高考数学复习:压轴小题突破

合集下载

2024年高考数学一轮复习(新高考版)《圆锥曲线压轴小题突破练》课件ppt

2024年高考数学一轮复习(新高考版)《圆锥曲线压轴小题突破练》课件ppt

|PF1|+|PF2|=2a1, |PF1|-|PF2|=2a2,
得||PPFF12||= =aa11+ -aa22, ,
设|F1F2|=2c, 因为∠F1PF2=π3,
由余弦定理得|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos∠F1PF2,
即 4c2=(a1+a2)2+(a1-a2)2-2(a1+a2)(a1-a2)cos π3, 整理得 a21+3a22=4c2, 故e121+e322=4. 又 4=e121+e322≥2 e121×e322=2e1e32, 即 2≥e1e32,所以 e1e2≥ 23,
即 p2 = 42
32·94p⇒p=2,∴|AB|=92.
3
题型三 圆锥曲线与其他知识的综合
例4 (多选)油纸伞是中国传统工艺品,至今已有1 000多年的历史,为宣传和推广这 一传统工艺,某市文化宫于春分时节开展油纸伞文化艺术节.活动中,某油纸伞撑开 后摆放在户外展览场地上,如图所示,该伞的伞沿是一个半径为1的圆,圆心到伞柄 底端的距离为1,阳光照射油纸伞在地面上形成了一个椭圆形的影子(春分时,该市的 阳光照射方向与地面的夹角为60°),若伞柄底端正好位于该椭圆的左焦点位置,则
唐·金筐宝钿团花纹金杯,杯身曲线内收,巧夺天工,是唐代金银细作 的典范.该杯的主体部分可以近似看作是双曲线C: ax22-by22 =1(a>0,b>0) 的右支与直线x=0,y=4,y=-2围成的曲边四边形ABMN绕y轴旋转一
周得到的几何体,若该金杯主体部分的上口外直径为
3
2
√C.0,12
B.
23,1
D.12,1
连接OP,当P不为椭圆的上、下顶点时, 设直线PA,PB分别与圆O切于点A,B,∠OPA=α, ∵存在M,N使得∠MPN=120°, ∴∠APB≥120°,即α≥60°, 又α<90°, ∴sin α≥sin 60°, 连接 OA,则 sin α=||OOPA||=|ObP|≥ 23, ∴|OP|≤ 2b3.

高考数学复习指导:压轴题的考点分布及突破方法

高考数学复习指导:压轴题的考点分布及突破方法

高考数学复习指导:压轴题的考点分布及突破方法下面是编辑教员整理的2021高考数学压轴题的考点散布及打破方法,希望对您提高学习效率有所协助.1.触及的考点2021年解答题调查的考点:数列、平面几何、统计、解析几何、导数2021年解答题调查的考点:三角函数、平面几何、函数、解析几何、导数研讨高考真题的目的就是找出考点和常考考点。

由于常考的知识点还将考,历来不触及的知识点,考的能够性就不大。

找出考点后,就要停止专项的训练,专项训练不在题多,而在于做好题,真题仍是第一选择。

训练进程一定要揣摩整个进程,找出规律。

2.解答题的解题技巧珍惜标题中给你的条件。

数学标题中的条件都是不多也不少的,一道给出的标题,不会有用不到的条件,而另一方面,你要置信给出的条件一定是可以做到正确答案的。

所以,解题时,一切都从标题条件动身,只要这样,一切才都有能够。

在数学家波利亚的四个解题步骤中,第一步审题格外重要,审题步骤中,又有这样一个技巧:当你对整道标题没有思绪时:步骤(1)将标题条件推导出新条件,步骤(2)将标题结论推导到新结论.步骤(1)就是不要理会标题中你不了解的局部,只需你依据标题条件把能做的先做出来,能推导的先推导出来,从而失掉新条件。

步骤(2)就是想要失掉标题的结论,我需求先失掉什么结论,这就是所谓的新结论。

然后在新条件与新结论之间再寻觅关系。

一道难题,难就难在标题条件与结论的关系难以树立,而你自己推出的新条件与新结论之间的关系往往比原题更容易树立,这也意味着解出标题的能够性也就越大!最后要提示的是,虽然我们以为最后一题有相当分值的易得分局部,但是毕竟已是整场考试的最后阶段,强弩之末势不能穿鲁缟,疲劳不可防止,因此一切同窗在做最后一题时,都要格外小心慎重,防止易得分局部由于疲劳出错,招致失分的遗憾结果出现。

2021高考数学压轴题的考点散布及打破方法曾经呈如今各位考生面前,望各位考生可以努力妥协,更多精彩尽在查字典数学网高考频道!。

高中数学-压轴小题经典题目

高中数学-压轴小题经典题目

.
sin x 3
【题
10】
已知 x 0, 2 ,求函数
y

1 sin x 2 cos x
的值域为
.
【题 11】 若 AB 2, AC 2BC, 则SABC 的最大值为
.
-5-
【方法三】构造法
【题 1】 如图所示, 为∆ 的重心,点 在 上,点 在 上,且 过∆
的重心 , =
( A) 不存在
(B)有且只有两条
(C)有且只有三条 (D)有无数条
【 题 6 】 如 图 , 三 角 形 PAB 所 在 的 平 面 和 四 边 形 ABCD 所 在 的 平 面 垂 直 , 且
AD , BC ,AD=4,BC=8,AB=6, APD CPB ,则点 P 在平面 内的轨迹
点 D 的正方体的三个面所围成的几何体的体积是____________。
-7-
【方法四】特例与图像法
【题 1】 如图所示,抛物线 : = t 和圆 t − + = ,其中 > t,直
线 经过 的焦点,依次交 , 于 A,B,C,D 四点,则 ᦀ t的值为(
).
A.
B.
C.
D.
【题
2】
设定义域为
R
的函数
【 题 7 】 函 数 f (x) x(ln x ax) 有 两 个 不 同 的 极 值 点 , 求 实 数 a 的 取 值 范 围

.
【题
8】
函数
f
(x)

x(ln
x

ax)
有两个不同的极值点,比较
f
(x1)与0和f
(x2 )与-
1 2

高考数学压轴题解法与技巧

高考数学压轴题解法与技巧

高考数学压轴题解法与技巧高考数学压轴题,一直以来都是众多考生心中的“拦路虎”。

然而,只要我们掌握了正确的解法与技巧,就能在这场挑战中脱颖而出。

首先,我们要明确什么是高考数学压轴题。

通常来说,压轴题是指在高考数学试卷的最后几道题目,它们综合性强、难度较大,往往涵盖了多个知识点,对考生的思维能力、计算能力和综合运用知识的能力都有很高的要求。

一、掌握扎实的基础知识要解决高考数学压轴题,扎实的基础知识是关键。

这包括对数学概念、定理、公式的深入理解和熟练掌握。

例如,函数的性质、导数的应用、数列的通项公式与求和公式、圆锥曲线的方程与性质等。

只有在基础知识牢固的基础上,我们才能在复杂的题目中找到解题的突破口。

以函数为例,要理解函数的定义域、值域、单调性、奇偶性、周期性等基本性质,并且能够熟练运用求导的方法来研究函数的单调性和极值。

如果对这些基础知识掌握不扎实,在面对压轴题中涉及函数的问题时,就会感到无从下手。

二、培养良好的数学思维1、逻辑思维在解决压轴题时,清晰的逻辑思维至关重要。

我们需要从题目中提取关键信息,分析已知条件和所求问题之间的逻辑关系,逐步推导得出结论。

比如,在证明一个数学命题时,要先明确证明的方向,然后根据已知条件选择合适的定理和方法进行推理。

在推理过程中,要保证每一步都有依据,逻辑严密,不能出现跳跃和漏洞。

2、逆向思维有时候,正向思考难以解决问题,我们可以尝试逆向思维。

即从所求的结论出发,反推需要满足的条件,逐步逼近已知条件。

例如,对于一些存在性问题,我们可以先假设存在满足条件的对象,然后根据假设进行推理,如果能够推出与已知条件相符的结果,那么假设成立;否则,假设不成立。

3、分类讨论思维由于压轴题的综合性较强,往往需要根据不同的情况进行分类讨论。

比如,对于含参数的问题,要根据参数的取值范围进行分类,分别讨论在不同情况下的解题方法。

在分类讨论时,要做到不重不漏,条理清晰。

每一类的讨论都要独立进行,最后综合各类的结果得出最终答案。

2023新高考数学函数压轴小题专题突破 专题5 函数嵌套问题(解析版)

2023新高考数学函数压轴小题专题突破 专题5 函数嵌套问题(解析版)

专题5 函数嵌套1.已知函数2()(1)x f x x x e =--,设关于x 的方程25()()()f x mf x m R e-=∈有n 个不同的实数解,则n 的所有可能的值为( ) A .3B .1或3C .4或6D .3或4或6【解析】解:22()(21))(1)(2)x x x f x e x x x e e x x '=-++--=+-, ∴当2x <-或1x >时,()0f x '>,当21x -<<时,()0f x '<,()f x ∴在(,2)-∞-上单调递增,在(2,1)-上单调递减,在(1,)+∞上单调递增, ()f x 的极大值为25(2)f e -=,()f x 的极小值为f (1)e =-. 作出()f x 的函数图象如图所示:25()()()f x mf x m Re -=∈,25()()0f x mf x e∴--=,△2200m e=+>, 令()f x t =则,则125t t e=-.不妨设120t t <<,(1)若1t e <-,则2250t e<<,此时1()f x t =无解,2()f x t =有三解; (2)若1t e =-,则225t e =,此时1()f x t =有一解,2()f x t =有两解; (3)若10e t -<<,则225t e >,此时1()f x t =有两解,2()f x t =有一解; 综上,25()()f x mf x e-=有三个不同的实数解. 故选:A .2.已知函数())f x x R =∈,若关于x 的方程2()()10f x mf x m -+-=恰好有4个不相等的实数根,则实数m 的取值范围为( ) A.(1,1) B.(0 C .1(1,1)e+D.,1)【解析】解:化简可得0()0x f x x =<,当0x >时,()0f x,12()x x e x f x e '===, 当102x <<时,()0f x'>,当12x>时,()0fx '<, 故当12x=时,函数()f x有极大值21()2f e====; 当0x <时,2()0x xxe x e x xf x x e --'==<,()f x 为减函数,作出函数()f x 对应的图象如图:∴函数()f x 在(0,)+∞上有一个最大值为1()2f ;设()t f x =, 当t >()tf x =有1个解, 当t =()t f x =有2个解, 当0t <<时,方程()t f x =有3个解, 当0t =时,方程()t f x =有1个解, 当0t <时,方程()m f x =有0个解,则方程2()()10f x mf x m -+-=等价为210t mt m -+-=,等价为方程21(1)[(1)]0t mt m t t m -+-=---=有两个不同的根1t =,或1t m =-, 当1t =时,方程()t f x =有1个解,要使关于x 的方程2()()10f x mf x m -+-=恰好有4个不相等的实数根, 则1t m =-∈,即01m <-<11m <<+,则m的取值范围是1)+ 故选:A .3.已知函数|1|2,0()21,0x e x f x x x x -⎧>=⎨--+⎩,若方程2()()20f x bf x ++=有8个相异实根,则实数b 的取值范围()A .(4,2)--B.(4,--C .(3,2)--D.(3,--【解析】解:令()f x t =,则方程2()()20f x bf x ++=⇔方程220t bt ++=. 如图是函数|1|2,0()21,0x e x f x x x x -⎧>=⎨--+⎩,的图象,根据图象可得:方程2()()20f x bf x ++=有8个相异实根⇔方程220t bt ++=.有两个不等实数解1t ,2t 且1t ,2(1,2)t ∈.可得22280112032220122b b b b b ⎧=->⎪++>⎪⎪⇒-<<-⎨++>⎪⎪<-<⎪⎩. 故选:D .4.已知函数22,0()(1),0x x x f x ln x x ⎧-+>=⎨-+<⎩,关于x 的方程2()2()10()f x af x a a R -+-=∈有四个相异的实数根,则a 的取值范围是( )A .(,0)-∞B .[1,)+∞C .(,0)[2-∞,)+∞D .(-∞,0)(1⋃,)+∞【解析】解:函数22,0()(1),0x x x f x ln x x ⎧-+>=⎨-+<⎩的图象如图:方程2()2()10()f x af x a a R -+-=∈有四个相异的实数根, 必须()f x 由两个解,一个()1f x >,一个()(0f x ∈,1), 或者()(0f x ∈,1),另一个()0f x ,2()2()10()f x af x a a R -+-=∈,可得()f x a =,当1a >时,1a >,(0,1)a .满足题意.当1a =时,2a ,0a =,不满足题意. 考察选项可知,D 正确; 故选:D .5.已知函数33,0()1,0x x x x f x x lnx x ex ⎧-⎪=⎨++>⎪⎩,若关于x 的方程2()()10f x mf x --=恰好有6个不相等的实根,则实数m 的取值范围是( ) A .(2-,11e + )B .(2-,0 )(⋃ 0,11e + )C .2321(,)2e e e+-+D .( 32-,0 )(⋃ 0,221)e e e++【解析】解:当0x 时,3()3f x x x =-,则2()333(1)(1)f x x x x '=-=-+, 令()0f x '=得:1x =-,∴当(,1)x ∈-∞-时,()0f x '<,()f x 单调递减;当(1,0)x ∈-时,()0f x '>,()f x 单调递增,且(1)2f -=-,(0)0f =,当0x >时,1()x x lnx f x e x +=+,则21()x x lnxf x e x--'=+,显然f '(1)0=,∴当(0,1)x ∈时,()0f x '>,()f x 单调递增;当(1,)x ∈+∞时,()0f x '<,()f x 单调递减,且f (1)11e=+, 故函数()f x 的大致图象如图所示:,令()t f x =,则关于x 的方程2()()10f x mf x --=化为关于t 的方程210t mt --=, △240m =+>,∴方程210t mt --=有两个不相等的实根,设为1t ,2t , 由韦达定理得:12t t m +=,1210t t =-<,不妨设10t >,20t <, 关于x 的方程2()()10f x mf x --=恰好有6个不相等的实根, ∴由函数()f x 的图象可知:1101t e<<+,220t -<<,设2()1g t t mt =--,则(2)0(0)01(1)0g g g e ⎧⎪->⎪<⎨⎪⎪+>⎩,解得:23212e m e e+-<<+,故选:C .6.已知函数|1|221,0()21,0x x f x x x x -⎧-=⎨++<⎩,若关于x 的方程22()(1)()20f x m f x m -++=有五个不同实根,则m 的值是( ) A .0或12B .12C .0D .不存在【解析】解:画出函数()f x 的图象,如图所示:,当()1f x =时,有三个根,把()1f x =代入方程22()(1)()20f x m f x m -++=得,21(1)20m m -++=, 解得:0m =或12, 当0m =时,方程22()(1)()20f x m f x m -++=为2()()0f x f x -=,所以()0f x =或1,所以有五个根, 当12m =时,方程22()(1)()20f x m f x m -++=为231()()022f x f x -+=,所以()1f x =或12,所以有7个根,舍去,综上所求,0m =时,方程22()(1)()20f x m f x m -++=有五个不同实根, 故选:C .7.已知函数2(2),0()|2|,0x x f x x x ⎧+=⎨->⎩,方程2()()0f x af x -=(其中(0,2))a ∈的实根个数为p ,所有这些实根的和为q ,则p 、q 的值分别为( ) A .6,4 B .4,6C .4,0D .6,0【解析】解:2()()0f x af x -=,()0f x ∴=或()f x a =.作出()f x 的函数图象如图所示:由图象可知()0f x =有两解,()f x a =有四解. 6p ∴=.由图象可知()0f x =的两解为2x =-,2x =,()f x a =的四个解中,较小的两个关于直线2x =-对称,较大的两个关于直线2x =对称, 0q ∴=.故选:D .8.已知函数()(1)(1)g x a x ln x =++的图象在点2(1e -,2(1))g e -处的切线与直线610x y ++=垂直( 2.71828e =⋯是自然对数的底数),函数()f x 满足3()(1)0xf x g x x +--=,若关于x 的方程2()()0(f x bf x c b -+=,c R ∈,且0)c <在区间1[,]e e上恰有3个不同的实数解,则实数b 的取值范围是() A .21(1,2]e + B .221[2,2]e e +-C .2221[2,]e e e-+ D .221(2,]e e+ 【解析】解:函数()(1)(1)g x a x ln x =++的导数为()(1)g x aln x a '=++, 可得()g x 图象在点2(1e -,2(1))g e -处的切线斜率为3a , 由切线与直线610x y ++=垂直,可得36a =, 解得2a =,()2(1)(1)g x x ln x =++,3()(1)0xf x g x x +--=,可得2()2f x x lnx =-, 导数为222(1)(1)()2x x f x x x x -+'=-=, 当1x >时,()0f x '>,()f x 递增;当01x <<时,()0f x '<,()f x 递减. 即有1x =处()f x 取得最小值1. 则()f x 在1[e,]e 的图象如右:若关于x 的方程2()()0(f x bf x c b -+=,c R ∈,且0)c < 在区间1[,]e e上恰有3个不同的实数解,可令()t f x =,则20t bt c -+=,(1) 可得t 的范围是[1,22]e -,方程(1)判别式为240b c ->,必有两不同的实数解, 设为1t ,2t ,12t t b +=, 可得11t =,22112t e<+, 即21112b e <-+, 解得2123b e <+,① 又212122t e e+<-, 22112t e <+, 则21222113t t b e e e+<+=+,② 由①②求并可得2212b e e <+, 故选:D .9.已知函数()1xf x x =+,(1,)x ∈-+∞,若关于x 的方程2()|()|230f x m f x m +++=有三个不同的实数解,则m 的取值范围是( ) A .3(2-,0)B .3(2-,4)3-C .3(2-,4]3-D .4(3-,0)【解析】解:1()11f x x -=++,|()|y f x =,(1,)x ∈-+∞的图象如下:设|()|f x t =,则2|()||()|230f x m f x m +++=有三个不同的实数解,即为2230t mt m +++=有两个根, ①0t =时,代入2230t mt m +++=得32m =-,即2302t t -=,另一根为32只有一个交点,舍去②一个在(0,1)上,一个在[1,)+∞上时, 设2()23h t t mt m =+++(0)230(1)1230h m h m m =+>⎧⎨=+++⎩,解得3423m -<-. 故选:C .10.已知函数2()x x f x e=,若关于x 的方程2[()]()10f x mf x m ++-=恰有3个不同的实数解,则实数m 的取值范围是( )A .(0,2)B .1(1,2)e-C .24{1,1}e -D .24(1,1)e -【解析】解:函数2()x x f x e =的导数为22()xx x f x e-'=, 当02x <<时,()0f x '>,()f x 递增; 当2x >或0x <时,()0f x '<,()f x 递减, 可得()f x 在0x =处取得极小值0, 在2x =处取得极大值241e <, 作出()y f x =的图象, 设()t f x =,关于x 的方程2()()10f x mf x m ++-=, 即为210t mt m ++-=, 解得1t =-或1t m =-, 当1t =-时,()1f x =-无实根; 由题意可得当241(0,)t m e=-∈, 解得241m e-=或1m =, 所以24(1m e ∈-,1) 故选:D .11.已知函数()1x x f x e=-,若关于x 的方程2[()]()10f x mf x m ++-=恰有3个不同的实数解,则实数m 的取值集合是( )A .(-∞,2)(2⋃,)+∞B .1(2,)e-+∞C .1(2,2)e -D .12e ⎧⎫-⎨⎬⎩⎭【解析】解:由题意1()x x f x e -'=.令1()0x xf x e-'==,解得1x =; 且1x >时,()0f x '<,1x <时,()0f x '>,所以()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减, 在1x =处取极大值11e=-.()f x 大致图象如下:令()t f x =,则2[()]()10f x mf x m ++-=可化为210t mt m ++-=. 假设2m =,则2210t t ++=.解得1t =-,即()1f x =-. 根据()f x 图象,很明显此时只有一个解, 故2m =不符合题意,由此排除B 选项;假设3m =,则2320t t ++=,解得12t =-,21t =-. 即()2f x =-,或()1f x =-.根据()f x 图象,很明显此时方程只有两个解, 故3m =不符合题意,由此排除A 选项.假设12m e =-时,则211(2)10t t e e +-+-=,解得111t e =-,21t =-.即()1f x =-或1()1f x e=-,根据()f x 的图象,很明显此时方程只有两个根, 故12m e=-不符合题意,由此排除D故选:C .12.已知函数||||()1x x f x e =+,2(),0()2,0f x x g x x x a x ⎧=⎨-+>⎩,且g (1)0=,则关于x 的方程(())10g g x t --=实根个数的判断正确的是( )A .当2t <-时,方程(())10g g x t --=没有相异实根B .当110t e-+<<或2t =-时,方程(())10g g x t --=有1个相异实根C .当111t e<<+时,方程(())10g g x t --=有2个相异实根D .当111t e -<<-+或01t <或11t e=+时,方程(())10g g x t --=有4个相异实根 【解析】解:当0x 时,||||()111x x x x xf x xe e e--=+=+=-+, 因为g (1)0=, 所以120a -+=, 所以1a =,所以21,0()21,0x xe x g x x x x ⎧-+=⎨-+>⎩,图象如图所示:当0x 时,0x -,0x e >,则11x xe -+,当且仅当0x =时等号成立, ()g x 在(,1)-∞-上是增加的,在(1,0)-上是减少的;当0x >时,()f x 在(0,1)上是减少的,在(1,)+∞上是增加的, 故()(1)0g x g -=恒成立.故()g x 在(,1)-∞-上是增加的,在(1,1)-上是减少的,在(1,)+∞上是增加的. 令()m g x t =-,则()10g m -=, 解得:0m =或2m =, 当0m =即()0g x t -=时, ()g x t =,当2t <-时,()2g x <-,无解, 当2m =即()2g x t -=时, ()2g x t =+,当2t <-时,()0g x <,无解, 故方程(())10g g x t --=没有相异实根, 故A 正确;当2t =-时,由A 可知:()0g x =,解得1x =, 当110t e -+<<时,12(1,2)t e+∈+, 由上可知()f x 在1x =-时取得极大值为1(1)1g e-=+,结合图象可知,此时2y t =+与()g x 有且仅有一个交点, 故B 正确;当111t e<<+时,()g x t =或()2g x t =+,若()g x t =,结合图象可知()g x 与y t =有三个不同的交点, 若()2g x t =+,12(3,3)t e+∈+,此时()g x 与y t =有一个交点,故方程(())10g g x t --=有4个相异实根, 故C 错误; 当111t e -<<-+时,1()2(1,1)g x t e=+∈+, 由C 可知此时有三个不等实根, 当01t <时,()g x t =或()2g x t =+, 当()g x t =时,由图可知有两个不等实根, 当()2g x t =+时,由图可知有一个实根, 当11t e=+时,()g x t =或()2g x t =+,当()g x t =时,由图可知有两个不等实根, 当()2g x t =+时,由图可知有一个实根, 故此时方程(())10g g x t --=共有9个不等实根, 故D 错误. 故选:AB .13.已知函数,1()1,12lnx x f x x x ⎧⎪=⎨-<⎪⎩,则函数()(()1)g x f f x =+的零点是 1 ,若()(()1)h x f f x m =++有两个零点1x ,2x ,则12x x +的最小值是 .【解析】解:()(()1)g x f f x =+,,1()1,12lnx x f x x x ⎧⎪=⎨-<⎪⎩,当1x 时,0lnx ,()11f x +,则(()1)(1)f f x ln lnx +=+, 当1x <时,1112x -+>,则(()1)(2)2xf f x ln +=-. (1),1()(()1)(2),12ln lnx x g x f f x xln x +⎧⎪∴=+=⎨-<⎪⎩, 令()0g x =,则1(1)0x ln lnx ⎧⎨+=⎩或1(2)02x xln <⎧⎪⎨-=⎪⎩, 解得1x =.故函数()(()1)g x f f x =+的零点是1; 由上可知,(()1)(()1)f f x ln f x +=+,()(()1)h x f f x m =++有两个零点1x ,2x ,即(()1)ln f x m +=-有两根,也就是()1m f x e -+=,()1m f x e -=-有两根1x ,2x ,不妨设12x x <, 当1x 时,21m lnx e -=-,当1x <时,1112m x e --=-, 令112m t e -=->,则 2lnx t =,2t x e =,112x t -=,122x t =-, ∴1222t x x e t +=+-,12t >, 设()22t t e t ϕ=+-,12t >, 则()2t t e ϕ'=-,可得当1(2t ∈,)lnt 时,()0t ϕ'<,当(,)t lnt ∈+∞时,()0t ϕ'>, 则()t ϕ的最小值为(2)422ln ln ϕ=-. 12x x ∴+的最小值是422ln -.故答案为:1;422ln -.14.已知函数,1()1,12lnx x f x x x ⎧⎪=⎨-<⎪⎩,若()(()1)F x f f x m =++有两个零点1x ,2x ,则12x x 的取值范围(-∞ .【解析】解:当1x 时,()0f x lnx =,则()11f x +, (()1)(()1)f f x ln f x ∴+=+,当1x <时,1()122x f x =->,则3()12f x +>, (()1)(()1)f f x ln f x ∴+=+,综上可知,()(()1)(()1)F x f f x m ln f x m =++=++,令()0F x =,得()1m f x e -+=,依题意,()1m f x e -=-有两个根1x ,2x ,不妨设12x x <, 当1x 时,21m lnx e -=-,当1x <时,1112m x e --=-, 令112m t e -=->,则1221,,1,222t x lnx t x e t x t ==-==-, ∴121(22),2t x x e t t =->, 设1()(22),2t g t e t t =->,则()20t g t te '=-<,()g t ∴在1(,)2+∞上单调递减,∴1()()2g t g <=12x x ∴的取值范围为(-∞.故答案为:(-∞.15.已知函数,2()48,25xexx e f x x x x⎧⎪⎪=⎨-⎪>⎪⎩(其中e 为自然对数的底数),若关于x 的方程22()3|()|20f x a f x a -+=恰有5个相异的实根,则实数a 的取值范围为 12{}[2e ,4)5.【解析】解:当2x 时,令()0xe exf x e -'==,解得1x =, 所以当1x 时,()0f x '>,则()f x 单调递增,当12x 时,()0f x '<,则()f x 单调递减, 当2x >时,4848()555x f x x x -==-单调递增,且()[0f x ∈,4)5作出函数()f x 的图象如图:(1)当0a =时,方程整理得2()0f x =,只有2个根,不满足条件;(2)若0a >,则当()0f x <时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a ++=++=, 则()20f x a =-<,()0f x a =-<,此时各有1解,故当()0f x >时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a -+=--=, ()2f x a =有1解同时()f x a =有2解,即需21a =,12a =,因为f (2)22212e e e==>,故此时满足题意;或()2f x a =有2解同时()f x a =有1解,则需0a =,由(1)可知不成立; 或()2f x a =有3解同时()f x a =有0解,根据图象不存在此种情况,或()2f x a =有0解同时()f x a =有3解,则21245a a e >⎧⎪⎨<⎪⎩,解得245a e <, 故2[a e ∈,4)5(3)若0a <,显然当()0f x >时,()2f x a =和()f x a =均无解, 当()0f x <时,()2f x a =-和()f x a =-无解,不符合题意. 综上:a 的范围是12{}[2e ,4)5故答案为12{}[2e ,4)516.已知函数231,0()26,0ax x f x xlnx x x ⎧++<⎪=⎨⎪->⎩,若关于x 的方程()()0f x f x +-=恰有四个不同的解,则实数a 的取值范围是 (2,0)- .【解析】解:已知定义在(-∞,0)(0⋃,)+∞上的函数231,0()26,0ax x f x xlnx x x ⎧++<⎪=⎨⎪->⎩, 若()()0f x f x +-=在定义域上有四个不同的解 等价于231a y x x =++关于原点对称的函数231ay x x=-+-与函数()26(0)f x lnx x x =->的图象有两个交点,联立可得226310alnx x x x-+-+=有两个解, 即23263a xlnx x x x =-++,0x >, 可设23()263g x xlnx x x x =-++,0x >, 2()32129g x lnx x x '=+-+, 22()1812218120g x x x x x''=+-=,可得()g x '在(0,)+∞递增, 由g '(1)0=,可得01x <<时,()0g x '<,()g x 递减;1x >时,()0g x '>,()g x 递增, 即()g x 在1x =处取得极小值且为2-,作出()y g x =的图象,可得20a -<<时,226310alnx x x x-+-+=有两个解, 故答案为:(2,0)-.17.已知函数21,0()21,0x x f x x x x +⎧=⎨-+>⎩,若关于x 的方程2()()0f x af x -=恰有5个不同的实数解,则a 的取值范围是 (0,1) .【解析】解:作()f x 的图象如下,,2()()()(())0f x af x f x f x a -=-=,()0f x ∴=或()f x a =; ()0f x =有两个不同的解,故()f x a =有三个不同的解, 故(0,1)a ∈; 故答案为:(0,1).18.已知函数()|1|33f x x x x =--+. (1)求函数()f x 的零点;(2)若关于x 的方程2()()0(f x mf x n m -+=、)n R ∈恰有5个不同的实数解,求实数m 的取值范围.【解析】解:(1)由题得2223,(1)()|1|3343,(1)x x x f x x x x x x x ⎧--+<=--+=⎨-+⎩,①当1x <时,令()0f x =,得3x =-或1x =(舍); ②当1x 时,令()0f x =,得1x =或3x =, ∴函数()f x 的零点是3-,1,3;(2)作出函数2223,(1)()|1|3343,(1)x x x f x x x x x x x ⎧--+<=--+=⎨-+⎩的大致图象,如图:令()t f x =,若关于x 的方程2()()0f x mf x n -+=恰有5个不同的实数解, 解法一:则函数2()g t t mt n =-+的零点分布情况如下:①当11t =-,2(1,4)t ∈-时,则(1)0(4)0142g g b a ⎧⎪-=⎪>⎨⎪⎪-<-<⎩,得101640142m n m n m ⎧⎪++=⎪-+>⎨⎪⎪-<<⎩,故(2,3)m ∈-;②当14t =,2(1,4)t ∈-时,则(4)0(1)0142g g b a ⎧⎪=⎪->⎨⎪⎪-<-<⎩,得164010142m n m n m ⎧⎪-+=⎪++>⎨⎪⎪-<<⎩,故(3,8)m ∈.综上所述,实数m 的取值范围为(2m ∈-,3)(3⋃,8); 解法二:则方程20t mt n -+=的根的情况如下:①当11t =-,2(1,4)t ∈-时,由11t =-得10m n ++=,则方程2(1)0t mt m --+=,即(1)(1)0t t m +--=,故21(1,4)t m =+∈-,所以(2,3)m ∈-;②当14t =,2(1,4)t ∈-时,由14t =得1640m n -+=,则方程24(4)0t mt m -+-=,即(4)(4)0t t m --+=,故24(1,4)t m =-∈-,所以(3,8)m ∈.综上所述,实数m 的取值范围为(2m ∈-,3)(3⋃,8).19.已知函数2()sin()2cos 1,468f x x x x R πππ=--+∈. (1)求函数()f x 的最小正周期及单调递增区间;(2)若关于x 的方程()()24410,43f x mf x x ⎛⎫-+=∈ ⎪⎝⎭在内有实数解,求实数m 的取值范围. 【解析】解:(1)23()sin()2cos 1sin cos cos sin cos cos 3sin()4684646442443f x x x x x x x x ππππππππππππ=--+=----⋯(3分) ∴函数()f x 的最小正周期为8.⋯(4分)令222432k x k ππππππ--+,k Z ∈,求得2108833k x k -+,k z ∈,故函数的单调递增区间为210[8,8]33k k -+,k Z ∈⋯(6分)(2)设()t f x =,4(3x ∈,4),∴2(0,)433x πππ-∈,()(0f x ∴∈,∴方程2410t mt -+=在(0t ∈内有实数解,即当(0t ∈时方程有实数解.⋯(10分) 11442t t t +=当且仅当时取等号,4m ∴,⋯(8分) 故实数m 的取值范围是[4,)+∞.⋯(12分) 20.已知函数()g x 对一切实数x ,y R ∈都有()()(22)g x y g y x x y +-=+-成立,且g (1)0=,()(1)(h x g x bx c b =+++,)c R ∈,()()g x f x x=. (Ⅰ)求(0)g 的值和()g x 的解析式;(Ⅰ)记函数()h x 在[1-,1上的最大值为M ,最小值为m .若4M m -,当0b >时,求b 的最大值;(Ⅰ)若关于x 的方程2(|21|)30|21|x x k f k -+-=-有三个不同的实数解,求实数k 的取值范围. 【解析】解:(Ⅰ)令1x =,0y =得g (1)(0)1g -=-,g (1)0=,(0)1g ∴=,令0y =得()(0)(2)g x g x x -=-,即2()21g x x x =-+.(Ⅰ)2()(1)h x g x bx c x bx c =+++=++.①当12b -<-,即2b >时,M m h -=(1)(1)24h b --=>,与题设矛盾②当102b --<时,即02b <时,M m h -=(1)2()(1)422b b h --=+恒成立, 综上可知当02b <时,b 的最大值为2.(3)当0x =时,210x -=则0x =不是方程的根,方程2(|21|)30|21|x x k f k -+-=-可化为: 2|21|(23)|21|(12)0x x k k --+-++=,|21|0x -≠,令|21|x t -=,则方程化为2(23)(12)0t k t k -+++=,(0)t >,方程2(|21|)310|21|x x k f k -+--=-有三个不同的实数解, ∴由|21|x t =-的图象知,2(23)(12)0t k t k -+++=,(0)t >,有两个根1t 、2t ,且1201t t <<<或101t <<,21t =.记2()(23)(12)h t t k t k =-+++,则(0)210(1)0h k h k =+>⎧⎨=-<⎩,此时0k >, 或(0)210(1)032012h k h k k ⎧⎪=+>⎪=-=⎨⎪+⎪<<⎩,此时k 无解,综上实数k 的取值范围是(0,)+∞.。

2023-2024学年高考数学专项复习——压轴题(附答案)

2023-2024学年高考数学专项复习——压轴题(附答案)

决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。

2022年新高考数学函数压轴小题专题突破专题11 零点嵌套问题(解析版)

2022年新高考数学函数压轴小题专题突破专题11 零点嵌套问题(解析版)

专题11 零点嵌套问题1.已知函数2()()()f x ax lnx x lnx x =+−−有三个不同的零点1x ,2x ,3x (其中123)x x x <<,则2312123(1)(1)(1)lnx lnx lnxx x x −−−的值为( ) A .1a − B .1a − C .1− D .12.已知1x ,2x ,3x 是函数2()x f x ax lnx x lnx =+−−三个不同的零点,且123x x x <<,设1(1i i i lnxM i x =−=,2,3),则2123(M M M = )A .1B .1−C .eD .1e3.已知函数2()()(1)()1x x f x xe a xe a =+−+−有三个不同的零点1x ,2x ,3x .其中123x x x <<,则3122123(1)(1)(1)x x x x e x e x e −−−的值为( ) A .1B .2(1)a −C .1−D .1a −4.已知函数2()()x x x axf x a e e =+−有三个不同的零点1x ,2x ,3x (其中123)x x x <<,则1232312(1)(1)(1)x x x x x x e e e −−−的值为( ) A .1B .1−C .aD .a −5.若关于x 的方程0xx x x e m e x e ++=+有三个不相等的实数解1x ,2x ,3x ,且1230x x x <<<,其中m R ∈,e 为自然对数的底数,则1232312(1)(1)(1)x x x x x x e e e +++的值为( ) A .1m + B .e C .1m − D .16.若关于x 的方程0xx x x e m e x e ++=−有三个不相等的实数解1x ,2x ,3x ,且1230x x x <<<,其中m R ∈,2.718e =为自然对数的底数,则1232312(1)(1)(1)x x x x x x e e e −−−的值为( ) A .e B .1m − C .1m + D .17.若关于x 的方程2|1|0|1|1x x e m e −++=−+有三个不相等的实数解1x 、2x 、3x ,123(0)x x x <<<其中m R ∈,2.71828e…,则3122(|1|1)(|1|1)(|1|1)x x x e e e −+−+−+ 的值为( )A .eB .4C .1m −D .1m +8.若存在正实数m ,使得关于x 的方程(224)[()]0x a x m ex ln x m lnx ++−+−=有两个不同的根,其中e 为自然对数的底数,则实数a 的取值范围是( ) A .(,0)−∞ B .1(0,)2eC .(−∞,10)(2e∪,)+∞ D .1(2e,)+∞ 9.若存在正实数m ,使得关于x 的方程(224)[()]0x a x m ex ln x m lnx ++−+−=成立,其中e 为自然对数的底数,则实数a 的取值范围是( ) A .(,0)−∞ B .1(0,)2eC .1(,0)[,)2e−∞+∞ D .1[,)2e+∞ 10.已知函数()(21)u x e x m =−−,()()x ln x m lnx υ+−若存在m ,使得关于x 的方程2()()a u x x x υ= 有解,其中e 为自然对数的底数则实数a 的取值范围是( ) A .1(,0)(,)2e−∞+∞ B .(,0)−∞ C .1(0,)2eD .1(,0)[,)2e−∞+∞ 11.已知2()()()f x ax lnx x lnx x =+−−恰有三个不同零点,则a 的取值范围为 .12.已知函数2()x f x ax lnx x lnx=+−−有三个不同的零点1x ,2x ,3x (其中123)x x x <<,则2312123(1)(1)(1)lnx lnx lnxx x x −−−的值为 .专题11 零点嵌套问题1.已知函数2()()()f x ax lnx x lnx x =+−−有三个不同的零点1x ,2x ,3x (其中123)x x x <<,则2312123(1)(1)(1)lnx lnx lnxx x x −−−的值为( ) A .1a − B .1a − C .1− D .1【解析】解:令()0f x =,分离参数得x lnxa x lnx x−−, 令()x lnxh x x lnx x=−−, 由22(1)(2)()0()lnx lnx x lnx h x x x lnx −−′==−,得1x =或x e =. 当(0,1)x ∈时,()0h x ′<;当(1,)x e ∈时,()0h x ′>;当(,)x e ∈+∞时,()0h x ′<. 即()h x 在(0,1),(,)e +∞上为减函数,在(1,)e 上为增函数.12301x x e x ∴<<<<<,11x lnx lnx alnx x lnx x x =−=−−−,令lnxxµ=, 则11aµµ−−,即2(1)10a a µµ+−+−=, 1210a µµ+=−<,1210a µµ=−<,对于lnx x µ=,21lnxxµ−′= 则当0x e <<时,0µ′>;当x e >时,0µ′<.而当x e >时,µ恒大于0. 画其简图,不妨设12µµ<,则111lnx x µ=,322323lnx lnx x x µµ===, 22312123123(1)(1)(1)(1)(1)(1)lnx lnx lnxx x x µµµ−−−=−−− 2212[(1)(1)][1(1)(1)]1a a µµ=−−=−−+−=.故选:D .2.已知1x ,2x ,3x 是函数2()x f x ax lnx x lnx =+−−三个不同的零点,且123x x x <<,设1(1i i i lnx M i x =−=,2,3),则2123(M M M = )A .1B .1−C .eD .1e【解析】解:令()0f x =得x lnx a x lnx x−−, 令lnx t x =,则11x t x lnx t=−−−,11a t t ∴=−−. 即2(1)10t a t a +−+−=. 令()lnx g x x =,则21()lnxg x x−′=, ()g x ∴在(0,)e 上单调递增,在(,)e +∞上单调递减,且当01x <<时,()0g x <,当x e >时,()0g x >, ()g x g ∴…(e )1e =,∴当10t e<<时,关于x 的方程()g x t =有两大于1的解,当0t …时,关于x 的方程()g x t =只有一小于1的解. 当1t e=时,关于x 的方程()g x t =有唯一解x e =. ()f x 有三个不同的零点,∴关于t 的方程2(1)10t a t a +−+−=在(−∞,10]{}e 和1(0,)e上各有1个解. 不妨设两解为1t ,2t ,则121t t a +=−,121t t a =−, 若1t e =,则11e a e e=−−,此时方程的另一解为1101e t a e e =−−=−<−, ∴原方程只有两解,不符合题意;同理0t =也不符合题意;设120t t <<,则111M t =−,2321M M t ==−, ∴2222123121212(1)(1)(1)1M M M t t t t t t =−−=−−+=.故选:A .3.已知函数2()()(1)()1x x f x xe a xe a =+−+−有三个不同的零点1x ,2x ,3x .其中123x x x <<,则3122123(1)(1)(1)x x x x e x e x e −−−的值为( ) A .1B .2(1)a −C .1−D .1a −【解析】解:令x t xe =,则(1)x t x e ′=+, 故当(1,)x ∈−+∞时,0t ′>,x t xe =是增函数, 当(,1)x ∈−∞−时,0t ′<,x t xe =是减函数, 可得1x =−处x t xe =取得最小值1e−,x →−∞,0t →,画出x t xe =的图象,由()0f x =可化为2(1)10t a t a +−+−=,故结合题意可知,2(1)10t a t a +−+−=有两个不同的根, 故△2(1)4(1)0a a =−−−>,故3a <−或1a >, 不妨设方程的两个根分别为1t ,2t , ①若3a <−,1214t t a +=−>, 与1220t t e−<+<相矛盾,故不成立;②若1a >,则方程的两个根1t ,2t 一正一负;不妨设120t t <<,结合x t xe =的性质可得,_111x x e t =,_221x x e t =,_332x x e t =, 故3122123(1)(1)(1)x x x x e x e x e −−−2112(1)(1)(1)t t t =−−− 21212(1())t t t t =−++又121t t a =− ,121t t a +=−,31222123(1)(1)(1)(111)1x x x x e x e x e a a ∴−−−=−++−=. 故选:A .4.已知函数2()()x x x axf x a e e =+−有三个不同的零点1x ,2x ,3x (其中123)x x x <<,则1232312(1)(1)(1)x x x x x x e e e −−−的值为( )A .1B .1−C .aD .a −【解析】解:令()x x t x e =,则1x xt e−′=, ∴当1x <时,()0t x ′>,函数()t x 在(,1)−∞单调递增,当1x >时,()0t x ′<,在(1,)+∞单调递减,且()1()1t x t e==极大值, 由题意,2()g t t at a =+−必有两个根10t <,且210t e<<,由根与系数的关系有,12t t a +=−,12t t a =−,由图可知,1x x t e =有一解10x <,2xxt e =有两解2x ,3x ,且2301x x <<<, 故12322222312122121212(1)(1)(1)(1)(1)(1)[(1)(1)][1()](1)1x x x x x x t t t t t t t t t a a e e e−−−=−−−=−−=−++=+−=. 故选:A .5.若关于x 的方程0xx x x e m e x e ++=+有三个不相等的实数解1x ,2x ,3x ,且1230x x x <<<,其中m R ∈,e 为自然对数的底数,则1232312(1)(1)(1)x x x x x x e e e +++的值为( )A .1m +B .eC .1m −D .1【解析】解:由方程0xx xx e m e x e ++=+ ⇒101xxxm x e ++=+, 令xxte =,则有101t m t ++=+. 2(1)10t m t m ⇒++++=, 令函数()x x g x e =,1()xx g x e −′=, ()g x ∴在(,1)−∞递增,在(1,)+∞递减,其图象如下,要使关于x 的方程0xx xx e m e x e ++=+有三个不相等的实数解1x ,2x ,3x ,且1230x x x <<< 结合图象可得关于t 的方程2(1)10t m t m ++++=一定有两个实根1t ,2t ,12(0)t t << 且111x x t e =,23322x x x x t e e ==, 1232312(1)(1)(1)x x x x x x e e e∴+++ 212[(1)(1)]t t =++.121212(1)(1)()1(1)(1)11t t t t t t m m ++=+++=+−++=.1232231212(1)(1)(1)[(1)(1)]1x x x x x x t t e e e ∴+++++. 故选:D .6.若关于x 的方程0x x x x e m e x e ++=−有三个不相等的实数解1x ,2x ,3x ,且1230x x x <<<,其中m R ∈,2.718e =为自然对数的底数,则1232312(1)(1)(1)x x x x x x e e e −−−的值为( )A .eB .1m −C .1m +D .1【解析】解:由方程0xx xx e m e x e ++=−⇒101x x x m x e ++=−, 令xx t e =,则有101t m t ++=−. 2(1)10t m t m ⇒+−+′−=, 令函数()xxg x e =,1()x x g x e −′=, ()g x ∴在(,1)−∞递增,在(1,)+∞递减,其图象如下,要使关于x 的方程0xx xx e m e x e ++=−有3个不相等的实数解1x ,2x ,3x ,且1230x x x <<< 结合图象可得关于t 的方程2(1)10t m t m +−+′−=一定有两个实根1t ,2t ,12(0)t t << 且111x x t e =,23223x x x x t e e== ∴1232231212(1)(1)(1)[(1)(1)]x x x x x x t t e e e−−−−−. 121212(1)(1)()1(1)(1)11t t t t t t m m −−=−++=−−−+=. ∴1232231212(1)(1)(1)[(1)(1)]1x x x x x xt t e e e−−−−−.故选:D .7.若关于x 的方程2|1|0|1|1x x e m e −++=−+有三个不相等的实数解1x 、2x 、3x ,123(0)x x x <<<其中m R ∈,2.71828e…,则3122(|1|1)(|1|1)(|1|1)x x x e e e −+−+−+ 的值为( )A .eB .4C .1m −D .1m +【解析】解:令|1|x t e =−,函数|1|x y e =−的图象如下:方程22|1|00|1|11x xe m t m e t −++=⇒++=−++.即2(1)20t m t m ++++=, 要使方程2|1|0|1|1x x e m e −++=−+有三个不相等的实数解1x 、2x 、3x ,123(0)x x x <<<,则方程2(1)20t m t m ++++=一定有两个实根1t ,2t , 可验证0t =或1不符合题意,所以方程2(1)20t m t m ++++=一定有两个实根1t ,2t ,且1201t t <<<. 且_1_21|1||1|x x e e t −=−=,_32|1|x e t −=, 则3122212(|1|1)(|1|1)(|1|1)[(1)(1)]x x x e e e t t −+−+−+++ . 121212(1)(1)()1(2)(1)12t t t t t t m m ++++++−++.则3122212(|1|1)(|1|1)(|1|1)[(1)(1)]4x x x e e e t t −+−+−+++ , 故选:B .8.若存在正实数m ,使得关于x 的方程(224)[()]0x a x m ex ln x m lnx ++−+−=有两个不同的根,其中e 为自然对数的底数,则实数a 的取值范围是( ) A .(,0)−∞ B .1(0,)2eC .(−∞,10)(2e∪,)+∞ D .1(2e,)+∞ 【解析】解:由题意得1(12)(1)(2)2m me ln t e lnt a x x−=+−+=−,(11)m t x +>, 令()(2)f t t e lnt =−,(1)t >, 则2()1ef t lnt t′=+−,212()0e f t t t ′′=+>,当t e >时,()f t f ′>′(e )0=,当1t e <<时,()f t f ′<′(e )0=, ()f t f ∴…(e )e =−, 12e a∴−>−, 而1t →时,()0f t →, 则要满足102e a−<−<, 解得:12a e>, 故选:D .9.若存在正实数m ,使得关于x 的方程(224)[()]0x a x m ex ln x m lnx ++−+−=成立,其中e 为自然对数的底数,则实数a 的取值范围是( ) A .(,0)−∞ B .1(0,)2eC .1(,0)[,)2e−∞+∞ D .1[,)2e+∞ 【解析】解:由(224)[()]0x a x m ex ln x m lnx ++−+−=得 2(2)0x mx a x m ex lnx+++−=, 即12(2)0x m x ma e ln x x+++−=, 即设x mt x+=,则0t >, 则条件等价为12(2)0a t e lnt +−=, 即1(2)2t e lnt a−=−有解,设()(2)g t t e lnt =−, 2()1eg t lnt t′=+−为增函数, g ′ (e )211120elne e=+−=+−=, ∴当t e >时,()0g t ′>,当0t e <<时,()0g t ′<,即当t e =时,函数()g t 取得极小值为:g (e )(2)e e lne e =−=−, 即()g t g …(e )e =−, 若1(2)2t e lnt a−=−有解,则12e a −−…,即12e a…, 则0a <或12a e…, ∴实数a 的取值范围是1(,0)[2e−∞ ,)+∞. 故选:C .10.已知函数()(21)u x e x m =−−,()()x ln x m lnx υ+−若存在m ,使得关于x 的方程2()()a u x x x υ= 有解,其中e 为自然对数的底数则实数a 的取值范围是( )A .1(,0)(,)2e −∞+∞ B .(,0)−∞ C .1(0,)2e D .1(,0)[,)2e−∞+∞ 【解析】解:由2()()a u x x x υ= 可得[2(21)2]0x m a e x am lnx x +−−−= , 即2[(21)]10m x m a e ln x x +−−−= ,即2(2)10x m x m a e ln x x ++−−= , 令x m t x +=,则方程1(2)2e t lnt a−=有解. 设()(2)f t e t lnt =−,则22()1e t e f t lnt lnt t t −′=−+=−+−, 显然()f t ′为减函数,又f ′(e )0=,∴当0t e <<时,()0f t ′>,当t e >时,()0f t ′<,()f t ∴在(0,)e 上单调递增,在(,)e +∞上单调递减,()f t ∴的最大值为f (e )e =, ∴12e a …,解得0a <或12a e…. 故选:D .11.已知2()()()f x ax lnx x lnx x =+−−恰有三个不同零点,则a 的取值范围为 (1,11)(1)e e +− . 【解析】解:令()0f x =,分离参数得x lnx ax lnx x −−, 令()x lnx h x x lnx x =−−, 由22(1)(2)()0()lnx lnx x lnx h x x x lnx −−′==−,得1x =或x e =. 当(0,1)x ∈时,()0h x ′<;当(1,)x e ∈时,()0h x ′>;当(,)x e ∈+∞时,()0h x ′<. 即()h x 在(0,1),(,)e +∞上为减函数,在(1,)e 上为增函数.1x ∴=时,()h x 有极小值h (1)1=;x e =时,()h x 有极大值h (e )11(1)e e =+−; 设lnxx µ=,则1µ<;这是因为对于函数y lnx x =−,0x >,有1xy x −′=,当01x <<时,0y ′>,函数单调递增;当1x >时,0y ′<,函数单调递减; 即1x =时函数有极大值,也是最大值1−,故0x ∀>,0lnx x −<,lnx x <,即得1lnxx <;11()(1)121111h x µµµµ=−=+−−−=−−…;∴当2()()()f x ax lnx x lnx x =+−−恰有三个不同零点,即y a =与()y h x =有三个不同的交点; 111(1)a e e ∴<<+−.故答案为:(1,11)(1)e e +−.12.已知函数2()x f x ax lnx x lnx =+−−有三个不同的零点1x ,2x ,3x (其中123)x x x <<,则2312123(1)(1)(1)lnxlnxlnx x x x −−−的值为 1 . 【解析】解:由2()0x f x ax lnx x lnx =+−=−分离参数得x lnxa x lnx x −−, 令()x lnxh x x lnx x =−−, 由222211(1)(2)()0()()lnxlnx lnx lnx x lnx h x x lnx x x x lnx −−−−′=−==−−,得1x =或x e =.当(0,1)x ∈时,()0h x ′<;当(1,)x e ∈时,()0h x ′>;当(,)x e ∈+∞时,()0h x ′<.即()h x 在(0,1),(,)e +∞上为减函数,在(1,)e 上为增函数.而当0x →,()h x →+∞,当x →+∞,()1h x →, 又h (1)1=,h (e )11(1)e e =+−; 结合函数的单调性可得,实数a 的取值范围为(1,11)(1)e e +−. 则12301x x e x <<<<<, 11x lnx lnx a lnx x lnx x x =−=−−−,令lnx x µ=, 则11aµµ−−,即2(1)10a a µµ+−+−=, 1210a µµ+=−<,1210a µµ=−<, 对于lnx xµ=,21lnx x µ−′= 则当0x e <<时,0µ′>;当x e >时,0µ′<.而当x e >时,µ恒大于0. 画其简图,不妨设12µµ<,则31212123,lnx lnx lnx x x x µµ===, ∴22231212212123(1)(1)(1)(1)(1)(1)[(1)(1)]lnx lnx lnx x x x µµµµµ−−−=−−−=−− 221212[1()][1(1)(1)]1a a µµµµ=−++=−−+−= 故答案为:1。

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。

2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。

答案:an = 2n + 1。

3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。

答案:三角形ABC的面积为12。

4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。

答案:k = ±√3/3,b = ±√6/3。

5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。

答案:f'(x) = 2x/(x^2 + 1)ln2。

6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。

答案:向量a和向量b的夹角为arccos(1/√5)。

7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。

答案:矩阵A的逆矩阵为[4 2; 3 1]。

8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。

答案:f(x)的零点为x = 1和x = 3。

9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。

答案:f(x)在区间[0, π/2]上的最大值为√2。

10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。

答案:f(x)的顶点坐标为(2, 0)。

高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。

答案:f'(x) = e^x 2。

12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 2,极值为f(2) = 0。

高考数学压轴题考点及突破方法

高考数学压轴题考点及突破方法

高考数学压轴题考点及突破方法高考数学压轴题考点及突破方法?1.涉及的考点2021年解答题考察的考点:数列、立体几何、统计、解析几何、导数2021年解答题考察的考点:三角函数、立体几何、函数、解析几何、导数研究高考真题的目的确实是找出考点和常考考点。

因为常考的知识点还将考,从来不涉及的知识点,考的可能性就不大。

找出考点后,就要进行专项的训练,专项训练不在题多,而在于做好题,真题仍是第一选择。

训练过程一定要揣摩整个过程,找出规律。

2.解答题的解题技巧珍爱题目中给你的条件。

数学题目中的条件差不多上不多也许多的,一道给出的题目,可不能有用不到的条件,学习效率,而另一方面,你要相信给出的条件一定是能够做到正确答案的。

因此,解题时,一切都从题目条件动身,只有如此,一切才都有可能。

在数学家波利亚的四个解题步骤中,第一步审题格外重要,审题步骤中,又有如此一个技巧:当你对整道题目没有思路时:步骤(1)将题目条件推导出新条件,步骤(2)将题目结论推导到新结论.家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,小孩一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

我把幼儿在园里的阅读活动及阅读情形及时传递给家长,要求小孩回家向家长朗诵儿歌,表演故事。

我和家长共同配合,一道训练,幼儿的阅读能力提高专门快。

语文课本中的文章差不多上精选的比较优秀的文章,还有许多名家名篇。

假如有选择循序渐进地让学生背诵一些优秀篇目、杰出段落,对提高学生的水平会大有裨益。

现在,许多语文教师在分析课文时,把文章解体的支离破裂,总在文章的技巧方面下功夫。

结果教师费劲,学生头疼。

分析完之后,学生收效甚微,没过几天便忘的干洁净净。

造成这种事倍功半的尴尬局面的关键确实是对文章读的不熟。

常言道“书读百遍,其义自见”,假如有目的、有打算地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便能够在读中自然领会文章的思想内容和写作技巧,能够在读中自然加强语感,增强语言的感受力。

专题01嵌套函数问题-冲刺2024年高考数学压轴题微切口突破

专题01嵌套函数问题-冲刺2024年高考数学压轴题微切口突破

嵌套函数是数学中常见的概念,也是高考数学中的重点内容。

在冲刺2024年高考数学压轴题微切口突破中,嵌套函数问题通常是压轴题的难点之一、本文将从嵌套函数的基本概念、题型分析和解题策略等方面,对如何突破嵌套函数问题进行探讨。

首先,我们来回顾一下嵌套函数的基本概念。

嵌套函数可以理解为一个函数内部包含了另一个函数。

通常,外层函数称为主函数,内层函数称为子函数。

子函数的输入来自主函数,子函数的输出作为主函数的一些步骤的计算结果。

在解决嵌套函数问题时,我们需要了解主函数的输入和输出,以及子函数的输入和输出之间的关系。

在冲刺2024年高考数学压轴题微切口突破中,嵌套函数问题的题型多种多样,常见的有求导、极值、函数图像等。

在解题过程中,我们需要根据问题的要求,灵活运用函数的基本性质和规律,以及合理的数学思维方式,来解决问题。

对于求导问题,通常我们需要根据链式法则和复合函数求导法则,仔细分析主函数和子函数之间的关系。

在求导过程中,我们需要注意运用求导法则和基本函数的导数公式,以及合理运用化简的方法,使得计算过程简洁明了。

对于极值问题,我们通常需要根据函数在一定区间上的单调性、导数的符号和零点等信息,来确定函数的极值点。

在嵌套函数问题中,我们需要仔细分析主函数和子函数之间的关系,并根据导数的性质,结合函数图像的特点来解题。

对于函数图像问题,我们通常需要结合主函数和子函数的图像特点,来确定函数的图像形状、对称性和变化趋势等。

同时,我们还需要运用函数图像的性质和定理,来解决相关的问题。

在解决嵌套函数问题时,我们需要注意以下几点策略。

首先,我们要充分理解题目的要求和条件,并运用已经掌握的基本概念和技巧,来分析问题。

其次,我们要注重培养空间想象力和数学直觉,通过观察和分析函数的图像、符号和变化趋势等,来解题。

此外,我们还可以通过化简运算、构造合适的例子和寻找一些特殊点等方法,来简化解题过程。

最后,我们要多进行练习和总结,不断强化对嵌套函数的理解和运用能力。

突破高考数学压轴题的方法有哪些

突破高考数学压轴题的方法有哪些

突破高考数学压轴题的方法有哪些突破高考数学压轴题的方法有哪些只要了解到高考数学压轴题的特点,并且掌握一定的答题技巧,相信高考生还是可以从中拿到一些分数的。

下面是店铺为你搜集到的突破高考数学压轴题的方法,欢迎阅读!突破高考数学压轴题的方法:要正确认识压轴题压轴题主要出在函数,解几,数列三部分内容,一般有三小题。

记住:第一小题是容易题!争取做对!第二小题是中难题,争取拿分!第三小题是整张试卷中最难的题目!也争取拿分!其实对于所有认真复习迎考的同学来说,都有能力与实力在压轴题上拿到一半左右的分数,要获取这一半左右的分数,不需要大量针对性训练,也不需要复杂艰深的思考,只需要你有正确的心态!信心很重要,勇气不可少。

同学们记住:心理素质高者胜!以上海高考数学卷的压轴题为例,分析其中一半左右分值的易得分部分,谈一谈解题心态。

同学可以再做一下2010年的高考卷最后一题,或者今年二模卷的最后一题,能否拿到比以往更多的分数。

突破高考数学压轴题的方法:千万不要分心其实高考的时候怎么可能分心呢?这里的分心,不是指你做题目的时候想着考好去哪里玩。

高考时,你是不可能这么想的'。

你可以回顾高三以往考试,问一下自己:在做最后一道题目的时候,你有没有想“最后一道题目难不难?不知道能不能做出来”“我要不要赶快看看最后一题,做不出就去检查前面题目”“前面不知道做的怎样,会不会粗心错”……这就是影响你解题的“分心”,这些就使你不专心。

专心于现在做的题目,现在做的步骤。

现在做哪道题目,脑子里就只有做好这道题目。

现在做哪个步骤,脑子里就只有做好这个步骤,不去想这步之前对不对,这步之后怎么做,做好当下!突破高考数学压轴题的方法:重视审题你的心态就是珍惜题目中给你的条件。

数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。

所以,解题时,一切都必须从题目条件出发,只有这样,一切才都有可能。

2022年新高考数学函数压轴小题专题突破专题5 函数嵌套问题(解析版)

2022年新高考数学函数压轴小题专题突破专题5 函数嵌套问题(解析版)

专题5 函数嵌套1.已知函数2()(1)x f x x x e =−−,设关于x 的方程25()()()f x mf x m R e−=∈有n 个不同的实数解,则n 的所有可能的值为( ) A .3B .1或3C .4或6D .3或4或62.已知函数())f x x R =∈,若关于x 的方程2()()10f x mf x m −+−=恰好有4个不相等的实数根,则实数m 的取值范围为( ) A.(1,1)+ B.(0 C .1(1,1)e+ D. 3.已知函数|1|2,0()21,0x e x f x x x x − >= −−+…,若方程2()()20f x bf x ++=有8个相异实根,则实数b 的取值范围()A .(4,2)−− B.(4,−− C .(3,2)−− D.(3,−−4.已知函数22,0()(1),0x x x f x ln x x −+>= −+< ,关于x 的方程2()2()10()f x af x a a R −+−=∈有四个相异的实数根,则a 的取值范围是( )A .(,0)−∞B .[1,)+∞C .(,0)[2−∞ ,)+∞D .(−∞,0)(1∪,)+∞5.已知函数33,0()1,0xx x x f x x lnx x e x −= ++> …,若关于x 的方程2()()10f x mf x −−=恰好有6个不相等的实根,则实数m 的取值范围是( ) A .(2−,11e + )B .(2−,0 )(∪ 0,11e + )C .2321(,)2e e e+−+D .( 32−,0 )(∪ 0,221)e e e++6.已知函数|1|221,0()21,0x x f x x x x − −= ++<…,若关于x 的方程22()(1)()20f x m f x m −++=有五个不同实根,则m 的值是( ) A .0或12B .12C .0D .不存在7.已知函数2(2),0()|2|,0x x f x x x += −>…,方程2()()0f x af x −=(其中(0,2))a ∈的实根个数为p ,所有这些实根的和为q ,则p 、q 的值分别为( ) A .6,4B .4,6C .4,0D .6,08.已知函数()(1)(1)g x a x ln x =++的图象在点2(1e −,2(1))g e −处的切线与直线610x y ++=垂直( 2.71828e =…是自然对数的底数),函数()f x 满足3()(1)0xf x g x x +−−=,若关于x 的方程2()()0(f x bf x c b −+=,c R ∈,且0)c <在区间1[,]e e上恰有3个不同的实数解,则实数b 的取值范围是()A .21(1,2]e + B .221[2,2]e e+−C .2221[2,]e e e−+ D .221(2,]e e+ 9.已知函数()1xf x x =+,(1,)x ∈−+∞,若关于x 的方程2()|()|230f x m f x m +++=有三个不同的实数解,则m 的取值范围是( ) A .3(2−,0)B .3(2−,4)3−C .3(2−,4]3−D .4(3−,0)10.已知函数2()x x f x e =,若关于x 的方程2[()]()10f x mf x m ++−=恰有3个不同的实数解,则实数m 的取值范围是( ) A .(0,2) B .1(1,2)e−C .24{1,1}e − D .24(1,1)e −11.已知函数()1xxf x e=−,若关于x 的方程2[()]()10f x mf x m ++−=恰有3个不同的实数解,则实数m 的取值集合是( )A .(−∞,2)(2∪,)+∞B .1(2,)e−+∞C .1(2,2)e−D .12e−12.已知函数||||()1x x f x e =+,2(),0()2,0f x x g x x x a x = −+>…,且g (1)0=,则关于x 的方程(())10g g x t −−=实根个数的判断正确的是( )A .当2t <−时,方程(())10g g x t −−=没有相异实根B .当110t e−+<<或2t =−时,方程(())10g g x t −−=有1个相异实根 C .当111t e<<+时,方程(())10g g x t −−=有2个相异实根 D .当111t e −<<−+或01t <…或11t e=+时,方程(())10g g x t −−=有4个相异实根 13.已知函数,1()1,12lnx x f x x x= −< …,则函数()(()1)g x f f x =+的零点是 ,若()(()1)h x f f x m =++有两个零点1x ,2x ,则12x x +的最小值是 .14.已知函数,1()1,12lnx x f x x x= −< …,若()(()1)F x f f x m =++有两个零点1x ,2x ,则12x x 的取值范围 .15.已知函数,2()48,25xexx e f x x x x= − > …(其中e 为自然对数的底数),若关于x 的方程22()3|()|20f x a f x a −+=恰有5个相异的实根,则实数a 的取值范围为 .16.已知函数231,0()26,0ax x f x xlnx x x ++< = −> ,若关于x 的方程()()0f x f x +−=恰有四个不同的解,则实数a 的取值范围是 .17.已知函数21,0()21,0x x f x x x x + = −+>…,若关于x 的方程2()()0f x af x −=恰有5个不同的实数解,则a 的取值范围是 .18.已知函数()|1|33f x x x x =−−+. (1)求函数()f x 的零点;(2)若关于x 的方程2()()0(f x mf x n m −+=、)n R ∈恰有5个不同的实数解,求实数m 的取值范围.19.已知函数2()sin()2cos 1,468f x x x x R πππ=−−+∈.(1)求函数()f x 的最小正周期及单调递增区间;(2)若关于x 的方程()()24410,43f x mf x x−+=∈在内有实数解,求实数m 的取值范围.20.已知函数()g x 对一切实数x ,y R ∈都有()()(22)g x y g y x x y +−=+−成立,且g (1)0=,()(1)(h x g x bx c b =+++,)c R ∈,()()g x f x x=. (Ⅰ)求(0)g 的值和()g x 的解析式;(Ⅱ)记函数()h x 在[1−,1上的最大值为M ,最小值为m .若4M m −…,当0b >时,求b 的最大值; (Ⅲ)若关于x 的方程2(|21|)30|21|x x kf k −+−=−有三个不同的实数解,求实数k 的取值范围.专题5 函数嵌套1.已知函数2()(1)x f x x x e =−−,设关于x 的方程25()()()f x mf x m R e−=∈有n 个不同的实数解,则n 的所有可能的值为( ) A .3B .1或3C .4或6D .3或4或6【解析】解:22()(21))(1)(2)x x x f x e x x x e e x x ′=−++−−=+−, ∴当2x <−或1x >时,()0f x ′>,当21x −<<时,()0f x ′<,()f x ∴在(,2)−∞−上单调递增,在(2,1)−上单调递减,在(1,)+∞上单调递增, ()f x 的极大值为25(2)f e −=,()f x 的极小值为f (1)e =−. 作出()f x 的函数图象如图所示:25()()()f x mf x m R e−=∈,25()()0f x mf x e ∴−−=,△2200m e=+>, 令()f x t =则,则125t t e=−.不妨设120t t <<,(1)若1t e <−,则2250t e <<,此时1()f x t =无解,2()f x t =有三解; (2)若1t e =−,则225t e =,此时1()f x t =有一解,2()f x t =有两解; (3)若10e t −<<,则225t e >,此时1()f x t =有两解,2()f x t =有一解; 综上,25()()f x mf x e−=有三个不同的实数解.故选:A .2.已知函数())f x x R =∈,若关于x 的方程2()()10f x mf x m −+−=恰好有4个不相等的实数根,则实数m 的取值范围为( ) A.(1,1)2e+ B.(0 C .1(1,1)e+ D.【解析】解:化简可得0()0x f x x =<…,当0x >时,()0f x …,()f x ′= 当102x <<时,()0f x ′>,当12x >时,()0f x ′<, 故当12x =时,函数()f x有极大值1()2f =; 当0x <时,()0f x ′=<,()f x 为减函数,作出函数()f x 对应的图象如图:∴函数()f x 在(0,)+∞上有一个最大值为1()2f =; 设()t f x =,当t >()t f x =有1个解,当t =()t f x =有2个解,当0t <<时,方程()t f x =有3个解, 当0t =时,方程()t f x =有1个解, 当0t <时,方程()m f x =有0个解,则方程2()()10f x mf x m −+−=等价为210t mt m −+−=,等价为方程21(1)[(1)]0t mt m t t m −+−=−−−=有两个不同的根1t =,或1t m =−, 当1t =时,方程()t f x =有1个解,要使关于x 的方程2()()10f x mf x m −+−=恰好有4个不相等的实数根,则1t m −∈,即01m <−<11m <<+, 则m的取值范围是1) 故选:A .3.已知函数|1|2,0()21,0x e x f x x x x − >= −−+…,若方程2()()20f x bf x ++=有8个相异实根,则实数b 的取值范围()A .(4,2)−− B.(4,−− C .(3,2)−− D.(3,−−【解析】解:令()f x t =,则方程2()()20f x bf x ++=⇔方程220t bt ++=. 如图是函数|1|2,0()21,0x e x f x x x x − >= −−+ …,的图象,根据图象可得:方程2()()20f x bf x ++=有8个相异实根⇔方程220t bt ++=.有两个不等实数解1t ,2t 且1t ,2(1,2)t ∈.可得22280112032220122b b b b b =−> ++> ⇒−<<− ++><−< . 故选:D .4.已知函数22,0()(1),0x x x f x ln x x −+>= −+< ,关于x 的方程2()2()10()f x af x a a R −+−=∈有四个相异的实数根,则a 的取值范围是( )A .(,0)−∞B .[1,)+∞C .(,0)[2−∞ ,)+∞D .(−∞,0)(1∪,)+∞【解析】解:函数22,0()(1),0x x x f x ln x x −+>=−+< 的图象如图: 方程2()2()10()f x af x a a R −+−=∈有四个相异的实数根, 必须()f x 由两个解,一个()1f x >,一个()(0f x ∈,1), 或者()(0f x ∈,1),另一个()0f x …,2()2()10()f x af x a a R −+−=∈,可得()f x a =±,当1a >时,1a +>,(0,1)a −.满足题意.当1a =时,2a +=,0a −=,不满足题意. 考察选项可知,D 正确; 故选:D .5.已知函数33,0()1,0xx x x f x x lnx x ex −= ++> …,若关于x 的方程2()()10f x mf x −−=恰好有6个不相等的实根,则实数m 的取值范围是( ) A .(2−,11e + )B .(2−,0 )(∪ 0,11e + )C .2321(,)2e e e+−+D .( 32−,0 )(∪ 0,221)e e e ++【解析】解:当0x …时,3()3f x x x =−,则2()333(1)(1)f x x x x ′=−=−+, 令()0f x ′=得:1x =−,∴当(,1)x ∈−∞−时,()0f x ′<,()f x 单调递减;当(1,0)x ∈−时,()0f x ′>,()f x 单调递增,且(1)2f −=−,(0)0f =,当0x >时,1()x x lnx f x e x +=+,则21()x x lnxf x e x−−′=+,显然f ′(1)0=,∴当(0,1)x ∈时,()0f x ′>,()f x 单调递增;当(1,)x ∈+∞时,()0f x ′<,()f x 单调递减,且f (1)11e=+, 故函数()f x 的大致图象如图所示:,令()t f x =,则关于x 的方程2()()10f x mf x −−=化为关于t 的方程210t mt −−=, △240m =+>,∴方程210t mt −−=有两个不相等的实根,设为1t ,2t , 由韦达定理得:12t t m +=,1210t t =−<,不妨设10t >,20t <,关于x 的方程2()()10f x mf x −−=恰好有6个不相等的实根, ∴由函数()f x 的图象可知:1101t e<<+,220t −<<,设2()1g t t mt =−−,则(2)0(0)01(1)0g g g e−>< +>,解得:23212e m e e+−<<+, 故选:C .6.已知函数|1|221,0()21,0x x f x x x x − −= ++< …,若关于x 的方程22()(1)()20f x m f x m −++=有五个不同实根,则m 的值是( ) A .0或12B .12C .0D .不存在【解析】解:画出函数()f x 的图象,如图所示:,当()1f x =时,有三个根,把()1f x =代入方程22()(1)()20f x m f x m −++=得,21(1)20m m −++=, 解得:0m =或12, 当0m =时,方程22()(1)()20f x m f x m −++=为2()()0f x f x −=,所以()0f x =或1,所以有五个根, 当12m =时,方程22()(1)()20f x m f x m −++=为231()()022f x f x −+=,所以()1f x =或12,所以有7个根,舍去,综上所求,0m =时,方程22()(1)()20f x m f x m −++=有五个不同实根, 故选:C .7.已知函数2(2),0()|2|,0x x f x x x += −>…,方程2()()0f x af x −=(其中(0,2))a ∈的实根个数为p ,所有这些实根的和为q ,则p 、q 的值分别为( )A .6,4B .4,6C .4,0D .6,0【解析】解:2()()0f x af x −= ,()0f x ∴=或()f x a =.作出()f x 的函数图象如图所示:由图象可知()0f x =有两解,()f x a =有四解.6p ∴=.由图象可知()0f x =的两解为2x =−,2x =,()f x a =的四个解中,较小的两个关于直线2x =−对称,较大的两个关于直线2x =对称, 0q ∴=.故选:D .8.已知函数()(1)(1)g x a x ln x =++的图象在点2(1e −,2(1))g e −处的切线与直线610x y ++=垂直( 2.71828e =…是自然对数的底数),函数()f x 满足3()(1)0xf x g x x +−−=,若关于x 的方程2()()0(f x bf x c b −+=,c R ∈,且0)c <在区间1[,]e e上恰有3个不同的实数解,则实数b 的取值范围是( )A .21(1,2]e + B .221[2,2]e e +− C .2221[2,]e e e −+ D .221(2,]e e + 【解析】解:函数()(1)(1)g x a x ln x =++的导数为()(1)g xaln x a ′=++, 可得()g x 图象在点2(1e −,2(1))g e −处的切线斜率为3a ,由切线与直线610x y ++=垂直,可得36a =,解得2a =,()2(1)(1)g x x ln x =++,3()(1)0xf x g x x +−−=,可得2()2f x x lnx =−, 导数为222(1)(1)()2x x f x x x x −+′=−=, 当1x >时,()0f x ′>,()f x 递增;当01x <<时,()0f x ′<,()f x 递减. 即有1x =处()f x 取得最小值1.则()f x 在1[e,]e 的图象如右: 若关于x 的方程2()()0(f x bf x c b −+=,c R ∈,且0)c < 在区间1[,]e e上恰有3个不同的实数解, 可令()t f x =,则20t bt c −+=,(1) 可得t 的范围是[1,22]e −,方程(1)判别式为240b c −>,必有两不同的实数解,设为1t ,2t ,12t t b +=,可得11t =,22112t e <+…, 即21112b e <−+…, 解得2123b e <+…,① 又212122t e e +<−…, 22112t e <+…, 则21222113t t b e e e+<+=+…,② 由①②求并可得2212b e e <+…, 故选:D .9.已知函数()1x f x x =+,(1,)x ∈−+∞,若关于x 的方程2()|()|230f x m f x m +++=有三个不同的实数解,则m 的取值范围是( )A .3(2−,0)B .3(2−,4)3−C .3(2−,4]3−D .4(3−,0) 【解析】解:1()11f x x −=++,|()|y f x =,(1,)x ∈−+∞的图象如下:设|()|f x t =,则2|()||()|230f x m f x m +++=有三个不同的实数解,即为2230t mt m +++=有两个根,①0t =时,代入2230t mt m +++=得32m =−,即2302t t −=,另一根为32只有一个交点,舍去 ②一个在(0,1)上,一个在[1,)+∞上时,设2()23h t t mt m =+++(0)230(1)1230h m h m m =+> =+++ …,解得3423m −<−…. 故选:C .10.已知函数2()x x f x e=,若关于x 的方程2[()]()10f x mf x m ++−=恰有3个不同的实数解,则实数m 的取值范围是( )A .(0,2)B .1(1,2)e −C .24{1,1}e −D .24(1,1)e − 【解析】解:函数2()x x f x e=的导数为22()x x x f x e −′=, 当02x <<时,()0f x ′>,()f x 递增;当2x >或0x <时,()0f x ′<,()f x 递减,可得()f x 在0x =处取得极小值0,在2x =处取得极大值241e <, 作出()y f x =的图象,设()t f x =,关于x 的方程2()()10f x mf x m ++−=,即为210t mt m ++−=,解得1t =−或1t m =−,当1t =−时,()1f x =−无实根; 由题意可得当241(0,)t m e =−∈, 解得241m e −=或1m =, 所以24(1m e ∈−,1) 故选:D .11.已知函数()1x x f x e=−,若关于x 的方程2[()]()10f x mf x m ++−=恰有3个不同的实数解,则实数m 的取值集合是( )A .(−∞,2)(2∪,)+∞B .1(2,)e −+∞C .1(2,2)e −D .12e −【解析】解:由题意1()x x f x e −′=.令1()0xx f x e −′==,解得1x =; 且1x >时,()0f x ′<,1x <时,()0f x ′>,所以()f x 在(,1)−∞上单调递增,在(1,)+∞上单调递减, 在1x =处取极大值11e=−. ()f x 大致图象如下:令()t f x =,则2[()]()10f x mf x m ++−=可化为210t mt m ++−=. 假设2m =,则2210t t ++=.解得1t =−,即()1f x =−.根据()f x 图象,很明显此时只有一个解,故2m =不符合题意,由此排除B 选项;假设3m =,则2320t t ++=,解得12t =−,21t =−.即()2f x =−,或()1f x =−.根据()f x 图象,很明显此时方程只有两个解,故3m =不符合题意,由此排除A 选项. 假设12m e=−时,则211(2)10t t e e +−+−=,解得111t e =−,21t =−. 即()1f x =−或1()1f x e=−, 根据()f x 的图象,很明显此时方程只有两个根, 故12m e=−不符合题意,由此排除D 故选:C .12.已知函数||||()1x x f x e =+,2(),0()2,0f x x g x x x a x = −+>…,且g (1)0=,则关于x 的方程(())10g g x t −−=实根个数的判断正确的是( )A .当2t <−时,方程(())10g g x t −−=没有相异实根B .当110t e−+<<或2t =−时,方程(())10g g x t −−=有1个相异实根 C .当111t e <<+时,方程(())10g g x t −−=有2个相异实根 D .当111t e−<<−+或01t <…或11t e =+时,方程(())10g g x t −−=有4个相异实根 【解析】解:当0x …时,||||()111x x x x x f x xe e e−−=+=+=−+, 因为g (1)0=,所以120a −+=,所以1a =,所以21,0()21,0x xe x g x x x x −+= −+> …, 图象如图所示:当0x …时,0x −…,0x e >, 则11x xe −+…,当且仅当0x =时等号成立,()g x 在(,1)−∞−上是增加的,在(1,0)−上是减少的; 当0x >时,()f x 在(0,1)上是减少的,在(1,)+∞上是增加的, 故()(1)0g x g −=…恒成立.故()g x 在(,1)−∞−上是增加的,在(1,1)−上是减少的,在(1,)+∞上是增加的. 令()m g x t =−,则()10g m −=,解得:0m =或2m =,当0m =即()0g x t −=时,()g x t =,当2t <−时,()2g x <−,无解,当2m =即()2g x t −=时,()2g x t =+,当2t <−时,()0g x <,无解,故方程(())10g g x t −−=没有相异实根,故A 正确;当2t =−时,由A 可知:()0g x =,解得1x =, 当110t e −+<<时,12(1,2)t e+∈+, 由上可知()f x 在1x =−时取得极大值为1(1)1g e−=+, 结合图象可知,此时2y t =+与()g x 有且仅有一个交点, 故B 正确; 当111t e<<+时,()g x t =或()2g x t =+, 若()g x t =,结合图象可知()g x 与y t =有三个不同的交点,若()2g x t =+,12(3,3)t e+∈+, 此时()g x 与y t =有一个交点,故方程(())10g g x t −−=有4个相异实根,故C 错误; 当111t e −<<−+时,1()2(1,1)g x t e=+∈+, 由C 可知此时有三个不等实根,当01t <…时,()g x t =或()2g x t =+,当()g x t =时,由图可知有两个不等实根,当()2g x t =+时,由图可知有一个实根, 当11t e=+时,()g x t =或()2g x t =+, 当()g x t =时,由图可知有两个不等实根,当()2g x t =+时,由图可知有一个实根,故此时方程(())10g g x t −−=共有9个不等实根, 故D 错误.故选:AB .13.已知函数,1()1,12lnx x f x x x = −< …,则函数()(()1)g x f f x =+的零点是 1 ,若()(()1)h x f f x m =++有两个零点1x ,2x ,则12x x +的最小值是 .【解析】解:()(()1)g x f f x =+,,1()1,12lnx x f x x x = −< …, 当1x …时,0lnx …,()11f x +…,则(()1)(1)f f x ln lnx +=+, 当1x <时,1112x −+>,则(()1)(2)2x f f x ln +=−. (1),1()(()1)(2),12ln lnx x g x f f x x ln x + ∴=+= −< …, 令()0g x =,则1(1)0x ln lnx += …或1(2)02x x ln < −= , 解得1x =.故函数()(()1)g x f f x =+的零点是1;由上可知,(()1)(()1)f f x ln f x +=+,()(()1)h x f f x m =++有两个零点1x ,2x ,即(()1)ln f x m +=−有两根,也就是()1m f x e −+=,()1m f x e −=−有两根1x ,2x ,不妨设12x x <, 当1x …时,21m lnx e −=−,当1x <时,1112m x e −−=−, 令112m t e −=−>,则 2lnx t =,2t x e =,112x t −=,122x t =−, ∴1222t x x e t +=+−,12t >, 设()22t t e t ϕ=+−,12t >, 则()2t t e ϕ′=−,可得当1(2t ∈,)lnt 时,()0t ϕ′<, 当(,)t lnt ∈+∞时,()0t ϕ′>, 则()t ϕ的最小值为(2)422ln ln ϕ=−. 12x x ∴+的最小值是422ln −. 故答案为:1;422ln −.14.已知函数,1()1,12lnx x f x x x = −< …,若()(()1)F x f f x m =++有两个零点1x ,2x ,则12x x 的取值范围(−∞ .【解析】解:当1x …时,()0f x lnx =…,则()11f x +…,(()1)(()1)f f x ln f x ∴+=+, 当1x <时,1()122x f x =−>,则3()12f x +>, (()1)(()1)f f x ln f x ∴+=+, 综上可知,()(()1)(()1)F x f f x m ln f x m =++=++, 令()0F x =,得()1m f x e −+=,依题意,()1m f x e −=−有两个根1x ,2x ,不妨设12x x <, 当1x …时,21m lnx e −=−,当1x <时,1112m x e −−=−, 令112m t e −=−>,则1221,,1,222t x lnx t x e t x t ==−==−, ∴121(22),2t x x e t t =−>, 设1()(22),2t g t e t t =−>,则()20t g t te ′=−<,()g t ∴在1(,)2+∞上单调递减,∴1()()2g t g <, 12x x ∴的取值范围为(−∞.故答案为:(−∞.15.已知函数,2()48,25x ex x e f x x x x= − > …(其中e 为自然对数的底数),若关于x 的方程22()3|()|20f x a f x a −+=恰有5个相异的实根,则实数a 的取值范围为 1{}2 . 【解析】解:当2x …时,令()0xe exf x e −′==,解得1x =, 所以当1x …时,()0f x ′>,则()f x 单调递增,当12x 剟时,()0f x ′<,则()f x 单调递减, 当2x >时,4848()555x f x x x −==−单调递增,且()[0f x ∈,4)5作出函数()f x 的图象如图:(1)当0a =时,方程整理得2()0f x =,只有2个根,不满足条件;(2)若0a >,则当()0f x <时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a ++=++=,则()20f x a =−<,()0f x a =−<,此时各有1解,故当()0f x >时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a −+=−−=,()2f x a =有1解同时()f x a =有2解,即需21a =,12a =,因为f (2)22212e e e ==>,故此时满足题意;或()2f x a =有2解同时()f x a =有1解,则需0a =,由(1)可知不成立; 或()2f x a =有3解同时()f x a =有0解,根据图象不存在此种情况,或()2f x a =有0解同时()f x a =有3解,则21245a a e> < …,解得245a e <…, 故2[a e ∈,4)5(3)若0a <,显然当()0f x >时,()2f x a =和()f x a =均无解,当()0f x <时,()2f x a =−和()f x a =−无解,不符合题意.综上:a 的范围是12{}[2e ,4)5故答案为12{}[2e ,4)516.已知函数231,0()26,0a x x f x x lnx x x ++< = −> ,若关于x 的方程()()0f x f x +−=恰有四个不同的解,则实数a 的取值范围是 (2,0)− .【解析】解:已知定义在(−∞,0)(0∪,)+∞上的函数231,0()26,0a x x f x x lnx x x ++< = −> , 若()()0f x f x +−=在定义域上有四个不同的解 等价于231a y x x =++关于原点对称的函数231a y x x=−+−与函数()26(0)f x lnx x x =−>的图象有两个交点, 联立可得226310a lnx x x x −+−+=有两个解, 即23263a xlnx x x x =−++,0x >,可设23()263g x xlnx x x x =−++,0x >,2()32129g x lnx x x ′=+−+,2()1812120g x x x ′′=+−−=…,可得()g x ′在(0,)+∞递增, 由g ′(1)0=,可得01x <<时,()0g x ′<,()g x 递减;1x >时,()0g x ′>,()g x 递增, 即()g x 在1x =处取得极小值且为2−,作出()y g x =的图象,可得20a −<<时,226310a lnx x x x−+−+=有两个解, 故答案为:(2,0)−.17.已知函数21,0()21,0x x f x x x x + = −+> …,若关于x 的方程2()()0f x af x −=恰有5个不同的实数解,则a 的取值范围是 (0,1) .【解析】解:作()f x 的图象如下,,2()()()(())0f x af x f x f x a −=−=,()0f x ∴=或()f x a =;()0f x = 有两个不同的解,故()f x a =有三个不同的解,故(0,1)a ∈;故答案为:(0,1).18.已知函数()|1|33f x x x x =−−+.(1)求函数()f x 的零点;(2)若关于x 的方程2()()0(f x mf x n m −+=、)n R ∈恰有5个不同的实数解,求实数m 的取值范围.【解析】解:(1)由题得2223,(1)()|1|3343,(1)x x x f x x x x x x x −−+<=−−+= −+…, ①当1x <时,令()0f x =,得3x =−或1x =(舍);②当1x …时,令()0f x =,得1x =或3x =, ∴函数()f x 的零点是3−,1,3;(2)作出函数2223,(1)()|1|3343,(1)x x x f x x x x x x x −−+<=−−+= −+…的大致图象,如图:令()t f x =,若关于x 的方程2()()0f x mf x n −+=恰有5个不同的实数解, 解法一:则函数2()g t t mt n =−+的零点分布情况如下:①当11t =−,2(1,4)t ∈−时,则(1)0(4)0142g g b a −= > −<−< ,得101640142m n m n m ++= −+> −<< ,故(2,3)m ∈−;②当14t =,2(1,4)t ∈−时,则(4)0(1)0142g g b a = −> −<−< ,得164010142m n m n m −+= ++> −<< ,故(3,8)m ∈.综上所述,实数m 的取值范围为(2m ∈−,3)(3∪,8);解法二:则方程20t mt n −+=的根的情况如下:①当11t =−,2(1,4)t ∈−时,由11t =−得10m n ++=,则方程2(1)0t mt m −−+=,即(1)(1)0t t m +−−=,故21(1,4)t m =+∈−,所以(2,3)m ∈−;②当14t =,2(1,4)t ∈−时,由14t =得1640m n −+=,则方程24(4)0t mt m −+−=,即(4)(4)0t t m −−+=,故24(1,4)t m =−∈−,所以(3,8)m ∈.综上所述,实数m 的取值范围为(2m ∈−,3)(3∪,8).19.已知函数2()sin()2cos 1,468f x x x x R πππ=−−+∈. (1)求函数()f x 的最小正周期及单调递增区间;(2)若关于x 的方程()()24410,43f x mf x x −+=∈在内有实数解,求实数m 的取值范围. 【解析】解:(1)23()sin()2cos 1sin cos cos sin cos cos sin()4684646442443f x x x x x x x x ππππππππππππ=−−+=−−=−=−… (3分) ∴函数()f x 的最小正周期为8.…(4分) 令222432k x k ππππππ−−+剟,k Z ∈,求得2108833k x k −+剟,k z ∈,故函数的单调递增区间为210[8,8]33k k −+,k Z ∈…(6分)(2)设()t f x =,4(3x ∈ ,4),∴2(0,)433x πππ−∈,()(0f x ∴∈,∴方程2410t mt −+=在(0t ∈内有实数解,即当(0t ∈时方程有实数解.…(10分) 11442t t t += 当且仅当…时取等号,4m ∴…,…(8分) 故实数m 的取值范围是[4,)+∞.…(12分) 20.已知函数()g x 对一切实数x ,y R ∈都有()()(22)g x y g y x x y +−=+−成立,且g (1)0=,()(1)(h x g x bx c b =+++,)c R ∈,()()g x f x x=. (Ⅰ)求(0)g 的值和()g x 的解析式;(Ⅱ)记函数()h x 在[1−,1上的最大值为M ,最小值为m .若4M m −…,当0b >时,求b 的最大值;(Ⅲ)若关于x 的方程2(|21|)30|21|x x k f k −+−=−有三个不同的实数解,求实数k 的取值范围. 【解析】解:(Ⅰ)令1x =,0y =得g (1)(0)1g −=−,g (1)0=,(0)1g ∴=, 令0y =得()(0)(2)g x g x x −=−,即2()21g x x x =−+.(Ⅱ)2()(1)h x g x bx c x bx c =+++=++.①当12b −<−,即2b >时,M m h −=(1)(1)24h b −−>,与题设矛盾②当102b −−<…时,即02b <…时,M m h −=(1)2()(1)422b b h −−+…恒成立, 综上可知当02b <…时,b 的最大值为2.(3)当0x =时,210x −=则0x =不是方程的根, 方程2(|21|)30|21|x x k f k −+−=−可化为: 2|21|(23)|21|(12)0x x k k −−+−++=,|21|0x −≠, 令|21|x t −=,则方程化为2(23)(12)0t k t k −+++=,(0)t >, 方程2(|21|)310|21|x x k f k −+−−=−有三个不同的实数解, ∴由|21|x t =−的图象知, 2(23)(12)0t k t k −+++=,(0)t >,有两个根1t 、2t , 且1201t t <<<或101t <<,21t =. 记2()(23)(12)h t t k t k =−+++,则(0)210(1)0h k h k =+> =−<,此时0k >, 或(0)210(1)032012h k h k k =+> =−= + << ,此时k 无解, 综上实数k 的取值范围是(0,)+∞.。

高考数学压轴题突破训练——圆锥曲线(含详解)

高考数学压轴题突破训练——圆锥曲线(含详解)
14. 已知双曲线 的左右两个焦点分别为 ,点P在双曲线右支上.
(Ⅰ)若当点P的坐标为 时, ,求双曲线的方程;
(Ⅱ)若 ,求双曲线离心率 的最值,并写出此时双曲线的渐进线方程.
15. 若F 、F 为双曲线 的左右焦点,O为坐标原点,P在双曲线的左支上,点M在右准线上,且满足; .
(1)求该双曲线的离心率;
(Ⅱ)若直线 与(Ⅰ)中所求点Q
的轨迹交于不同两点F,H,O是坐标原点,
且 ,求△FOH的面积的取值范围。
18. 如图所示,O是线段AB的中点,|AB|=2c,以点A为圆心,2a为半径作一圆,其中 。
(1)若圆A外的动点P到B的距离等于它到圆周的最短距离,建立适当坐标系,求动点P的轨迹方程,并说明轨迹是何种曲线;
(2)D分有向线段 的比为 ,A、D同在以B、C为焦点的椭圆上,
当 ―5≤ ≤ 时,求椭圆的离心率e的取值范围.
29.在直角坐标平面中, 的两个顶点 的坐标分别为 , ,平面内两点 同时满足下列条件:
① ;② ;③ ∥
(1)求 的顶点 的轨迹方程;
(2)过点 的直线 与(1)中轨迹交于 两点,求 的取值范围
由 消去 得: ①


由方程①知 > <
, < < , .
7.解:解:令
则 即

又∵ ∴
所求轨迹方程为
(Ⅱ)解:由条件(2)可知OAB不共线,故直线AB的斜率存在
设AB方程为

∵OAPB为矩形,∴OA⊥OB
∴ 得
所求直线方程为 …
8.解:(I)由题意,抛物线顶点为(-n,0),又∵焦点为原点∴m>0
高考数学压轴题突破训练:圆锥曲线
1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|.

多角度破解高考数学压轴题

多角度破解高考数学压轴题

高考数学压轴题往往是难度最大的题目,需要学生具备扎实的数学基础和较高的思维水平。

以下是一些多角度破解高考数学压轴题的方法:
1. 掌握基础知识:压轴题往往涉及到多个知识点,因此学生需要熟练掌握基础知识,包括代数、几何、概率统计等方面的知识。

只有掌握了这些基础知识,才能更好地理解和解答压轴题。

2. 训练思维方法:压轴题往往需要运用多种思维方法,包括归纳、演绎、分析、综合等。

学生需要通过练习,掌握这些思维方法,提高自己的思维能力和解题能力。

3. 掌握解题技巧:压轴题往往需要运用一些特殊的解题技巧,如构造反例、数形结合、参数设定等。

学生需要认真学习和掌握这些技巧,并在实践中加以运用。

4. 多做模拟题:模拟题是接近高考的题目,学生可以通过多做模拟题来熟悉压轴题的出题方式和解题思路。

同时,也可以通过模拟题来检验自己的学习成果和发现自己的不足之处。

5. 善于总结经验:学生需要总结自己在解题过程中的经验和教训,发现自己的不足之处并加以改进。

同时,也需要总结不同类型压轴题的解题思路和技巧,形成自己的解题方法和策略。

总之,破解高考数学压轴题需要学生具备扎实的基础知识、灵活的思维方法和丰富的解题经验。

只有通过多角度的训练和实践,才能提高自己的数学水平和解题能力。

2025届高考数学复习:压轴好题专项(数的零点个数问题、隐零点及零点赋值问题)练习(附答案)

2025届高考数学复习:压轴好题专项(数的零点个数问题、隐零点及零点赋值问题)练习(附答案)

2025届高考数学复习:压轴好题专项(数的零点个数问题、隐零点及零点赋值问题)练习1.(2023届云南省保山市高三上学期期末质量监测)已知函数()2sin f x ax x =-. (1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)当0x >时,()cos f x ax x ≥恒成立,求实数a 的取值范围.2.(2023届四川省高三诊断性检测)已知函数()22ln f x x x =-.(1)求()f x 的单调区间;(2)令()()2g x f x x ax =-+(a 为常数),若()g x 有两个零点()1212,x x x x <,求实数a 的取值范围.3.(2024届广东省揭阳市高三上学期开学考试)已知函数()()212ln 1R 2f x x mx m =-+∈.(1)当1m =时,证明:()1f x <;(2)若关于x 的不等式()()2f x m x <-恒成立,求整数m 的最小值. 4.(2023届黑龙江省哈尔滨市高三月考)设函数322()33f x x ax b x =-+ (1)若1a =,0b =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若0a b <<,不等式1ln 1x k f f x x +⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭对任意()1,x ∈+∞恒成立,求整数k 的最大值.5.(2023届江苏省连云港市高三学情检测)已知函数21()e xf x x=-. (1)判断函数()f x 零点的个数,并证明; (2)证明:2e ln 2cos 0x x x x x --->.6.(2024届广东省深圳市罗湖区部分学校高三上学期开学模拟)已知函数()(e xf x mx m =-∈R).(1)讨论()f x 的单调性;(2)当0x ≥时,若关于x 的不等式()()ln 110f x x ++-≥恒成立,求实数m 的取值范围. 7.(2024届山西省朔州市怀仁市第一中学校等学校2高三上学期摸底)已知函数1()(1)ln(1)e 21f x a x ax x =--++++-+(a ∈R ,e 为自然对数的底数). (1)讨论函数()f x 的单调性;(2)若函数()f x 有且仅有3个零点,求实数a 的取值范围.8.(2023届云南省高三“云教金榜”N 1冲刺测试)设函数()()e ln xf x x a =-+,a ∈R .(1)当1a =时,求()f x 的单调区间; (2)若()f x a ≥,求实数a 的取值范围.9.(2024届云南省三校高三高考备考实用性联考)已知()23(1)e ,3x a f x x x ax a =--+∈R . (1)当1a =时,求函数()f x 的单调区间; (2)当0a =时,证明:函数()()21ln 2g x f x x x =+-有且仅有一个零点. 10.(2023届河南省安阳市高三上学期名校调研摸底)已知函数()()e 1ln xf x a ax a =--+,其中2e a >-,且0a ≠.(1)当1a =时,求()f x 的单调区间; (2)若()f x 只有一个零点,求a 的取值范围.11.(2023届三省三校高三第一次联考)已知函数()(1)ln f x m x x =--. (1)讨论()f x 的单调性;(2)若0m =,设()()()2e xg x f x x =+-在1,12⎛⎫ ⎪⎝⎭上的最小值为n ,求证:(3)(4)0n n --< .12.2()ln 3f x x x x =+-. (1)求()f x 的零点个数;(2)使不等式2()(2)ln 1f x x k x x x b ≥+----对任意[1,e]x ∈恒成立时最大的k 记为c ,求当[1,2]b ∈时,b c +的取值范围.参考答案1.(2023届云南省保山市高三上学期期末质量监测)已知函数()2sin f x ax x =-. (1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)当0x >时,()cos f x ax x ≥恒成立,求实数a 的取值范围. 【过程详解】(1)当1a =时,()()2sin ,2cos f x x x f x x -=-'=, 切线的斜率为()01k f '==,又切点为()0,0,所以切线方程为y x =.(2)令()()cos g x f x ax x =-,即()2cos sin g x ax ax x x =--,①若1a ≥,则当0x >时,()2cos sin g x x x x x ≥--,令()2cos sin hx x x x x =--,()22cos sin h x x x x =-+',当(]0,πx ∈时,()0h x '≥,所以()h x 在(]0,π上单调递增,()()00h x h >=, 当()π,x ∈+∞时,()()()1cos sin 0h x x x x x =-+->, 所以()()0g x h x ≥≥恒成立,符合题意;②若0a ≤,则当π0,2x ⎛⎫∈ ⎪⎝⎭时,()()2cos sin 1cos sin 0g x ax ax x x ax x ax x =--=-+-<,不合题意; ③若01a <<,注意到()()()()00,2cos sin cos ,01gg x a a x x x x g a -''==--=-,令()()()2cos sin cos x g x a a x x x x ϕ=---'=,则()()21sin cos x a x ax x ϕ=++',当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'>,所以()g x '在π0,2⎛⎫⎪⎝⎭上单调递增,因为()ππ010,2022g a g a ⎛⎫⎛⎫=-<=+> ⎪ ⎪⎝⎭⎝⎭'',所以存在00,2x π⎛⎫∈ ⎪⎝⎭,使得()00g x '=,当()00,x x ∈时,()0g x '<,所以()g x 在()00,x 上单调递减,()()00g x g <=,不合题意. 综上,a 的取值范围为[)1,+∞.2.(2023届四川省高三诊断性检测)已知函数()22ln f x x x =-.(1)求()f x 的单调区间;(2)令()()2g x f x x ax =-+(a 为常数),若()g x 有两个零点()1212,x x x x <,求实数a 的取值范围.【过程详解】(1)由题意可知:()f x 的定义域为()0,∞+, ()()()21122x x f x x xx+-'=-=,令()0f x '<,解得01x <<;令()0f x ¢>,解得1x >; 所以()f x 的单调递减区间是()0,1,单调递增区间是()1,+∞.(2)由题意可知:()()22ln g x f x x ax ax x =-+=-,其定义域为()0,∞+,则()g x 有两个零点12,x x ,即()0g x =有两解,即ln 2a x x=有两解, 令()()ln 0x x x x ϕ=>,则()()21ln 0xx x xϕ='->. 令()0x ϕ'>,解得0e x <<;令()0x ϕ'<,解得e x >; 则()x ϕ的单调递减区间是()e,+∞,单调递增区间是()0,e , 可知()()lne 1e e ex ϕϕ≤==, 又因为()10ϕ=,且当x 趋近于+∞,()x ϕ趋近于0, 要使得ln 2a x x =有两解,只需102ea <<,所以20e a <<,故实数a 的取值范围为20,e ⎛⎫⎪⎝⎭.3.(2024届广东省揭阳市高三上学期开学考试)已知函数()()212ln 1R 2f x x mx m =-+∈.(1)当1m =时,证明:()1f x <;(2)若关于x 的不等式()()2f x m x <-恒成立,求整数m 的最小值.【过程详解】(1)当1m =时,()212ln 1(0)2f x x x x =-+>,()222(0)x f x x x x x -'∴=-=>, 令()0f x '=,得x ,当(x ∈时,()()0,f x f x '>单调递增;当)x ∈+∞时,()()0,f x f x '<单调递减,所以()f x在x 处取得唯一的极大值,即为最大值,所以max 1()21ln22f x f==-⨯+=,所以()ln2f x ≤, 而ln2lne 1<=, 所以()1f x <.(2)令()()()()2122ln 212G x f x m x x mx m x =--=-+-+.则()()()22222mx m x G x mx m x x-+-+=-+-='. 当0m ≤时,因为0x >,所以()0G x '>,所以()G x 在()0,∞+上单调递增,又因为()31302G m =-+>.所以关于x 的不等式()0G x <不能恒成立;当0m >时,()()21m x x m G x x⎛⎫-+ ⎪'⎝⎭=-. 令()0G x '=,得2x m =,所以当20,x m ⎛⎫∈ ⎪⎝⎭时,()0G x '>; 当2,x m ⎛⎫∈+∞ ⎪⎝⎭时,()0G x '<.因此函数()G x 在20,m ⎛⎫ ⎪⎝⎭上单调递增,在2,m ⎛⎫+∞ ⎪⎝⎭上单调递减. 故函数()G x 的最大值为222ln 2ln21G m m m⎛⎫=-+- ⎪⎝⎭.令()22ln 2ln21h m m m=-+-, 因为()()()1112ln20,20,32ln22ln303h h h =+>==--<,又因为()h m 在()0,∞+上单调递减,所以当3m ≥时,()0h m <. 所以整数m 的最小值为3.4.(2023届黑龙江省哈尔滨市高三月考)设函数322()33f x x ax b x =-+ (1)若1a =,0b =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若0a b <<,不等式1ln 1x k f f x x +⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭对任意()1,x ∈+∞恒成立,求整数k 的最大值.【过程详解】(1)当1a =,0b =时,32()3f x x x =-,所以(1)2f =-,即切点为()1,2P - 因为2()36f x x x '=-,所以(1)363f '=-=-, 所以切线方程为()231y x +=--,即31y x =-+,(2)22()363f x x ax b '=-+,由0a b <<,所以22363636()()0a b a b a b ∆=-=+-<, 所以函数()f x 在R 上单调递增不等式1ln 1x k f f x x -⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭1ln (1ln )11x k x x k x x x --⇔>⇔>--,对()1,x ∈+∞恒成立, 构造(1ln )()1x xh x x -=-,22(2ln )(1)(ln )ln 2()(1)(1)x x x x x x x h x x x +--+--'==--,构造()ln 2g x x x =--,11()1x g x x x-'=-=,对()1,x ∈+∞有()0g x '>, 所以()ln 2g x x x =--在()1,x ∈+∞递增,()31ln 30g =-<,()42ln 40g =->, 所以0(3,4)x ∃∈,()000ln 20g x x x =--=,所以()01,x x ∈,()0g x <,即()0h x '<,()h x 在()01,x 递减,()0,x x ∈+∞,()0g x >,即()0h x '>,()h x 在()0,x +∞递增,所以()()00min 001ln ()1x x h x h x x +==-,结合00ln 2x x =-,故min 0()(3,4)h x x =∈,所以(1ln )1x xk x +<-对(1,)x ∈+∞恒成立min ()k h x ⇔<,故3k ≤, 所以整数k 的最大值为3;5.(2023届江苏省连云港市高三学情检测)已知函数21()e xf x x=-. (1)判断函数()f x 零点的个数,并证明; (2)证明:2e ln 2cos 0x x x x x --->.【过程详解】(1)函数的定义域{|0}x x ≠,当时0x <时,21()e 0xf x x=->,函数()f x 无零点, 当0x >时,221()2e 0xf x x '=+>,()f x 单调递增,又1()404f =<,2(1)e 10f =->且()f x 图象在0+∞(,)上连续不断,所以由零点存在定理得()f x 在1,14⎛⎫⎪⎝⎭上有且只有一个零点,综上,()f x 有且只有一个零点.(2)要证2e ln 2cos 0x x x x x --->,即证2e ln 2cos x x x x x -->, 令2()e ln 2x g x x x x =--,其中0x >,则有2222()e ln ln e e ln e x x x x g x x x x x =--=-(),令2e x t x =,则()g x 可化为()ln h t t t =-,因为()212e 0xt x '=+>,所以函数2e x t x =在0+∞(,)单调递增,则0t >,由()ln h t t t =-,0t >,1()1h t t =-'1t t-=,令()0h t '=得1t =,列表如下:t()0,11()1,+∞()h t ' - 0 +()h t1 ↗由表可知:min ()(1)1h t h ==,即2()e ln 21x g x x x x =--≥,仅当2e 1x x =,等号成立,由(1)可知,存在唯一的01,14x ⎛⎫∈ ⎪⎝⎭,使得0201e xx =,即仅有唯一的01,14x ⎛⎫∈ ⎪⎝⎭,使得02000e ln 21xx x x --=,而cos 1≤x ,当()*2πN x k k =∈,等号成立,综上,2()e ln 21x g x x x x =--≥与cos 1≤x ,等号不能同时成立, 故2e ln 2cos x x x x x -->,即2e ln 2cos 0x x x x x --->.6.(2024届广东省深圳市罗湖区部分学校高三上学期开学模拟)已知函数()(e xf x mx m =-∈R).(1)讨论()f x 的单调性;(2)当0x ≥时,若关于x 的不等式()()ln 110f x x ++-≥恒成立,求实数m 的取值范围. 【过程详解】(1)函数()f x 的定义域为R , ()e x f x m '=-,当0m ≤时,由()0f x ¢>,()f x 在R 上单调递增,当0m >时,令()0f x ¢>,可得ln x m >,令()0f x '<,可得ln x m <,∴()f x 单调递减区间为(),ln m -∞,()f x 单调递增区间为()ln ,m +∞,∴当0m ≤时,()f x 在R 上单调递增;当0m >时,()f x 在区间(),ln m -∞上单调递减,在区间()ln ,m +∞上单调递增.(2)设()()()e ln 110x g x mx x x =-++-≥,则()1e 1x g x m x '=+-+, (i )当2m ≤时,()1e 1xg x m x '=+-+, 令()1e 1xh x m x =+-+,则()()21e 1x h x x '=-+,令()()21e 1xk x x =-+,则()()32e 01xk x x +'=+>,∴()k x 在区间[)0,∞+上单调递增,则()()00k x k ≥=, ∴()h x 在区间[)0,∞+上单调递增,则()()02h x h m ≥=-,∴()20g x m '=-≥, ∴()g x 在区间[)0,∞+上单调递增,则()()00g x g ≥=恒成立,(ii )若m>2时,则(0)0g '<,1(ln 1)(e 1)02ln g m m m'+=-+>+,∴()00,ln 1x m ∃∈+,使得()00g x '=,∴()g x 在区间[)00,x 上单调递减,则()()000g x g <=,与条件矛盾,综上所述,实数m 的取值范围为(],2-∞.7.(2024届山西省朔州市怀仁市第一中学校等学校2高三上学期摸底)已知函数1()(1)ln(1)e 21f x a x ax x =--++++-+(a ∈R ,e 为自然对数的底数). (1)讨论函数()f x 的单调性;(2)若函数()f x 有且仅有3个零点,求实数a 的取值范围. 【过程详解】(1)函数()f x 的定义域为()1,-+∞,()()2111111111a f x a a x x x x +⎛⎫⎛⎫=-+=-- ⎪⎪+++⎝⎭⎝'⎭+()()()()2211111x a x x ax a x x ⎡⎤⎡⎤+---⎣⎦⎣⎦==++. ①当0a ≤时,由10x +>,有()110a x +-<,令()0f x '<,可得0x >,可得函数()f x 的减区间为()0,∞+, 令()0f x ¢>,函数()f x 的增区间为()1,0-;②当1a =时,()()2201x f x x +'=≥,可得函数()f x 在区间()1,-+∞上单调递增,无单调减区间;③当01a <<时,10aa ->,令()0f x '<,可得10a x a-<<, 可得函数()f x 的减区间为10,a a -⎛⎫⎪⎝⎭,令()0f x ¢>,可得10x -<<,或1a x a ->,所以函数()f x 的增区间为()1,0-,1,a a -⎛⎫+∞⎪⎝⎭; ④当1a >时,10aa -<,令()0f x '<,可得10a x a-<<, 令()0f x ¢>,可得11ax a--<<,或0x >,可得函数()f x 的减区间为1,0a a -⎛⎫⎪⎝⎭,增区间为11,a a -⎛⎫- ⎪⎝⎭,()0,∞+;综上,当0a ≤时,由函数()f x 的减区间为()0,∞+,增区间为()1,0-; 当1a =时,函数()f x 在区间()1,-+∞上单调递增;当01a <<时,函数()f x 的减区间为10,a a -⎛⎫ ⎪⎝⎭,增区间为()1,0-,1,a a -⎛⎫+∞ ⎪⎝⎭;当1a >时,函数()f x 的减区间为1,0a a -⎛⎫⎪⎝⎭,增区间为11,a a -⎛⎫- ⎪⎝⎭,()0,∞+.(2)()0e 30f =-<. 由(1)可知:①当0a ≤时,由函数()f x 的减区间为()0,∞+,增区间为()1,0-,有()()00f x f ≤<,函数()f x 没有零点,不合题意;②当1a =时,函数()f x 单调递增,函数()f x 最多只有一个零点,不合题意; ③当01a <<时,函数()f x 的减区间为10,a a -⎛⎫ ⎪⎝⎭,增区间为()1,0-,1,a a -⎛⎫+∞⎪⎝⎭, 由()00f <,函数()f x 最多只有一个零点,不合题意;④当1a >时,函数()f x 的减区间为1,0a a -⎛⎫⎪⎝⎭,增区间为11,a a -⎛⎫- ⎪⎝⎭,()0,∞+.由()00f <,若函数()f x 有且仅有3个零点,必需()11ln 2e 10a f a a a a -⎛⎫=+-+-> ⎪⎝⎭,令()()()1ln 2e 11g x x x x x =+-+-≥,有()1ln 1g x x x+'=-, 令()()1ln 11h x x x x =+-≥,有()221110x h x x x x-'=-=≥, 可得函数()h x 单调递增,有()()10h x h ≥=, 可得函数()g x 单调递增,又由()e 0g =,故满足不等式()1ln 2e 10a a a +-+->的a 的取值范围为e a >. 又由()()()()111ln 1e 21a x x f x ax x ++++=-++-+,可得当1x →-时,()f x →-∞,又由10a f a -⎛⎫> ⎪⎝⎭,(0)0f <,()()2221e 12(1)e 1e 2e f a a -=--++-+-()232211e 3e 4e 2e 40e e a =-+-->--->,可得函数()f x 有且仅有3个零点. 由上知,若函数()f x 有且仅有3个零点,实数a 的取值范围为()e,+∞.8.(2023届云南省高三“云教金榜”N 1冲刺测试)设函数()()e ln xf x x a =-+,a ∈R .(1)当1a =时,求()f x 的单调区间; (2)若()f x a ≥,求实数a 的取值范围.【过程详解】(1)1a =时,函数()e ln(1)x f x x =-+的定义域为(1,)-+∞,因为1()e 1x f x x '=-+,所以,当0x >时,()0f x '>,当10x -<<时,()0f x '<, 所以()f x 的单调递增区间是(0,)+∞,单调递减区间是(1,0)-.(2)函数()e ln()x f x x a =-+的定义域为(,),()a f x a -+∞≥,等价于e ln()0x x a a -+-≥,设()e ln()x g x x a a =-+-,则1()e x g x x a'=-+, 设()()h x g x '=,则21()e 0()x h x x a '=+>+恒成立, 所以()h x 在(,)a -+∞上单调递增,即()g x '在(,)a -+∞上单调递增,当,()x a g x '→-→-∞,当,()x g x '→+∞→+∞,所以0(,)x a ∃∈-+∞,使得()00g x '=,即001e x x a =+,所以001ex a x =-, 当()0,x a x ∈-时,()0g x '<,所以()g x 单调递减,当()0,x x ∈+∞时,()0g x '>,所以()g x 单调递增,所以()()000min 0001()e ln e 20ex x x g x g x x a a x ==-+-=-+≥, 设1()e 2e x x p x x =-+,则(0)0p =,而1()e 20ex x p x '=++>恒成立, 所以1()e 2e x x p x x =-+为增函数, 由()00(0)p x p ≥=,所以00x ≥. 因为1,e x y y x ==-均为减函数,所以001ex a x =-在[)0,∞+上为减函数, 所以,当00x ≥时,1a ≤,所以实数a 的取值范围为(,1]-∞9.(2024届云南省三校高三高考备考实用性联考)已知()23(1)e ,3x a f x x x ax a =--+∈R . (1)当1a =时,求函数()f x 的单调区间;(2)当0a =时,证明:函数()()21ln 2g x f x x x =+-有且仅有一个零点. 【过程详解】(1)当1a =时,()231(1)e 3x f x x x x =--+, ()()222()2(1)e (11e 11e )x x x f x x x x x '=-+--+=--,由()0f x ¢>得210e 10x x ⎧->⎨->⎩或210e 10x x ⎧-<⎨-<⎩,解得10x -<<或1x >由()0f x '<得210e 10x x ⎧->⎨-<⎩或210e 10x x ⎧-<⎨->⎩,解得1x <-或01x <<, 故函数()f x 的单调递增区间为(1,0)-,(1,)+∞,单调递减区间为(,1)-∞-,(0,1).(2)当0a =时,()221ln (1)e 2x g x x x x =-+-,定义域为()0,∞+, ()212(1)e (1)e x x g x x x x x ∴=-++-'-()()()2111e 11e x x x x x x x x ⎛⎫=-+-=+-- ⎪⎝⎭, 设()1e (0)x h x x x=->, ()21e 0x h x x =+'∴>,所以()h x 在区间()0,∞+上是增函数,()120,1e 102h h ⎛⎫=<=-> ⎪⎝⎭, ∴存在唯一01,12x ⎛⎫∈ ⎪⎝⎭,使()00h x =,即00000011e 0,e ,ln x x x x x x -==-=, 当00x x <<时,()0h x <,即()0g x '>;当01x x <<时,()0h x >,即()0g x '<;当1x >时,()0h x >,即()0g x '>,()g x ∴在区间()00,x 上是增函数,在区间()0,1x 上是减函数,在区间()1,+∞上是增函数,∴当0x x =时,()g x 取极大值为()()02200001ln 1e 2x g x x x x =-+- 22000011(1)2x x x x =--+-⋅ 2001122x x =-+-, 设()21112122F x x x x ⎛⎫=-+-<< ⎪⎝⎭,21()0F x x x '=--<, 所以()F x 在区间1,12⎛⎫ ⎪⎝⎭上是减函数. ()()01111220,2248g x g g x ⎛⎫∴<=-⨯+-=-<∴ ⎪⎝⎭在()0,1内无零点, ()()2110,2e 2ln202g g =-<=-+> , ()g x ∴在()1,+∞内有且只有一个零点,综上所述,()g x 有且只有一个零点.10.(2023届河南省安阳市高三上学期名校调研摸底)已知函数()()e 1ln x f x a ax a =--+,其中2e a >-,且0a ≠.(1)当1a =时,求()f x 的单调区间;(2)若()f x 只有一个零点,求a 的取值范围.【过程详解】 (1)当1a =时,()()()e 1ln 1,1x f x x x =--+>-,()()1e ,11x f x x x '=->-+, 易知()f x '在()1,-+∞上单调递增,且()00f '=,所以当()1,0x ∈-时,()0f x '<,此时()f x 单调递减;当()0,x ∈+∞时,()0f x '>,此时()f x 单调递增;所以()f x 的单调递增区间是()0,∞+,单调递减区间是()1,0-;(2)()()e 1111e 1x xa f x a x x x '=-=+-++, 令()()e 11x g a x x +=-,(1)当2e 0a -<<时,则(),1x ∈-∞-,()()e 2x x a x g =+',当(),2x ∞∈--时,()0g x '>,此时()g x 单调递增;当()2,1x ∈--时,()0g x '<,此时()g x 单调递减;故()()2210e a g x g ≤-=-<-, 则()()e 1101x f x a x x +-'=>+,()f x 在(),1-∞-单调递增, 又1x →-时,()f x →+∞;x →-∞时,()f x →-∞;所以此时()f x 在(),1-∞-只有一个零点;(2)当0a >时,则()1,x ∈--∞,()()e 20x g x a x '=+>恒成立,()g x 在()1,--∞单调递增,且()110g -=-<,()111111e 11e a a g a a a a ⎛⎫+-+- ⎪⎝⎛⎫== ⎪⎭⎭⎝, 又11,11e a a >+>,则()1111e 1e 1110a a g a a a a ⎛⎛⎫==> ⎪⎫+-+⎪⎭-⎭⎝ ⎝, 故存在011,x a ⎛⎫∈- ⎪⎝⎭,使得()00g x =, 当()01,x x ∈-时,()0g x <,当()0,x x ∈+∞时,()0g x >,因为当1x >-时,101x >+, 所以当()01,x x ∈-时,()0f x '<,()f x 单调递减;当()0,x x ∈+∞时,()0f x '>,()f x 单调递增;当0x x =时,()f x 取得极小值,由()00g x =得001e 1x a x =+,则001ln 1ln a x x =++, ()()0200000011e ln 1ln 11011x x f x a x a x x x -=-+--=+-=≥++ 当00x =时,等号成立,由()00f =,可得()0e 1ln 1ln 00f a a a a =--=--=,解得1a =,综合第一问可知,当1a =时,()f x 只有一个零点;综上,若()f x 只有一个零点,则a 的取值范围是(){}2e ,01-⋃11.(2023届三省三校高三第一次联考)已知函数()(1)ln f x m x x =--.(1)讨论()f x 的单调性;(2)若0m =,设()()()2e x g x f x x =+-在1,12⎛⎫ ⎪⎝⎭上的最小值为n ,求证:(3)(4)0n n --< . 【过程详解】 (1)定义域:,()0x ∈+∞.1(1)1()1m x f x m x x--'=--=. ①当10m -≤,即m 1≥时:()0f x '<恒成立.故()f x 在(0,)+∞上单调递减.②当10m ->,即1m <时:令()0f x '<,即(1)10m x x --<,解得:101x m<<-; 所以()f x 在1(0,1m -上单调递减,在1(,)1m+∞-上单调递增. 综上所述:当m 1≥时:()f x 在(0,)+∞上单调递减;当1m <时:()f x 在1(0,1m -上单调递减,在1(,)1m+∞-上单调递增. (2)当0m =时,()()1ln 2e ,,12x g x x x x x ⎛⎫=-+-∈ ⎪⎝⎭. ()()()()1111e 2e 1e 1e x x x x x g x x x x x x x -⎛⎫=--+-=+-=-- ⎪⎝⎭'. 因为()1e x m x x =-在1,12⎛⎫ ⎪⎝⎭上单调递增,且1202m ⎛⎫=< ⎪⎝⎭,()1e 10m =->. 所以必存在点01,12x ⎛⎫∈ ⎪⎝⎭,使00()g x '=,即00001e ln x x x x =⇒=- 且当01,2x x ⎛⎫∈ ⎪⎝⎭时()0g x '<,当()0,1x x ∈时()0g x '>, 所以()g x 在区间01,2x ⎛⎫ ⎪⎝⎭上单调递减,在区间()0,1x 上单调递减. 所以()()()00000000min 0022ln 2e 221x x n g x g x x x x x x x x -===-+-=+=+-.01,12x ⎛⎫∈ ⎪⎝⎭. 又因00221n x x =+-在1,12⎛⎫ ⎪⎝⎭上单调递减. 所以12212221342n n +-<<⨯+⨯-⇒<<. 故(3)(4)0n n --<恒成立.12.2()ln 3f x x x x =+-.(1)求()f x 的零点个数;(2)使不等式2()(2)ln 1f x x k x x x b ≥+----对任意[1,e]x ∈恒成立时最大的k 记为c ,求当[1,2]b ∈时,b c +的取值范围.【过程详解】(1)函数定义域是(0,)+∞, 由题意21231(21)(1)()23x x x x f x x x x x '-+--=+-==, 当102x <<或1x >时,()0f x '>,112x <<时,()0f x '<, 所以()f x 在1(0,)2和(1,)+∞上递增,在1(,1)2上递减, 0x →时,()f x →-∞,x →+∞时,()f x →+∞,()f x 极大值11135()ln ln 2022424f ==+-=--<,()f x 极小值(1)20f ==-<, 所以()f x 只在区间(1,)+∞上有一个零点;(2)因为0x >,所以原不等式可变为2()ln 1ln ln 121f x x x x b x x x b k x x-++++++≤+=-,令ln ln 1()1x x x b g x x +++=-,2ln ()x x b g x x --'=, 令()ln p x x x b =--,则11()1x p x x x -'=-=,[1,e]x ∈时,()0p x '≥,()p x 递增,min ()(1)1p x p b ==-,max ()(e)e 1p x p b ==--,①当(1)0p ≥,即1b =时,在[1,e]上()0g x '≥,()g x 是增函数, min ()(1)c g x g b ===,22c b b +==,②当(e)0p ≤,即[e 1,2]b ∈-时,()0g x '≤,()g x 递减,min 2()(e)e b c g x g +===,214[e,2]e e e b b c b ++=+∈++; ③当(1)(e)0p p <时,()p x 在(1,e)上递增, 存在唯一的实数0(1,e)x ∈,使得0()0p x =,00ln 0x x b --=,00ln b x x =-, 则当0(1,)x x ∈时,()0p x <,()0g x '<,()g x 递减, 0(,e)x x ∈时,()0p x >,()0g x '>,()g x 递增, 000min 0000ln ln 11()()1ln x x x b c g x g x x x x +++===-=+, 00000011ln ln b c x x x x x x +=-++=+, 00ln b x x =-,令()ln h x x x =-,1()1h x x'=-,(1,e)x ∈时,()0h x '>,()h x 递增, 所以(1,e 1)b ∈-时,0(1,e)x ∈,所以0011(2,e )eb c x x +=+∈+, 综上,4[2,2]e b c +∈+.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16
@《创新设计》
【训练 3】 (1)(多选题)如图,平面四边形 ABCD 中,E,F 分别是 AD,BD 的中点, AB=AD=CD=2,BD=2 2,∠BDC=90°,将△ABD 沿对角线 BD 折起至△A′BD, 使平面 A′BD⊥平面 BCD,则四面体 A′BCD 中,下列结论正确的是( ) A.EF∥平面A′BC B.异面直线CD与A′B所成的角为90° C.异面直线EF与A′C所成的角为60° D.直线A′C与平面BCD所成的角为30° (2)(2020·河北名校调研)在三棱锥 P-ABC 中,若平面 PBC⊥平面 ABC,∠ABC=90°, AB=2,BC=1,PB=2 2,∠PBC=45°,则三棱锥 P-ABC 外接球的表面积是 ________.
答案 (1)A (2)3 3
9
@《创新设计》
@《创新设计》
探究提高 1.研究三角函数的图象与性质,关键在于灵活利用三角恒等变换公式将 函数化为y=Asin(ωx+φ)+B(ω>0,A>0)的形式,进一步讨论函数的单调性、对称 性、周期、零点等. 2.解三角形的关键是活用正弦、余弦定理实施边角的转化,在求三角形面积的取值 时,常把三角形面积这个目标函数转化为边或角的形式,然后借助基本不等式或 函数性质来解决.
10
@《创新设计》
【训练 2】 (2020·成都诊断)如图所示的是函数 f(x)=sin(ωx+φ)ω>0,0<φ<π2在区 间-π6,56π上的图象,若将该函数图象上各点的横坐标缩小为原来的一半(纵坐标不 变),再向右平移 m(m>0)个单位长度后,所得到的图象关于直线 x=51π2对称,则 m 的最小值为( )
4
@《创新设计》
探究提高 1.利用图象法求函数f(x)的零点个数时,直接画函数f(x)的图象较困难, 可以将解析式变形,将函数零点个数问题转化为两个函数的图象的交点个数问题, 画出两函数图象,看其交点的横坐标有几个不同的值,就有几个不同的零点. 2.求解函数的图象与性质综合应用问题的策略 (1)熟练掌握图象的变换法则及利用图象解决函数性质、方程、不等式问题的方法. (2)熟练掌握与应用函数单调性、奇偶性、周期性、最值、对称性及零点解题的方法.
从而ab=3,得 a-3b=0, 所以点(a,b)在直线x-3y=0上.
(2)因为12b-sin
Ccos
A=sin
Acos
C,
所以12bcos A-sin Ccos A=sin Acos C, 所以12bcos A=sin(A+C),所以12bcos A=sin B,
8
@《创新设计》
所以co2s A=sinb B,
12
@《创新设计》
压轴热点3 空间位置关系与计算 【例3】 (1)(多选题)如图,等边△ABC的中线AF与中位线DE相交于点G,已知△A′ED
是△AED绕DE旋转过程中的一个图形,下列命题中正确的是( ) A.动点A′在平面ABC上的射影在线段AF上 B.恒有BD∥平面A′EF C.三棱锥A′-EFD的体积有最大值 D.异面直线A′F与DE不可能垂直 (2)(2020·江南名校联考)已知正方体ABCD-A1B1C1D1的棱长为2,M,N,E,F分 别是A1B1,AD,B1C1,C1D1的中点,则过EF且与MN平行的平面截正方体所得截
5
@《创新设计》
【训练 1】 (2020·山东师大附中模拟)已知函数 f(x)=x3-2x+ex-e1x,其中 e 是自然对 数的底数,在 f(a-1)+f(2a2)≤0,则实数 a 的取值范围是________. 解析 因为函数 f(x)=x3-2x+ex-e1x,所以 f′(x)=3x2-2+ex+e1x≥3x2-2+2 ex·e1x ≥0(当且仅当 x=0 时取等号),所以 f(x)在 R 上单调递增.又 f(-x)=(-x)3+2x+e-x -ex=-f(x)且 x∈R,∴f(x)是奇函数,由 f(a-1)+f(2a2)≤0,得 f(2a2)≤f(1-a).所以 2a2≤1-a,解之得-1≤a≤12. 答案 -1,12
17
@《创新设计》
解析 (1)A 选项:因为 E,F 分别为 A′D 和 BD 的中点,所以 EF∥A′B,即 EF∥平 面 A′BC,A 正确.B 选项:因为平面 A′BD⊥平面 BCD,交线为 BD,且 CD⊥BD, 所以 CD⊥平面 A′BD,即 CD⊥A′B,故 B 正确.C 选项:取 CD 边中点 M,连接 EM, FM,则 EM∥A′C,所以∠FEM 为异面直线 EF 与 A′C 所成角,因为 CD⊥平面 A′BD, 所以 CD⊥A′D,又 A′D=CD=2,所以 A′C=2 2,所以 EM= 2,又 EF=1,FM =12 BD2+CD2= 3,所以∠FEM=90°,故 C 错误;D 选项,连接 A′F,因为 A′B =A′D,F 为 BD 的中点,所以 A′F⊥BD,又平面 A′BD⊥平面 BCD,平面 A′BD∩平 面 BCD=BD,所以 A′F⊥平面 BCD,连接 FC,∠A′CF 为直线 A′C 与平面 BCD 所 成的角,又 A′C=2 2,A′F= A′D2-DF2= 2,所以 sin∠A′CF=AA′′CF=2 22=12,所 以∠A′CF=30°,故 D 正确,故选 ABD.
1
@《创新设计》
压轴热点 1 函数的图象、性质及其应用
【例 1】 (1)(2020·江南名校联考)已知 f(x)是定义在 R 上的奇函数,且当 x>0 时,f(x)
=2πx-ln x+ln π2,则函数 g(x)=f(x)-sin x 的零点个数为( )
A.1
B.2
C.3
D.5
(2)(2020·石家庄调研)若函数f(x-2)为奇函数,f(-2)=0,且f(x)在区间[-2,+∞)
3
@《创新设计》
(2)因为函数f(x-2)是奇函数,所以函数f(x-2)的图象关于点(0,0)对称,故f(x)的 图象关于点(-2,0)对称.又f(x)在[-2,+∞)上单调递减,∴f(x)在(-∞,-2)上 也单调递减,由f(3-x)>0=f(-2),得3-x<-2,∴x>5.∴不等式f(3-x)>0的 解集为(5,+∞). 答案 (1)C (2)(5,+∞)
6
@《创新设计》
压轴热点2 三角函数与正(余)弦定理
【例2】 (1)已知函数f(x)=asin ωx+bcos ωx(ω>0),若x=x0是函数f(x)的一条对称轴, 且tan ωx0=3,则点(a,b)所在的直线为( )
A.x-3y=0
B.x+3y=0
C.3x-y=0
D.3x+y=0
(2)在△ABC
上单调递减,则不等式f(3-x)>0的解集为________.
2
@《创新设计》
解析 (1)函数 g(x)的零点个数,即函数 y=f(x)的图象与 y=sin x 的图象交点个数.当 x>0 时,f(x)=π2 x-ln x+ln π2,则 f′(x)=2π-1x=2xπ-x π,令 f′(x)=0,得 x=π2.易知当
@《创新设计》
高考数学复习:压轴小题突破
“瓶颈”一般是指在整体中的关键限制因素,例如,一轮、二轮复习后,很多考 生却陷入了成绩提升的“瓶颈期”——无论怎么努力,成绩总是停滞不前.怎样才 能突破“瓶颈”,让成绩再上一个台阶?新高考卷客观题满分80分,共16题,决 定了整个高考试卷的成败,要突破“瓶颈题”就必须在两类客观题第8,11,12, 15,16题中有较大收获,分析近年高考,必须从以下几个方面有所突破,才能实 现“柳暗花明又一村”,做到保“本”冲“优”,迈进双一流.
18
@《创新设计》
(2)在平面 BCP 中找一点 Q,连接 BQ,使得 BQ 为△BCP 外接圆的直径,连接 QC, 则∠QCB=90°,则 QC⊥平面 ABC,所以 QC⊥AC,∠QCA=90°.易知 AB⊥平面 PBC, 则∠ABQ=90°,连接 AQ,设 AQ 的中点为 O,则点 O 到 A,B,C,Q 四点的距离 相等,故 AQ 为三棱锥 P-ABC 外接球的直径.易得 PC= 5,BQ=sin 455°= 10, 所以 AQ2=BQ2+AB2=14=4R2(R 为外接球的半径).故 S 外接球=4πR2=14π. 答案 (1)ABD (2)14π
面的面积为________, CE和该截面所成角的正弦值为________.
13
@《创新设计》
解析 (1)因为A′D=A′E,△ABC是正三角形,所以点A′在平面ABC上的射影在线段 AF上,故A正确;因为BD∥EF,所以恒有BD∥平面A′EF,故B正确;三棱锥A′- FED的底面积是定值,体积由高即点A′到底面的距离决定,当平面A′DE⊥平面 BCED时,三棱锥A′-FED的体积有最大值,故C正确;因为DE⊥平面A′FG,故 A′F⊥DE,故D错误. (2)如图所示,设CD,BC的中点分别为H,G,连接HE, HG,GE,HF,ME,NH. 易证ME∥NH,ME=NH,所以四边形MEHN是平行四边 形,所以MN∥HE. 易知四边形EFHG为矩形,因为MN⊄平面EFHG,HE⊂平面 EFHG,所以MN∥平面EFHG,
又sinb B=sina A,a=2
3,所以co2s
A=sin 2
A,得 3
tan
A=
3,
又 A∈(0,π),则 A=π3,
由余弦定理得(2 3)2=b2+c2-2bc·12=b2+c2-bc≥2bc-bc=bc, 即 bc≤12,当且仅当 b=c=2 3时取等号,

从而△ABC 面积的最大值为12×12× 23=3 3.
中,三个内角
A,B,C
的对边分别为
a,b,c,若12b-sin
Ccos
A=
sin Acos C,且 a=2 3,则△ABC 面积的最大值为________.
7
解析 (1)f(x)=asin ωx+bcos ωx= a2+b2sin (ωx+φ),其中 tan φ=ba. ∵x=x0 是函数 f(x)的一条对称轴,∴ωx0+φ=kπ+π2,k∈Z. ∵tan ωx0=tankπ+π2-φ=tanπ2-φ=csoins φφ=tan1 φ,
相关文档
最新文档