函数方程和函数迭代问题
函数迭代和函数方程课件
1 2 3
函数方程的基本概念 函数方程是指包含未知函数的方程。例如,$f(x) + f(2x) = 3x$是一个函数方程。
解函数方程的方法 解函数方程的方法包括代换法、迭代法、微分法 等。这些方法可以帮助我们找到满足给定条件的 函数。
函数方程的应用 函数方程在数学、物理、工程等领域有广泛的应 用。例如,在物理学中,牛顿第二定律就是一个 典型的函数方程。
感您的 看
THANKS
函数方程的应用场景
数学建模
在解决实际问题时,常常需要 建立数学模型,其中涉及到的 未知数或符号可以通过函数方
程求解。
物理问题
在研究物理现象或规律时,有 时需要通过建立和解决函数方 程来得出结论。
工程问题
在解决工程问题时,常常需要 建立数学模型,其中涉及到的 未知数或符号可以通过函数方 程求解。
经济问题
迭代函数的性质
迭代函数通常具有封闭性、递归性、可计算性和复杂性等性质。这些性质决定了迭代函数 的性质和行为。
迭代函数的收敛性
对于某些迭代函数,当迭代次数趋于无穷时,函数的值会趋于某个固定值,这种性质称为 收敛性。例如,$f(x) = x/2$的迭代序列${f^n(x)}$会收敛到0。
具体函数方程的解析
在数学研究中,迭代函数和函数 方程经常结合使用,以相互补充
和加强。
通过将迭代函数的动态变化过程 与函数方程的等式关系相结合, 可以更全面地研究函数的性质和
行为。
在解决一些复杂的数学问题时, 迭代函数和函数方程的结合应用 可以提供更有效的方法和思路。
04
例解析
具体迭代函数的解析
迭代函数的基本概念
迭代函数是指通过将函数作用于自身而得到的函数。例如,$f(x) = x^2$是一个迭代函数, 因为$f(f(x)) = (x^2)^2 = x^4$。
高一数学竞赛讲座2函数方程与函数迭代
函数方程与函数迭代函数方程问题一直是各国重大竞赛中的热点问题,以IMO 为例,在已进行的四十七届竞赛的试题中,有30多道是函数方程的试题,几乎是每届一题.在我国冬令营与国家集训队的测试题中,函数方程问题也是屡见不鲜的.究其原因,它往往是给出较弱的条件,却要从中得出甚强的结论(一般是要直接求出表达式).【基础知识】表示某一类(或某一个)函数所具有的一定性质的关系式叫做函数方程(其中()f x 为未知函数).如果一个函数对其定义域内变量的一切值均满足所给的方程,则称()f x 为这个函数方程的解.寻求函数方程的解或证明函数方程无解的过程,就是解函数方程.我们粗略地归纳其典型的解题方法,主要可以分成以下几类: 1.换元法: 2.解方程(组)法 3.待定系数法 4.代值减元法当所给的函数方程中变量不止一个时,和普通方程一样,求解时首先要设法减少变量个数,代值减元就是一种减少变量的方法,它通过适当地对自变量赋于特殊值,从而简化方程,逐步靠近未知结果,最终解决问题.5.柯西法先求出对于自变量取所有正整数的值时函数方程的解具有的形式,然后依次证明对自变量取整数值,有理数值以及取实数值时函数方程的解仍具有这种形式,从而得到方程的解.这里我们给出一个定理:柯西函数方程的解定理:若()f x 是单调(或连续)函数,且满足()()()f x y f x f y +=+(,),x y R ∈则()(1).f x xf =(我们将此定理的证明放于例题中进行讲解.)6.递归法借助数列对函数方程加以研究的方法.设()f n 是定义在R +上的函数,如果存在递推关系S 和初始条件1(1),f a =当知道(1),(2),,()f f f n 的值后,由S 可以惟一确定(1)f n +的值,我们称()f n 为递归函数.递推法主要解决递归函数问题.7.不动点法一般地,设函数()f x 的定义域为D ,若存在0x D ∈,使00()f x x =成立,则称0x 为()f x 的不动点,或称00(,)x x 为函数()y f x =图象的不动点.对于一些简单的函数,利用不动点,把函数变形后再迭代,最后利用数学归纳法证明,往往会使算法简单些.【典例精析】【例1】已知11()(),x xf x f x x--+=求().f x 〖分析〗令1,x t x -=则1,1x t =-再令1,1y t=-则1,y t y -=因此可以将所得三个等式看成是关于11(),(),()1x f x f f x x --的三个方程,便可解得().f x解:设1,x t x -=则1,1x t =-代入原式,得11()(),11f f t t t +=--即11()()1,11f f x x x+=+-- ○1 设1,1t x =-则代入原式,得111()()1.1t t f f t t t --+=+-即1121()(),1x x f f x x x--+=- ○2 将○1○2与原方程联立,解得321().2(1)x x f x x x --+=- 〖说明〗如何换元才能将已知的函数方程转化为可以求解的方程组,是一个具有技巧性的问题,它需要分析所给的函数方程的特点才能达到目的.本例通过再次换元得到关于11(),(),()1x f x f f x x--的方程组,消去11(),(),1x f f x x--从而求得().f x 【例2】证明:恰有一个定义在所有非零实数上的函数f ,满足条件: (1) 对所有非零实数x ,f (x )=xf (1x);(2)对所有的x ≠-y 的非零实数对(x ,y ),有f (x )+f (y )=1+f (x +y ) 2.证明:f (x )=x +1显然适合(1)、(2)。
函数方程和函数迭代问题(奥数)
函数方程和函数迭代问题(奥数)第四讲函在国内外数学竞赛中函数方程和函数迭代问题备受命题者的青睐形式灵活多变,结构变化无穷,大致可分为如下三类:⑴探求函数的解析式;⑵探求函数的值⑶讨论函数的性质.一. 探求函数的解析式函数方程的求解事实上也是一个探求函数解析式的过程,而函数方程常见的初等解法有许多,下面对其作进一步详尽的介绍.1,换元法换元法的解题基本思想是:将函数方程中自变量适当代换成别的自变量(应注意力求不改变函数的定义域),得到一个或几个新的函数方程,然后将它们与原方程联立,通过消元求得原函数方程的解.例1 解函数方程 f(x)+f(xx 1-)=1+x (x ≠0,x ≠1) f(x)=x+1/x+1/(1-x) 例2 设f(x)是定义在实数集上的实值函数,且满足af(x-1)+bf(1-x)=cx,其中a,b,c 为实常数,求f(x) f(x)=c/(a-b)x+c/(a+b)2.赋值法赋值法基本思想是:对自变量多于一个的函数方程,将其中一个或几个自变量用一些特殊值赋进去代入原方程,从而简化函数方程,以达到求解的目的.例3 已知定义在R 的函数满足⑴ f(x 1+x 2)+f(x 1-x 2)=2f(x 1)cos2x 2+4asin 2x 2 (x 1,x 2∈R,a 为常数) f(x)=(a-1)(sin2x-cos2x)+a⑵ f(0)=f(4π)=1 ⑶ 当x ∈[0, 4π]时,f(x)≤2 试求⑴函数f(x)的解析式;⑵常数a 的取值范围.例4 f(x)是定义于非负实数集上且取非负实数值的函数,求所有满足下列条件的f(x)⑴ f[xf(y)]f(y)=f(x+y);⑵ f(2)=0⑶ 当0≤x <2 f(x)≠0 f(x)= 0,x>=22/(2-x),x<23递推法这一方法的其本思想是:当f(x)是定义在自然数集上的函数(实际上就是通项为a n =f(n)的数列)时,可根据题中所给函数方程,通过持殊值得到关于f(n)的递推关系,然后根据递推关系求出(即数列{a n}的通项表达式)例5已知f(x)是定义在自然数集上的函数,满足f(1)=23,且对任意x,y ∈N,有 f(x+y)=(1+1+x y )f(x)+(1+1+y x )f(y)+x 2y+xy+xy 2,求f(x) 4. 柯西法柯西首先讨论了一个很重要的函数方程f(x+y)=f(x)+f(y)的解法,由此解决了一系列其他函数方程.他的方法是,依次求出所有自然数值,整数值,有理数值,直至所有实数值的函数方程的解例6 设f(x) 是定义在有理数集上的函数,且对任意的有理数x,y 有f(x+y)=f(x)+f(y),试求f(x)5, 待定系数法这一方法的其本思想是:当f(x)是多顸式时,可设f(x)=a 0x n +a 1x n-1+….+a n (a 0≠0),代入函数方程的两端,然后比较方程两端x 最高次幂的指数和x 同次幂的系数,便可得出关于n 及a 0 a 1…a n .的方程组,解这个方程组便可确定n 及a 0 a 1…a n 的值,从而得到函数方程的解例7确定符合下列条件的所有多项式f(x) f(x+1)=21f[f(x)]+23 6 , 利用不等式夹逼利用不等式夹逼求解函数方程,主要是利用下列几个明显的结论:⑴ 若对任意x ∈I, 有f(x)≥g(x) 及f(x)≤g(x)则对任意x ∈I,有f(x)=g(x)⑵ 若对任意x,y ∈I,有f(x)≤g(y)则交换x,y 得f(y)≤g(x)于是对任意的x,y ∈I 有f(x)=g(y)由此可得f(x)=常数(x ∈I).⑶ 若f:N →N 满足m ≤f(n)<m+1或m-1<f(n)≤m 或m-1<f(n)<m+1(m,n ∈N)则f(n)=m,例8 设f(x) 是具有下列性质的函数⑴ f(n)对每一正整数n 有定义;⑵ f(n)是正整数;⑶ f(2)=2⑷ f(mn)=f(m)f(n),对一切m,n 成立;⑸ f(m)>f(n),当m >n 时试证: f(m)=f(n)例9 设f(n )是定义在自然数集N 上的函数,它的值域也是全体自然数所成的集N,并且对任意两个自然m 与n,只要m ≥n 就有f(m) ≥n, 试证: f(m)= m 对任意的自然数m 成立.例10 设f(n )是定义在自然数集N 上的函数,满足: ⑴f(n )的值域为整数;⑵当m <n 时,f(m)<f(n);⑶当m,n 互素时,f(mn)=f(m)f(n),试求符合上述条件的一切函数f(x).二. 探求函数的值在各级各类数学竞赛中除了求函数方程的解以外,还经常遇到由函数方程给出的特殊定义的抽象函数,要求参赛者探求其函数的特殊的函数值.例11. 设N 是自然数集, f(x)是定义在N 上并在N 内取值的函数,且对x,y ∈N,有f[f(x)+y]=x+y,求f(1988)的所有可能的值例12. 设f(n )对所有正整数有定义,取非负整数值,并且对所有正整数m,n 有f(m+n)-f(m)-f(n)=0或1.又f(2)=0.f(3)>0,f(9999)=3333,求f(1982).例13. 设f(x),g(x)是定义在正整数集Z +上并取整数的严格递增函数,如果它们满足:⑴f(Z +) ∪ g ( Z +) = Z +(⑵f(Z +) ∩ g ( Z +) =⑶g(n)=f(f(n))+1试求f(240).三.讨论函数的性质探求讨论函数的有关性质,历年来都是数学竞赛的命题热点之一,例如探求函数的周期性,函数的不等式证明,以及解反函数的不等式等问题。
高中数学竞赛题:函数迭代含详解
高中数学竞赛专题训练:函数迭代一、单选题1.设1()f x =对任意自然数n ,定义11()(())n n f x f f x +=.则1993()f x 的解析式为()AB C D 2.函数()f x 是定义在R 上的奇函数,且()02=f ,对任意x R ∈,都有()()()42f x f x f +=+成立.则()1998=f .()A .3996B .1998C .1997D .03.已知函数()f x 在(0,)+∞上有定义且为增函数,并满足1()(())1f x f f x x⋅+=.则(1)f =()A .1B .0C .12+D .124.已知()11xf x x+-=,记()()1f x f x =,()()()()11,2,k k f x f f x k +== ,则()2007f x =()A .11x x+-B .11x x -+C .xD .1x-5.已知对每一对实数x 、y ,函数f 满足()()()1f x f y f x y xy +=+--.若()11f =,则满足()()f n n n Z =∈的个数是().A .1个B .2个C .3个D .无数多个6.函数()f x 是定义在R 上的奇函数,且对任意x R ∈都有()()()10 5 f x f x f x +=+-.若()50f =,则()2005f 的值为().A .2000B .2005C .2008D .07.设函数()f x 的定义域是(,)∞+∞对于下列四个命题:(1)若()f x 为奇函数,则()()f f x 也为奇函数;(2)若()f x 为周期函数,则()()f f x 也为周期函数;(3)若()f x 为单调递减函数,则()()f f x 为单调递增函数;(4)若方程()()f f x x =有实根,则方程()f x x =也有实根,其中,正确的命题共有个()A .1B .2C .3D .48.设()1211x f x x -=+,对2n ≥,定义()()()11n n f x f f x -=.若()2912x f x x +=-,则()2009 f x =______.9.设()()211xf x eg x ln x -=,=(+).则不等式()()()()1f g x g f x -的解集为_______.10.已知()[]12,0,1f x x x =-∈,那么方程()()()12f f f x x =的解的个数是_________.11.已知函数()f x 满足()()()3,1000;=+5,<1000.x x f x f f x x -≥⎧⎪⎨⎪⎩则()84f =________.12.设函数()f x 定义在R 上,对任意x R ∈,()110062f x +=+()310054f -=.则()2013f =___________.13.设定义在整数集上的函数f ,满足()()14,2000,n 19,2000.n n f f f n n -≥⎧⎪=⎨⎡⎤+<⎪⎣⎦⎩则()1989f =_____.14.设函数()f n 定义在正整数集上,对于任一正整数n ,有()()43f f n n =+,且对任意非负整数k ,有()1221k k f +=+.则()2303f =__________.15.设f(x)为定义在整数集上的函数,满足条件(1)()11f =,()20f =;(2)对任意的x 、y 均有()()()()()11f x y f x f y f x f y +=-+-则()2015f =______.三、解答题16.已知二次函数()()20f x ax bx c a =++≠.若方程()f x x =无实根,求证:方程()()f f x x =也无实根.17.已知()f x 是定义在实数集R 上的函数,()02f =,对任意x R ∈,有()()5254f x f x +=--,①()()3256f x f x -=-②,求()2012f 的值.18.对任意正整数m ,n ,定义函数(,)f m n 满足如下三个条件:①(1,1)1f =;②(1,)(,)2()f m n f m n m n +=++;③(,1)(,)2(1)f m n f m n m n +=++-.(1)求(3,1)f 和(1,3)f 的值;(2)求(,)f m n 的解析式.参考答案:1.C【详解】n=1时,()1f x =假设n k =时,()k f x =则1n k =+时,()1k f x +==所以()1993f x 故答案为C2.D【详解】令2x =-,则有()()()224f f f =-+,即()()()224.f f f +=()()()()42204f f f x f x ∴==⇒+=,即()f x 是以4为周期的函数.()()()199********.f f f ∴=⨯+==3.D【详解】设()1f a =,1x =.由已知函数等式得()()()1111f f f +=,()11af a +=,()11f a a+=.设1x a =+,有()()11111f a f f a a ⎛⎫+++= ⎪+⎝⎭,11111f a a a ⎛⎫+= ⎪+⎝⎭,()11 11f a f a a ⎛⎫+== ⎪+⎝⎭.由()f x 是增函数,则有1111a a+=+,解得a=当()112f =时,有()()11111a f f a a <=<+=<矛盾,所以()112f =.选D.4.B【详解】()111x f x x +=-,()()1223121111, 111f f x f x f x f x f x ++-==-==--+,()34311f f x x f +==-据此,()4111n xf x x++=-,()()424311, 1n n x f x f x x x ++-=-=+,()4n f x x=因2007为4n+3型,故选B.5.B【详解】令1y =得()()()111f x f f x x +=+--,即()()12f x f x x +=++.令0x =得()()102f f =+.由()11f =知()01f =-.当n N +∈时,()()()()()()()113101012nnk k n n f n f k f k f k f ==+⎡⎤=--+=++=-⎣⎦∑∑.同理,()()312n n f n -+-=--.所以,()()312n n f n +=-,n Z ∈.令()f n n =,解得2n =-或1n =.6.D【详解】由题意得()()()()5105fx f x f x -+=-+,所以,()()()101515f x f x f x +=-=--从而,()()()2550f x f x f x =--=-故()f x 是以50为周期的周期函数.因此,()()()20055040550f f f =⨯+==.7.C【详解】若()f x )为奇函数,则()()()()()()f f x f f x f f x -=-=-.故()()f f x 也为奇函数.因此,命题(1)正确.若()f x 为周期函数,设T 为()f x 的一个周期,则()()()()f f x T f f x +=.故()()f f x 也为周期函数,因此,命题(2)正确.若()f x 为单调递减函数,则对任何x y <,由:()()()()()()f x f y f f x f f y >=<.故()()f f x 为单调递增函数,因此,命题(3)正确.但命题(4)不正确例如,取:()2,011,0;0, 1.x x f x x x ⎧=≠⎪==⎨⎪=⎩或;则()()4,010,0;1, 1.x x f f x x x ⎧+≠⎪==⎨⎪=⎩或;.故方程()()f f x x =有01、两个实根,但0x ≠或1时,()2f x x x =+>,而()()01,10f f ==,知方程()f x x =没有实根.8.12xx+-【详解】因为()3012x x f x f x +⎛⎫== ⎪-⎝⎭,所以,()()311f x f x =.而2009306629=⨯+,于是,()()20092912xf x f x x+==-.故答案为12xx +-9.(]1,1-【详解】注意到()()()()2f g x g f x x -=.故()()()()2f g x g f x x -=.又定义域为()1,-+∞,从而,不等式的解集为(]1,1-.10.8【详解】∵()12f x x =-112,0,2121,,12x x x x ⎧⎡⎤-∈⎪⎢⎥⎪⎣⎦=⎨⎡⎤⎪-∈⎢⎥⎪⎣⎦⎩即()f x 有关于x 的两个一次表达式.同理,()()f f x 有关于()f x 的两个一次表达式,而每个()f x 有关于x 的两个表达式,以所()()f f x 有关于x 的四个一次表达式.同理,()()()f f f x 有关于x 的八个不同的一次表达式,因此,所求方程解的个数是8.11.997【详解】记()()()()()n n f x f f f x个.则()()()()()1848489999f f f f === ()()()()()()18518418310041001998f ff===()()()()()()18418318210031000997f f f===()()()()()()18318218310029991004f f f ===()()()()()()18218118210019981003f ff===()()()18110001000997f f ==== .因此,()84997f =.12.12+【详解】由题意知()112f =+12=+()13100724f ==,()()1120131007100622f f =+==.13.()19891990f =【详解】(1989)[(2008)](1994)[(2013)](1999)[(2018)](2004)1990f f f f f f f f f f =======14.4607【详解】注意到23432303343434342=+⨯+⨯+⨯+⨯.而()()()()()4343f n f f f n f n +==+,则()()2332303343434342f f =++⨯+⨯+⨯=…()()()234323444433434343423434343421230342124607f =+⨯+⨯+⨯+=+⨯+⨯+⨯++=++-=15.1±【详解】在条件(2)中令0x =,则()()()()()011f y f f y f f y =-+,由()11f =,知()()010f f y -=.在上式中令0y =,则()()()01000f f f =⇒=.在条件(2)分别令1,1,2x =-得()()()()()1110f y f f y f f y +=-+()1f y =-,()()()()()1112f y f f y f f y -=--+()()()()1111f f y f f y =--=-+,()()()()()2211f y f f y f f y +=-+-()()1f f y =-,由()()()111f y f f y -=-+()()()12f y f f y =-+()()()21f y f f y ⇒=-()11f ⇒-=±.若()11f -=,则()()2f y f y +=,由条件(1)知()1,0,x f x x ⎧=⎨⎩为奇数为偶数,经检验,f 满足条件故()20151f =.若()11f -=-,则()()2f y f y +=-()()()01x 141,14x f x mod x mod ⎧⎪=≡⎨⎪-≡-⎩,为偶数,,经检验,f 满足条件故()20151f =-.综上,()20151f =±.16.见解析【详解】将函数式()()20f x ax bx c a =++≠代入方程()f x x =,移项后,得()210ax b x c +-+=()0a ≠.已知这个方程无实根,所以它的判别式为负,即()21140b ac ∆=--<.进而,由()()()()()2f f x a f x bf x c =++,将()f x 的表达式代入方程()()f f x x =,得()()222a ax bx cb ax bxc c x++++++=()0a ≠.变形,得()()222220a ax bx c x ax b ax bx c x bx c x ⎡⎤⎡⎤++-++++-++-=⎣⎦⎣⎦,提公因式,得()()22110ax b x c a ax bx c x b ⎡⎤⎡⎤+-++++++=⎣⎦⎣⎦,即()()()22110f x x a x a b x ac b ⎡⎤⎡⎤-+++++=⎣⎦⎣⎦.由条件知方程()0f x x -=无实根,所以,上面这个四次方程()()22110a x a b x ac b +++++=与有相同的实根.所得辅助二次方程的判别式是()()()2222221411444a b a ac b a b b ac ⎡⎤∆=+-++=+---⎣⎦()()()22221144440a b ac a a ⎡⎤=---=∆-<⋅-<⎣⎦,所以,这个辅助二次方程无实根,进而推出原四次方程()()f f x x =无实根.17.2【详解】在式①中取()1322x y y R =-∈,得()()212f y f y +=-.在式②中取()1233x y y R =+∈,得()()12f y f y =-,于是,()()2f y f y +=,即()f x 是一个周期为2的函数,故()()()201221006002f f f =⨯+==.18.(1)(3,1)11f =,(1,3)7f =(2)22(,)231f m n m mn n m n =++--+【分析】(1)由已知关系式直接推得即可;(2)由(1,1),(1,2),,f f 依次推出(1,)f n ,再由(1,),(2,)f n f n ,L ,依次推出(,)f m n 即可.【详解】解:(1)因(1,)(,)2()f m n f m n m n +=++,令1m n ==代入得:(2,1)(1,1)2(11)145f f =++=+=,令2m =,1n =代入得:(3,1)(2,1)2(21)5611f f =++=+=,又(,1)(,)2(1)f m n f m n m n +=++-,令1m n ==代入得:(1,2)(1,1)2(111)123f f =++-=+=.令1m =,2n =代入得:(1,3)(1,2)2(121)347f f =++-=+=.(2)由条件②可得(2,1)(1,1)2(11)22f f -=⨯+=⨯,(3,1)(2,1)2(21)23f f -=⨯+=⨯,……(,1)(1,1)2(11)2f m f m m m --=⨯-+=⨯.将上述1m -个等式相加得:2(,1)2(23)(1,1)1f m m f m m =++⋅⋅⋅++=+-.由条件③可得:(,2)(,1)2(11)2f m f m m m -=+-=,(,3)(,2)2(21)2(1)f m f m m m -=+-=+,……(,)(,1)2(11)2(2)f m n f m n m n m n --=⨯+--=⨯+-.将上述n 1-个等式相加得:2(,)2[(1)(2)(2)]1f m n m m m m n m m =+++++⋅⋅⋅++-++-22231m m n n m n =++--+.【点睛】本题主要考查了函数的递推关系式,注意观察规律,细心完成即可.。
高二数学函数方程与迭代(共10张PPT)
只是在壹旁看着而已,咱要走了,有缘咱们会再见の 说完她人影 已经闪到了几十里开外,虚空中出现了壹个黑色口子,她向根汉摇了摇手 便沉进了这个无垠の虚空中
看到这壹幕,根汉心中不由得壹惊
但是转眼就这样子离开,
.
也就是说这个女子最 , ,至少也需要绝强者之境才能够做到
但似乎并没有这女子使用の这么飘逸 难道又是准至尊 , , , 有仙韵 就在这时, ,也和根汉说闻到了仙韵." ?" , 差也是壹位绝强者. , 当年九天寒龟也曾经向根汉展示过这壹招
,自己の几件至宝都会壹起出来.女人则 " 笑道" 又有魔韵,还有人韵,可以说是万 , 古奇遇
你是什么来历..."女人并没有恶意 面目慈善 根汉皱眉道:
?那是什么东西
那又叫做三界气韵,
,
, ,魔有魔韵 每壹个生灵出生之时
..." " 女人倒也不瞒,解释道: 壹般来说,
而你 の身上 有三种 气韵, 三界 气 韵 都有 了...""
?"
"咱当然不是仙
如果真有の话 你不需要知道咱是谁 你要是不告诉咱の话 ..." , ..." , 想不到姐姐也知道咱 根汉有些意外, 怪不得你身上能身具三界气韵了 原来如 , 人了,这世上の仙人早就消失了
,现在人间界也不会是这副模样...""那姐姐你是?"根汉好奇の问,女人摇头道:"
思考1答案
思考3答案
3答案
4答案
根汉皱眉道:"仙韵?魔韵?那是什么东西?""呵呵,那又叫做三界气韵,人有人韵,仙有仙韵,魔有魔韵,每壹个生灵出生之时,便会带有壹种韵. ""呼呼,那你叫什么名字?"根汉又问,"咱总得知道你の名字吧?你和咱师尊认识吗?""老疯子吗?"女子楞了楞后说:"算是认识吧,有些渊源. 不时の就会有壹两个神秘の强者,出现在自己の眼前,令自己感觉压力山大. 几分钟后,两人来到了壹条小巷中,根汉站在巷口,看着壹个白衣女子飘向了自己,真有仙风鹤骨,这个女子不仅面目慈善,而且也很漂亮,不食 人间仙火の那种气质. ""至尊有没有进入仙界,你哪知道,或许人家都上了仙界呢. 第二十人登台,宗王五重,同样还是壹招败给了根汉. 不过她这么快就苏醒,还是头壹回. "这回来の是壹个大叔,修为大概在元古境,可以说是很低の修为,手持壹把两头斧,长有四五米,壹身横肉确实是有些吓人. 第三十人登台,宗王七重の强者,竟然还是壹招败给了根汉. 中年妇人手中多出了两把黑色の大剑,壹左壹右带着这妇人冲向了根汉,直取根汉の左右两路. "说完根汉身形闪转腾挪,直接从酒楼の窗户闪了出去,女道士也有些无奈,虽然不想跟去,但还是飘了过去. ""重活の仙人?"根汉有些惊厄. "见这中年妇人驾驭壹对飞剑,还有些不平稳の样子,根汉实在是有些无语,右手直接往虚空中壹摆,壹道劲风刮向了这中年妇人. "仅仅十个人上台,就已经令全场上万人震动了,演武场内吵闹声,嬉笑声都几乎没有了,大家都在心里猜测,这个小娃娃有什么来头. 不过她这么快就苏醒,还是头壹回.
简单函数方程的解法
简单函数方程的解法1.函数方程的定义含有未知函数的等式叫做函数方程。
如f(x+1)=x、f(-x)=f(x)、f(-x)= -f(x)、f(x+2)=f(x)等。
其中f(x)是未知函数2.函数方程的解能使函数方程成立的函数叫做函数方程的解。
如f(x)=x-1、偶函数、奇函数、周期函数分别是上述各方程的解3.解函数方程求函数方程的解或证明函数方程无解的过程叫解函数方程4.定理(柯西函数方程的解)若f(x)是单调(或连续)函数且满足f(x+y)=f(x)+f(y) (x,y∈R)、则f(x)=xf(1)证明:由题设不难得f(x1+x2+…+xn)=f(x1)+f(x2)+…+f(xn)取x1=x2=…=xn=x,得f(nx)=nf(x) (n∈N+)令x=0,则f(0)=nf(0),解得f(0)=0 --------- (1)x=1,则f(n)=nf(1)x= ,则f(m)=nf( ) ,解得f( )= f(m)= f(1) --------- (2)x=- ,且令y=-x>0,则f(x)+f(y)=f(x+y)=f(0)=0∴f(x)=-f(y)=-yf(1)=xf(1) (m,n∈N+,且(m,n)=1) ---------(3)由上述(1),(2),(3)知:对任意有理数x均有f(x)=xf(1)另一方面,对于任意的无理数x,因f(x)连续,取以x为极限的有理数序列{xn},则有:f(x)= f(xn)= xnf(1)=xf(1)综上所述,对于任意实数x,有f(x)=xf(1)函数方程的解法:1.代换法(或换元法)把函数方程中的自变量适当地以别的自变量代换(代换时应注意使函数的定义域不会发生变化),得到一个新的函数方程,然后设法求得未知函数例1 (1)已知f(2x-1)=x2+x,那麽f(x)=______________。
略解:设t=2x-1,则x= (t+1),那麽f(t)= (t+1)2+ (t+1)= t2+t+故f(x)= x2+x+(2) 已知f( +1)=x+2 ,那麽f(x)=____________。
1.函数符号与函数的基本问题
2019年课标高考母题 备战高考数学的一条捷径.预测高考试题的有效手段 059[决胜高考数学母题](第012号)函数符号与函数的基本问题掌握函数,要从认识函数符号f(x)开始,对f(x)我们可以把x 想象为一个口袋,在这个口袋内可以同时填入(赋值)任意一个数或式(包括f(x)自身),由此可充分体现换元方法和整体思想,并产生函数的三类基本问题.[母题结构]:(Ⅰ)(求函数值)已知函数f(x),求f(x 0)的过程,称为求函数值,求函数值的基本方法就是的赋值法.(Ⅱ)(函数方裎)含有未知函数的等式称为函数方程;函数方程的中心问题是求函数的解析式,求函数解析式的基本方法有:待定法、换元法和赋值法.(Ⅲ)(函数迭代)利用了一个函数自身复合多次,这就叫做迭代.一般地,记f (0)(x)=x,f (1)(x)=f(x),f (2)(x)=f(f(x)),…, f(n+1)(x)=f(f (n)(x)).则称f (n)(x)为f(x)的n 次迭代,并称n 为f (n)(x)的迭代指数.[母题解析]:略.1.求函数值子题类型Ⅰ:(2015年山东高考试题)设函数f(x)=⎩⎨⎧≥<-1,21,3x x b x x,若f(f(65))=4,则b=( ) (A)1 (B)87 (C)43 (D)21[解析]:由f(65)=25-b;①若25-b<1,即b>23;由f(f(65))=4⇒3(25-b)-b=4⇒b=87,不合;②若25-b ≥1,即b ≤23;由f(f(65))=4⇒f(65)=2⇒b=21.综上,故选(D). [点评]:求参数值有而类典型问题:一是求复合函数值,尤其是求分段函数的复合函数值;一般方法是由里至外逐次求解,其中的关键是注意定义域下的函数式.二是问题一的逆向问题,即已知复合函数值,求其中的参数值,要注意分类讨论.[同类试题]:1.(2015年陕西高考试题)设f(x)=⎪⎩⎪⎨⎧<≥-)0(2)0(1x x x x,则f(f(-2))=( ) (A)-1 (B)41 (C)21 (D)232.(2005年江苏高考试题)己知a,b 为常数,若f(x)=x 2+4x+3,f(ax+b)=x 2+10x+24,则5a-b= . 2.函数方裎子题类型Ⅱ:(2008年陕西省高考试题)己知定义在R 上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y ∈R),f(1)=2,则f(-3)等于( )(A)2 (B)3 (C)6 (D)9[解析]:设f(x)=ax 2+bx+c,则f(x+y)=f(x)+f(y)+2axy-c,与己知f(x+y)=f(x)+f(y)+2xy 比较得a=1,c=0⇒f(x)=x 2+bx,又由f(1)=2⇒b=1⇒f(x)=x 2+x ⇒f(-3)=6.故选(C).[点评]:由二次函数抽象而得到的函数方程模型有:①如果f(x)=ax 2+bx+c,则f(2m-x)+2f(x)=3(ax 2+bx+c)+2(2am+b)(m-x);②如果f(x)=ax 2+bx+c,则f(x+y)=f(x)+f(y)+2axy-c;③如果f(x)=ax 2+bx+c,则f(x)f(y)=af(xy)+c[f(x)+f(y)]+ bxy[a(x+y)+(b-a)]-c(a+c);④如果f(x)=ax 2+bx+c,则f(x-f(y))=f(f(y))+f(x)-2(ax+b)f(y)-c.[同类试题]:3.(2012年安徽高考试题)下列函数中,不满足:f(2x)=2f(x)的是( )(A)f(x)=|x| (B)f(x)=x-|x| (C)f(x)=x+1 (D)f(x)=-x060 备战高考数学的一条捷径.预测高考试题的有效手段 2019年课标高考母题4.(2015年浙江高考试题)存在函数f(x)满足:对任意x ∈R 都有( )(A)f(sin2x)=sinx (B)f(sin2x)=x 2+x (C)f(x 2+1)=|x+1| (D)f(x 2+2x)=|x+1| 3.函数迭代子题类型Ⅲ:(2011年山东高考试题)设函数f(x)=x x +2(x>0),观察:f 1(x)=f(x)=x x +2,f 2(x)=f(f 1(x))=43+x x, f 3(x)=f(f 2(x))=87+x x ,f 4(x)=f(f 3(x))=1615+x x ,…,根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x)= f(f n-1(x))= .[解析]:由f 1(x),f 2(x),f 3(x),f 4(x)分母中的常数项分别为2,22,23,24,猜测f n (x)分母中的常数项=2n ,而一次项系数比常数项少1,为2n-1⇒f n (x)=nnx x 2)12(+-.[点评]:求f (n)(x)的一般解法是先猜后证法:先迭代几次,观察有何规律,由此猜测出f (n)(x)的表达式,然后证明.证明时,常用数学归纳法.[同类试题]:5.(2014年陕西高考试题)已知f(x)=xx+1,x ≥0,若f 1(x)=f(x),f n+1(x)=f(f n (x)),n ∈N +,则f 2014(x)的表达式为 . 6.(2008年全国高中数学联赛试题)设f(x)=ax+b,其中a,b 为实数,f 1(x)=f(x),f n+1(x)=f(f n (x))n=1,2,3,…,若f 7(x)= 128x+381,则a+b= .4.子题系列:7.(2005年浙江高考试题)设f(x)=⎪⎩⎪⎨⎧>+≤--1||,111||,2|1|2x xx x ,则f(f(21))=( )(A)21 (B)134 (C)-59 (D)41258.(2012年陕西高考试题)设函数f(x)=⎪⎩⎪⎨⎧<≥)0()21()0(x x x x,则f(f(-4))= . 9.(2012年福建高考试题)设f(x)=⎪⎩⎪⎨⎧<-=>)0(1)0(0)0(1x x x ,g(x)=⎩⎨⎧∉∈∈),(0)(1Q x R x Q x ,则f(g(π))的值为( )(A)1 (B)0 (C)-1 (D)π 10.(2008年山东高考试题)设函数f(x)=⎪⎩⎪⎨⎧>-+≤-1,21,122x x x x x ,则))2(1(f f 的值为( ) (A)1615(B)-1627 (C)98 (D)18 11.(2010年陕西高考试题)(理)已知函数f(x)=⎪⎩⎪⎨⎧≥+<+1,1,122x ax x x x ,若f(f(0))=4a,则实数a=( ) (A)21 (B)54(C)2 (D)9 12.(2014年浙江高考试题)设函数f(x)=⎪⎩⎪⎨⎧>-≤++)0()0(2222x x x x x ,若f(f(a))=2,则a= .13.(2011年江苏高考试题)已知实数a ≠0,函数f(x)=⎩⎨⎧≥--<+)1(2)1(2x a x x a x ,若f(1-a)=f(1+a),则a 的值为 .2019年课标高考母题 备战高考数学的一条捷径.预测高考试题的有效手段 06114.(2006年全国高中数学联赛河南预赛试题)设函数f(x)=x 2+6x+8.如果f(bx+c)=4x 2+16x+15,那么,c-2b=( ) (A)3 (B)7 (C)-3 (D)-7 15.(2004年湖北高考试题)己知f(x x+-11)=2211x x +-,则f(x)的解析式可取为( ) (A)21x x + (B)-212x x + (C)212x x + (D)-21x x +16.(1984年全国高中数学联赛试题)若F(xx+-11)=x,则下列等式中正确的是( ) (A)F(-2-x)=-2-F(x) (B)F(-x)=F(xx +-11) (C)F(x -1)=F(x) (D)F(F(x))=-x 17.(2011年全国高中数学联赛新疆预赛试题)已知f(x)为整式函数且满足f(x+1)+f(x-1)=4x 3-2x,则f(x)= . 18.(2010年全国高中数学联赛江西预赛试题)设多项式f(x)满足:对于任意x ∈R,都有f(x+1)+f(x-1)=2x 2-4x,则f(x)的最小值是 .19.(1999年福建省高一数学夏令营选拔试题)关于x 的函数f(x)满足mf(2x-3)+nf(3-2x)=2x(0<m<n),当x ∈[-1,1]时, f(x)的最小值是 .20.(2006年泰国数学奥林匹克试题)设函数f:R →R,对任意x ∈R,都有f(x 2+x+3)+2f(x 2-3x+5)=6x 2-10x+17.求f(85). 21.(2009年全国高中数学联赛湖南预赛试题)设f(x)为R →R,对任意实数x 有f(x 2+x)+2f(x 2−3x+2)=9x 2−15x,则f(50)的值为( )(A)72 (B)73 (C)144 (D)14622.(2011年北京市中学生数学竞赛高一试题)设函数y=f(x)定义域为R,且对任意x ∈R 都有2f(x 2+x)+f(x 2-3x+2)=9x 2-3x- 6,则f(60)= .23.(2009年全国高中数学联赛试题)若函数f(x)=21xx +,且f (n)(x)=nx f f f f ]])([[⋅⋅⋅⋅⋅⋅,则f (99)(1)= .24.(2008年全国高中数学联赛试题)设f(x)=ax+b,其中a,b 为实数,f 1(x)=f(x),f n+1(x)=f(f n (x)),n=1,2,3,…,若f 7(x)= 128x+381,则a+b= . 5.子题详解: 1.解:由f(-2)=41⇒f(f(-2))=f(41)=21.故选(C). 2.解:(法一)由f(x)=x 2+4x+3⇒f(ax+b)=(ax+b)2+4(ax+b)+3=a 2x 2+2a(b+2)x+b 2+4b+3=x 2+10x+24⇒a 2=1,2a(b+2)=10,b 2+ 4b+3=24⇒b=3或-7;当b=3时,a=1;当b=-7时,a=-1⇒5a-b=2.(法一)在f(ax+b)=x 2+10x+24中,令x=-5得:f(-5a+b)=-1;又由f(x)=x 2+4x+3=-1⇒x=-2⇒-5a+b=-2⇒5a-b=2. 3.解:若f(x)=kx ⇒f(2x)=k(2x)=2kx,2f(x)=2(kx)=2kx ⇒f(2x)=2f(x)⇒(D)满足条件;若f(x)=k|x|⇒f(2x)=k × |2x|=2k|x|,2f(x)=2(k|x|)=2k|x|⇒f(2x)=2f(x)⇒(A)满足条件;对于(B):当x ≥0时,f(x)=0显然满足条件,当x<0时, f(x)=2x 满足条件⇒(A),(B),(D)满足条件.故选(C).4.解:由f(x 2+2x)=|x+1|=122++x x ;令t=x 2+2x,则f(t)=1+t .故选(D).5.解:由f 1(x)=x x +1⇒f 2(x)=f(f 1(x))=x x 21+⇒f 3(x)=f(f 2(x))=xx31+⇒…⇒f 2014(x)=x x 20141+.6.解:由f 1(x)=f(x)=ax+b ⇒f 2(x)=f(f 1(x))=a 2x+(a+1)b ⇒f 3(x)=f(f 2(x))=a 3x+(a 2+a+1)b ⇒…⇒f 7(x)=a 7x+(a 6+a 5+…+a +1)b ⇒a 7=128,(a 6+a 5+…+a+1)b=381⇒a=2,b=3⇒a+b=5. 7.解:由f(21)=|21-1|-2=-23⇒f(f(21))=f(-23)=134.故选(B).062 备战高考数学的一条捷径.预测高考试题的有效手段 2019年课标高考母题8.解:由f(-4)=(21)-4=16⇒f(f(-4))=f(16)=4.9.解:由g(π)=0⇒f(g(π))=f(0)=0.故选(B).10.解:由f(2)=22+2-2=4⇒))2(1(f f =f(41)=1-(41)2=1615.故选(A).11.解:由f(0)=2⇒f(f(0))=f(2)=4+2a=4a ⇒a=2.故选(C).12.解:①当a ≤0时,f(a)=a 2+2a+2>0⇒f(f(a))=-(a 2+2a+2)2=2无解;②当a>0时,f(a)=-a 2<0⇒f(f(a))=a 4-2a 2+2=2⇒ a=2.13.解:①当a<0时,f(1-a)=f(1+a)⇒-(1-a)-2a=2(1+a)+a ⇒a=-43;②当a>0时,f(1-a)=f(1+a)⇒2(1-a)+a=-(1+a)-2a ⇒a=-23(舍去).综上,a=-43. 14.解:令x=-2得:f(-2b+c)=-1;由f(x)=-1⇒x=-3⇒-2b+c=-3.故选(C). 15.解:令x x +-11=t ⇒x=t t +-11⇒2211x x +-=2222)1()1()1()1(t t t t -++--+=212t t +,所以f(t)=212t t +⇒f(x)=212x x +.故选(C). 16.解:令x x +-11=t ⇒x=t t +-11⇒F(t)=t t +-11⇒f(-2-x)=)2(1)2(1x x --+---=-x x ++13,-2-F(x)=-2-xx +-11=-x x ++13.17.解:由方程的右边为三次函数,故设f(x)=ax 3+bx 2+cx+d,则f(x+1)+f(x-1)=2ax 3+2bx 2+(6a+2c)x+2b+2d,由题知,2ax 3+2bx 2+(6a+2c)x+2b+2d ≡4x 3-2x ⇒2a=4,2b=0,6a+2c=-2,2b+2d=0⇒a=2,b=0,c=-7,d=0⇒f(x)=2x 3-7x.18.解:由方程的右边为二次函数,故设f(x)=ax 2+bx+c,则f(x+1)+f(x-1)=2ax 2+2bx+2a+2c,由题知,2ax 2+2bx+2a+2c ≡2x 2- 4x ⇒2a=2,2b=-4,2a+2c=0⇒a=1,b=-2,c=-1⇒f(x)=x 2-2x-1=(x-1)2-2的最小值=f(1)=-2. 19.解:由mf(2x-3)+nf(3-2x)=2x ⇒mf(t)+nf(-t)=t+3⇒mf(-t)+nf(t)=-t+3⇒f(t)=-m n -1t+nm +1;由x ∈[-1,1]⇒ t=2x-3∈[-5,-1]⇒f(x)的最小值=f(t)的最小值=f(-1)=222m n n -.20.解:在f(x 2+x+3)+2f(x 2-3x+5)=6x 2-10x+17中,用1-x 代替x 得:f(x 2-3x+5)+2f(x 2+x+3)=6x 2-2x+13⇒f(x 2+x+3)=2(x 2+ x)+3;令x 2+x+3=85得:x 2+x=82⇒f(85)=2×82+3=167.21.解:由f(x 2+x)+2f(x 2−3x+2)=9x 2−15x,用1-x 代替条件等式中的x 得:2f(x 2+x)+f(x 2-3x+2)=9x 2-3x-6,由该式及原式,消去f(x 2−3x+2)得f(x 2+x)=3x 2+3x −4=3(x 2+x)−4⇒f(50)=3×50-4=146.故选(D).22.解:由2f(x 2+x)+f(x 2-3x+2)=9x 2-3x-6,用1-x 代替条件等式中的x 得:2f(x 2−3x+2)+f(x 2+x)=9x 2−15x,由该式及原式,消去f(x 2−3x+2)得f(x 2+x)=3x 2+3x −4=3(x 2+x)−4,所以f(60)=3×60−4=176. 23.解:由f (1)(x)=f(x)=21x x +,f (2)(x)=f[f(x)]=221x x +,…,f (n)(x)=21nx x +⇒f(99)(x)=2991x x +⇒f(99)(1)=101. 24.解:由f 1(x)=ax+b ⇒f 2(x)=a 2x+ab+b ⇒f 3(x)=a 3x+a 2b+ab+b ⇒…⇒f n (x)=a nx+a n-1b+a n-2b+…+ab+b=a nx+11--a a n b,由 f 7(x)=128x+381⇒a 7=128,117--a a b=381⇒a=2,b=3⇒a+b=5.。
函数迭代和函数方程
2.函数方程
1.换元法 此方法是将函数方程中的变量进行适当的换元, 得到一个新的函数方程, 再与 原函数方程构成一个方程组, 然后解此方程组就可求出原函数方程的解.但要注意 在换元时也许使函数的定义域发生了变化,需通过验证来证实.
例3. 已知实值函数F ( x)满足F ( x) + F ( x −1 ) = 1 + x(∗)( x ∈ R, 且x ≠ 0,1), 求F ( x). x
证 : 先证明对于任意自然数k , 只要n ≥ k , 则f (n) ≥ k .我们用数学归纳法证 : 当k = 1时, 显然,1是f (n)的值域中的最小数, 所以命题成立. 假设命题对于自然数k成立, 则当n ≥ k + 1时, n − 1 ≥ k ,由假设f (n − 1) ≥ k ,当然 f ( f (n − 1)) ≥ k . 由已知f (n) > f ( f (n − 1))得f (n) > k .于是有f (n) ≥ k + 1.即当n ≥ k + 1时, 命题也成立.从 而不等式f (n) ≥ k对于任意自然数k和任何不小于k的自然数n成立.取k = n, 则f (n) ≥ n. 再令n = f (k ), 则f ( f (k )) ≥ f (k ).又f (k + 1) > f ( f (k )), 故f (k + 1) > f (k ), 即函数f (k )是 严格递增函数. 因对于任意的n, f (n + 1) > f ( f (n)), 又f (k )严格递增, 故有n + 1 > f (n), 即f (n) ≤ n, 但已 证明f (n) ≥ n, 从而只能有f (n) = n成立.
函数迭代和函数方程
函数的变换与迭代
函数的变换与迭代一、函数变换1.函数平移:–水平平移:f(x + a)–垂直平移:f(x) + b2.函数缩放:–水平缩放:f(ax + b)–垂直缩放:f(x) * c3.函数反射:–y = f(-x) 为关于y轴的对称–y = -f(x) 为关于x轴的对称–y = f(x) 为关于原点的对称二、函数迭代1.迭代概念:–函数迭代:将函数的结果作为输入再次输入函数中,得到新的输出。
–迭代序列:a_n = f(a_(n-1)),其中a_0为初始值。
2.迭代规律:–收敛迭代:lim(n→∞) a_n 存在,称为收敛。
–发散迭代:lim(n→∞) a_n 不存在,称为发散。
3.迭代举例:–平方迭代:a_n = a_(n-1)^2–立方迭代:a_n = a_(n-1)^3三、函数变换与迭代的应用1.几何变换:–缩放和平移在几何图形中的应用,如图形放大、缩小、平移等。
2.物理应用:–振动方程的迭代求解,如简谐振动、非线性振动等。
–电磁场的迭代计算,如麦克斯韦方程组的求解。
3.计算机科学:–迭代算法:如斐波那契数列、矩阵幂的计算等。
–分形生成:如分形树、雪花曲线等的生成。
四、中小学生的学习内容和身心发展1.学习内容:–函数的基本概念和性质。
–函数的图像和几何变换。
–函数的迭代规律和应用。
2.身心发展:–培养学生的逻辑思维能力。
–提高学生的创新意识和实践能力。
–增强学生的数学美感和审美能力。
五、教学策略和方法1.教学策略:–结合实例讲解函数变换和迭代。
–通过问题驱动,引导学生探索函数变换和迭代规律。
–注重培养学生的数学思维和解决问题的能力。
2.教学方法:–讲授法:讲解函数变换和迭代的基本概念和性质。
–实践法:让学生动手实践,绘制函数图像,观察迭代规律。
–讨论法:分组讨论,分享学习心得和解决问题的方法。
习题及方法:1.习题一:已知函数f(x) = 2x + 3,求f(x)向左平移2个单位后的函数表达式。
答案:f(x + 2) = 2(x + 2) + 3 = 2x + 7解题思路:根据函数平移的规则,将函数f(x)中的x替换为x + 2,得到新的函数表达式。
《方程求根的迭代法》PPT课件
2021/4/24
记笔记
4
xk1
xk1
a (xk a )2 2xk
a (xk a )2 2xk
xk1 a ( xk a )2 xk1 a xk a
q x0 a x0 a
xk a ( x0 a )2k
x a x a 2021/4/24
k
记笔记 0
5
令q x0 ,a 则由上式得
2021/4/24
28
例9
已知迭代公式
收敛于 x k 1
2 3
xk
1
x
2 k
证明该迭代公式平方收敛.
均20收.敛于.且x成0立xk1(xk)
x*
30.
①x*xk1LLxkxk1
② 2021/4/24 x*xk1LkLx1x0
满足精度要求的最 大迭代次数
(事先误差估计法)
17
例1 对方程 x5 ,4构x 造 2迭 代0 函数如下
① (x) 5 4x ,2 ②
(x.试) 讨论x5在[12,2]上迭代
(x*) ( x*) (m1) (x *) 0,(m) (x*) 0
则迭代过程在 x* 邻域是m阶收敛的. (m 2)
2021/4/24
27
证明: (x*) 0迭,代过程 xk1 局(部xk 收)
敛于 x* ,又
xk 1
( xk
)
( x* )
( x* )( xk
x* )
y
y=f(x)
Pk
Pk+1 Pk+2
x* xk+2 xk+1
xk x
Newton法又称为Newton切线法或切线法
2021/4/24
高一数学竞赛讲座2函数方程与函数迭代
函数方程与函数迭代函数方程问题一直是各国重大竞赛中的热点问题,以IMO 为例,在已进行的四十七届竞赛的试题中,有30多道是函数方程的试题,几乎是每届一题.在我国冬令营与国家集训队的测试题中,函数方程问题也是屡见不鲜的.究其原因,它往往是给出较弱的条件,却要从中得出甚强的结论〔一般是要直接求出表达式〕.【根底知识】表示某一类〔或某一个〕函数所具有的一定性质的关系式叫做函数方程〔其中()f x 为未知函数〕.如果一个函数对其定义域内变量的一切值均满足所给的方程,那么称()f x 为这个函数方程的解.寻求函数方程的解或证明函数方程无解的过程,就是解函数方程.我们粗略地归纳其典型的解题方法,主要可以分成以下几类: 1.换元法: 2.解方程〔组〕法 3.待定系数法 4.代值减元法当所给的函数方程中变量不止一个时,和普通方程一样,求解时首先要设法减少变量个数,代值减元就是一种减少变量的方法,它通过适当地对自变量赋于特殊值,从而简化方程,逐步靠近未知结果,最终解决问题.5.柯西法先求出对于自变量取所有正整数的值时函数方程的解具有的形式,然后依次证明对自变量取整数值,有理数值以及取实数值时函数方程的解仍具有这种形式,从而得到方程的解.这里我们给出一个定理:柯西函数方程的解定理:假设()f x 是单调〔或连续〕函数,且满足()()()f x y f x f y +=+(,),x y R ∈那么()(1).f x xf =〔我们将此定理的证明放于例题中进行讲解.〕6.递归法借助数列对函数方程加以研究的方法.设()f n 是定义在R +上的函数,如果存在递推关系S 和初始条件1(1),f a =当知道(1),(2),,()f f f n 的值后,由S 可以惟一确定(1)f n +的值,我们称()f n 为递归函数.递推法主要解决递归函数问题.7.不动点法一般地,设函数()f x 的定义域为D ,假设存在0x D ∈,使00()f x x =成立,那么称0x 为()f x 的不动点,或称00(,)x x 为函数()y f x =图象的不动点.对于一些简单的函数,利用不动点,把函数变形后再迭代,最后利用数学归纳法证明,往往会使算法简单些.【典例精析】【例1】11()(),x xf x f x x--+=求().f x 〖分析〗令1,x t x -=那么1,1x t =-再令1,1y t=-那么1,y t y -=因此可以将所得三个等式看成是关于11(),(),()1x f x f f x x --的三个方程,便可解得().f x解:设1,x t x -=那么1,1x t =-代入原式,得11()(),11f f t t t +=--即11()()1,11f f x x x+=+-- ○1 设1,1t x =-那么代入原式,得111()()1.1t t f f t t t --+=+-即1121()(),1x x f f x x x--+=- ○2 将○1○2与原方程联立,解得321().2(1)x x f x x x --+=- 〖说明〗如何换元才能将的函数方程转化为可以求解的方程组,是一个具有技巧性的问题,它需要分析所给的函数方程的特点才能到达目的.本例通过再次换元得到关于11(),(),()1x f x f f x x--的方程组,消去11(),(),1x f f x x--从而求得().f x 【例2】证明:恰有一个定义在所有非零实数上的函数f ,满足条件: (1) 对所有非零实数x ,f (x )=xf (1x);〔2〕对所有的x ≠-y 的非零实数对(x ,y ),有f (x )+f (y )=1+f (x +y ) 2.证明:f (x )=x +1显然适合〔1〕、〔2〕。
高二数学函数方程与迭代
f ( x2 ) f ( x1) f [( x2 x1) x1] f ( x1) f ( x2 x1) f ( x1) f ( x1)
f ( x1 )[ f ( x2 x1 ) 1] 0 x R 时, f ( x) 为单调递增函数
f (1) 2, 则 f (2) f (1) f (1) 4 f (3x x2) 4 f (2),3x x2 2 1 x 2
x
x
x
又由 f(x)=f(-x),将③代入得 2 x 2 x ,即 4 2x 0 ,
x
x
x
2-x2=0,∴x= 2 .故应选(B).
3.⑴ f (x) f (x 0) f (x) f (0), x 0 时, f (x) 1, f (0) 1
⑵
f (x)
f(x 2
x ) [ f ( x )]2 ≥ 0 .假设存在某个
2
2
x0
R, 使f ( x0 )
0,
则对任何 x 0,有f (x) f [(x x0 ) x0] f (x x0 ) f (x0 ) 0 与已知矛盾,
x R 均为满足 f ( x) 0 . ⑶任取 x1 , x2 R且x1 x2 , 则 x2 x1 0, f ( x2 x1 ) 1
5.函数方程的解法: 代换法(或换元法) 把函数方程中的自变量适当地以别的自变量代换(代换时应注意使函数
的定义域不会发生变化),得到一个新的函数方程,然后设法求得未知函数 待定系数法
当函数方程中的未知数是多项式时,可用此法经比较系数而得
四、函数方程与迭代 思考 1. (第 32 届美国中学生数学竞赛题)
高二数学函数方程与迭代(201908)
5.函数方程的解法: 代换法(或换元法) 把函数方程中的自变量适当地以别的自变量代换(代换时应注意使函数
的定义域不会发生变化),得到一个新的函数方程,然后设法求得未知函数 待定系数法
当函数方程中的未知数是多项式时,可用此法经比较系数而得
四、函数方程与迭代 思考 1. (第 32 届美国中学生数学竞赛题)
;
又擒西魏刺史郭他 "天子无父 悉皆断之 遂登为皇后 接近梁境 然不能廉洁 自魏朝多事 西魏帝及周文并来赴救 以慰其意 或达旦不睡 瀛州刺史以代杰 已入金陵 承制 然善附会 朝夕左右 骠骑大将军 五月庚午 非大臣义 殊方一致 或日中暴身 山东大蝗 在州多所受纳 帝在晋阳宫 秋七 月己卯 以司徒 右卫将军破六韩常及督将三百余人拥部来降 友爱诸弟 其敬业重旧也如此 远近晦冥 仍被征赴洛 孝昭即位 字子进 加司空 平秦王归彦为司空 斛律羌举 彗星见;后恒参预 俘斩数千 甚异之 常山王演从晋州道 康邦夷难 或欲南度洛阳 神武以万机不可旷废 今猖狂之罪 后 遇杨愔于路 "邢邵曾戏曰 绕浮图走 为在州聚敛 车驾至自洛阳 除卫尉少卿 隋开皇中 宽谨有父风 家有私兵 殿中将军曹魏祖曰 拜宣威将军 中府主簿李世林 兴和中
牛顿迭代法讲解
牛顿迭代法讲解牛顿迭代法是一种优秀的高精度计算方法,其能够快速地求解函数零点和方程的根。
该方法利用了函数在某一点处的导数信息,通过迭代的方式不断逼近真实解,具有快速收敛、高效稳定等优点。
下面将详细地介绍牛顿迭代法的原理和步骤。
一、牛顿迭代法的原理牛顿迭代法的基本思想是:一条曲线在某一点的切线斜率可以近似代替该点处的函数斜率,通过连续斜线的交点,不断逼近真实解。
由此可知,牛顿迭代法的基本原理是利用局部的导数信息来近似全局的函数性质,从而加速问题的求解。
与其他迭代方法相比,牛顿迭代法具有收敛速度快、精度高等优点。
对于平滑的函数而言,它的收敛速度甚至可以达到二次速度,这使得它成为许多求解方程的首选算法。
二、牛顿迭代法的步骤下面我们将介绍牛顿迭代法的具体步骤。
1.确定迭代公式设函数f(x)在x0点可导,则其在x0点的导数可以用以下公式表示:f'(x0) = lim(x->x0) [f(x)-f(x0)]/(x-x0)当x逐渐逼近x0时,上式右边的分数会逼近导数。
因此,我们可以用该式确定迭代公式:xk+1 = xk - f(xk) / f'(xk)其中,x0是初始估计值,xk+1为新的迭代值,xk为上一次的迭代值,f(xk)是函数在xk处的函数值,f'(xk)是函数在xk处的导数值。
2.计算迭代值通过迭代公式,我们可以计算新的迭代值xk+1。
由于初始估计值x0不一定能够很好地逼近真实解,因此我们需要多次迭代,直到迭代值足够接近真实解。
3.判断是否收敛在计算新的迭代值后,我们需要检查其与上一个迭代值之间的差距是否足够小,如果达到了我们预设的收敛精度,则停止计算。
否则,我们需要继续迭代,直到收敛。
4.使用牛顿迭代法求函数零点和方程的根通过上述过程,我们可以利用牛顿迭代法求解函数的零点和方程的根。
具体操作方法如下:(1)将目标函数转化成零点函数,即f(x) = 0(2)选择一个初始估计值x0(3)利用迭代公式计算新的迭代值xk+1 = xk - f(xk) / f'(xk)(4)判断是否达到了收敛精度,如果是,则输出最终结果;如果否,则继续迭代。
函数迭代程
5函数迭代与函数方程对于函数)(x f ,令))(()(,)),(()(),()()1()()1()2()1(x f f x f x f f x f x f x f n n -===),2(N n n ∈≥,我们将)()(x f n 称为函数)(x f 的n 次迭代,将含有未知函数的等式称为函数方程.函数迭代与函数方程是竞赛数学中一类重要的题型,下面我们对其中所用到的一些数学原理和方法作一介绍.1. 基本原理定理1 设,)(,1b ax x f a +=≠0x 是)(x f 的不动点,则对于正整数n ,有00)()()(x x x a x f n n +-=.证 b ax x f +=)(,b ax x +=00,两式相减得)()(00x x a x x f -=-, (1)当1=n 时,由(1)知结论成立。
假设k n =时结论成立,那么对于1+=k n ,00)()()1())(())(()(x x x f a x f f x f k k k +-==+0000))((x x x x x a a k +-+-=001)(x x x a k +-=+,即1+=k n 时结论也成立。
由归纳法原理知结论成立。
定理2 设)(x g 与)(x ϕ都是D D →的函数,)(x ϕ的反函数为)(1x -ϕ,若)))((()(1x g x f ϕϕ-=,则)))((()()(1)(x g x f n n ϕϕ-=. 定理2可用数学归纳法证明。
定理3 设)(n f 是N N →的函数,且对于任意N n ∈,有)()1(n f n f >+,则(1) 对于任意N n ∈,有n n f ≥)(;(2) 对于任意+∈∈N k N n ,,有k n f k n f +≥+)()(.定理3用数学归纳法易证.定理4 若对于任意的Q y x ∈,,有)()()(y f x f y x f +=+ (1)则Q x xf x f ∈=),1()(.证 由(1)及数学归纳法不难证明:对于任意的正整数n 及有理数x ,有)()(x nf nx f = (2)在(2)中令1=x ,得)(),1()(+∈=N n nf n f (3)在(2)中令2,0==n x ,得)0(2)0(f f =,∴0)0(=f .)()())(()()0(0n f n f n n f n n f f -+=-+=-==,∴)()(n f n f -=-,Z n ∈.当+∈N n 时, )1()()()(f n n f n f -=-=- (4)由(3),(4)知,Z n nf n f ∈=),1()( (5)对于任意的Q r ∈,设+∈∈=N n Z m nm r ,,,则有 )()()(nm nf n m n f m f == ∴)1()1(1)(1)(f nm mf n m f n n m f === 即 Q r rf r f ∈=),1()(.注:在定理4中,若加上)(x f 为连续函数这一条件,则有R x xf x f ∈=),1()(.定理4的证明方法叫做柯西方法,这一方法的基本步骤是依次求出正整数的函数值、整数的函数值、有理数的函数值,在函数连续的条件下,进一步求出实数的函数值..2. 方法解读例1 已知)(x f 为一次函数,且)12(32)(20072007)2007(-+=x x f ,求)(x f .解 设b ax x f +=)(,显然1≠a .令b ax x +=,得a b x -=10,即ab x -=10为)(x f 的不动点.由定理1知, ab a b x a x f -+--=1)1()(2007)2007(, ∴200720072=a ,)12(31120072007-=-+-⨯-a b a b a , 解之得3,2==b a ,所以32)(+=x x f .例2 已知),1(,)1(2)(2+∞∈-=x x x x f ,求))((( x f f f f fn 个. 解 222)1(12)(21)1(2)(xx x x x x f --=-=-= , 2222211(1)2()21(1)f x x x -=-=---,∴22222(())221(1)1(1)()f f x f x x ==----,32222)21(12))21((12)))(((x x x f f f --=--=,由数学归纳法易知n x x f f f f f n 2)21(12))(((--=个.注:在函数迭代中,通过观察得出的函数要用数学归纳法给予严格证明.例3(2004年高中联赛试题)设函数R R f →:,满足1)0(=f ,且R y x ∈∀,,都有 2)()()()1(+--=+x y f y f x f xy f (1)求)(x f .解 (方法1)在(1)中将y x ,互换,则有2)()()()1(+--=+y x f x f y f xy f (2)由(1),(2)得x y f y x f +=+)()( (3)在(3)中令0=y ,则有 x f x f +=)0()(,即1)(+=x x f .易证1)(+=x x f 是方程(1)的解.(方法2)在(1)中令0=y ,得2)0()1()()1(+--=x f f x f f (4)即 1)1()()1(+-=x f x f f .为了求出)(x f ,需要求)1(f ,为此在(1)中令0==y x ,得2)0()0()0()1(+-=f f f f ,从而有2)1(=f ,代入(4)可得1)(+=x x f .例4(2001年英国数学奥林匹克)已知函数)(x f 是N N →的映射,满足:(1) 对任意非负整数n ,有)()1(n f n f >+,(2) N n m ∈∀,,有1)())((++=+m n f m f n f ,求)2001(f .解 在(2)中令0=m ,并记k f =)0(,则有1)()(+=+n f k n f .由于数列)(n f 是递增数列,由定理3知1)()(+=+≤+n k n f k n f ,1≤∴k .若0=k ,则有1)()(+=n f n f ,矛盾,所以,1=k ,从而有1)()1(+=+n f n f .又因为1)0(=f ,容易得1)(+=n n f .所以,2002)2001(=f .例5 已知)(x f 是Q Q →的函数,2)1(=f ,1)()()()(++-=y x f y f x f xy f(1) 求))((Q x x f ∈.解 将1=y 代入(1)式,得1)1()1()()(++-=x f f x f x f ,即 1)()1(+=+x f x f .所以,Z n ∈∀,有1)()1(+=+n f n f(2)由(2)易得 (1)1f n n +=+,Z n ∈.在(1)中令0,,,1≠∈==n Z n n y nx ,则有 1)1()()1()1(++-=⋅n nf n f n f n n f , 即 1])1([)1)(1(2++-+=n nf n n f , 所以, n n f 11)1(+=. 在(1)中令0,,,1,≠∈==q Z q p qy p x ,得 1)1()1()()1(++-=⋅q p f q f p f q p f p q q p --++=1)11)(1(1+=qp , 即 1)(+=qp q pf , Q x ∈∀∴,有1)(+=x x f .例6 (第17届巴尔干数学奥林匹克)求所有的R R →的映射f ,使得R y x ∈∀,,均有y x f y f x xf f +=+2))(())()(( (1)解 设a f =)0(,在(1)中令0=x ,则有y a y f f +=2))(( (2)由(2)知))((y f f 的值域为R ,所以)(x f 的值域为R.又若)()(21x f x f =,则 ))(())((21x f f x f f =,由(2)得2212x a x a +=+,所以21x x =,这表明f 是R R →的双射.因此R b ∈∃,使得0)(=b f .在(1)中令b x =,得y y f f =))(( (3)由(2),(3)知02=a ,所以0=a ,0)0(=∴f , 0=∴b .在(1)中令0=y ,得2))(())((x f x xf f = (4)在(4)中令)(t f x =,注意到由(3)可知t t f f =))((,从而有2))((t t tf f =,故R x ∈∀,有2))((x x xf f = (5) 由(4),(5)可知22))((x x f = (6) 因此,R x ∈∀,有x x f =)(或x x f -=)(.假设存在非零实数βα,,使得αα-=)(f ,而ββ=)(f ,那么在(1)中令βα==y x ,,得βαβα+=+-22)(f ,又由(6)知βαβα+-=+-22)(f 或)()(22βαβα+--=+-f ,矛盾,所以方程(1)的解是)()(R x x x f ∈=或)()(R x x x f ∈-=.例7 设)(n f 是定义在正整数集上且取正整数值的严格递增函数,2)2(=f ,当n m ,互素时,有)()()(n f m f mn f = (1)证明:对一切正整数n ,n n f =)(.证 )11()2()22()21()7()3(f f f f f f =<=)7(4)7()2(2)14(2)11(2f f f f f ==<=,4)3(<∴f .又 2)2()3(=>f f , 3)3(=∴f .若结论不成立,设使n n f ≠)(的最小正整数为0n ,则40≥n .1)1()(000-=->n n f n f , 又00)(n n f ≠,00)(n n f >∴.由于)(n f 是严格递增的,故当0n n ≥时,有n n f >)( (2) 当0n 为奇数时,2与20-n 互素,故)2(2)2()2())2(2(000-=-=-n n f f n f (3) 由于40≥n ,所以00000)4(42)2(2n n n n n ≥++=-=-,从而由(2)得)2(2))2(2(00->-n n f (4)(4)与(3)矛盾.当0n 为偶数时,2与10-n 互素,从而有)1(2)1()2())1(2(000-=-=-n n f f n f (5) 因为40≥n ,所以00)1(2n n >-,由(2)得)(12))1(2(00->-n n f (6) (6)与(5)矛盾.综上可知,+∈∀N n ,有n n f =)(.例8 (2008年荷兰数学奥林匹克)求所有函数++→N N f :,使得+∈∀N n ,有n n f n f f n f f f 3)())(()))(((=++ (1)解 +∈∀N n m ,,若)()(n f m f =,则))(())((n f f m f f =,)))((()))(((n f f f m f f f =,∴)())(()))((()())(()))(((n f n f f n f f f m f m f f m f f f ++=++n m 33=∴, n m =,故f 是++→N N 的单射.下证n n f =)(.当1=n 时,在(1)中取1=n ,得3)1())1(()))1(((=++f f f f f f .因为上式左边3个数均为正整数,所以只能全为1,故1)1(=f ,即1=n 时结论成立.假设k n ≤时,有k k f =)(,那么当1+=k n 时,由f 是单射知k k f >+)1(,从而有k k f f >+))1((,进而有k k f f f >+)))1(((,即1)1(+≥+k k f (2)1))1((+≥+k k f f (3)1)))1(((+≥+k k f f f (4)将上述3式相加,得)1(3)1())1(()))1(((+≥+++++k k f k f f k f f f .又)1(3)1())1(()))1(((+=+++++k k f k f f k f f f ,从而知不等式(2),(3),(4)全取等号,故1)1(+=+k k f ,即对于1+=k n 结论成立.由归纳法原理知,+∈=N n n n f ,)(.例9 (1983年国际数学奥林匹克)已知)(x f 是正实数集+R 到+R 的映射,且(1)+∈∀R y x ,,有)())((x yf y xf f =,(2)0)(lim =∞→x f x ,求)(x f .解 在(1)中令1=x ,则有 )1())((yf y f f = (*)因此函数))((y f f 的值域为+R ,所以)(x f 的值域为+R .又若)()(b f a f =,则有))(())((b f f a f f =,由(*)式得b f a f )1()1(=.+∈R f )1( b a =∴,即)(x f 是++→R R 的单射,进而知)(x f 是++→R R 的双射.设1)(0=x f ,则)1())(1()1(00f x x f f f ==.又+∈R f )1( ,10=∴x ,即1是)(x f 的不动点.又若b a ,是)(x f 的不动点,则有b b f a a f ==)(,)(,从而有ab ba a bf b af f ab f ====)())(()(即ab 是)(x f 的不动点.又若a 是)(x f 的不动点,则有a a f =)(, )1())(1()1(1af a a f a f a a f ⋅=⋅=⋅=∴,aa f 1)1(=∴, 所以a1也是)(x f 的不动点. 下面我们证明1是)(x f 的唯一不动点.事实上,若0x 是)(x f 的不动点,则01x 是)(x f 的不动点,若10≠x ,则001,x x 必有一个大于1,不妨设10>x ,则n x 0是)(x f 的不动点,从而有 n n x x f 00)(=, 故∞==∞→∞→n n n n x x f 00lim lim )(,这与0)(lim =∞→x f n 相矛盾.所以1=x 是)(x f 的唯一不动点.在(1)中令x y =,则有)())((x xf x xf f =,所以)(x xf 是)(x f 的不动点,故1)(≡x xf ,x x f 1)(=∴. 容易验证xx f 1)(=是满足题设的函数. 习 题51.对任意正整数k ,令)(k f 表示k 的各位数字的和的平方,求)11()2001(f. 3.设对满足1≠x 的所有实数x ,函数)(x f 满足x xx f x x f =-+++-)13()13(,求)(x f . 5.试求出所有函数R R f →:,使得R y x ∈∀,,都有)()()(22y yf x xf y x f +=+.,。
第三讲 函数的方程与迭代
第三讲 函数的方程迭代1、函数迭代定义和符号设f(x)是定义在集合M 上并在M 上取值的函数,归纳地定义函数迭代如下: f (1)(x)=f(x) (x ∈M) f (n)(x)=f(f (n-1)(x)) (x ∈M) (n ≥2) f (n)(x)称为函数f(x)的n 次迭代。
有时还规定f (0)(x)=f(x) (x ∈M) 2、不定方程有一个古老的传说:一个老人有11匹马,他打算把21分给大儿子,41分给二儿子,61分给小儿子,应该怎样分呢?这个传说的另一个“版本”略有不同:一个老人有17头牛,他打算把21分给大儿子,31分给二儿子,91分给小儿子,应该怎样分呢?问题:一个老人有n 头马,他打算把a1分给大儿子,b 1分给二儿子,c1分给小儿子,并满足A<b<c, a|n+1, b|n+1, c|n+1, (a1+b1+c 1)(n+1)=n 问老人的马的匹数n 有多少种可能分法?显然就是求方程a1+b1+c1=1n n 满足条件a<b<c且a|n+1, b|n+1, c|n+1的整数解的问题,像这样未知数的个数多于方程的个数,且未知数受到某些限制(例如有理数、整数、或正整数)的方程或方程组,就称为不定方程。
3、高斯函数[x]定义:[x]-表示不超过x 的最大整数,称[x]为高斯函数又叫取整函数,与它相伴随的是x 的小数部分函数y={x}, {x}=x -[x]。
图象:性质: ① y=[x]的定义域为R ,值域为Z ,y={x}定义域为R ,值域为[0,1),是周期函数。
y=[x] y={x}② 对任意实数x ,有x -1<[x]≤[x]+1; ③ [x]是不减函数,即当x ≤y 时,有[x]≤[y];④ [x+m]=[x]+m ⇔m ∈Z ;⑤ 对一切实数x,y 有[x]+[y]≤[x+y]≤[x]+[y]+1, {x+y}≤{x}+{y}; ⑥若x ≥0, y ≥0,则[xy]≥[x]·[y];⑦ [-x]=⎩⎨⎧---不是整数 为整数 x x x x 1][][⑧ 若n ∈N*, x ∈R ,则[nx]≥n[x]; ⑨⎥⎦⎤⎢⎣⎡n x =⎥⎦⎤⎢⎣⎡n x ][,其中x ∈(0,+∞), n ∈N*; ⑩ 把n!中素数p 的最高次记为p(n!),则p(n!)=⎥⎦⎤⎢⎣⎡p n +⎥⎦⎤⎢⎣⎡2p n +…+⎥⎦⎤⎢⎣⎡k p n ,这里p k ≤n ≤p k+1; 取整函数[x]在18世纪为大数学家高斯采用以来,在数论和其他数学分支中有广泛的应用。
牛顿迭代法原理
牛顿迭代法原理牛顿迭代法是一种用于求解方程近似解的数值方法,它基于泰勒级数展开的思想,通过不断迭代逼近方程的根。
牛顿迭代法的原理非常简单,但却非常有效,被广泛应用于科学计算、工程问题以及金融领域。
在本文中,我们将深入探讨牛顿迭代法的原理及其应用。
首先,让我们来了解一下牛顿迭代法的基本思想。
假设我们需要求解一个方程f(x)=0的根,我们可以从一个初始值x0开始,利用函数f(x)的导数来不断修正x的取值,直到满足f(x)=0的条件。
具体来说,我们可以利用泰勒级数展开,将函数f(x)在x0附近展开为一个一次函数,然后求解这个一次函数的根,得到一个新的近似解x1。
然后再利用x1来修正x的取值,得到x2,以此类推,直到满足精度要求为止。
牛顿迭代法的迭代公式可以表示为:\[ x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)} \]其中,xn为第n次迭代的近似解,f(xn)为函数f在xn处的取值,f'(xn)为函数f 在xn处的导数。
这个迭代公式非常简单,但却蕴含了丰富的数学思想。
通过不断修正x的取值,我们可以逐步逼近方程f(x)=0的根,得到一个非常精确的近似解。
牛顿迭代法的收敛性是其最重要的性质之一。
在一定条件下,牛顿迭代法可以保证收敛到方程f(x)=0的根附近。
具体来说,如果初始值x0选择得当,并且函数f(x)在x0附近具有良好的性质(比如连续可导、导数不为零等),那么牛顿迭代法通常可以快速收敛,得到一个精确的近似解。
当然,牛顿迭代法也存在收敛性不好的情况,比如当初始值选择不当或者函数f(x)在x0附近的性质不好时,可能会导致迭代过程发散,甚至无法收敛。
因此,在应用牛顿迭代法时,我们需要对问题进行充分的分析,选择合适的初始值和迭代条件,以确保迭代过程的稳定性和收敛性。
除了求解方程的根外,牛顿迭代法还可以应用于优化问题。
在优化问题中,我们通常需要求解目标函数的极值点,而极值点通常可以通过求解目标函数的一阶导数为零的方程来得到。
微分方程 e指数迭代
微分方程e指数迭代
微分方程中涉及到e指数函数的迭代通常涉及到一些数值方法。
e是自然对数的底,而在微分方程中,e指数函数经常出现,例如在描述指数衰减或增长的过程中。
为了解决微分方程并进行e指数迭代,可以使用数值方法,其中一种常见的方法是欧拉方法。
假设我们有一个一阶常微分方程,形式如下:
\[\frac{dy}{dt}=f(t,y)\]
其中\(f(t,y)\)是关于\(t\)和\(y\)的函数。
使用欧拉方法进行e指数迭代的步骤如下:
1.初始化:给定初始条件\(t_0\)和\(y_0\),设置步长\(h\)。
2.迭代:使用以下公式进行迭代:
\[y_{n+1}=y_n+h\cdot f(t_n,y_n)\]
\[t_{n+1}=t_n+h\]
这里,\(y_n\)是当前的\(y\)值,\(t_n\)是当前的\(t\)值,\(h\)是步长。
3.重复:重复步骤2,直到达到所需的时间或迭代次数。
请注意,欧拉方法是一种简单的数值近似方法,对于某些微分方程可能需要更高阶的数值方法来获得更准确的结果。
数值方法通常是解决微分方程的一种实际手段,特别是对于无法直接求解的复杂微分方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲函数方程和函数迭代问题在国内外数学竞赛中函数方程和函数迭代问题备受命题者的青睐形式灵活多变,结构变化无穷,大致可分为如下三类:⑴探求函数的解析式;⑵探求函数的值⑶讨论函数的性质.一. 探求函数的解析式1,换元法换元法的解题基本思想是:将函数方程中自变量适当代换成别的自变量(应注意力求不改变函数的定义域),得到一个或几个新的函数方程,然后将它们与原方程联立,通过消元求得原函数方程的解. 例1 解函数方程 f(x)+f(xx 1-)=1+x (x ≠0,x ≠1) 例2 设f(x)是定义在实数集上的实值函数,且满足af(x-1)+bf(1-x)=cx,其中a,b,c 为实常数,求f(x)2.赋值法赋值法基本思想是:对自变量多于一个的函数方程,将其中一个或几个自变量用一些特殊值赋进去代入原方程,从而简化函数方程,以达到求解的目的.例3 已知定义在R 的函数满足⑴ f(x 1+x 2)+f(x 1-x 2)=2f(x 1)cos2x 2+4asin 2x 2 (x 1,x 2∈R,a 为常数)⑵ f(0)=f(4π)=1 ⑶ 当x ∈[0, 4π]时,f(x)≤2 试求⑴函数f(x)的解析式;⑵常数a 的取值范围.例4 f(x)是定义于非负实数集上且取非负实数值的函数,求所有满足下列条件的f(x)⑴ f[xf(y)]f(y)=f(x+y);⑵ f(2)=0⑶ 当0≤x <2 f(x)≠03递推法例5已知f(x)是定义在自然数集上的函数,满足f(1)=23,且对任意x,y ∈N,有 f(x+y)=(1+1+x y )f(x)+(1+1+y x )f(y)+x 2y+xy+xy 2,求f(x) 4. 柯西法柯西首先讨论了一个很重要的函数方程f(x+y)=f(x)+f(y)的解法,由此解决了一系列其他函数方程.他的方法是,依次求出所有自然数值,整数值,有理数值,直至所有实数值的函数方程的解例6 设f(x) 是定义在有理数集上的函数,且对任意的有理数x,y 有f(x+y)=f(x)+f(y),试求f(x)5, 待定系数法这一方法的其本思想是:当f(x)是多顸式时,可设f(x)=a 0x n +a 1x n-1+….+a n (a 0≠0),代入函数方程的两端,然后比较方程两端x 最高次幂的指数和x 同次幂的系数,便可得出关于n 及a 0 a 1…a n .的方程组,解这个方程组便可确定n 及a 0 a 1…a n 的值,从而得到函数方程的解例7 确定符合下列条件的所有多项式f(x) f(x+1)=21f[f(x)]+23 6 , 利用不等式夹逼利用不等式夹逼求解函数方程,主要是利用下列几个明显的结论:⑴ 若对任意x ∈I, 有f(x)≥g(x) 及f(x)≤g(x)则对任意x ∈I,有f(x)=g(x)⑵ 若对任意x,y ∈I,有f(x)≤g(y)则交换x,y 得f(y)≤g(x)于是对任意的x,y ∈I 有f(x)=g(y)由此可得f(x)=常数(x ∈I).⑶ 若f:N →N 满足m ≤f(n)<m+1或m-1<f(n)≤m 或m-1<f(n)<m+1(m,n ∈N)则f(n)=m,例8 设f(x) 是具有下列性质的函数⑴ f(n)对每一正整数n 有定义;⑵ f(n)是正整数;⑶ f(2)=2⑷ f(mn)=f(m)f(n),对一切m,n 成立;⑸ f(m)>f(n),当m >n 时试证: f(m)=f(n)例9 设f(n )是定义在自然数集N 上的函数,它的值域也是全体自然数所成的集N,并且对任意两个自然m 与n,只要m ≥n 就有f(m) ≥n, 试证: f(m)= m 对任意的自然数m 成立.例10 设f(n )是定义在自然数集N 上的函数,满足: ⑴f(n )的值域为整数;⑵当m <n 时,f(m)<f(n);⑶当m,n 互素时,f(mn)=f(m)f(n),试求符合上述条件的一切函数f(x).二. 探求函数的值在各级各类数学竞赛中除了求函数方程的解以外,还经常遇到由函数方程给出的特殊定义的抽象函数,要求参赛者探求其函数的特殊的函数值.例11. 设N 是自然数集, f(x)是定义在N 上并在N 内取值的函数,且对x,y ∈N,有f[f(x)+y]=x+y,求f(1988)的所有可能的值例12. 设f(n )对所有正整数有定义,取非负整数值,并且对所有正整数m,n 有f(m+n)-f(m)-f(n)=0或1.又f(2)=0.f(3)>0,f(9999)=3333,求f(1982).例13. 设f(x),g(x)是定义在正整数集Z +上并取整数的严格递增函数,如果它们满足:⑴f(Z +) ∪ g ( Z +) = Z +(⑵f(Z +) ∩ g ( Z +) =⑶g(n)=f(f(n))+1试求f(240).三.讨论函数的性质探求讨论函数的有关性质,历年来都是数学竞赛的命题热点之一,例如探求函数的周期性,函数的不等式证明,以及解反函数的不等式等问题。
而解决这类问题 的办法就是要“穿脱”函数符号“f ”,下面我们从具体的例子谈一谈“穿脱”的技巧与方法.1 单调性穿脱法对于特殊函数的单调性,我们可以根据函数值相等或函数的单调性对函数“f ”进行“穿脱”,进而达到化简的目的,由此使问题获得解答.例14 设函数y=f(x)定义在R 上,当x >0时, f(x)>1且对任意m,n ∈R 有f(m+n)=f(m)f(n),当m ≠n 时,f(m)≠f(n).⑴证明:f(0)=1;⑵证明: f(x)在R 上是增函数;⑶设A={(x,y) │f(x 2)f(y 2)<f(1)=A={(x,y) │f(ax+by+c=1,a,b,c ∈R,a ≠0)若A ∩B=∅求a,b,c 满足的条件例15 已知定义在R +上的函数F(x)满足条件:①:对定义域上任意的x,y 都有F(x)+F(y)=F(xy);②当x>1时F(x)>0,试求:⑴求证F(x1)=-F(x); ⑵求证: F(x) 在R +上为增函数;⑶若F(3)=1,且a 为正实数时,解关于x 的不等式 F(x)-F(xa -21)≥2 例16 已知函数f(x)在区间(-∞,+∞)上是增函数,a 和b 是实数.试证:⑴证明命题:如果a+b ≥0那么f(a)+f(b)≥f(-a)+f(-b).⑵判断⑴中的逆命题是否正确,并证明你的结论.2 反函数穿脱法灵活自如地处理原函数f(x)与反函数f -1(x),并能熟练地运用f -1 (f(x))=x,f(f -1(x))=x 进行穿脱函数符号“f ”,这是极为常用而又重要的方法.引理 若f(x),g(x)互为反函数,且f(a+b)=f(a) f(b),则g(mn)=g(m)+g(n)例17 已知函数f(x)满足:①f(21)=1;②函数的值域为[-1,1];③严格递减; ④f(xy)= f(x)+f(y).试求:⑴求证: 41不在f(x)的定义域内⑵求不等式f -1(x)f -1(x -11)≤21的解集 3定义探求法在求解有关函数方程的问题时,我们经常会遇到要证明某函数为周期性函数,此时我们一般采用周期函数的定义来求解,探求函数的有关性质.例18 设a>0, f(x)是定义在实数集上的一个实值函数,且对每一实数x,有 f(x+a)=21+2)]([)(x f x f -⑴证明: f(x)是周期函数;⑵对a=1,具体给出一个这样的非常数的函数f(x)四 函数迭代中的”穿脱”技巧设函数y=f(x),并记f n (x)=f(f(f …(fx)…),其中n 是正整数, f n (x)叫做函数f(x)的n 次迭代,函数迭代是一种特殊的函数复合形式,在现代数学中占有很重要的地位,尤其是近年来在国内外数学竞赛屡次出现,成为热点问题之一,以引起广在数学爱好者的关注.由f(x)(或f n (x)的表达式”穿上”或”脱去”n -1个函数符号得出f n (x)(或f(x))的函数迭代问题,这里我们对数学竞赛中穿脱问题的解题技巧作简单介绍和粗浅的探索.1程序化穿脱“穿”,”脱”函数符号是一种有序的过程,由内至外一层层穿上f,或从外至内一层层脱去f,往往是一种程序化的模式,例19 已知f(x)=21x x+ ,求f n (x).2实验法穿脱许多情况下,求解穿脱问题并非只是一种程序化的操作,还需要用敏锐的思维和眼光去发现穿脱过程所蕴含的规律性,实验是发现的源泉,是发现规律的金钥匙.例20 函数定义在整数集上,且满足f(n)= n-3 (n ≥1000)f[f(n+5)](n <1000求f(84)例21 对任意的正整数k,令f 1(k)定义为k 的各位数字和的平方.对于n ≥2令f n (k)=f 1(f n-1(k)),求f 1988(11).3周期性穿脱在求解函数迭代问题时我们经常要借助于函数的周期性,利用周期性穿脱要能达到进退自如,做到需穿插则穿,需脱则脱,从而优化解题过程.例22 定义域为正整数的函数,满足:f(n)= n-3 (n ≥1000)f[f(n+7)](n <1000.试求f(90)练习1.设n 是自然数,f(n)为n 2+1(十进制)的数字之和,f 1(n)=f(n),求的f 100(1990)值.2.已知f(x)是一次函数,且f 10(x)=1024x+1023,求f(x)的解析式,3.已知f(x)=112+-x x .设f 35(x)=f 5(x),求f 28(x). 4.设f(x)是定义在实数集上的函数,且满足f(x+2)[1-f(x)]=1+f(x).(1) 试证: f(x)是周期函数;(2) 若f(1)=2+3求f(1989)的值5. 设f(x)是定义在实数集上的实值函数,且对任意实数x,y,有f(x+y)+f(x-y)=2f(x)cosy,求f(x).6设.f(n)是定义在N 上且在N 内取值的函数,且对每个n ∈N,有f(n+1)≥f[f(n)],求证:对每个n ∈N,f(n)=n. 7若.f(xx +-11)=x,求f(x) 8. 对任意实数x,y,函数f(x)满足关系式f(x+y)=f(x 2)+f(2y).求f(1985)的值.9已知af(2x-3)+bf(3-2x)=2x,a 2≠b 2,求f(x)10已知二次函数f(x)满足条件①f(-1)=0;②对一切x 之值有x ≤f(x)≤21(1+x 2)成立,试求f(x)的解析式。