessary at the site (due to heavy spectral fluctuations in the flame or a need to monitor a pilot and primary flame), a combination of UV/IR, IR/IR or UV/UV flame sensors may be used.The D-UG 110/120/660 and D-GF 150/200 controllers, as well as the D-LE 103 and D-LE 603 flame sensors, feature self-checking circuitry and function according to the European Standards EN 230 (oil) and EN 298 (gas). They also comply with technical guidelines TRD 411-414 and 604 for intermittent, continuous and 72-hour operation.All flame sensors in the D-LE 103 and D-LE 603 series can operate with DURAG controllers and thanks to common interfaces.As stipulated in EN 298, the union nut on the D-LE 103/603 series flame sensors is equipped with a set screw to ensure that the sensor remains securely fastened in place.2. UV Flame Sensors D-LE 603 UH and D-LE 603 US2.1. General InformationThe UV flame sensor D-LE 603 US/UH has a gas-filled discharge tube with a pulse amplifier for detection in the ranges of 190-270 nm (D-LE 603 UH) and 190-280 nm (D-LE 603 US). Its spectral sensitivity lies in the UV-C range. Since energy in this spectral range can only be produced by flames, even in combustion chambers with extremely high temperatures, the glowing walls of a combustion chamber will not simulate a flame signal. The flame sensor has an optical viewing angle of 6° and therefore may be focused very effectively on the flame. When positioning the flame sensor, the bottom third of the flame (the flame’s root) must be considered, since it generates the greatest amount of UV energy.For self-checking purposes, an electromagnetic shutter in the D-LE 603 UH/US interrupts the path to the UV-cell. During this time, the flame sensor cannot generate a flame signal (pulse frequency).The D-LE 603 UH/US is specially suited for monitoring gas flames. Oil flames that are bright yellow or white in colour also can be detected and monitored by these sensors. However, if the colour of the oil flame is more orange or red, the use of a UV flame sensor is inadvisable. An IR flame sensor is better suited for such a task.It is vital that the sensor’s view of the flame be kept free at all times of oil mist, water vapour and dust particles. UV-C radiation may otherwise be partially or even totally absorbed.During oil operation, the ignition point of the flame may lift off slightly from the burner mouth. The resulting oil mist can restrict the view of the flame. This may be counteracted, however, by arranging the sighting tube longitudinally to the flame and turning the flame sensor more to the outside (i.e., from the core air to the secondary air).The use of a highly sensitive plate UV cell in the D-LE 603 US makes it possible to substantially increase responsiveness in this spectral range. Flames emitting low levels of energy, like mixed-gas flames or those of a blast furnace, may be reliably monitored.The D-LE 603 US should not be installed in a multi-burner system whose flames are high in UV intensity, since the sensor’s high sensitivity may cause it to display a strong ambient light signal from the flame of a neighbouring burner.Page 2 D-LE 6032.2. Functional DescriptionThe UV photocell in the D-LE 603 UH/US consists of a gas-filled discharge tube. The voltage level needed to trigger a discharge changes according to the level of radiation striking the tube. As UV intensity increases, the voltage level decreases, resulting in more frequent discharges from the UV-photocell. Every discharge generates a spike pulse which is standardised to a length of 125 µs using a monostable trigger circuit. These standardised pulses are then transmitted via the output amplifier to the controller or burner management system for evaluation.The electromagnetic shutter is a fail-safe measure which checks the UV photocell once the controller indicates a flame signal. As long as the flame recognition threshold of the controller is not exceeded, the shutter will remain open. Once flame is present, the UV photocell is blacked out every second for 0.2 seconds and checked for spontaneous ignition.2.3. Start-UpThe D-LE 603 UH/US does not feature any controls that require adjustment. To aid in aligning the sensor, a red signal diode and a jack for connecting the D-ZS 087-20 digital display are supplied (fig. 1). The cover on the housing must be opened in order to connect the digital display.If the digital display is connected and the burner is in operation, the sensor can be easily aligned. This is achieved by carefully moving the sensor, attached to the D-ZS 033 ball joint flange, to the position at which the highest pulse display (flame signal) is received. When performing the alignment, it is recommended that the flame recognition threshold on the controller be set to its lowest level (threshold level 9 for the D-UG 110/120 and D-GF 150/200; level 99 for the D-UG 660).The built-in red LED serves also to display the flame signal generated by the sensor. The brightness of the LED will increase as the pulse frequency increases. Once the controller has signalled flame ON, the LED will blink (the LED will go dark for 0.2 seconds every second). This indicates that the self-check function of the sensor is operating properly. If the LED remains illuminated continuously, either the flame recognition threshold has not been exceeded or the self-check has recognised a system error (e.g., defective shutter, shutter drive or UV cell).D-LE 603 Page 3 2.4. Front Panel L E 603-02-003 (Fig. 1)Front panel of the D-LE 603 UH/USTo optimally align the flame sensor with the combustion zone exhibiting the highest level of UV intensity, the D-ZS 087-20 digital display may be connected after removing the cover on the housing. The red “Signal” LED also serves to display the flame signal being generated.2.5. Block diagramShutter(Fig. 2)Block diagram: D-LE 603 UH/USPage 4 D-LE 603 2.6. Replacing UV CellsIf, after lengthy period of operation, a flame sensor no longer displays sufficient response sensitivity, or the flame monitor shuts down due to a sensor error, the cause may be an old UV cell. In this case, the UV cell can be replaced. The procedure below describes how to replace the UV cell (see figs. 3, 4). Instructions for Replacing the UV Cell (P603.1) in the D-LE 603:1. Loosen the four Allen screws (M5x10).2. Remove the sensor core from the housing and unscrew the three machine screws (M3x6)used to mount the D-LE 603 UH No. 1 printed circuit board.3. Carefully unplug the circuit board.4. Remove the P603.1 UV cell and insert the new cell. The red point on the UV cell (anode)must again be facing in the same direction.5. Loosen the M4x10 mm setscrew (2 mm Allen screw), such that the centring piece isloose. The UV cells have a certain degree of tolerance in terms of their overall height.6. Carefully plug the circuit board back into the sensor core and tighten it in place with thethree M3x6 mm machine screws.7. Place the centring piece back over the UV cell and fix it in place with the M4x10 mmsetscrew.8. Insert the sensor electronics back into the housing. Be careful not to pinch theconnection cable inside the housing, and be certain the front panel with the jack for the D-ZS 087-20 faces that side of the housing with the removable cover. Reassemble thehousing by tightening the four M5x10 Allen screws.(Fig. 3) Replacing the UV-cell in the D-LE 603 UHInstructions for Replacing the UV Cell (P622) in the D-LE 603 US:1. Loosen the four Allen screws (M5x10).2. Remove the sensor core from the housing, loosen the M4x10 setscrew (2 mm Allenscrew) and push up the centring piece.3. Pull out the P622 UV cell and insert the new UV cell. The red point on the UV cell (anode)must again be facing in the same direction (toward the optics).4. Carefully push the centring piece back onto the UV cell and tighten it in place with theM4x10 mm setscrew.5. Insert the sensor electronics back into the housing. Be careful not to pinch the connectioncable inside the housing, and be certain the front panel with the jack for the D-ZS 087-20faces that side of the housing with the removable cover. Reassemble the housing bytightening the four M5x10 Allen screws.4 mm AllenScrew (M5x10)(Fig. 4) Replacing the UV-cell in the D-LE 603 US3. UV Flame Sensors D-LE 603 UA and D-LE 603 UAF3.1. General InformationThe D-LE 603 UA/UAF are UV-sensitive flame sensors that can be used to monitor flames burning a variety of fuels. Their spectral sensitivities cover the UV-A and UV-B ranges (wavelengths of280-410 nm for the D-LE 603 UAF, and 190-520 nm for the D-LE 603 UA). These sensors only evaluate the flame signal generated by the modulation of the flame radiation, which occurs during combustion in the above spectral ranges. It does evaluate the constant UV-radiation. Due to the confined spectral sensitivity range for simultaneously analysing flicker frequencies, the D-LE 603 UA/UAF achieves a very high rate of single flame selectivity.If the sensor is installed in a multi-fuel application and the integrated remote change-over feature (gain switch) is required for input amplification, a D-UG 660 controller must be used, since it is equipped witha range-selection control.3.2. Functional DescriptionThe detectors installed in the flame sensor are UV-sensitive semiconductors, which generate a detector current in proportion to the constant and modulated flame radiation intensity. This current reaches the input amplification via a built-in electronic shutter, which interrupts the detector current once every second as a self-checking feature.The preamplified signal arrives at one of two independently programmable ranges (A or B) thanks to the remote change-over function. Each range features four amplification settings (hook switches 1-4) and three high-pass filter settings ≥30 Hz, ≥70 Hz and ≥120 Hz (hook switches 70 Hz and 120 Hz). If the range selection function on the D-UG 660 controller is used to activate the remote change-over, a switch will occur from range A to range B.The programmable AC voltage amplifier of the activated range processes only the alternating signals occurring due to the modulation of the flame. Those frequency portions lying below the setting of the high-pass filter are then strongly suppressed. Rectification with a subsequent voltage-frequency conversion generates a pulse frequency (flame signal) that is transmitted to the controller for evaluation.3.3. Programmable Sensor ControlsTo adapt to characteristics found in a diversity of burners, burner arrangements and fuels, theD-LE 603 UA/UAF flame sensor features programmable controls. The flame sensors are delivered from the factory with the following settings (unless a special request was made in advance): •Amplification setting:.................... R ange A Gain 2 Range B Gain 3•Filter setting: ................................ Both 70 Hz•Pulse reduction potentiometer: .... N o pulse reduction (voltage at the test plug approx. 5.5 VDC) For site-specific modifications of the above settings, the housing cover on the flame sensor must be opened.!T he flame sensor must be voltage-free prior to switching the hook switches.Yellow LED indicatesselected rangeOutlet M1 for measur-ing amplification levelinput amplifier (Fig. 5) Front panel of the D-LE 603 UAF/UA3.4. Gain SettingEach range (A and B) uses four amplification settings (see fig. 6). The desired setting is achieved by hooking one of the hook switches 1-4. Gain setting 1 activates the smallest amplification, while setting 4 activates the largest. Only one hook switch for the gain setting may be activated for each range. Depending on the amount of ambient light and the intensity of the flame signal, the gain should be set such that the ambient light signal is a low as possible while the flame signal is still sufficiently high. It is of no use if the gain is reduced to a point at which the ambient light goes back to zero, but the flame signal cannot reliably exceed the flame recognition threshold of the controller throughout the entire load range of the burner. Please see the section entitled “Setting the Flame Recognition Threshold” in the operations manual of the appropriate controller.If there is no ambient light displayed at even the highest gain setting, it is not necessarily best, for reasons of availability, to choose this particular setting. The amplification should be reduced to the lowest possible level at which any impermissible lift-off of the flame from the burner is still recognised and reported. This must also be done in connection with the flame recognition threshold of the controller.Using the remote change-over feature on the flame sensor, the operator can switch to the preset amplification of range B at a any desired point in time (e.g., change in fuel type, combustion chamber temperature rises to particular temperature, recirculated flue gas introduced into fuel mix). The yellow LED will illuminate when the remote change-over is activated.If the remote change-over is used, range A must, for safety reasons, always be set to a lower gain setting than range B.(Fig. 6) Gain settings on the D-LE 603 UA/UAF3.5. Test Plug for Input Gain ModulationTo avoid over-amplification of the input stage, the “input gain modulation” test plug M1 (see fig. 6) is available for test measurements. When the flame sensor optics are covered, a 9V ± 1 V DC voltage signal must be measured at the test plug. If the flame sensor is exposed to UV-radiation, the voltage signal will decrease, inversely proportional to the incidental radiation. If this voltage signal drops to ≤2V, the input stage is over-modulated. If the D-LE 603 UA has been installed, the operator may instead wish to use a D-LE 603 UAF. Otherwise, a reduction in the amplification can be carried out at the factory.3.6. Setting the High-Pass FilterA further aid in flame selection is the frequency suppression setting. Experience has shown that flicker frequencies are highest in the flame's root (≥ 70 Hz) and decrease towards the flame tip (≤ 70 Hz). Flame flicker frequencies in the lower frequency range of the detector current generated by the flame can be suppressed using the hook switches for the filtering stage (high-pass filter). If none of the hook switch pairs have been activated, only those flicker frequency portions <30 Hz are suppressed. If a higher level of ambient light makes it necessary to suppress flicker frequencies up to 70 Hz (or 120 Hz), the corresponding pair of hook switches must be hooked (70 or 120 Hz, see fig. 7).(Fig. 7) Controls for the high-pass filter on the D-LE 603 UA/UAFFor selective flame monitoring, it is very important that the correct viewing position is chosen and that the flame sensor is properly aligned with the flame it is to monitor. These are to be determined such that the flame sensor is aligned with the root of the flame, where higher flicker frequencies are found and a high, stable flame signal (pulse frequency) is generated, even if the high-pass filter is set to 70 or 120 Hz. If the burner has been shut off but light from the flames of neighbouring burners (ambient light) is picked up by the sensor, a high-pass filter setting of 70 or 120 Hz is in general enough to greatly suppress it, since such ambient light is typically low in frequency (≤70 Hz).Different filter settings may be chosen for the two ranges, which as mentioned can be activated at a desired point in time via the remote change-over function. If both ranges have the same gain setting, and only distinguish themselves with respect to the high-pass filter setting, the higher frequency must, for safety reasons, be set in range A.!To maintain the fail-safe nature of the sensor, all hook switches must be switched in pairs. More than one pair of hook switches may never be engaged simultaneously.!The higher the filter frequency setting, the lower the pulse rate output from the flame sensor, since fewer portions of the flame are being evaluated.3.7. Remote Change-Over (Gain Switch)In burners using multiple fuels (e.g., combined oil/gas burners), the intensity of the flame may vary greatly. The flame sensors may be specifically switched to the input gain necessary for optimal monitoring of the different fuels or combustion methods.The remote change-over feature enables a switch to be made between the preset gain and filter settings in the flame sensor. Applying a voltage of +24 VDC ±20 % to the trip line of the “Remote Change-Over” will initiate a switch from range A to range B. This switching voltage can be taken from an external potentially separated DC source or the internal operating voltage of the D-UG 660 controller (U B = +20 VDC).!If the flame sensor is operated with the remote change-over feature, either the gain for range A must be less than range B, or the filter setting must be set higher than that of range B. This is necessary in case of error (interruption of the trip line) so that the least sensitive range is always active. A short-circuit in the trip line will be recognised via the fail-safe range selection of theD-UG 660.For safety reasons, the trip line for the remote change-over must be connected to a range selection input in the D-UG 660 controller. If, for example, a short circuit in the trip line leads to an unwanted remote change-over, a second range would be simultaneously selected in the controller. The simultaneous selection of several ranges is not permissible, and will trigger an shutdown (display will indicate “Range Error”). The driver of the remote change-over must correspond to DIN VDE 0116. Flame sensor input amplification, necessary perhaps due to different types of combustion, may be changed by switching the range selection in the D-UG 660 controller.(Fig. 8)Example of a remote-controlled change-over in the D-LE 603 UA/UAFThe circuit diagram in figure 8 details a remote change-over via the potential-free contacts of a burner control system. Range 1 should be selected for oil, range 2 for gas and range 3 for mixed fuel combustion. If range 2, “Gas-Fired”, were selected on the controller, the flame sensor would then automatically switch from amplification 2 / 70 Hz (range A) to the higher amplification of range B (amplification 3, filter setting 30 Hz).3.8. Block Diagram(Fig. 9) Block diagram: D-LE 603 UA/UAF4. IR Flame Sensors D-LE 603 IG and D-LE 603 IS4.1. General InformationUV flame sensors cannot be employed for flame monitoring in modern burners using special techniques to guarantee combustion with low harmful emissions. Due to delayed combustion, there may not be any UV radiation present during combustion. The zone containing UV energy may also lie outside the viewable range of the flame sensor. This also applies in most cases to coal-fired burners. IR flame sensors are therefore available for these application ranges.The IR flame sensors D-LE 603 IS and D-LE 603 IG are suitable for monitoring flames burning a variety of fuels, in a variety of burner configurations. The controls on these flame sensors may be adjusted for operation in every combustion setting. Even problematic flame signal/ambient light relationships can overcome and monitored. With the aid of built-in test plugs, the determined settings may be read or reset at any time.The spectral sensitivity of the D-LE 603 IS covers a range of 300 - 1100 nm. The D-LE 603 IG covers a range of 780 - 1800 nm. Because of its wide spectral range, the D-LE 603 IG, is able to monitor gas flames in addition to coal and oil flames.The flame sensor has a linear and a logarithmic input amplifier, which may be selected for activation using hook switches.The logarithmic input amplifier can achieve a very high level of amplification and is therefore able to monitor flames in difficult viewing positions or radiating low levels of energy. As intensity increases, the amplification is reduced according to a logarithmic response curve. If flame intensity is high, however, saturation may occur.The linear input amplifier does not attain the high amplification of the logarithmic amplifier. It instead operates at a constant amplification level over its entire range, and is not subject to saturation at high levels of intensity.4.2. Functional DescriptionThe IR-detector installed in the flame sensor generates a current proportional to the impinging radia-tion intensity of the flame. To make the sensor fail-safe, a self-check is performed by periodically interrupting this detector current with an electronic shutter. According to choice, and depending on the settings of the hook switches, the detector current is fed to the linear or logarithmic input amplifier for signal amplification. The adjustable high-pass filter only accepts the typical flame flicker frequencies of >15, >60 or >120 Hz. Through rectification and voltage-frequency conversion, this voltage signal is converted into a pulse rate, whose pulse train increases with the flame's intensity. This pulse rate is transmitted to the controller for evaluation via an output amplifier.4.3. Programmable Sensor ControlsTo adapt to characteristics found in a diversity of burners, burner arrangements and fuels, theD-LE 603 IS/IG flame sensor features programmable controls. The flame sensors are delivered from the factory with the following settings (unless a special request was made in advance): • Hook switch “LIN on”: ....................... ON • Hook switch “LOG on”: ..................... OFF • Gain setting: ..................................... 4 • Input filter: ......................................... F1 • Filter setting: ..................................... 15 Hz• Potentiometer …Pulse Reduction“: .... no pulse reduction (voltage at test plug ±. 5.5 VDC) •Brightness threshold: ........................ set to minimum (voltage at test plug M3 ± 8.5 VDC)For site-specific modifications of the above settings, the housing cover of the flame sensor must be opened.!T he flame sensor must be voltage-free prior to switching the hook switches.L E 603-11-003Gain of line channel (amplification set to 4)Input filter(Filter F1 switched on)On switch of line channel input amplifier (”On” setting)On switch of logarithmic channel input amplifier (”Off” setting)Adjustment of high-pass filter /setting f => 15 Hz)Red LED for optical indication of output pulses(Fig. 10)Front panel of the D-LE 603 IG/IS。
火焰探测器市场分析报告
火焰探测器市场分析报告1.引言1.1 概述概述火灾是一种常见的灾害事件,不仅给人们的生命和财产安全带来威胁,也给社会和经济发展带来了严重的影响。
火灾频发的现状使得火灾预防与控制成为社会各界关注的焦点。
作为火灾预防的重要组成部分,火焰探测器在防范火灾、保障人们的生命与财产安全方面发挥着至关重要的作用。
本报告将对火焰探测器市场进行详细分析,辨析市场现状、发展趋势和竞争格局,旨在为相关行业提供可靠的市场情报和参考,促进行业的可持续发展。
文章结构部分内容如下所示:1.2 文章结构本文将分为三个部分进行分析。
首先,将介绍火灾及其危害,包括火灾对人们生命和财产造成的严重影响。
其次,将对火焰探测器进行概述,包括其工作原理和应用领域。
最后,将对火焰探测器市场现状进行分析,包括市场规模、发展趋势和竞争格局。
通过这些方面的分析,我们可以更好地了解火焰探测器市场的发展趋势和未来发展方向。
1.3 目的目的:本报告旨在对火焰探测器市场进行全面的分析和研究,以便更好地了解火灾及其危害,火焰探测器的概述以及市场现状。
通过对市场发展趋势和竞争格局的分析,提出相关建议并展望未来市场的发展方向,为投资者和相关行业提供决策参考。
同时,希望通过本报告的撰写能够加深对火灾安全防护的认识,提高人们对火灾预防和应对的意识,促进火灾安全设备市场的健康发展。
1.4 总结综上所述,本报告对火焰探测器市场进行了全面的分析和研究。
通过对火灾及其危害的概述,我们了解到火灾对人们生命和财产安全造成的严重影响,进而引出了火焰探测器的重要性。
在对火焰探测器的概述中,我们介绍了其原理和分类,以及应用领域和优势。
随后通过市场现状的分析,我们了解了火焰探测器市场的规模、增长趋势以及主要的市场参与者。
在结论部分,我们对火焰探测器市场未来的发展趋势进行了分析和展望,同时对竞争格局进行了综合分析。
最后,我们提出了一些建议,希望能够为火焰探测器市场的进一步发展提供参考。
通过本报告的撰写,我们深入了解了火焰探测器市场的现状和未来趋势,对行业发展有了更清晰的认识。
3.3火灾探测器的使用与选择
1.相关规范 ① 为确保探测效果,探测器周围0.5m内,不应有遮挡
物。
② 探测器至墙壁、梁边的水平距离,应≥0.5m≤安装 间距的一半。
2.安装间距的确定 两探测器的水平距离和垂直距离称安装间距,分
别用a和b表示。
安装间距a、b的确定方法有如下:
1)计算法 2)经验法 3)查表法
②由表查得A=30m2,R=4.4m
取K=0.7,N= 83 =1.1 只,取2只 0.7 30
③采用矩形组合布置如下:
a= 8 =4 , b= 3 =3 , 布置如图所示。
2
1
校检:
R= a2 b2 =2.5 小于4.4m,满足要求。 2
例3:某锅炉房地面长为20m,宽为10m,房间高度为3.5m, 房顶坡度为12°,属于二级保护对象。试:①选探测器 类型;②确定探测器数量③进行探测器的布置。
N= 913.5 =6.075 只,取6只(因有些厂家 1 20
产品K可取1~1.2,为布置方便取6只)
③布置:采用正方形组合布置法,从中查得
a=b=4.5m,布置如图所示。
校检: R=
a2 b2 =3.18
小于3.6合理。
2
矩形组合布置法
当求得探测器的数量后,用正方形组合布置法 的a、b求法公式计算,如a≠b时可采用矩形组合布 置法。 例:某开水间地面面积为3m×8m,平顶棚,属特级保 护建筑,房间高度为2.8m,试:①确定探测器类型; ②求探测器数量;③布置探测器。 解:①由表查得应选感温探测器
定温型允许温度的较大的变化,比较稳定,但 火灾造成的损失较大,在零度以下的场所不宜 选用。
差温型适用于火灾早期报警,火灾造成损失较 小,但火灾温度升高过慢则无反应而漏报。
火焰探测器安装使用说明书
(安装、使用产品前,请先阅读本手册)A710系列火焰探测器设计手册上海翼捷工业安防技术有限公司上海安誉智能科技有限公司2008.10一、工作原理1.火焰特征1.1火焰辐射特征火焰燃烧过程释放出紫外线、可见光、红外线,其中红外部分可分为近红外、中红外、远红外三部分。
阳光、电灯、发热物体等均有热辐射,其辐射光谱随物体不同而不同,辐射光谱可能包括紫外线、红外线、可见光等1.2光谱如上图所示,自然界中按不同范围的波长分为紫外部分和红外部分,燃烧物体对应其不同波长的光谱,发出不同程度的辐射。
1.3火焰闪烁特征火焰的闪烁频率为0.5Hz – 20Hz热物体、电灯等辐射出的紫外线、红外线没有闪烁特征2.探测器工作原理2.1紫外火焰探测器2.1.1基本原理通过检测火焰辐射出的紫外线来识别火灾2.1.2紫外光谱0.18um-0.4um(180nm-400nm)太阳光中小于300nm的紫外线基本被大气层全部吸收,到达地球表面的紫外线都大于300nm2.1.3紫外探测的优缺点优点:反应速度快缺点:易受干扰2.1.4紫外火焰探测原理选用180nm-260nm的紫外传感器,对日光中的紫外线不敏感2.2双波段红外火焰探测器2.2.1基本原理通过检测火焰辐射出的红外线来识别火灾2.2.2红外光谱红外线按照波长分为近红外、中红外、远红外空气中的气体(如CO、CO2等)对特定波长的红外线具有强烈的吸收作用2.2.3双波段红外火焰探测原理选用两个波长的热释电红外传感器,来检测火焰辐射的红外线一个波长的热释电红外传感器用于检测含碳物质燃烧释放CO2引起的特定波长红外光谱的变化;一个波长的热释电传感器用于检测红外辐射的能量。
两个不同波长的传感器向结合,有效区分发热体而非火焰释放的红外线,避免误报警。
2.3三波段红外火焰探测器2.3.1基本原理通过检测火焰辐射出的红外线来识别火灾。
2.3.2红外光谱红外线按照波长分为近红外、中红外、远红外。
火焰探测器的分类及选型应用
火焰探测器的分类及选型应用摘要:火焰检测系统是一种仪器系统,能够检测火焰信号并将其发送给指定的信号控制器进行联锁或监测。
随着科技的发展,火灾探测监测技术已具有更深的技术层面。
使用各种光敏元件,例如光敏电阻、光学导管、光电电池、红外线和紫外线管来感知火焰信号,使用工业电视摄像机技术来捕捉火焰信号,以及使用各种不同的火焰检测器,例如物理、物理。
基于此,对火焰探测器的分类及选型应用进行研究,以供参考。
关键词:物质燃烧;光辐射;火焰探测器引言火灾探测器是火灾自动报警和消防系统中最重要、最重要的仪器。
现有火警系统主要配备火警、温度字段和火警。
这些火灾探测器都不能满足爆炸系统精确探测火灾的需要,不能在爆炸期间迅速有效地扑灭火焰。
矿山、油田、化石燃料容器和爆炸仓库的防火和快速抑郁问题未得到解决。
光敏火灾探测器利用火焰的光特性,通常反应非常迅速,能够快速检测外部光的变化,从而满足火灾爆炸的需要。
但是,由于日光、雷电、电磁脉冲等条件性干扰,在现有的感光火警中经常会出现误报。
1火焰探测器工作原理该平台使用的火焰探测器通常是美国DET-TRONICS公司生产的X3301多光谱红外探测器。
该探测器包含三个红外传感器及其信号处理电路,灵敏度范围为4 ~ 5 μm。
X3301包括自动光学完整性(oi)功能,该功能每分钟自动检查一次整个测试,而不会为成功或自动测试生成警告条件。
当输出小于检测范围的一半时,指示灯呈黄色。
如果光学污染是暂时的,则会自动清除oi错误条件。
如果未自动清除污染,且oi错误仍然存在,则检查可能需要清理或协助。
2红外原理首先描述燃烧过程中发射能量的火焰的主要特性,尤其是位于红外中频范围内的红外辐射。
另一个重要特征是闪电效应受风等环境条件的影响,但基本上在0.5 ~ 30hz范围内,而热辐射的红外辐射则不同于火焰。
通过上述两点,您可以区分有效和真实的火灾信号。
红外传感器使用的红外传感器通过将不同波长的红外辐射转换为不同强度的电信号,准确地识别火灾。
2024年火焰探测器市场前景分析
2024年火焰探测器市场前景分析火焰探测器是一种用于检测火灾和监测火焰的安全设备。
随着对火灾安全意识的不断提高,火焰探测器的需求量逐渐增加。
本文将对火焰探测器市场前景进行分析。
1. 市场需求火灾是一种严重的灾害,经常带来财产损失和人员伤亡。
火焰探测器作为一种关键的防火设备,在各种场所如商业建筑、住宅、工厂等都有广泛的应用需求。
随着城市化进程和工业化水平的提高,火焰探测器市场需求呈现出稳定增长的趋势。
2. 市场规模根据市场研究机构的数据,目前全球火焰探测器市场规模已经达到数十亿美元。
预计未来几年,该市场将保持每年约10%的增长率。
其中,亚洲地区是全球最大的火焰探测器市场,其市场规模和需求量增速都超过其他地区。
同时,欧洲和北美等发达地区也有相当的市场规模。
3. 市场发展趋势3.1 技术创新随着科技的不断进步,火焰探测器的技术和性能不断提升。
传统的火焰探测器一般采用光电式、电离式、热电式等原理,而新兴的技术如红外线和紫外线传感器等也逐渐应用于火焰探测器中。
这些新技术使火焰探测器在检测速度、准确率和抗干扰能力方面有了更大的突破,满足了用户对于安全性能的更高要求。
3.2 应用领域扩展除了传统的商业建筑、住宅、工厂等场所外,火焰探测器的应用领域也在不断扩展。
例如,随着电动汽车产业的快速发展,火焰探测器在电动汽车充电桩和电池组等关键部位的应用得到了广泛推广。
此外,火焰探测器在交通运输、石油化工、航空航天等领域也具备广阔的应用前景。
3.3 智能化趋势随着智能家居的兴起,火焰探测器也开始向智能化发展。
通过与其他智能设备如烟雾报警器、智能门锁等的联动,火焰探测器可以实现更加智能化的监测和报警功能。
这种智能化趋势将进一步提升火焰探测器的市场需求。
4. 市场竞争格局火焰探测器市场竞争激烈,主要厂商包括霍尼韦尔、泰科电子、通用电气等。
这些厂商在技术研发、产品质量和市场渗透能力上具备一定优势。
此外,一些新兴厂商也通过技术创新和差异化策略不断崛起。
IFR 400紧凑型火焰探测器操作手册说明书
IFR 400Content1.1 Generalaspects1.1 Introduction1.2 Warningnotes1.3 Copyrightprotection1.4 Disposalinformation1.5 Warranty1.6 Obligation of the operating company1.7 Liabilitydisclaimer1.8 Declarationofconformity1.9 Address of the manufacturer2 Safety2.1 Intendeduse2.2 Requirements on persons2.3 Safetyinstructions2.4Safetydevices2.4.1Fundamentalaspects2.4.2 Safety devices on the compactindustrial flame controller IFR 4002.5 Safety instructions in case of maintenanceand troubleshooting2.5.1 Fundamental aspects2.5.2 Electrical / electronic devices2.5.3 Testing per German Workplace SafetyOrdinance (BetrSichV)2.5.4 Safety test3 Technical data3.1 General characteristic features3.2 Electrical system, optical system, mechanical system 3.3 Weight3.4 Dimensions3.5 Block diagram IFR 4004 Transport, installation and connection4.1 Scope of delivery4.2 Packaging4.3 Shipping instructions4.4 Dimensions IFR 4004.5 Installation4.6 Connection4.6.1 Electrical connection4.6.2 Connection diagram IFR 4004.7 Storage4 4 45 5 5 567 78 8 89 9 9 10 10 10 11 11 12 12 12 13 13 13 14 14 14 14 15 15 16 16 1616Content5 Description5.1 Functional description IFR 4006 Operation of the compact flame detector IFR 400 6.1 Test of the compact flame detector6.2 Operating indicator LED7 Maintenance and servicing7.1 Cleaning8 Troubleshooting9 Order data10 Accessories 17 17 17 17 17 18 18 18 19 191 | General aspects1.1 IntroductionThis operating manual is a helpful guide for ensuring the successful and safe operation of the compact flame detector IFR 400. They contain important information on how to operate the system safely, correctly and efficiently. Observing the operating manual will help to prevent hazards, reduce cost of repairs and downtime and increase the reliability and life of the device. All illustrations and drawings in this operating manual are shown for illustration purposes and do not contain details for design.The operating manual always has to be accessible at the device. They must be read and ap-plied by each person who is required to work with/on the device.This work may involve, for example:• operation• troubleshooting during operation• servicing• maintenance (upkeep, inspection, repair) and/or• transportThis should be confirmed by the operating company in writing.1.2 Warning notesThe following warning notes are used in these operating instructions:pany this warning to prevent the risk of death and severe personal injury.This warning level indicates potential damage to property. If this situation is not prevented, it may result in damage to property. Follow the instructions that accompany this warning to prevent damage to property.NOTICEA notice indicates additional information that will make the handling of the device easier.1.3 Copyright protectionThis operating manual has to be treated as confidential. They may only be used by authorised staff. Access by third parties may only be granted upon written agreement of BST Solutions. All documents are protected in keeping with the German copyright law.The disclosure and reproduction of documentation, in whole or in part, as well as the ex-ploitation and communication of its content shall not be permitted unless expressly stated otherwise. Offenders are liable for prosecution and the payment of damages.We reserve all rights to exercise industrial property rights.1.4 Disposal informationThe compact flame detector is equipped with electrical and electronic compo-nents and must be disposed separate from household waste. Follow the localand actual regulations for waste disposal.1.5 WarrantyRead these operating instructions carefully and in full before operating the compact flame detector IFR 400!The manufacturer is not liable for damage or operating malfunctions that result from the operating manual not being observed.The operating company has to supplement the operating manual with operating instructions on the basis of national regulations on accident prevention and environmental protection, including information on supervision and notification requirements with respect to special operating circumstances, e.g. regarding organisation of work, working processes and staff deployed.The recognised technical rules for safe and professional working also have to be observed in addition to the operating manual and the regulations on accident prevention applicable to the country and place of use.The warranty shall become void, for example, in the event of:• inappropriate use• use of impermissible equipment• incorrect connection• prior works that are not part of the supplied product or service• use of non-original spares and accessories• conversion, if this has not been approved by BST Solutions• non-performance of specified maintenance work1.6 Obligation of the operating companyThe Industrial Flame Controller IFR 400 may cause hazards if it is operated inappropriately or in an improper condition.The operating company is under the obligation to operate the machine in its intended stateonly. The operating company must secure hazardous areas that exist between BST Solutions devices and the customer‘s own equipment.The operating company must appoint and instruct responsible staff:• O nly deploy trained or instructed staff.• C learly set out the responsibilities of the staff with regard to operation, set-up, maintenan-ce and repair.• R egularly check that staff are safety conscious and aware of hazards and are observing the operating manual.• B efore starting work, staff who are assigned to work with/on the device have to have read and understood the operating manual, in particular the chapter on …Safety“, as well as the relevant regulations.• T he operating manual and relevant regulations have to be stored in such a way that they are accessible to operating and maintenance staff.• S et out who will have responsibility for device operation and ensure that this person has the authority to overrule any unsafe instructions of third parties.1.7Liability disclaimerAll technical information, data and guidance on device operation that are contained within this operating manual are, to the best of our knowledge, correct at the time of printing, taking into account our present understanding and experience.We reserve the right to make technical changes with respect to the further development of the compact flame detector outlined in these operating manual. No claims can be made ba-sed on the specifications, illustrations and descriptions of this operating manual.We shall not be liable for damage or operating malfunc-tions that result from operating errors, inappropriate repairs or the non-observance of the operating manual. We expressly state that only original spare parts and accessories approved by us may be used. This also applies to the components of other manufacturers that have been used.The installation or use of non-approved spare and accessory parts and any unauthorizedr etrofits and modifications are not permitted for safety reasons and exclude any liability by BST Solutions for consequential damages.BST Solutions is liable for possible errors or omissions with the exclusion of additional claims entered into in the framework of the warranty obligations conceded to in the contract. Claims for damages, on whatever legal basis they may be, shall be excluded.Generally valid legal and other binding regulations on accident prevention and envi-ronmental protection have to be observed and instructed, in addition to the operating manual.GENERAL ASPECTSTranslations into foreign languages are carried out in good faith. We cannot accept any liabi-lity for translation errors; this also applies where the translation has been carried out or has 1.9Address of the manufacturerBST Solutions GmbHRuegenstr. 7 . 42579 Heiligenhaus . GermanyT +49 2056 989 47-0 . E-Mail: info@fl www.flEU KonformitätserklärungEC Declaration of ConformityProduktFlammenwächter IFCx, IFRxProductFlame detector IFCx, IFRxTypIFC201, IFC400, IFR201, IFR400Type IFC201, IFC400, IFR201, IFR400Hiermit erklären wir, dass der nachstehend bezeichnete Flammenwächter in seiner Konzipierung und2 | Safety2.1Intended useThe IFR 400 is a compact flame detector that has been specially designed for industrial com-bustion furnaces for continuous operation. It provides a galvanically isolated change-over contact as safety-related output.As a safety-relevant criterion for flame detection, the flickering of the flame is used. Swit-ching thresholds, switching times and filter characteristics can only be set by the manufac-turer.The flame detection is signaled via a LED and data is transmitted for evaluation.2.2 Requirements on personsDo not allow any persons who are being apprenticed, educated, instructed or on a general training programme to work on the device without the constant supervision of an experien-ced person.Persons who are under the influence of drugs, alcohol or medication that affects reactivity shall not be permitted to carry out work on the device.Connection, set-up, maintenance and repair work may only be carried out by qualified spe-cialist staff.This device may cause hazards if it is operated inappropriately by untrained staff or if it is not used for its intended purpose.Work on/with the device may only be performed by persons authorized to do so based on their training and qualification. Furthermore, such persons have to have been com-missioned by the operating company.NOTICEGenerally valid legal and other binding regulations on accident prevention and environmen-tal protection in addition to basic health and safety requirements have to be observed. The operating company has to instruct its staff accordingly.2.3 Safety instructionsThe following instructions on accident prevention have to be observed when operating the compact flame detector IFR 400.2.4 Safety devices2.4.1 Fundamental aspectsCheck the safety equipment and locking devices on the device for safe operational condition.Only operate the device if all safety devices are present and enabled. The operating company or operator of the compact flame detector IFR 400 is responsible for the proper operation of the device.Only operate the device if it is in a proper state!• Do not remove or disable safety devices.• C heck for externally noticeable damage and defects prior to using the device! Immedia-tely notify the appropriate authority/person of any changes that occur (including changes in operating performance). If necessary, stop and secure the device immediately.• Allow only authorised specialist staff to carry out set-up and/or maintenance work.• Replace worn or defective parts.• Use suitable maintenance tools only.•A fter repair work, refit all safety devices and carry out electrical and mechanical checks.• C heck the operating instructions for details of displays as well as switch-on and switch-off procedures.• P rior to switching on the device, make sure that no-one can be endangered by the device!• T he operating instructions always have to be kept close to the device and be readily accessible.• A ny non-compliance with the safety instructions outlined in these operating instruc-tions may lead to damage to property, personal injury or even death.To protect the operating personnel, warning / danger signs are attached to the device. Note these signs.Replace damaged or illegible warning / danger signs immediately.2.4.2 Safety devices on the compact industrial flame controller IFR 400The industrial flame controller IFR 400 has been fitted with the following safety devices:• Housing (protection against accidental contact)• IP 65• Internally protected by fuse (not changeable)2.5 Safety instructions in case of maintenance and troubleshooting2.5.1 Fundamental aspects• D eadlines set or indicated in the operating instructions for repetitive checks / inspections must be observed!• Appropriate workshop equipment is essential for performing maintenance work.• I n conformance with the electrical regulations, work on the electrical equipment of the system may only be carried out by an electrical specialist or by trained staff under the di-rection and supervision of an electrical specialist.• T he adjustment, maintenance and inspection activities and deadlines stipulated by BST Solutions, including information on the replacement of parts / assemblies, have to be ob-served! These tasks may only be carried out by authorised specialist staff.• O perating staff have to be informed before maintenance or other special work is carried out. A supervisor has to be appointed.• S crew connections which have been loosened during maintenance and servicing work, have to be tightened.• I f maintenance and repairs require safety devices to be dismantled, these devices have to be remounted and checked as soon as the maintenance and repair work has been completed.• O perating and auxiliary materials as well as exchanged parts have to be disposed of in a safe and eco-friendly way.• Spare parts supplied by BST Solutions or approved of by BST Solutions only may be used.2.5.2 Electrical / electronic devicesNOTICEIn keeping with the electrical regulations, work on electrical / electronic parts / com-ponents may only be carried out by electrical specialists.SAFETYImportant rules of conduct• C heck the device at regular intervals. Any defects or faults ascertained have to be corrected immediately. Switch off the device until the defects have been corrected.• E quipment undergoing inspection, maintenance or repair work must be deenergized, if re-quired. First check that the disconnected parts are no longer live, then short to earth. Also isolate neighbouring live parts.• I f work is required on live parts, a second person must be present to disconnect the power supply in case of an emergency. Only use insulated tools!• Fuses must not be repaired or bridged. Only use original fuses with the specified current!• Before opening the housing, the device must be deenergized.2.5.3 Testing per German Workplace Safety Ordinance (BetrSichV)In case of the coupling or installation of devices from various manufacturers or suppliers, the operating company has to carry out a precise test, prior to start-up, in accordance with the German Workplace Safety Ordinance (BetrSichV) in force and the applicable electrical regulations.In case of queries, please get in touch with BST Solutions.2.5.4 Safety test3 | Technical data 3.1 General characteristic features• Semiconductor sensor• Fully electronic construction• Galvanically isolated change-over contact • Continuous operation• CE0085CU00833.3 WeightWeight approx. approx. 0.750 kg3.4 DimensionsLength (without plug or gland) 192.1 mmmm Width 66 Height 92 mm Dimensions see under item 4.43.5 Block diagram IFR 4004 | T ransport, installation andconnection4.1Scope of delivery• Compact flame detector IFR 400• Operating instructions (optional, customer dependend)• Connection cable in other length (optional)Refer to the order papers for the exact scope of delivery and compare with the delivery note.Checking for completenessCheck the entire delivery for completeness against the accompanying delivery note. Please refer to our terms of sale and delivery otherwise.Report any damageAfter arrival of the device and accessories, notify the shipping agent, the insurance company and BST Solutions immediately in case of any damage caused by transport or inadequate packaging.Take steps to minimise and prevent further damage.Report the insurance case to the insurance company without delay and transmit the full claim documents at once in order to expedite the claims settlement (at the latest in suf-ficient time before the expiry of any periods of preclusion and/or limitation relating to the compensation claims against third parties).4.2 PackagingThe compact flame detector IFR 400 is shipped in different packaging materials.The most frequently used packaging materials are cardboard and plastics (foils, foamed material).4.3Shipping instructionsAll installation and connection work may be carried out by qualified and approved spe-cialist staff only!Observe the legal stipulations and adjustment instructions of the plant operator!Packaging has to be disposed of in an environmentally friendly way and in accordance with the relevant provisions on disposal.Do not subject the appliance to heavy impacts during transport. Do not subject the appliance to any humidity!4.4 Dimensions IFR 400All dimensions in mm4.5 InstallationThe IFR 400 should be installed as close as possible to the flame with low vibration. The alignment is to concentrate on the primary zone of the flame (flame root). The compact fla-me detector should be mounted with the diopter. In order to prevent interference, the direct view of a spark is to be avoided.The connecting cable is to run separately from the high-energy ignition and power lines over long distances and not parallel to avoid interference.All installation and connection work may be carried out by qualified and approved spe-cialist staff only! The legal regulations as well as adjustment instructions of the plant operator have to be observed!The cable length when using the ionization circuit depends on the used burner control. For connection length > 1 m, the wires of the relay contacts in the connection cable must be shielded.For connection data, please refer to the chapter titled …Technical data“ as well as to the fol-lowing terminal diagram.Ensure that the available supply voltage complies with the voltage indicated on the type plate. Prior to connection, check the device and the connecting cables for visible damage.4.6.2 Connection diagram IFR 4004.7 StorageDo not unpack any packed compact flame detector IFR 400 and accessories.The following conditions apply to storage:• S tore in a dry place. Maximum relative humidity 95 %. Non condensing.In addition, ensure that the floor in the storage area will remain dry throughout the storage period.• Protect from direct sunlight. Storage temperature 0 to +25°C.• Store in a dust-free location.• Avoid mechanical vibrations and damage.5 | Description5.1Functional description IFR 400The IFR 400 is a compact flame detector, that has been specially designed for use in indus-trial combustion furnaces for continuous operation. It provides a galvanically isolated relay with changeover contacts as output.As a safety-relevant criterion for flame detection, the flickering of the flame is used. Swit-ching thresholds, switching times and filter characteristics can only be set by the manufac-turer.The flame detection is signalled via an LED and data is transmitted for evaluation.6 | O peration of the compact flame detector IFR 4006.1Test of the compact flame detectorTo ensure the proper operation, the compact flame detector must be tested several times by starting and stopping the burner. As long as there is no flame in all cases the flame relays has to be switched off solid. The test should be repeated for different operation situations (see also datasheet). This is an essential condition for safe and proper operation of the device.6.2 Operating indicator LEDVia the built-in LED the compact flame detector is indicating the following operating conditions:DESCRIPTIONOPERATION OF THE COMPACT FLAME DETECTOR IFR 4007 | Maintenance and servicing7.1CleaningFor cleaning, use a moist cloth to wipe the housing from the outside only. For maintenance of the sight glass, please use a clean and lint free cloth. Do not use any kind of cleaning sprays or liquids.8 | TroubleshootingDo not scratch the glass!MAINTENANCE AND SERVICING TROUBLESHOOTING* F or installations in accordance with DIN / EN 267 or DIN / EN 676, the switch-off time at the moment of self-test is < 2 s.10 | AccessoriesFollowing accessories are offered by BST Solutions:BST Solutions GmbH Ruegenstr. 742579 Heiligenhaus . Germany T +49 2056 989 47-0info@fl S u b j e c t t o t e c h n i c a l c h a n g e s |©B S T S o l u t i o n s 2 0 2 1。
消防产品清单(消防验收申报)
消防产品清单(消防验收申报)标题:消防产品清单(消防验收申报)引言概述:消防产品清单是指在进行消防验收申报时需要提交的相关消防产品清单,包括消防设施、设备和器材等。
准确的消防产品清单是保障建造物消防安全的重要保障之一。
本文将详细介绍消防产品清单的相关内容,匡助读者了解消防验收申报的要求。
一、消防设施清单1.1 消防水系统:包括消火栓系统、自动喷水灭火系统等,需要详细列出系统类型、设备型号、数量等信息。
1.2 疏散通道和出口设施:包括疏散楼梯、疏散通道、安全出口标识等,需说明位置、数量、尺寸等详细信息。
1.3 灭火器材:包括灭火器、灭火器箱等,需列出种类、数量、位置分布等详细信息。
二、消防设备清单2.1 火灾报警系统:包括火灾报警控制器、火灾探测器等,需提供设备品牌、型号、安装位置等详细信息。
2.2 疏散指示标志:包括疏散指示灯、应急疏散指示标志等,需说明数量、安装位置、亮度等详细信息。
2.3 火灾应急广播系统:包括火灾广播喇叭、应急广播主机等,需提供设备参数、安装位置等详细信息。
三、消防器材清单3.1 防火门:包括防火门、防火卷帘门等,需说明材质、尺寸、防火等级等详细信息。
3.2 火焰探测器:包括红外线火焰探测器、紫外线火焰探测器等,需提供设备参数、安装位置等详细信息。
3.3 防烟排烟设施:包括排烟风机、排烟口等,需说明设备功率、安装位置等详细信息。
四、消防安全设备清单4.1 紧急照明系统:包括应急照明灯、应急照明电源等,需提供设备型号、亮度、安装位置等详细信息。
4.2 防火涂料:包括防火涂料、防火涂料喷涂机等,需说明材质、使用范围等详细信息。
4.3 消防应急箱:包括消防应急箱、应急救援器材等,需列出器材种类、数量等详细信息。
五、其他消防产品清单5.1 消防安全标识:包括消防安全标识牌、紧急疏散标志等,需说明标识内容、数量、安装位置等详细信息。
5.2 消防隐患整改记录:包括消防隐患整改记录、整改方案等,需提供整改日期、整改内容等详细信息。
火焰探测器
※ 飞机库
※ 电缆出口螺纹:标准3-G3/4”(1”=25.4mm)
※ 材质:铸铝,可选不锈钢
※ 重量:<1.7kg(铸铝) <3.2kg(不锈钢)
认证:
※ 防爆标志:ExdIICT6
※ 粉尘防爆标志:DIP A21 TA,T6
※ 防护等级:IP67
※ 型式检验:满足GB15631-1995国家标准
b. 热释放红外火焰检测器,直接检测火焰中波长为4.35±0.15μm的红外光谱,检测目标比较明确,它由热释放探头和放大器组成,不足之处是:这种类型的传感器具有压电性,对声音电磁波以及震动都十分敏感,所以使用的地方受到一定的限制,它的检测距离小于80m。
c. 常规的紫外火焰检测器,直接检测火焰中180-260nm的紫外光谱,检测的目标也十分明确,响应速度也比较快。它由紫外光敏探头和放大器组成,不足之处是:灵敏度差,检测距离小于15m,不能抗雷电的干扰,存在一定的误报率,因此只能用在距离较短的封闭环境,如加热炉、工业锅炉等地方。
火焰探测报警器技术的现状
国标中对于点型紫外火焰探测器的响应规定30s均可接受,但由于科技的进步,市场上的火焰探测报警产品的响应时间性均能满足这个时间范围,但对于实际应用和安防要求而言这是必须的,而且对指标和性能要求越来越高。国内的大部分报警系统响应时间在S级,国外顶级公司日本滨松、美国MSA等其响应速度最快可达到ms级,可查阅的国外顶级的火焰检测器探测距离为500米,不能用在更远距离火焰探测中。市场上的火焰检测器主要有感烟传感器、红外传感器和紫外光敏管,即使是采用多信息融合技术的火焰探测系统,其检测的信息来源也主要是这三个方面。传统的火焰探测传感器存在以下不足:
IR3红外火焰探测器采用了三个对红外线敏感的红外传感器,对特定范围内的火灾红外辐射波长进行侦测。采用可编程的运算法则,核对三个传感器接收到的数据比例和相互关系。独有的内置微处理器确保其对错误报警具有极高的免疫力。该探测器广泛应用于汽油、煤油、柴油、航空汽油、液压油、碳氢化合物:乙烯、聚乙烯、天然气、民用燃气、液化石油气、甲烷、乙烷、丙烷等火焰检测。三波段红外火焰探测器的探测距离可达45米。探测器能够在高/低温,高湿,震动等最苛刻的环境下工作。
火焰探测器-Honeywell UV Scanner - C7061A_F
PRODUCT HANDBOOKC7061 A/FDYNAMIC SELF CHECK ULTRAVIOLET FLAME DETECTORAPPLICATIONThe C7061A is a dynamic self-checking flame detector for sensing the ultraviolet radiation generated by the combus-tion of gas, oil, or other fuels.This flame detector is available in two versions:model C7061A for use in Standard applications, and model C7061F for use in installations requiring explosion-proof packaging. The flame detector is designed for use with either,R7061 Dynamic Self-Check Ultraviolet amplifier and • R4348 Flame Switch or,or with,R7861A Dynamic Self-Check Ultraviolet amplifier and, • 7800 SERIES Burner ProgrammersThese configurations provide a closed-loop, self-checking circuit which insures the integrity of both amplifier and flame detector. Improper response simulated flame loss results in a safety shutdown and/or alarm.model C7061FCONTENTSGENERALDescription.....................................................................2Features.........................................................................2Orderdering information. (2)TECHNICAL DATASpecification...................................................................3Standards and approvals...............................................4Replacement parts and accessories..............................4Dimensional drawing (5)INSTALLATION AND OPERATIONPlanning the installation.................................................6Installation......................................................................8Wiring...........................................................................10Adjustement and checkout...........................................12VARIOUSTroubleshooting............................................................13Service. (14)model C7061AGENERAL DESCRIPTIONThe C7061A1020 and C7061F1003 detector models are identical except for housings.Model C7061F detector is for use in installations requiring explosion proof packaging. The housing is conform the EExd IIC T6 classification. More details for the explosion proof housing can be found in the chapter Standards and Approvals.The C7061F model has a 1-inch NPT tapping for mounting onto a sight pipe. For allowable mounting positions of model C7061A and model C7061F, see Page 9. The terminal block on both models is of wire clamp type with removable screws and is situated in the compartment of the C7061. The UV cell contains an ultraviolet sensing tube, shutter assembly, terminal block and magnifying lens. The UV sensor can be mounted from the programmer/flame switch up to a length of 300 m.FEATURES• Oscillating shutter interrupts ultraviolet radiation reach-ing the UV Sensor 12 times per minute (when used with R7861 amplifier in combination with 7800 SERIES) to provide the UV Sensor tube checking function. When used with the R7061 amplifier in combination withR4348 flame switch, the shutter frequency is 60 times per minute. Amplifier circuitry components are checked from the microprocessor in the 7800 SERIES Control.• Detectors can be mounted horizontally, vertically or at any angle in between. The self-checking C7061 models require faceplate alignment and have integral locating reference points to assure proper operation of the shut-ter mechanism.• Ultraviolet radiation sensing tube and quartz viewing window are field replaceable.• Two flame detectors can be wired in parallel to reduce nuisance shutdowns in difficult flame sighting applica-tions.• A swivel mount is available to facilitate flame sighting.• -40°C (-40°F) rated ultraviolet sensing tube is available.• lncorporates UV Sensor tube checking feature; used with R7061 and R7861 Dynamic Self-Check amplifiers.• High pressure 50 psi (345 kPa) quartz viewing window, magnifying lens and antivibration mount are available as accessories.• Housing meets IP67 enclosure standards.• C7061 F only: explosion-proof housing, meets EExd IIC T6 classification.• Protective heat block built into mounting flange.ORDERING INFORMATIONWhen ordering specify:• Complete model number.Order separately:• R7061 Dynamic Self-Check Ultraviolet Amplifier.• R7861A Dynamic Self-Check Ultraviolet Amplifier.• Replacement parts, if desired.• Accessories, if desired• Flame safeguard controlTECHNICAL DATA SPECIFICATIONModelsC7061A: Self checking UV flame detector in standard housing.C7061F: Self checking UV flame detector in explosion proof housing. Designed for use with either,R7061 Dynamic Self-Check Ultraviolet amplifier and•R4348 Flame Switchor with,R7861A Dynamic Self-Check Ultraviolet amplifier and,•7800 SERIES Burner ProgrammersAmbient Operating temperature ratingsC7061A -40°C to +70°C (-40°F to +160°F)(derate ambient 1°F for every 13°F of aspiratortemperature over 160°F).C7061F: -20°C to +70°C (-22°F to +160°F)Storage temperature ratings•-51°C to +85°C (-60°F to +185°F)Voltage and FrequencyC7061A1004 120 VAC, 50/60 HzC7061A1020 115/230 VAC, 50/60 HzC7061F1003 115/230 VAC, 50/60 HzThe System operates correctly at a nominal voltage (-15%, +10%), 50/60 Hz.Flame SignalMeasured at the flame current meter jack.C7061 Detector: 1.4 to 5.5 micro amps (nominal).R7061A Amplifier: 2.5 to 5.5 micro amps (nominal).R7861A Amplifier: 1.25 to 5.0 Volts (On keyboard display module).Flame Signal amplifierR7061A Dynamic Self-Check Ultraviolet amplifierR7861A Dynamic Self-Check Ultraviolet amplifier (Order separately)lnterchangeabilityModels C7061A and C7061F are not interchangeable with other flame detector models.Shutter frequency0.2 Hz, nominal (when used in combination with 7800 SERIE). Interrupts the line-of-sight of the detector about 12 times per minute to provide self-checking. Any malfunction in the flame detection system results in a safety shutdown.1 Hz nominal when used with R4348 in combination with R7061 amplifier.Pressure rating of quarz viewing windowC7061A: 138 kPa (20 psi) maximum.C7061F: 690 kPa (100 psi) maximumDimensionsC7061A: see figure 1.C7061F: see figure 2.HousingC7061A:Construction: cast-aluminum cover.Color: Violet.Mounting flange (with heat block) and faceplate are sepa-rate to provide heat insulation and seal-Off.C7061F:Meets requirements (explosion-proof): EEx d IIC T6 Construction: cast-aluminum Cover.Color: Violet. Mounting flange (with heat block) and face-plate are separate to provide heat insulation and seal-Off. EnclosureC7061A: Meets IP66 enclosure requirements (indoor,outdoor protection; rain-tight, dust-tight,hose-directed water).Optional water jacket available.C7061F: IP65 according to DIN 40050WeightC7061A: 3.3 kg (7.3 Ib)C7061F: 6.3 kg (13.9 Ib)Mounting and orientationC7061A : Mounting flange with 3/4 inch NPT internal threads for attaching to sight pipe.C7061F: Mounting flange with 1 inch NPT internal threads for attaching to sight pipe.For allowable mounting positions of model C7061A and F, see Page 9.Wiring ConnectionsC7061A1004:NEC Class 1 color coded leadwire.Length: 8 ft (2.4m).C7061A1020:Terminal blockThreaded leadwire opening in faceplate:1/2-14 NPSM internal threads for attaching conduit.One brass cable gland standard with housing.For C7061F only:Terminal block:Terminal block inside the housing, wire clamp type, remov-able screws (terminal lugs can be used).Cable entry holes:One brass cable gland Ex classification: EExdII C, is standard provided in the housing.Inner sheath diameter 6 to 12 mmOuter sheat diameter 8.5 to 16 mmTightening torque:•cable gland into rear cover plate: 20 Nm•cap into cable gland: 3 NmServiceabilityField replaceable viewing window and ultraviolet sensing tube, coil and shutter assembly.Maximum cable length300 meter between sensor and amplifierDesign lifeUltraviolet sensing tube: limited life, see sections Trouble-shooting and Service.STANDARDS AND APPROVALSModels C7061A and FC7061A and F Ultraviolet Flame Detector conform with following EC-Directives:• Gas Appliance Directive (90/396/EEC).according to European Standard:EN298 approved with R7861 and R7061 flame ampli-fiers.• Low Voltage Directive (73/23/EEC)according to European Standard:EN60730-2-5• Electro Magnetic Compatibility Directive (89/336/EEC) according European Standards:EN55011 class B regarding emission.EN50082-2 industrial level regarding immunity.Model C7061FIn addition to above information, C7061F conforms with:• Explosive Atmospheres Directive (94/9/EC)according to European Standards:EN50014EN50018EN50019Other approvals (C7061A only)Underwriters Laboratories Inc. Listed.Canadian Standards Association Certified: Master File LR95329-1.Factory Mutual Approved: 14740.01.lndustrial Risk Insurers Acceptable.REPLACEMENT PARTS AND ACCESORIESReplacement parts for model C7061A and C7061F 129464M Uttraviolet Sensing T ube.129464N Ultraviolet Sensing T ube; for -40°F (-40°C) opera-tion.190971B Coil and Shutter Assembly.Replacement parts for model C7061A114372 Quartz Viewing Window; rated for 20 Psi (138 kPa).114465 Gasket, Silicone rubber; for installing viewing window (three required).120739 Gasket, fiber-neoprene; heat insulation and seal-off for mounting flange.Accessories for model C7061A and C7061F 118367A Swivel mount.118369 Bushing, galvanized iron, with 3/4 inch NPT inter-nal threads on one end and 1 inch NPT externalthreads on the other end. For adapting a detectorwith 1 inch NPT internal threads (for mounting) toa 3/4 inch sight pipe, or to the pipe nipple and teefor connecting an air supply.120934 Mounting Flange, aluminum, with 3/4 inch NPT internal threads for attaching to sight pipe. 124198 Mounting Flange, aluminum, with 1 inch NPT internal threads for attaching to sight pipe. 123539 Antivibrtation Mount.124204 Quartz Focusing Lens, rated for 20 Psi (138 kPa); for increasing the detector-sensed ultravio-let radiation.Accessories for model C7061A122748 Quartz Viewing Window, rated for 50 Psi (345 kPa).190105 Water Jacket.DIMENSIONAL DRAWINGFig. 1. Dimensional drawing C7061A in inches (mm)Fig. 2. Dimensional drawing C7061F in mmINSTALLATION AND OPERATION PLANNING THE INSTALLATIONProper flame detector application is the back of a safe and reliable flame safeguard installation. Refer to the burner manufacturer’s instructions as well to those included here. Follow all instructions carefully.CAUTION1. Do not connect these detectors to non-Hon-eywell manufactured controls (primaries, pro-grammers, multiburner systems, and burnermanagement systems). Unsafe conditionscould result.2. Disconnect power supply before beginninginstallation to prevent electrical chock andequipment damage. More than one discon-nect may be involved.3. All wiring must be NEC Class 1 (line volt-age).4. Voltage and frequency of the power supply-connected to this detector must agree withthe values marked on the detector.5. Sight the detector so it does not respond toignition spark.6. On multiburner installations, each detectormust respond only to the flame of the burnerit is supervising.IMPORTANTDo not connect more than two C7061A/F flamedetectors in parallel.Basic RequirementsThe combustion flames of most carbon-based fuels emit sufficient ultraviolet radiation to enable the C7061A/F Solid State (Purple Peeper) ultraviolet flame detector to prove the presence of a flame in a combustion chamber. The detec-tor mounted outside the combustion chamber. Its mounting flange or union is threaded to one end of a sight pipe inserted through the wall of the combustion chamber. The ultraviolet sensing tube in the flame detector sights the flame through the pipe.When a flame is present, the UV tube in the C7061A/F senses the ultraviolet radiation emitted. The C7061A/F pro-duces a signal that is sent to the amplifier in the flame safe-guard control. The amplified signal pulls in the flame relay in the control to allow proper operation of the system. Because it is necessary for the UV sensing tube to actually see the flame, it is best to locate the detector as close to flame as physical arrangement, temperature, and other restrictions permit. These restrictions are described in detail in the following paragraphs.Determine the locationBefore beginning the actual installation, estimate the best location for mounting the detector based upon these factors: 1. TemperatureInstall the flame detector where the surrounding tempera-ture will remain within the specified ambient operating tem-perature ratings.For the C7061A/F, to keep the detector temperature within specifications. If the temperature rating is exceeded, the introduction of cooling air will be necessary.2. VibrationsDo not install the detector where it could be subject of excessive vibration; it shortens the life of the electronic com-ponents. Vibrations with a magnitude greater than 1g will require an anti-vibration mount to cushion the detector.3. ClearanceMake sure there will be enough room to remove the cover of the detector for servicing.Radiation sources other than flameExamples of radiation sourses, other than flame, which could actuate the detection system:Ultraviolet sources• Radiant surfaces above 1200°C (2200°F).• Sparks from ignition transformers and welding arcs.• Gas lasers• Sun lamps• Halogen lamps• Germicidal lamps• lncandescent lamps held close to the sensing tube • Filament above 1200°C (2200°F).Gamma ray and X-ray sources• Diffraction analyzers• Electron microscopes• Radiographic X-ray machines• High voltage vacuum switches• High voltage condensers• RadioisotopesExcept under very unusual circumstances, none of these sources, except a radiant surface or ignition spark, would be present in or near the combustion chamber. The detec-tor may respond to a radiant surface at a temperature above 1200°C (2200°F) if both of the following conditions are pres-ent the surface represents a significant percentage of detec-tor’s field of view.If the temperature or a radiant surface causes the flame relay (in the flame safeguard control) to pull in, re-aim the sight pipe so the detector views a cooler area, or the sen-sitivity of the detector decreases. lgnition sparks is a richsource of ultraviolet radiation.Single burner requirementsThe detector must have an unobstructed view of the flame it is supervising under all firing conditions. This implies a proper sighting angle and the minimization of screening effects.Sighting angleThe first 30 percent of a flame (the root) radiates the most intense ultraviolet energy. The low angle sighting permits the detector to view a greater depth of the flame root, thus reducing the effects of irregularities in the flame pattern. The best sighting angle is nearly parallel to the axis of the flame, as shown in Figure 3.NOTE: W hen possible, it is desirable to tilt the detector andsight pipe downwards to prefent the build up of sootin the pipe or on the viewing lens.In most installations, the detector will need to respond to the, pilot flame alone, then to the pilot and main burner flame together and finally to the main burner flame alone. The detector must meet all sighting requirements which apply:1. Pilot flame alone - the smallest pilot flame that can be detected must be capable of reliable ignition the main burner.2. Pilot and main burner flame together - the detector must sight the junction of both flames.3. Main burner flame alone - the detector must sight the most stable part of the flame for all firing ratesScreening effectsSmoke, fuel mist, dirt and dust are masking agents that absorb ultraviolet radiation from the flame. They create a screen that reduces the amount of ultraviolet radiation reaching the detector and may cause flame signal deteriora-tion resulting in a shutdown. The adverse affects of Screen-ing may be minimized by proper burner adjustment, increas-ing the detector viewing area (shorten sight pipe and/or increase its diameter).Multifuel requirementsIn addition to meeting the requirements for a single burner, a multiburner installation also requires flame discrimina-tion.Flame discrimination may be defined as the location of all flame detectors such that each detector responds only to the flame(s) produced by the burner it is supervising.furnaces having more than one row of burners, or in multi-level opposed-fired furnaces where the burners face each other. When planning such an installation, locate each flame detector so that it has the best possible view of the root of the flame(s) it is supervising and the worse possible view of all other flames.Figure 4. illustrates a critical detector application Problem requiring flame discrimination. Flame discrimination is accomplished by detector 1 by reducing its sensitivity until the flame relay (in the flame safeguard control) does not respond to flame 2. Note that detector 1 is aimed at the root of Flame 1 where UV (ultraviolet) energy is most inten-sive. Although it sights flame 2 is not aimed at the root of flame 2. The sensitivity of detector 1 is reduced to a point that ensures maximum sensitivity to flame 1 while rejecting flame 2. similarly, detector 2 is adjusted to ensure maximum sensitivity to flame 2 while rejecting flame 1.If the sensitivity control on a detector is set at its minimum position and flame discrimination cannot be achieved, insert an orifice plate in the sight pipe. An orifice of the proper diameter will reduce the ultraviolet radiation reaching the detector so that the sensitivity can be adjusted to effect flame discrimination.Parallel flame detectorsTwo C7061A/F detectors can be connected in parallel to the same flame signal amplifier and still provide independent sensitivity adjustment. This capability is particular useful for multiburner, multifuel applications.Shifting flame patterns, commonly encountered on burners with wide turndown ratios, may require parallel detectors to prove the flame at the highest and lowest firing rates. In this case, one detector supervises the pilot (interrupted) and both detectors supervise the main burner flame. During the main burner “run” period, either detector is capable of maintaining system operation.In addition to assuring more reliable flame detection, par-allel detectors facilitate maintenance during burner opera-tion.Each detector can be removed in turn without shutting down the supervised burner. However, a flame simulating failure occurring in the flame signal amplifier or in either detector will cause a shutdown.Fig. 3. Sighting angleINSTALLATIONCAUTION1. lnstaller must be a trained, experienced flame safeguard control serviceman.2. Disconnect power supply before beginning installation to prevent electrical shock and equipment damage.3. All wiring must comply with applicable local electrical codes, ordinances and regulations.4. Voltage and frequency of power supply con-nected to this detector must agree with the values marked on the detector.6. On multiburner installation, each detector must respond only to the flame(s) producted by the burner it is supervising.7. Do not connect more than two detectors in parallel to a single R7061 or R7861A Dynamic Self-Check Ultraviolet amplifier.8. Perform all required adjustments and check-out tests after installation is complete.lnstall the Sight PipeAfter you have determined the location and sighting angle, select the sight pipe. A black iron pipe with a diameter of at least 1-1/2 in. (38.1 mm) is recommended. Do not use stain-less steel or galvanized pipe because they reflect ultraviolet radiation internally and complicate aiming the pipe.Sight pipes with diameters 2 to 3 in. (51 to 76 mm) produce better results for horizontal rotary burners, which require wide viewing angles. A wide viewing angle can also be obtained by using a short sight pipe.Prepare Hole in Wall of Combustion ChamberCut or drill a hole of the proper diameter for the sight pipe in the wall of the combustion chamber at the selected loca-tion.Flare the hole to leave room for small adjustments of the sighting angle. The taper of the hole should be about 1 in. for every 3 in. (25 mm for every 76 mm) of Wall thickness.Mount Sight PipeThread one end of the pipe to fit the mounting flange, union,or required coupling. Cut the pipe to the desired length (as short as practical) and at an angle so it fits flush with the wall of the combustion chamber. T ack weld the pipe to the wall in a trial position. Do not weld the sight pipe perma-nently in place until after completing the Adjuctments and Checkout.lnstall FittingsIn some cases, the sight pipe does not directly fit the C7061A/F mounting flange or union. Also, it may be desir-able or necessary to ventilate the sight pipe. Y ou may also want to use a swivel mount or an antivibration mount. Each of these cases may require additional fittings.ReducerFor sight pipes of larger diameter than the mounting flange connector or union, install a reducer as illustrated in Fig. 5. The reducer will require a close nipple with these external threads: 3/4 or 1 inch. NPT .Sight Pipe VentilationIt may be necessary to ventilate the sight pipe to cool the detector or to clear a viewing path through UV radiation attenuating material.For a negative pressure combustion chamber, drilling a few holes in the section of the sight pipe outside of the combus-tion chamber will allow air at atmospheric pressure to flow through the sight pipe and into the chamber. A perforated pipe nipple between the sight pipe and the detector can also be used.For a positive pressure combustion chamber, connect a supply of pressurized air from the burner blower to flow through the sight pipe and into the chamber. The air pres-sure must be greater than the chamber pressure.Swivel Mount (C7061A only)To facilitate proper flame sighting, use part no. 118367A Swivel Mount (not supplied). The swivel mount requires a reducer of the proper size to mount it onto the sight pipe. It also requires a one-inch close nipple for mounting to a C7061 with a one-inch connector. (For 118367A Swivel Mount mounting details, refer to form 60-0361).Antivibration MountThe detector withstands normal burner vibration. If the vibra-tion is excessive, part no. 123539 Antivibration Mount is available. (For mounting details, see form 60-0361). If you use this mount, install it before positioning and sighting the detector.Mount the DetectorMount the detector onto the sight pipe, reducer, or other fit-ting. The C7061A/F Self-Checking flame detectors incorpo-rate an oscillating shutter mechanism and, therefore, require special consideration for mounting positions other than ver-tically sighting downward or upward, as illustrated in Fig. 6. The C7061A/F has notch and arrow indicators (see Fig. 7 and 9) on the faceplate to facilitate mounting in positions other than those shown in Fig. 7. The notch and arrow must be vertically aligned with the notch in the up position and the arrow pointing downward (see Fig. 7). The C7061A/F must be mounted with the conduit opening located approximately45 degrees below the horizontal (see Fig. 7).Fig. 5. Typical mounting of C7061A/FIMPORTANTThe notch and arrow on the faceplate must bealigned in a vertical plane with the notch up andthe arrow pointing down.The housing must be mounted with the conduitopening approximately 45° below horizontal(see Fig. 7)T o mount a C7061A (Fig. 8):A The mounting flange is in two pieces. Loosen (but do notremove) the three screws holding the flange together.B Slightly rotate the detector so the slots in the back sec-tion of the mounting flange clear the screws in the front section; then separate the two sections.C Screw the front section of the mounting flange onto thesight pipe, reducer, or other fitting.D Fit the slots in the back section of the mounting flange(with the detector) over the three screws in the front section, and rotate the detector so the screws hold the flange together.E Tighten the screws securely.IMPORTANTThe rivit on on the faceplate must be at the top(see figure 9). The C7061F can be mounted withincrements of 120°.The C7061F has a rivet on the blank alurninium holder. The cell must be positioned so that this rivet is at the top of the installed cell. In certain applications the sensor must be turned in order accoomplish this.To turn the C7061 (Figure 9).A Loose the 3 screws between the pipe connection andbottom part of.B Turn the C7061F in the most favorable position.CTighten the screws securely. Fig. 6. Vertical mounting of C7061A/FFig. 8. Mounting the C7061A detectorWIRINGCAUTIONWhen using a C7061A/F with an R7061 or R7861Dynamic Self-Check amplifier, be careful not toshort the white shutter lead wires together (bywiring incorrectly, leaving an incorrect jumper wire,or stripping the insulation too muc h so the barelead wires can touch).If the shutter leadwires are shorted during theoperation, the amplifier can be permanentlydamaged and nonoperative.1. All wiring must comply with applicable localelectrical codes, ordinances, and regulations.Use NEC class 1 wiring.2. Keep the flame signal lead wires as short aspossible from the flame detector to the ter-minal strip or wiring sub base. Capacitanceincreases with lead wire length, reducing thesignal strength. The maximum permissiblelead wire length depends on the type of leadwire and conduit type and diameter. The ulti-mate limiting factor in flame signal lead wirelength is the signal current.3. The C7061A1004 detector has color-codedplastic-insulated, no. 18 lead wires, 8 ft (2.4m)long, rated for 105°C (221°F). These wiresmust be run in a conduit.4. If the lead wires are not long enough to reachthe terminal strip or wiring sub base, makethe required splices in a junction box.5. If splicing is necessary, use moisture-resis-tant no. 14 wire suitable for at least 75°C(167°F) if the detector is used with a flamesafeguard primary control, or at least 90°C(194°F ) if used with a flame safeguard pro-gramming control.6. For high temperature installations, use Hon-eywell specification no. R1298020 wire orequivalent for the F lead wire. This wire israted up to 204°C (400°F) for continuous duty.It is tested for operation up to 600 volts andfor breakdown up to 7500 volts. For the otherlead wires, use moisture-resistant no. 14 wireselected for a temperature rating above themaximum operating temperature.7. Refer to Fig. 10. for wiring connectionsIMPORTANTDo not run the flame detector wiring in the sameconduit with high voltage ignition transformerwires.Connecting Detectors in ParallelFor a flame that is difficult to sight, using two parallel C7061 flame detectors reduces nuisance shutdowns. If only one of the parallel detectors loses the flame signal, the other indi-cates the presence of the flame and keeps the burner run-ning. If two parallel C7061A setectors are used, a flame-simulating failure in either detector causes the burner to shut down. T wo C7061A setectors can be connected in par-allel to the same terminals on 120 volt flame safeguard con-trols.CAUTIONWhen using the C7061 in conjunction with anR4348 flame relay at 230VAC, parallel sensorescan not be used.To avoid exceeding the rating of the solid-state shutter switch in the R7861 flame signal amplifier, do not connectIMPORTANTVoltage and frequency ratingof the C7061Amust match the power supply of the flame safe-guard control.Fig. 10_1. Wiring diagram for C7061A1004 detectors with 7800 SERIES Flame Safeguard controls with shut-ter drive circuitry.Fig. 10_2. Wiring diagram for C7061A1004 detector withR4348 Flame Safeguard controls with shutter drivecircuitry.。
Fike IR3-HD三重红外火焰探测器说明书
DATA SHEETThis document is only intended to be a guideline and is not applicable to all situations. Information is subject to Fike’s full disclaimer at /disclaimer . Form No. 1-P.1.242.01 ● 19/10 ISO 9001:2015 Certified Page 1 of 3IR3-HD TRIPLE IR FLAME DETECTOROrderingFIK-IR3-HD-AS11 Detector with HD video output and M25 conduit openings FIK-IR3-HD-AS21 Detector with HD video output and ¾” NPT conduit openings FIK-TMO-S021 Tilt Mount, Stainless Steel (shown above) FIK-TMA-S011,2 Adapter, Universal Overhead Mount FIK-USB/RS4851,3 RS-485 to USB Converter Kit FIK-Weather Cover 1,4 Weather Cover, Stainless Steel1 Ordered separately2 Used for mounting a detector to other manufacturers mounting bracket. Installs on top of the detector.3 Converts detector RS-485 communication network to USB for connection to a computer port.4 Used only in very hot or very cold environments.IntroductionThe IR3-HD flame detector provides ultra-fast response, high performance and reliable detection of all types of hydrocarbon fires (visible and non-visible). The detector addresses slow growing fires as well as fast eruption of fire using improved triple IR (IR3) technology. It operates in all weather and light conditions with highest immunity to false alarms.• Detection within 40 milliseconds of fireballs or e xplosions• Standard fire in only 1.2 second from 50 ft. (15m) and 4.1 seconds from 230 ft. (70m).The detector provides high-definition video output with clear imaging of fire event at up to 100 ft. (30m), allowing rescuers to know the exact situation before entering the hazardous area. It will automatically record a video of a fire event (1 min pre-alarm / up to 3 min post-alarm).Add to that, the integral HD quality video, with event recording, on top of the proven superior capabilities of Triple IR (IR3) flame detection and you have a very powerful safety tool to protect your personnel, plant and process. Key Benefits • High Immunity to False Alarm • Extreme sensitivity – up to 260 ft. (80m) for a 1 ft 2 (0.1m 2) n-heptane pan fire • Ultra-fast detection mode – detection within 40 milliseconds for fireballs or explosions • 1.2 second detection time – for 1 ft2 (0.1m 2) n-heptane pan fire at up to 50 ft. (15m) distance • HD video output with Automatic HD video recording of fire events. Data/Event logger: Alarms, faults and other relevant events are logged to non-volatile memory • Built-in-Test (BIT) – Automatic and manual self-test of window cleanliness and the overall operation of the detector • Window heater to avoid condensation and icing• Tilt mounting bracket can be connected either above orbelow the detectorThis document is only intended to be a guideline and is not applicable to all situations. Information is subject to Fike’s full disclaimer at /disclaimer . Page 2 of 3 ISO 9001:2015 Certified Form No. 1-P.1.242.01 ● 19/10Immunity to False Alarm False Alarm SourceModulated Unmodulated Distance ft. (m) Response Distance ft. (m) Response Sunlight, Direct, Reflected No Alarm No Alarm Incandescent frosted glass light, 300W 2.0 (0.6) No Alarm 2.0 (0.6) No Alarm Fluorescent, 70W (3x23.3W) 2.0 (0.6) No Alarm 2.0 (0.6) No Alarm Electric arc 2.0 (0.6) No Alarm 2.0 (0.6) No Alarm Arc welding 13.1 (4.0) No Alarm 13.1 (4.0) No Alarm Radiation heater, 2000W 2.0 (0.6) No Alarm 2.0 (0.6) No Alarm Quartz lamp (1000W) shielded 2.0 (0.6) No Alarm 2.0 (0.6) No Alarm Quartz lamp (500W) non-shielded 2.0 (0.6) No Alarm 2.0 (0.6) No Alarm Mercury vapor lamp 160Wx3 2.0 (0.6) No Alarm 2.0 (0.6) No Alarm Exhausts 2.0 (0.6) No Alarm 2.0 (0.6) No Alarm Projector LED 2.0 (0.6) No Alarm 2.0 (0.6) No Alarm Solenoid bell 2.0 (0.6) No Alarm 2.0 (0.6) No Alarm Soldering iron 2.0 (0.6) No Alarm 2.0 (0.6) No Alarm Electric Drill 2.0 (0.6) No Alarm 2.0 (0.6) No Alarm Response Characteristics FuelSize Sensitivity Distance ft. (m) Average Response Time (s) N-Heptane 1 x 1 ft. Extreme 262 (80) 9.0 N-Heptane 1 x 1 ft. Extreme 230 (70) 4.1 N-Heptane 1 x 1 ft. High 197 (60) 3.2 N-Heptane 1 x 1 ft. Medium 98 (30) 2.2 N-Heptane 1 x 1 ft. Low 49 (15) 1.2 Gasoline 2 x 2 ft. Extreme 328 (100) 5.3 Gasoline 1 x 1 ft. Extreme 230 (70) 3.6 Gasoline 1 x 1 ft. Medium 98 (30) 1.5 Methane 32-in Plume Extreme 148 (45) 3.3 Methane 32-in Plume Medium 82 (25) 0.8 LPG 32-in Plume Extreme 180 (55) 4.8 LPG 32-in Plume High 148 (45) 2.9 LPG 32-in Plume Medium 98 (30) 1.4 LPG 32-in Plume Low 49 (15) 1.4 Diesel 1 x 1 ft. Extreme 164 (50) 2.9 Diesel 1 x 1 ft. Medium 79 (24) 3.9 JP5 2 x 2 ft. Extreme 295 (90) 9.2 JP5 1 x 1 ft. Extreme 164 (50) 5.8 JP5 1 x 1 ft. High 148 (45) 4.9 JP5 1 x 1 ft. Medium 79 (24) 1.9 JP5 1 x 1 ft. Low 39 (12) 8.8 Kerosene 1 x 1 ft. Extreme 164 (50) 4.1 Kerosene 1 x 1 ft. Medium 79 (24) 2.5 Methanol 1 x 1 ft. Extreme 131 (40) 4.1 Methanol 1 x 1 ft. High 125 (38) 3.9 Methanol 1 x 1 ft. Medium 75 (23) 1.2 Methanol 1 x 1 ft. Low 39 (12) 1.2 Ethanol 1 x 1 ft. Extreme 125 (38) 4.2 Ethanol 1 x 1 ft. Medium 75 (23) 1.6 Isopropanol 1 x 1 ft. Extreme 180 (55) 3.5 Isopropanol 1 x 1 ft. Medium 75 (23) 1.0 Polypropylene 1 x 1 ft. Extreme 115 (35) 10.1 Polypropylene 1 x 1 ft. Medium 66 (20) 2.6 Paper 1 x 1 ft. Extreme 79 (24) 0.9 Paper 1 x 1 ft. Medium 39 (12) 0.8This document is only intended to be a guideline and is not applicable to all situations. Information is subject to Fike’s full disclaimer at /disclaimer . Form No. 1-P.1.242.01 ● 19/10 ISO 9001:2015 Certified Page 3 of 3 FIRE DETECTION Detection time and distance 40ms for fast burst of explosion1.5s for 1 ft 2 (0.1m 2) n-heptane pan fire at 0-100 ft. (0-30m)4.1s for 1 ft 2 (0.1m 2) n-heptane pan fire at 100-230 ft. (30-70m) Field of view (IR detection)90° Horizontal, 75° Vertical Time Delay0-30 seconds Built in Test Automatic or ManualVIDEO FUNCTIONALITY HD Video Allows clear imaging of fire and humans at 100 ft. (30m) distanceVideo recording of alarm events 1-minute pre-event and 3 minutes post-eventSystem integration protocol ONVIF (Open Network Video Interface Forum) Profile SELECTRICAL SPECIFICATIONS Operating Voltage 24 VDC nominal (18-32 VDC)Current Consumption Standby: 180mAMaximum: 250mA all systems in operation (including window heater)Conduit Entries 2X conduit entries ¾” 14NPT or M25x1.5Wiring 12-20AWG (2.5-0.35mm 2)OUTPUTS Relays Volt-free contacts rated 2A at 30 VDCAlarm – normally openFault – normally closed0-20mA (stepped) current output 3 wire and 4 wire configurations (sink and source)Indication Tri-color LEDModbus RTU compatible on RS-485Digital (for video) IP network IEEE 802.3 10Base-tComposite video NTSC or PALMECHANICAL SPECIFICATIONS Size 7.87 x 5.12 x 5.12” (200 x 130 x 130 mm) Weight Detector (stainless steel): 9.8 lbs. (4.4 kg) Tilt mount (stainless steel): 5.4 lbs. (2.4 kg)ENVIRONMENTAL SPECIFICATIONS Temperature Range Operating: -67°F to +167°F (-55°C to +75°C) Option: -67°F to +185°F (-55°C to +85°C) Storage: -67°F to +185°F (-55°C to +85°C)Humidity Up to 99% (RH), non-condensingIngress Protection IP66 & 68; NEMA 4X & 6PAPPROVALS* Explosion proof ATEX: II 2 G DEx db IIC T5 Gb or Ex db eb IIC T5 Gb and Ex tb IIIC T95°C Db -55°C<Ta<75°C Ex db IIC T4 Gb or Ex db eb IIC T4 Gb and Ex tb IIIC T105°C Db -55°C<Ta<85°CIECEx Ex db IIB T5 Gb -50°C ≤Ta ≤75°C Ex db IIB T4 Gb -50°C≤Ta≤85°CFM & FMC Class I, Div. 1, Groups B, C & D: T4 Class I, Zone 1, AEx/Ex db IIB T4 Gb T4 -50°C ≤Ta ≤85°C T5 -50°C ≤Ta ≤75°CPerformanceANSI FM 3260 EN 54-10 ACCESSORIES Weather shieldAdapters for connecting different mounts WARRANTY 5 Years*All products designed and tested to relevant approval standards.。
消防系统检测
消防系统检测引言概述:消防系统检测是确保建筑物和公共场所安全的重要环节。
通过对消防系统的定期检测,可以及时发现潜在的安全隐患,保证消防设备的正常运行,提高火灾防控能力。
本文将从消防系统检测的重要性、检测内容、检测方法、检测设备以及检测标准等五个方面进行详细阐述。
一、消防系统检测的重要性:1.1 提高火灾防控能力:消防系统检测可以发现潜在的安全隐患,及时采取措施进行修复,提高火灾防控能力。
1.2 保证消防设备的正常运行:通过定期检测,可以确保消防设备的正常运行,避免因设备故障导致火灾防控措施失效。
1.3 遵守法律法规要求:消防系统检测是建筑物和公共场所的法定要求,遵守检测规定可以避免违法行为,保证安全生产。
二、消防系统检测的内容:2.1 火灾自动报警系统的检测:包括火灾报警主机、火灾探测器、火灾手动报警按钮等设备的功能性、灵敏度等方面的检测。
2.2 自动喷水灭火系统的检测:主要包括喷头、水泵、水箱等设备的运行状态、喷水效果等方面的检测。
2.3 防排烟系统的检测:主要包括排烟风机、排烟口等设备的通风效果、运行状态等方面的检测。
三、消防系统检测的方法:3.1 目视检查法:通过对消防设备外观、连接线路、防火墙等进行目视检查,发现明显的故障和缺陷。
3.2 功能性测试法:对消防设备的功能进行测试,如火灾报警系统的声光报警是否正常、自动喷水灭火系统的喷水效果是否符合要求等。
3.3 检测仪器法:使用专业的检测仪器对消防设备进行检测,如烟感探测器的灵敏度测试、水泵的水压测试等。
四、消防系统检测的设备:4.1 烟感探测器测试仪:用于检测烟感探测器的灵敏度和响应时间,确保其正常工作。
4.2 压力表:用于检测自动喷水灭火系统中水泵的水压是否符合要求。
4.3 火焰试验器:用于测试火灾报警系统的火焰探测器的灵敏度和反应时间。
五、消防系统检测的标准:5.1 国家标准:根据《建筑消防设施设计规范》等国家标准进行消防系统检测,确保消防设备符合国家要求。
火焰探测器分级标准
火焰探测器分级标准
火焰探测器的分级标准通常是根据其检测能力和适用场景来划分的。
在一般情况下,火焰探测器可以分为以下几个级别:
1. 烟雾探测器,这种探测器主要用于检测烟雾,一般用于家庭和办公场所。
它们能够及早发现燃烧过程中产生的烟雾,从而提供及时的警报。
2. 火焰探测器,这类探测器专门用于检测火焰,可以快速、准确地发现火灾。
它们通常被用于工厂、仓库和其他工业场所。
3. 火热探测器,与火焰探测器不同,火热探测器主要是通过检测热量来发现火灾,而不是火焰本身。
这种探测器在一些特殊环境下非常有效,比如高温、多尘、多湿等场所。
4. 多感应探测器,这类探测器结合了烟雾、火焰和热量的检测功能,能够全面、多角度地监测火灾的迹象,提高了火灾检测的准确性和可靠性。
总的来说,火焰探测器的分级标准主要是根据其检测原理和适
用场景来划分的,不同类型的探测器在不同环境下都有其独特的作用和优势。
在选择和使用火焰探测器时,需要根据具体的使用需求和环境特点来进行合理的选择和部署。
数据中心消防安全知识
数据中心消防安全知识数据中心作为存储和处理海量数据的关键设施,其消防安全是至关重要的。
数据中心的火灾事故不仅会对企业造成重大损失,还可能导致数据丢失、服务中断,甚至危及人员生命安全。
因此,正确的消防安全知识对于数据中心的安全运营至关重要。
本文将详细介绍数据中心消防安全知识,包括火灾防范措施、火灾检测和报警系统、灭火设备和逃生通道等内容。
一、火灾防范措施1.1 安全出口和逃生通道设置数据中心应设置足够数量的安全出口和逃生通道,并确保通道畅通无阻,不受堆放物品等因素影响。
出口和通道应设置明显的指示标志,以便人员在火灾发生时能够快速逃生。
1.2 烟雾控制数据中心应安装高效的烟雾控制装置,例如烟雾排风系统和烟雾探测器。
烟雾排风系统能有效排除火灾产生的有毒烟雾,保证人员的安全逃生通道;烟雾探测器能快速检测到火灾并发出警报,提醒人员及时采取逃生措施。
1.3 火灾隔离数据中心的不同功能区域之间应设置火灾隔离墙,以防止火势蔓延。
火灾隔离墙应具备防火、隔热、隔音等性能,能有效遏制火灾蔓延,保护人员和设备的安全。
1.4 定期巡检和维护数据中心应定期对消防设施进行巡检和维护,包括烟雾探测器、灭火器、灭火系统等。
巡检和维护工作应有专人负责,并建立相应的记录和报告,以确保消防设施的有效性和可靠性。
二、火灾检测和报警系统2.1 烟雾探测器烟雾探测器是数据中心最常用的火灾检测设备之一,它能快速检测到烟雾,并发出警报信号。
烟雾探测器的安装应根据数据中心的特点和布局进行合理布置,以确保火灾的早期发现和报警。
2.2 温度探测器温度探测器可以检测到数据中心内的异常温度,并通过报警系统发出警报。
温度探测器的设置应根据数据中心的热源和散热系统等因素进行合理布置,以提前发现潜在的火灾风险。
2.3 火焰探测器火焰探测器可以检测到数据中心内的明火,并通过报警系统发出警报。
火焰探测器的设置应根据实际需求进行,通常在重要设备和易燃区域设置,以便及时发现火灾并采取灭火措施。
uv 火焰探测器工作原理 波长
UV火焰探测器工作原理及与波长的关系1. 火焰探测器的基本原理火焰探测器是一种用于检测火灾的安全设备,它能够及早发现火灾并发出警报,以便采取相应措施进行灭火或疏散。
其中,UV(紫外)火焰探测器利用紫外光的特性来检测火焰。
UV火焰探测器主要由以下几个部分组成:1.光源:通常是紫外灯,产生波长在200-280纳米(nm)之间的紫外光。
2.光电二极管(Photodiode):用于接收并转换光信号为电信号。
3.滤光片:用于滤除非紫外光波长范围内的光线,只透过200-280nm范围内的紫外光。
4.信号处理电路:用于放大、滤波和判断电信号是否来自火焰。
其工作原理如下:1.紫外灯发出波长在200-280nm之间的紫外光。
2.当有燃烧物质产生火焰时,燃烧产生的气体和颗粒会发出紫外辐射。
3.紫外光穿过滤光片,只有波长在200-280nm范围内的光线能够通过。
4.火焰发出的紫外辐射被接收器(光电二极管)接收。
5.接收器将接收到的光信号转换为电信号。
6.信号处理电路对电信号进行放大、滤波等处理,并判断是否来自火焰。
7.如果判断为火焰信号,报警装置将触发警报。
2. 波长与火焰探测器的关系波长是光的一个重要特性,不同波长的光具有不同的特点和作用。
在火焰探测器中,波长与其工作原理密切相关。
2.1 紫外光的波长范围紫外光是指波长小于可见光(400-700nm)的电磁辐射。
根据不同波长范围,紫外光通常分为三个区域:1.UVA(近紫外线):315-400nm2.UVB(中紫外线):280-315nm3.UVC(远紫外线):200-280nm2.2 火焰辐射的波长范围火焰是燃烧产生的可见光和辐射的混合物。
在可见光范围内,火焰通常呈现黄色、橙色或红色。
然而,在不可见光的紫外光区域,火焰也会发出辐射。
火焰主要通过两种方式发出紫外辐射:1.分子辐射:由于燃烧过程中产生的高温,燃烧产物中的分子会被激发并发出紫外辐射。
这种辐射主要集中在UVC和UVB区域。
GS9208点型红外火焰探测器规格书
如有帮助,欢迎支持。
GS9208点型红外火焰探测器规格书1概述本规格书描述了美国联合技术公司旗下爱德华(以下简称EST)GS9208点型红外火焰探测器的主要技术规格,包括(但不限于)产品功能、技术参数、软件、硬件和光学系统的组成、安装调试、使用和维护方法等。
本规格书根据GS9208设计文件编制,随着技术进步和产品应用实践,EST将在国家标准和3C管理相关规则限定的范围内对产品进行持续改进,使产品能够持续的满足用户的需求。
一旦实施产品改进,EST有权修订和更新本规格书。
请关注本规格书最新版本。
2产品功能和组成GS9208可应用于需要对火焰实施监控的场所,快速发现可能引起火灾的燃烧火焰,及时发出火灾警报。
GS9208通过两个工作于不同波段的红外热释电传感器将火焰燃烧参数转换为电信号,之后将信号输入工业计算芯片进行比较、运算和处理,配合IrⅡdetecter@GEtech专用智能控制软件,可以及时发出火灾警报。
GS9208采用铝压铸隔爆壳体,具有良好的防爆和防护特性,耐腐蚀、抗老化,可以长期工作于室内、室外和各种特殊的工业场所。
3 技术参数 3.1 基本参数项目 规格名称 点型红外火焰探测器 型号GS9208 GB15631-2008《特种火灾探测器》执行标准GB3836.1-2000《爆炸性气体环境用电气设备》第 1 部分:通用技术要 求GB3836.2-2000《爆炸性气体环境用电气设备》第 2 部分:隔爆型“D” 传感器 锐探 AE-S708/4 和 AE-S708/5 红外热释电传感器 光学窗口 白宝石(Al2O3)材料:铝合金 壳体成型工艺:压铸涂覆工艺:表面静电粉末喷涂,内部金属钝化处理。
重量 ≤1gk 防爆和防护防爆:E Xd ⅡCT6防护:IP663.2工作参数 项目规格或状态供电电源最小标准 最大 18VDC(可定制 12VDC)24VDC30VDC工作电流 监视状态≤15mA,报警状态≤35mA预热时间通电后 60s火灾报警当被监视区域发现火焰时,探测器进入火警状态; 火警输出继电器动作,红色火警指示灯点亮;当发现传感器、电源等异常时,探测器进入故障报警状态; 故障报警故障输出继电器动作,黄色故障指示灯点亮; 当火警和故障同时发生时,火警优先;报警阈值1-5 级可调(出厂时设置为 3 级)监视状态每次绿灯闪烁次数表示报警阈值报警延迟 0-30s 可调(出厂时设置为 0s )漂移补偿传感器硬件补偿和智能软件补偿结合模式可有效补偿因温度、环境变化和元器件长期工作产生的漂移干扰源抑制可有效抑制非火焰干扰源的影响,如阳光(直射和反射)、常用人工光源、背景辐射源、热移动物体、电焊等监视状态:绿灯闪亮 指示灯火警状态:红灯常亮故障状态:黄灯常亮火警继电器,报警时动作,输出触点 1A@30VDC 1A@250VAC 输出故障继电器,故障时动作,输出触点 1A@30VDC1A@250VAC 串行通讯接口3.3探测性能和保护范围说明:1、上图的中轴线代表与探测窗口垂直;2、“探测区域示意图”中探测区域垂直与水平方向一致;3、上图显示100%位置为最大探测距离D(max),各个角度的探测距离可由图4、上黑色边缘部分的百分比乘以D(max)计算得出;5、各类环境下的最大探测距离D(max)详见左表:3.4环境参数项目规格工作温度-10℃—+55℃工作湿度≤95%HR,无结露储存温度-20℃—+60℃3.5设置和记录项目内容使用PC和专用软件,通过串行通讯口可设置探测器的报警参数:报警模式设置报警阈值报警延迟时间需专业人士操作和密码授权简易设置利用手边的磁铁,控制内置干簧管调整报警灵敏度使用PC和专用软件,通过串行通讯口可查询探测器的内部记录出厂设置:报警阈值、延迟时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电导效应
光敏电阻的几个主要参数
暗电阻、暗电流:光敏电阻在不受光照射时 的阻值称为暗电阻,此时流过的电流为暗电 流 亮电阻、亮电流:光敏电阻受光照射时的电 阻及此时流过的电流 光电流:亮电流与暗电流之差。 暗电阻越大,亮电阻越小,则光电流越大, 灵敏度越高
24/63
光电导效应
火灾探测与自动报警工程
第三章 火灾探测器原理及应用 3.3 火焰探测器
一、火焰光谱
2/63
光谱分布
燃烧产生的电磁波主要有红外波段的热辐 射、可见光波段的光辐射、紫外波段辐射
3/63
火焰光谱
不同物质燃烧火 焰的辐射光谱各 不相同
4.35mm
二氧化碳共鸣
火焰辐射包括从紫外光到红 外光的辐射,红外波段辐射 能量明显强于紫外波段,故 火焰有灼热感
4.红外火焰探测器
窗口材料
要求:透过选择的波段,在其他波段对辐射 的吸收越高越好
玻璃:波长达到2.7mm,透射率 下降到20%,4.5mm上降到零值 熔融石英:待选波长超过2.7mm 时可以选用。超过4mm时的透射 率可大于50% 半导体、碱金属化合物、蓝宝石 金刚石:待选波长4mm时可选用
锗:较短的波长范围截止;蓝宝石:衰 塑料:近红外波长,但是可能会 减热体辐射;干涉滤光片:限制4.1-4.7 外的辐射 存在强的分子吸收带 41/63
1.火焰光谱分布
31/63
火焰光谱能量分布
1.火焰的特征
太阳辐射在经过大气层时,2.7mm波长的辐射 几乎完全被水蒸气和CO2吸收,4.3mm的辐射 全部被CO2吸收,因此可以使用滤光片,使 4.3mm附近的红外光通过来获取火灾信息 基于这种思想,研制成PbS火灾探测器,工作 波长为2.7mm,灵敏度也较高。但是易受干扰 源影响,比如8Hz的频率对日光或白炽灯光进 行调制就会使探测器误报,而且容易受温度影 响
光敏电阻的伏安特性:
光照一定时,阻值与电 压无关,光电流随外加 电压线性增大,且没有 饱和现象
25/63
光电导效应
光敏电阻的光谱特性
对不同波长的入射光 的相对灵敏度不同, 存在峰值波长
26/63
光生伏特效应
光生伏特效应有两种:势垒效应、侧向光 电效应 接触的半导体和PN结中,光线照射其接触区
响应波长低于400nm的辐射能通量
红外火焰探测器
响应波长高于700nm的辐射能通量
外光电效应
8/63
内光电效应
光电效应
外光电效应:在光线的作用下,物体内的 电子逸出物体表面向外发射的现象称为外 光电效应。发射出的电子称为光电子。主 要有光电管、光电倍增管等 内光电效应:当光线照射在物体上,使物 体的电导率发生变化或产生光生电动势的 效应
19/63
紫外火焰传感器
紫外光敏管工作电路原理
20/63
充气的紫外光敏管阴极被紫外线照 射光电子飞向阳极,使气体发生电 离,形成雪崩放电,光电管内阻变 小使电子开关导通,电容C通过紫外 管、R1和电子开关放电,C上电压降 到紫外管着火电压以下时,光敏管 截止,电子开关断开,电源又对C充 电,达到着火电压后,光电管放电, 内阻减小,电子开关再次导通,重 复上述过程。每重复一次电子开关 输出一个脉冲,形成脉冲序列。当C、 R1一定时,光照越强,脉冲的频率 越高。通过测量脉冲频率可以测得 紫外光强度,超过一定频率时,发 出火灾报警信号
侧向光电效应
27/63
光生伏特效应
光电池
28/63
光生伏特效应
光电池的光谱特性
硒电池适用于可见 光,常用于照度计 测定光的强度 硅电池适用于近红 外光,可用于火灾 探测
29/63
二、红外火焰探测器
1.火焰光谱分布 2.背景辐射特征 3.路径的衰减特性 4.红外火焰探测器
30/63
1.火焰的特征
3.人工红外辐射光源
与太阳辐射源相比,人工光 源的辐射容易预防。第一, 人工光源的总辐射能量,通 常是小于阳光辐射的能量。 第二,人工光源的特性通常 是较容易预测
36/63
3.路径的衰减特性
减主要来自大气衰减、气溶胶粒子衰减 和探测器窗口的衰减
大气衰减
37/63
3.路径的衰减特性
气溶胶粒子的衰减
15/63
紫外光敏管
2.光电倍增管及基本特性
光阴极 组成 次阴极(倍增电极) 阳极 工作原理 阴极 发射 电子
16/63
次级电极 发射次级 电子
阳极收集 电子产生 光电流
输出 电压 脉冲
紫外光敏管
2.光电倍增管及基本特 性
倍增系数:等于各个倍增电极 的二次发射电子数的乘积,与 所加电压有关。电压波动则倍 增系数也波动,因此电压越稳 定越好 不能受强光直接照射
43/63
4.红外火焰探测器
双通道红外火焰探测器工作原理
通道A:4.1~4.7mm,火焰探测通 道,主通道,用于探测碳氢化合 物火灾
通道 B : 5~6mm ,监视通道,辅 助通道,用于监视非火灾的热体 (200 度、 700 度等 ) 辐射、太阳辐 射(日光)
在离开太阳光谱强吸收带的谱带 上,直射的阳光辐射照度在数值 上大约比一个 20m 远 0.1m2 规模的 汽油火的辐射照度大两个数量级 33/63
地面上的太阳光谱
2.背景红外辐射
1.太阳红外辐射
间接的阳光辐射,即被周围环境反射的辐射, 经常在被保护区域内产生,处理起来很困难, 特别是部分表面的红外反射约占背景辐射的 10%~70%范围内
32/63
2.背景红外辐射
背景红外辐射:主要来自太阳辐射、其他自然光源
和高强度的人工辐射光源的辐射
1.太阳红外辐射
在地球上看到的太阳光谱受大气 吸收。在小于 280nm 波长上,实 际上阳光辐射完全被上层大气的 臭氧吸收。在 2.7mm 波长上,由 于水蒸气和 CO2 的作用,阳光辐 射也被完全吸收。 4.35mm 波长附 近的辐射被CO2完全吸收
20世纪80年代
5/63
紫外及复合火焰探测器
图像感焰探测器
红外特征 火焰图像特征
光敏传感器
光敏传感器:能对光信号的变化作出有效反应, 并将光信号转变为电信号的器件 探测火焰的光敏器件主要有:
①光电效应传感器 ②红外热释电传感器 ③CCD图像传感器 ④MOS图像传感器
6/63
利用光敏材料的光电效应 制成的光敏器件
10/63
外光电效应
外光电效应的特点:
①电子能否逸出,取决于入射光子的能量是否大于该
物体的表面电子逸出功。光线频率低于红限频率, 光强再大,也不足以使物体内电子逸出产生光电子 发射;反之,入射光频率大于红限频率,即使光线 微弱,也有光电子射出
紫外线能使大多数金属产生光电发射。大多数金属的逸出功 在3eV以上,可见光光子能量1.85~3.1eV之间,紫外光光子 能量3.1~6.2eV之间 入射光波长越短,电子逸出后动能越大,其动能与光的强度 无关
38/63
气溶胶粒子的辐射衰减取决于辐射波长 和气溶胶粒子尺度。通常可以说,如果 粒子尺度比波长大得多,则衰减将是一 个恒定值
3.路径的衰减特性
探测器窗口的衰减
39/63
4.红外火焰探测器
传感元件
探测率随波长的增 大会迅速地下降
较短波长的探测器成本较 低,波长大于4mm的探测 器成本相当高
PbS火灾探测器,工作波长为2.7mm, 灵敏度也较高。但是易受干扰源影响, 比如8Hz的频率对日光或白炽灯光进行 调制就会使探测器误报,而且容易受温 度影响 钽酸锂热电传感器做敏感元件,工作波 长0.2~100mm,且灵敏度几乎与温度无 关,红外探测器工作在4.4mm上,受阳 光和灯光影响比PbS小2个数量级 40/63 探测器的探测率随波长的变化
11/63
n A0 / h
0 c /n hc / A0
外光电效应
外光电效应的特点:
②入射光频率不变,产生的光电流与光强成正比 I K j j—照射光单位面积上的辐射通量 ③外光电效应器件即使不加阳极电压,也会有光电流 产生,因为光电子逸出具有初始动能。(如何使其光 电流为零?)
12/63
紫外光敏管
1.光电管及其特性 有真空光电管和充气光电管两种
13/63
光电管的结构
紫外光敏管
1.光电管及其特性
光电管的伏安特性:入射光频率及光通量一定时, 阳极电流与阳极电压之间的关系
14/63
紫外光敏管
1.光电管及其特性
光电管的光谱特性:不同的物质有不同的红限频率; 强度相等的光,若频率不同,但都高于红限频率,产 生的阴极光电子数量也会不同,即同一光电管对不同 频率的光灵敏度不同
势垒效应 域时,使价带中的电子跃迁到导带,产生的 电子空穴对在内电场的作用下,分别向半导 体和PN结的两端移动,从而一端带正电,一 端带负电,形成光电动势 半导体光电器件受光照不均时,光照强的部 分吸收光子能量多,电子空穴对多,光照弱 (或未受光照)的部分电子空穴对少,出现载 流子浓度梯度,因而载流子发生扩散。若电 子迁移率大,则光照弱(或未受光照)的部分 带负电,光照强的部分带正电,产生光电动 势
利用传感器吸收红外光变 为热能使材料升温,材料 电学性质发生变化 利用CCD光电转换和电荷 转移功能 利用光敏二极管和MOS晶 体管使光信号变为电荷或 电流信号
二、光电效应及光电效应传感器
7/63
光电效应传感器
为了避免可见光的干扰,火焰探测器主要 响应火焰中的紫外波段和红外波段
光电效应传感器
紫外火焰探测器
4/63
碳氢化合物燃烧辐射光谱分布
火焰探测器
通过感应火焰辐射的电磁波,将辐射能 量转换为电流或电压信号而探测火灾的探 测器
20世纪60年代 20世纪60年代末 20世纪70年代初