小学数学《图形的相似》课件
合集下载
人教版数学《图形的相似》

人教版数学《图形的相似》(PPT优秀 课件)
检测反馈
1.下列四个命题:①所有的直角三角形都相
似;②所有的等腰三角形都相似;③所有的
正方形都相似;④所有的菱形都相似.其中
正确的有 ( D ) A.2个 B.3个 C.4个 D.1个
解析:所有的正方形的形状相同,所以③正确;直 角三角形、等腰三角形、菱形的形状和内角有关, 角度不同,图形的形状就不同,所以所有的直角 三角形、所有的等腰三角形、所有的菱形不一定
人教版数学《图形的相似》(PPT优秀 课件)
人教版数学《图形的相似》(PPT优秀 课件)
认识相似图形
问题思考
【思考1】 以上展示的图片之间有什么特点?它 们的形状和大小有怎样的关系?
它们形状相同、大小不等.
形状相同的图形叫做相似图形.
【思考2】全等形一定是相似图形吗?相似图形一 定全等吗?它们之间有什么关系?
全等图形是相似图形的一种特殊情况.全等图形一 定相似,相似图形不一定全等.
【思考3】 你能举出现实生活中一些相似图形的 例子吗?
人教版数学《图形的相似》(PPT优秀 课件)
人教版数学《图形的相似》(PPT优秀 课件)
相似图形的特征
观察下列每组图形,是不是相似图形?
【思考】
【结论】相似图形
(1)两个相似的平面图形之间有什么关系? 的特征是:形状相同.
得到的.
人教版数学《图形的相似》(PPT优秀 课件)
人教版数学《图形的相似》(PPT优秀 课件)
如图所示的是一个女孩从平面镜和哈哈 镜里看到的自己的形象,这些镜中的形象相似吗?
【思考】 (1)在平面镜中的像与
物体的形状 相同 , 大小 相等 ,则从平面 镜里看到的自己的形象与 女孩 是 相似图形(
《用相似三角形测量高度》图形的相似PPT课件2教学课件

利用平方根的定义,将方程 转化为两个一元一次方程;
解一元一次方程,得出方程 的根.
(1)(x-3)2=25;(2)(2y-3)2=16.
解:(1)x-3=±5,于是x1=8,72 x2=-2.
1 2
(2)2y-3=±4,于是y1= ,y2=- .
知2-讲
(来自《点拨》)
总结
知2-讲
解形如(mx+n)²=p(p≥0,m≠0)的方程时,先 将方程利用平方根性质降次,转化为两个一元一 次方程,再求解.
用相似三角形测量高度
思 考 一 下
• 请同学们回忆判定两三角形相似的条件有 哪些?
想 一 想
同学们,怎样利用相似三 角形的有关知识测量旗杆 (或路灯,或树,或烟囱)的高 度?
方法1:利用阳光下的影子
C
A
EB
D
∵太阳的光线是平行的,
∴AE∥CB .
∴∠AEB=∠CBD .
C
∵人与旗杆是垂直于地面的,
一盗窃犯于夜深人静之时潜入某单位作案,
该单位的自动摄像系统摄下了他作案的全过 程.请你为警方设计一个方案,估计该盗窃犯 的身高.
第二章 一元二次方程
用配方法求解一元二次方程
第1课时
1 课堂讲解 形如x²=p(p≥0)型方程的解法
形如(mx+n)²=p(p≥0)型方程的解法
2 课时流程
逐点 导讲练
A.2x+3=0
C.
2 x+1
=1
B.x2-1=0 D.x2+x+1=0
(来自《典中点》)
知2-导
知识点 2 形如(mx+n)²=p(p≥0)型方程的解法
探究 对照上面解方程(Ⅰ)的过程,你认为应怎样解
解一元一次方程,得出方程 的根.
(1)(x-3)2=25;(2)(2y-3)2=16.
解:(1)x-3=±5,于是x1=8,72 x2=-2.
1 2
(2)2y-3=±4,于是y1= ,y2=- .
知2-讲
(来自《点拨》)
总结
知2-讲
解形如(mx+n)²=p(p≥0,m≠0)的方程时,先 将方程利用平方根性质降次,转化为两个一元一 次方程,再求解.
用相似三角形测量高度
思 考 一 下
• 请同学们回忆判定两三角形相似的条件有 哪些?
想 一 想
同学们,怎样利用相似三 角形的有关知识测量旗杆 (或路灯,或树,或烟囱)的高 度?
方法1:利用阳光下的影子
C
A
EB
D
∵太阳的光线是平行的,
∴AE∥CB .
∴∠AEB=∠CBD .
C
∵人与旗杆是垂直于地面的,
一盗窃犯于夜深人静之时潜入某单位作案,
该单位的自动摄像系统摄下了他作案的全过 程.请你为警方设计一个方案,估计该盗窃犯 的身高.
第二章 一元二次方程
用配方法求解一元二次方程
第1课时
1 课堂讲解 形如x²=p(p≥0)型方程的解法
形如(mx+n)²=p(p≥0)型方程的解法
2 课时流程
逐点 导讲练
A.2x+3=0
C.
2 x+1
=1
B.x2-1=0 D.x2+x+1=0
(来自《典中点》)
知2-导
知识点 2 形如(mx+n)²=p(p≥0)型方程的解法
探究 对照上面解方程(Ⅰ)的过程,你认为应怎样解
《图形的相似》相似PPT优质课件

《图形的相似》相似PPT优质课件
人教版九年级数学下册《图形的相似》相似PPT优质课件,共37页。
学习目标
1.了解相似图形和相似比的概念.
2.理解相似多边形的定义.
3.能根据多边形相似进行相关的计算.
探究新知
相似图形的定义
指能够完全重合的两个图形,即它们的形状和大小完全相同.
相似图形的关系
两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.
相似多边形的定义和相似比的概念
下图是两个等边三角形,它们相似吗?它们的对应角、对应边分别有什么关系?
两个等边三角形相似,它们的对应角相等,对应边成比例.
下图是两个正六边形,它们相似吗?它们的对应角、对应边分别有什么关系?
两个正六边形相似,它们的对应角相等,对应边成比例.
两个边数相等的正多边形相似,且对应角相等、对应边成比例.
归纳:
相似多边形的定义:
各角分别相等、各边成比例的两个多边形叫做相似多边形.
相似多边形的特征:
相似多边形的对应角相等,对应边成比例.
相似比:
相似多边形的对应边的比叫做相似比.
课堂小结
形状相同的图形叫做相似图形
相似图形的大小不一定相同
对应角相等,对应边成比例
相似多边形对应边的比叫做相似比
... ... ...
关键词:图形的相似PPT课件免费下载,相似PPT下载,.PPTX格式;。
相似图形PPT课件

习题链接
温馨提示:点击 进入讲评
1A 2 凝固 3 熔化;凝固
4C
5B
答案呈现
6 非晶体 7D 8C 9 10
夯实基础·逐点练
9 【中考•连云港】质量相同的0 ℃的冰比0 ℃的水冷却 效果好,这是因为冰___熔__化___(填物态变化名称)时吸 收热量,此过程中冰的温度保__持__不__变__(填“升高”“降 低”或“保持不变”).为几种物质在1标准大气压 下的熔点和沸点,下列说法中正确的是( )
物质 铁 水银 酒精 钨
熔点/℃ 1 535 -38.8 -117 3 410
沸点/℃ 2 750 357 78 5 927
夯实基础·逐点练
11 下列现象中不属于熔化现象的是( B )
夯实基础·逐点练
1 【淮安洪泽区期中】中国传统文化博大精深,传统民间艺
人会制作一种“糖画”,先把糖加热到流体状态,用它画 成各种小动物图案,再慢慢晾干变硬,送给小朋友.关于 制作“糖画”的全过程,下列表述正确的是( A ) A.糖的物态变化是先熔化后凝固 B.糖的温度一直在增加 C.糖的物态变化是先凝固后熔化 D.晾干变硬是汽化过程
B. 将一个图案放大过程中原有图案和放大图案
C. 某人的侧身照片和正面照片 D. 大小不同的两张同版本的中国地图
解题秘方:紧扣“相似图形的定义”解答.
解:用“排除法”: A , B , D 都符合相似图形的定 义,因此 A , B ,D 都是相似图形 . 所以选 C.
感悟新知
归纳
知1-讲
1.“形状相同”是判定相似图形的唯一条件. 2. 两个图形相似是指它们的形状相同,与它们的位置、
∵ AD ∥ BC ,∠ C =60 °,
∴∠ D =180 °➖ ∠ C =120 ° . ∴∠ D ′ =120 °.
【数学课件】图形的相似

A
D
E
解:∵ AE2=AD· AB,得AE∶AD= AB∶AE ∵∠A=∠A ∴△AED∽△ABE
B
C ∴∠AED=∠ABE∵∠ABE=∠BCE
∴ ∠AED=∠BCE
∴DE∥BC ∴∠DEB=∠EBC ∵∠ABE=∠BCE ∴ △EBC∽△DEB
3. 如图6—5,4×4的正方形方格中,△ABC的顶点A、B、 C在单位正方形的顶点上.请在图中画一个△A1B1C1, 使△A1B1C1∽△ABC(相似比不为1),且点A1、B1、 C1都在单位正方形的顶点上. C2
Q
P A C
2.如图,在⊿ABD和⊿ABC中, ∠C=∠D=90°,BD与AC交于 点E,EF⊥AB与F,求证: AC· AE+BD· BE=AB2 .
D E F C
A
B
Байду номын сангаас
本节课主要是复习相似三角形的性质
判定及其运用。在解题中要熟悉基本图 形。并能从条件和结论两方面同时考虑问 题。灵活应用。
1、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之毁灭。——卢梭 2、教育人就是要形成人的性格。——欧文 3、自我教育需要有非常重要而强有力的促进因素——自尊心、自我尊重感、上进心。——苏霍姆林斯基 4、追求理想是一个人进行自我教育的最初的动力,而没有自我教育就不能想象会有完美的精神生活。我认为,教会学生自己教育自己,这是一种 最高级的技巧和艺术。——苏霍姆林斯基 5、没有时间教育儿子——就意味着没有时间做人。——(前苏联)苏霍姆林斯基 6、教育不是注满一桶水,而且点燃一把火。——叶芝 7、教育技巧的全部奥秘也就在于如何爱护儿童。——苏霍姆林斯基 8、教育的根是苦的,但其果实是甜的。——亚里士多德 9、教育的目的,是替年轻人的终生自修作准备。——R.M.H. 10、教育的目的在于能让青年人毕生进行自我教育。——哈钦斯 11、教育的实质正是在于克服自己身上的动物本能和发展人所特有的全部本性。——(前苏联)苏霍姆林斯基 12、教育的唯一工作与全部工作可以总结在这一概念之中——道德。——赫尔巴特 13、教育儿童通过周围世界的美,人的关系的美而看到的精神的高尚、善良和诚实,并在此基础上在自己身上确立美的品质。——苏霍姆林斯基 14、教育不在于使人知其所未知,而在于按其所未行而行。——园斯金 15、教育工作中的百分之一的废品,就会使国家遭受严重的损失。——马卡连柯 16、教育技巧的全部诀窍就在于抓住儿童的这种上进心,这种道德上的自勉。要是儿童自己不求上进,不知自勉,任何教育者就都不能在他的身 上培养出好的品质。可是只有在集体和教师首先看到儿童优点的那些地方,儿童才会产生上进心。——苏霍姆林斯基 17、教育能开拓人的智力。——贺拉斯 18、作为一个父亲,最大的乐趣就在于:在其有生之年,能够根据自己走过的路来启发教育子女。——蒙田 19、教育上的水是什么就是情,就是爱。教育没有了情爱,就成了无水的池,任你四方形也罢、圆形也罢,总逃不出一个空虚。班主任广博的爱 心就是流淌在班级之池中的水,时刻滋润着学生的心田。——夏丐尊 20、教育不能创造什么,但它能启发儿童创造力以从事于创造工作。——陶行知
D
E
解:∵ AE2=AD· AB,得AE∶AD= AB∶AE ∵∠A=∠A ∴△AED∽△ABE
B
C ∴∠AED=∠ABE∵∠ABE=∠BCE
∴ ∠AED=∠BCE
∴DE∥BC ∴∠DEB=∠EBC ∵∠ABE=∠BCE ∴ △EBC∽△DEB
3. 如图6—5,4×4的正方形方格中,△ABC的顶点A、B、 C在单位正方形的顶点上.请在图中画一个△A1B1C1, 使△A1B1C1∽△ABC(相似比不为1),且点A1、B1、 C1都在单位正方形的顶点上. C2
Q
P A C
2.如图,在⊿ABD和⊿ABC中, ∠C=∠D=90°,BD与AC交于 点E,EF⊥AB与F,求证: AC· AE+BD· BE=AB2 .
D E F C
A
B
Байду номын сангаас
本节课主要是复习相似三角形的性质
判定及其运用。在解题中要熟悉基本图 形。并能从条件和结论两方面同时考虑问 题。灵活应用。
1、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之毁灭。——卢梭 2、教育人就是要形成人的性格。——欧文 3、自我教育需要有非常重要而强有力的促进因素——自尊心、自我尊重感、上进心。——苏霍姆林斯基 4、追求理想是一个人进行自我教育的最初的动力,而没有自我教育就不能想象会有完美的精神生活。我认为,教会学生自己教育自己,这是一种 最高级的技巧和艺术。——苏霍姆林斯基 5、没有时间教育儿子——就意味着没有时间做人。——(前苏联)苏霍姆林斯基 6、教育不是注满一桶水,而且点燃一把火。——叶芝 7、教育技巧的全部奥秘也就在于如何爱护儿童。——苏霍姆林斯基 8、教育的根是苦的,但其果实是甜的。——亚里士多德 9、教育的目的,是替年轻人的终生自修作准备。——R.M.H. 10、教育的目的在于能让青年人毕生进行自我教育。——哈钦斯 11、教育的实质正是在于克服自己身上的动物本能和发展人所特有的全部本性。——(前苏联)苏霍姆林斯基 12、教育的唯一工作与全部工作可以总结在这一概念之中——道德。——赫尔巴特 13、教育儿童通过周围世界的美,人的关系的美而看到的精神的高尚、善良和诚实,并在此基础上在自己身上确立美的品质。——苏霍姆林斯基 14、教育不在于使人知其所未知,而在于按其所未行而行。——园斯金 15、教育工作中的百分之一的废品,就会使国家遭受严重的损失。——马卡连柯 16、教育技巧的全部诀窍就在于抓住儿童的这种上进心,这种道德上的自勉。要是儿童自己不求上进,不知自勉,任何教育者就都不能在他的身 上培养出好的品质。可是只有在集体和教师首先看到儿童优点的那些地方,儿童才会产生上进心。——苏霍姆林斯基 17、教育能开拓人的智力。——贺拉斯 18、作为一个父亲,最大的乐趣就在于:在其有生之年,能够根据自己走过的路来启发教育子女。——蒙田 19、教育上的水是什么就是情,就是爱。教育没有了情爱,就成了无水的池,任你四方形也罢、圆形也罢,总逃不出一个空虚。班主任广博的爱 心就是流淌在班级之池中的水,时刻滋润着学生的心田。——夏丐尊 20、教育不能创造什么,但它能启发儿童创造力以从事于创造工作。——陶行知
《图形的相似与位似》课件

相似三角形的判定
1
AAA判定法
了解使用三个角度来判定相似三角形。
2
AA判定法
学习使用两个角度和一个对应边的判定法。
3
SAS判定法
探索使用两个边和一个夹角的判定法。
相似图形的应用
测量高塔、树木等高度
了解如何使用相似图形来测量 高耸物体的高度。
测量山峰高度距离
学习如何使用相似图形来测量 遥远山峰的高度和距离。
确定电线杆的高度
探索使用相似图形来确定电线 杆及其他物体的高度。
位似图形
Hale Waihona Puke 1 什么是位似图形?2 位似变换的性质
了解位似图形的定义和特点。
探索位似变换中保持形状和角度不变的性质。
位似变换的分类
平移
学习平移变换在位似图形中 的应用。
旋转
了解旋转变换如何影响位似 图形。
翻转
探索翻转变换对位似图形的 作用。
位似变换的应用
1
计算机图形学中的应用
2
学习位似变换在计算机图形学中的广
泛应用。
3
地图和航空摄影中的应用
了解位似变换在地图和航空摄影中的 重要性。
工程模型中的应用
探索位似变换在工程模型设计中的实 际应用。
总结
相似图形与位似图形的异同
总结相似图形和位似图形之间的相似之处和 差异。
相似图形和位似图形在现实生活中 的应用
《图形的相似与位似》 PPT课件
探索图形的相似与位似,理解它们的性质和应用。学习如何判定相似三角形 和位似图形变换的分类,以及它们在现实生活中的重要性。
相似图形与比例
相似图形是什么?
了解相似图形的定义和特点。
相似图形之间的比例关系
27.1 图形的相似课件(共30张PPT)

比)与另两条线段的比相等,如
a b
c
d(即
ad
=
bc),我们就说这四
条线段成比
27.1 图形的相似
观察与思考 1.观察多面体模型与五棱柱教具中的正五边形回答下列问题
27.1 图形的相似
问题1 这些正五边形两两之间相似吗?
相似
问题2 在这两个正五边形中,是否有对应相等的内角?
是
问题3 在这两个正五边形中,对应内角的两边是否成比例?
78° 83°
B
C
F
α G
27.1 图形的相似
解:∵ 四边形 ABCD 和 EFGH 相似, ∴ 它们的对应角相等.由此可得
∠α = ∠C = 83°,∠A = ∠E=118°.
在四边形 ABCD 中,
β = 360°-(78°+83°+118°) = 81°.
21 D
A
β
18
78° 83°
B
C
x E
27.1 图形的相似 如果放在教室最后面展示又有什么不同? 2. 图形的放大:
两个图形相似,其中一个图形可以 看作由另一个图形放大或缩小得到.
通过上面两 组图形的观 察,发现了 什么?
27.1 图形的相似 例1 放大镜观察学具的一个角和原来的角有什么关系?
放大之后的角与原来的 角是相似关系
27.1 图形的相似
118° 24
F
H
α G
27.1 图形的相似
∵ 四边形 ABCD 和四边形 EFGH 相似, ∴它们的对应边成比例,由此可得
EH AD
EF AB
,即
x 21
24 18
.
解得 x = 28 cm.
人教版数学《图形的相似》(完整版)课件

A
AD AE D E
B
对应边的比例式为 A B = A C = B C .
3. 如图,在△ABC中,EF∥BC,AE=2cm, BE=6cm,BC=4cm,EF的长为__1_c_m___.
D C
人教版数学《图形的相似》教学实用 课件(P PT优秀 课件)
人教版数学《图形的相似》教学实用 课件(P PT优秀 课件)
自主学习反馈1.已知AB∥CD,AD与B来自相交于点O.若BO OC
2 3
,AD=10,则AO= 4 .
2.如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C 和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为 6 .
新知讲解
一 平行线分线段成比例(基本事实) 合作探究
如图(1),小方格的边长都是1,直线a ∥b∥c ,分别交直线m,n于 A1,A2,A3,B1,B2,B3.
(1)计算
A1 A 2 A2 A3
,
B B
1 2
BB,23 你有什么发现?
新知讲解
(2)将b向下平移到如图2的位置,直线m,n与直线b的交点分别为 A2, B2 .你在
问题(1)中发现的结论还成立吗?如果将b平移到其他位置呢?
新知讲解
典例精析
例1.如图,在△ABC中, EF∥BC. (1)如果E、F分别是AB和AC上的点, AE = BE=7, FC = 4 ,那么AF的长是多少?
(2)如果AB = 10, AE=6,AF = 5 ,那么FC的长是多少?
解:1 AE AF ,7 AF , AF 4.
BE FC 7 4
AC与BD交于点G,AB=2,CD=4,则GH
4
的长为 3 .
《图形的位似》图形的相似PPT(第1课时)教学课件

作位似图形:关键是确定位似中心、 相似比和找关键点的对应点.
导入新课
第四章 图形的相似
图形的位似
第2课时
讲授新课
当堂练习
课堂小结
学习目标
1.理解位似图形的坐标变换规律.(难点) 2.能熟练在坐标系中根据坐标的变化规律做出位似图形.(重点)
导入新课
问题:将图(1)图形如何变换得到图(2)?
y
y
O
例1:在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(6,
0),B(3,6),C(-3,3).以原点O为位似中心,画出四边形OABC的位似图形,使
它与四边形OABC的相似是2:3.
画法一:如右图所示,
解:将四边形OABC各顶点的坐标都
2
乘 ;在平3面直角坐标系中描点
C C'
yB
OA'
连接的直线A相交于点O. OA
, OB' OB
, OC' OC
, OD' OD
,
OE' OE
有什么关系?
A'
B
E
E'
B'
O
D'
D
C'
C
OA' OB' OC' OD' OE' . OA OB OC OD OE
A
A'
B
E
E'
B'
O
如果C两个相似多D边形任意一组对C应' 顶点PD,' P̍ 所在的直线都过同一点O,且
当堂练习
1.选出下面不同于其他三组的图形( B )
A
B
导入新课
第四章 图形的相似
图形的位似
第2课时
讲授新课
当堂练习
课堂小结
学习目标
1.理解位似图形的坐标变换规律.(难点) 2.能熟练在坐标系中根据坐标的变化规律做出位似图形.(重点)
导入新课
问题:将图(1)图形如何变换得到图(2)?
y
y
O
例1:在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(6,
0),B(3,6),C(-3,3).以原点O为位似中心,画出四边形OABC的位似图形,使
它与四边形OABC的相似是2:3.
画法一:如右图所示,
解:将四边形OABC各顶点的坐标都
2
乘 ;在平3面直角坐标系中描点
C C'
yB
OA'
连接的直线A相交于点O. OA
, OB' OB
, OC' OC
, OD' OD
,
OE' OE
有什么关系?
A'
B
E
E'
B'
O
D'
D
C'
C
OA' OB' OC' OD' OE' . OA OB OC OD OE
A
A'
B
E
E'
B'
O
如果C两个相似多D边形任意一组对C应' 顶点PD,' P̍ 所在的直线都过同一点O,且
当堂练习
1.选出下面不同于其他三组的图形( B )
A
B
《图形的位似》图形的相似PPT课件(第2课时)

O(0,0) A’(-6,0) B’(-4,-6)
△OAB与△OA’B’位似, 位似中心是点O, 相似比是1:2.
B’
02 平面直角坐标系中的位似变换
如图,在平面直角坐标系中,四边形OABC的顶点坐标分别是O(O,O),A(5,0)
B(5,3),C(2,4),将点O,A,B,C的横纵坐标都乘 1 ,得到四个点,以这四个ห้องสมุดไป่ตู้
2、如何作一个图形的位似图形? ppt模板:. /moban/
ppt素材: . /sucai/
ppt背景: . /beijing/
ppt图表: . /tubiao/
ppt下载: . /xiazai/
ppt教程: . /powerpoint/
资料下载: . /ziliao/
范文下载: . /fanwen/
02 平面直角坐标系中的位似变换
B ’
A’
O(0,0) A(3,0) B(2,3)
O(0,0) A’(6,0) B’(4,6)
△OAB与△OA’B’位似,位似中心是点O, 相似比是1:2.
02 平面直角坐标系中的位似变换
如果将O,A,B的横纵坐标都乘-2呢?
O(0,0)
A(3,0)
A’
B(2,3)
2
点为顶点的四边形与四边形OABC位似吗?如果位似,指出位似中心和相似比。
C
’
B’
A’
O(0,0) A(5,0) B(5,3)
O(0,0) A’(2.5,0) B’(2.5,1.5)
C(2,4)
C’(1,2)
是位似的,位似中心是O, 四边形OABC与四边形OA’B’C’相似比是2:1
02 平面直角坐标系中的位似变换
《相似——图形的相似》数学教学PPT课件(2篇)

相似多边形对应边 的比称为相似比
相似比为1时,相似的 两个图形有什么关系?
全等
对于四条线段a,b,c,d,如果其中两条线段的比(即它们长 度的比)与另两条线段的比相等,如a:b=c:d(即ad=bc), 我们就称四条线段是成比例线段,简称比例线段.
【例1】 如图,四边形ABCD和EFGH相似,求角α,β的
例题
一块长 3m,宽1.5m的矩形黑板,镶其外
围的木质边宽7.5cm。边框内外边缘所组成的
矩形相似吗?为什么?
A
D
解: ∵ 矩形的每个内角都等于90o.
E
H
∴ ∠A =∠E = 90°,∠B =∠F = 90°
F
∠C =∠G = 90°,∠D =∠H = 90°
∴ 它们的对应角相等.
B
G
C
∵ EH:AD=300:(300+2×7.5)=20/21.
A1 150°
F1 E1
C
D
C1
∠A =∠A1,∠B =∠B1, ∠C =∠C1 ∠D =∠D1,∠E =∠E1, ∠F =∠F1
D1 对应角相等
对应边有什么关系? A1 正八边形
AF
B
放大 B1 E
F1 E1
C
D
AB
=
BC
=
CD
=
DE
=
EF
=
C1 FA
,
D1
A1B1 = B1C1 = C1D1 = D1E1 = E1F1 = F1A1
过程与方法
• 通过观察、操作,了解相似图形的过程。 • 进一步了解相似形在实际生活中的应用。 • 掌握简单的画图方法,在动手操作中认识 • 相似图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EF:AB =150:(150+2×7.5)=10/11.
∴ EH:AD≠EF:AB.
∴ 它们的对应边不成比例.
∴ 矩形ABCD和矩形EFGH不相似.
题型2 求相似多边形的对应角或对应边
例题
五边形ABCDE相似于五边形FGHIJ,且 AB=2cm,CD=3cm,DE=2.2cm,GH=6cm, HI =5cm,FJ=4cm, ∠A=120°,∠H=90°
60° 缩小 A1 60°
B
C B1
C1
∠A =∠A1,∠B =∠B1, ∠C =∠C1 AB = BC = AC , A1B1 = B1C1 = A1C1
对应角相等
AB : A1B1 = BC : B1C1 = CD : C1D1 对应边成比例
对应角有什么关系?
正八边形 AF
150° B
放大 B1 E
题型1 判断两个多边形是否相似
例题
3 正方形 4 菱形
3
4
解: ∵ 正方形,菱形的四条边都相等.
∴ 它们的对应边成比例,k = 3 : 4. ∵ 正方形的四个内角均为直角,而菱形的内角有钝角有锐角. ∴ 它们的对应角不相等. ∴ 这一组图形不相似.
例题
3 正方形
6 长方形
3
8
解:∵ 正方形和矩形的四个内角都是直角. ∴ 它们的对应角相等. ∵ 对应边 3 : 6 ≠ 3 : 8. ∴ 它们的对应边不成比例. ∴ 这一组图形不相似.Aຫໍສະໝຸດ 150°F1 E1C
D
C1
∠A =∠A1,∠B =∠B1, ∠C =∠C1 ∠D =∠D1,∠E =∠E1, ∠F =∠F1
D1 对应角相等
对应边有什么关系? A1 正八边形
AF
B
放大 B1 E
F1 E1
C
D
AB
=
BC
=
CD
=
DE
=
EF
=
C1 FA
,
D1
A1B1 = B1C1 = C1D1 = D1E1 = E1F1 = F1A1
过程与方法
• 通过观察、操作,了解相似图形的过程。 • 进一步了解相似形在实际生活中的应用。 • 掌握简单的画图方法,在动手操作中认识 • 相似图形。
情感态度与价值观
• 注学生能否从图形相似的角度识别现 • 实生活中大量存在的观察和规律。 • 培养合作交流意识。
教学重难点
• 认识形状相同的图形。 • 对相似图形概念的理解。 • 抓住形状相同的图形的特征,认
回顾旧知
这一版邮票有什么特点?
全等图形
A
A
B C B
C
形状、 大小完全相 同的图形是 全等图形。
新课导入
多啦A梦的2寸照片和4寸照片,他的形状改变 了吗?大小呢?
符合国家标准的两面共青团团旗的形状 相同吗?大小呢?
教学目标
知识与能力
• 感知相似图形在现实中的应用。 • 认识形状相同的图形。 • 了解相似图形的基本内涵。
A1
F1
AF
B1
E1
B
E
CD
C1
D1
六边形ABCDEF与六边形A1B1C1D1E1F1的
相似比为 k2= 1 : 2,
对应边 AB:A1B1= 1 : 2 。
相似比与叙述的顺序有关。
相似多边形
各对应角相等、各对应边成比例的 多边形叫做相似多边形.
B
A1
A
F
C
F1
B1 C1
ED
E1
D1
两个多边形相似的条件 ✓ 对应角相等。 ✓ 对应边成比例。
例题
一块长 3m,宽1.5m的矩形黑板,镶其外
围的木质边宽7.5cm。边框内外边缘所组成的
矩形相似吗?为什么?
A
D
解: ∵ 矩形的每个内角都等于90o.
E
H
∴ ∠A =∠E = 90°,∠B =∠F = 90°
F
∠C =∠G = 90°,∠D =∠H = 90°
∴ 它们的对应角相等.
B
G
C
∵ EH:AD=300:(300+2×7.5)=20/21.
小练习
在下列图形中,找出相似图形。
多边形
由在同一平面且不在同一直线上 的多条线段首尾顺次连结且不相交所 组成的图形叫做多边形。
相似多边形
这个零 件中,有没
根据相似多边形的特有征相,似的给图 相似多边形下定义。 形?
这两个图案 中,有没有 相似的图形?
对应角有什么关系?对应边有什么关系? A 正三角形
求:(1)相似比等于多少? (2)FG,IJ,BC,AE, ∠F, ∠C
F
A
G
B
J
E
C
D H5 I
A B2 120°
G
E6
2.2
C3D H
F 4 J
5I
解:(1)相似比=CD : HI=3 : 5 (2)∵五边形ABCDE相似于五边形FGHIJ ∴ ∠F =∠A=120o, ∠C= ∠H=90o, ∴AB : FG = BC : GH = CD : HI = DE : IJ = EA : JF 即2 : FG = BC : 6 = 3/5 = 2.2 : IJ = AE :4 解得FG =10/3 cm, BC =18/5cm,IJ=11/3cm,AE=12/5cm
(对应边的比相等)
相似比
相似多边形对应边的比。(k > 0)
若相似比k =1 ,相 似图形有什么关系?
当相似比k =1时, 相似图形即是全等图形。
全等是一种特殊的相似。
A
F
B
E
A1 F1
B1
E1
C
D
C1 D1
六边形ABCDEF与六边形A1B1C1D1E1F1的 相似比为 k1= 2 : 1,
对应边 AB:A1B1= 2 : 1 。
识其内涵。
探究
你能来归归类吗?
四阶魔方和三阶魔方形状相同吗?大小呢?
知识要点
两个图形的形状 完__全__相__同__,但图形 的大小位置不__一__定__相__同__,这样的图形叫 做相似图形。
图形的放大
图形的放大
两个图形相似 图形的缩小
相似图形的关系
两个图形相似,其中一个图形可以看 作由另一个图形放大或缩小得到。
AB BC CD DE EF FA
=
=
=
=
=
A1B1 B1C1 C1D1 D1E1 E1F1 F1A1
对应边成比例
不规则四边形 B
请分别量出
这两个不规则四
边形各内角的度
数,求出对应边 的长度。
C
缩小
B1 对应边有什么关系?
C1
A A1
对 应 角 有 什 么 D关 系?
D1
知识要点
相似多边形
对应角相等,对应边成比例。
相似六边形
相似多边形的对应高
相似多边形的对应角平分线
相似多边形的对应中线
相似多边形的对应对角线
A A1
B
C
B1
C1
相似多边形的对应三角形
相似多边形的性质
✓ 相似多边形对应高的比、对应角平分线的比、 对应中线的比、对应周长的比都等于相似比。
(在27.2.3中学习到) ✓ 相似多边形对应对角线的比等于相似比。 ✓ 相似多边形对应三角形相似,且相似比等于相 似多边形的相似比。 ✓ 相似多边形面积的比等于相似比的平方。 ✓ 相似多边形对应三角形面积的比等于相似多边 形的相似比的平方。(在27.2.3中学习到)