磁场对运动电荷的作用(高三一轮复习)
2020届高中物理第一轮总复习 第8章 第3讲 磁场对运动电荷的作用学案(教师版)新人教版
一、洛伦兹力1.定义:磁场对运动电荷的作用力叫洛伦兹力.2.大小:(1)在磁场中当运动电荷的速度方向与磁场垂直时,洛伦兹力的大小F=qvB.(2)当运动电荷的速度v的方向与磁感应强度B的方向平行时,洛伦兹力的大小F=0.(3)当电荷运动方向与磁场方向夹角为θ时,洛伦兹力的大小F=qvBsin θ.(4)推导:洛伦兹力是单个运动电荷在磁场中受到的力,而安培力是导体中所有定向移动的自由电荷受到的洛伦兹力的宏观表现.由安培力公式可以推导出洛伦兹力公式.3.洛伦兹力的方向(1)运动电荷在磁场中所受的洛伦兹力的方向可用左手定则来判定.伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内,让磁感线垂直穿入手心,四指指向正电荷的运动方向(或负电荷运动的反方向),拇指所指的方向就是运动电荷所受的洛伦兹力的方向.(2)洛伦兹力的方向总是垂直于速度和磁场所在的平面.但v和B不一定垂直二、带电粒子在匀强磁场中的运动(不计重力)1.若带电粒子运动方向与磁场方向平行,则粒子不受洛伦兹力作用,做匀速直线运动.2.若带电粒子运动方向与磁场方向互相垂直,则粒子将做匀速圆周运动,洛伦兹力提供向心力,其运动周期T=2πm/qB (与速度大小无关),轨道半径r=mv/qB.3.由于洛伦兹力始终和速度方向互相垂直,所以洛伦兹力对运动的带电粒子不做功.图831三、质谱仪与回旋加速器1.质谱仪构造和工作原理(1)结构:如图831所示,质谱仪由粒子源、加速电场、匀强磁场和照相底片组成.2.回旋加速器的构造和工作原理(1)构造:如图832所示,回旋加速器由两个半圆的D形盒组成,D形盒处于匀强磁场中,为了保证每次带电粒子经过狭缝时均被加速,使之能量不断提高,要在狭缝处加一个交变电压.图8321.如何处理带电粒子在匀强磁场中的圆周运动?解答:带电粒子在匀强磁场中的圆周运动是高中物理的一个难点,也是高考的热点.解这类问题既要用到物理中的洛伦兹力、圆周运动的知识,又要用到数学平面几何中的圆及解析几何知识.带电粒子在匀强磁场中做圆周运动问题的分析思路归纳如下:(1)确定圆所在的平面.由左手定则和立体几何知识可知,粒子做匀速圆周运动的轨迹在洛伦兹力f与速度v的方向所确定的平面内.(2)确定圆心的位置.根据洛伦兹力f始终与速度v的方向垂直这一特点,画出粒子运动轨迹上任两点(一般是射入与射出有界磁场的两点)的洛伦兹力方向(即垂直于这两点速度的方向),其延长线的交点即为圆心.(5)注意圆周运动中有关对称规律.如从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.(6)带电粒子在有界磁场中运动的极值问题.掌握下列结论,再借助数学方法分析.①刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.②当速度v一定时,弧长越长,则圆心角越大,带电粒子在有界磁场中运动的时间越长.③当速率v变化时,圆心角越大,运动时间越长.2.什么原因使洛伦兹力问题出现多解?解答:带电粒子在洛伦兹力作用下做匀速圆周运动,由于多种因素的影响,常使问题形成多解.多解形成原因一般包含下述几个方面.(1)带电粒子电性不确定而形成多解受洛伦兹力作用的带电粒子,可能带正电荷,也可能带负电荷,在相同的初速度下,正、负粒子在磁场中运动轨道不同,会形成双解.(2)磁场方向不确定而形成多解有些题目只告诉了磁感应强度大小,而未具体指出磁感应强度的方向,此时必须考虑磁感应强度的方向不确定而形成的多解.(3)临界状态不唯一而形成多解带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧,因此,它可能穿过去了,也可能转过一角度后从入射界面飞出.(4)运动的重复性而形成多解带电粒子在部分是电场、部分是磁场的空间中运动时,运动往往具有往复性,因而形成多解.3.为什么带电粒子经回旋加速器加速后的最终能量与加速电压无关?解答:加速电压越高,带电粒子每次加速的动能增量越大,回旋半径也增加越多,导致带电粒子在D形盒中的回旋次数越少。
磁场(解析版)—2025年高考物理一轮复习知识清单
磁场带电粒子在匀强电场中做类抛体运动的相关计算掌握磁场和磁感应强度的概念,会用磁感线描述磁场,熟悉几种常见磁场模型的磁感线分布图;会判断安培力的方向,能够计算安培力的大小,会分析计算安培力作用下导体的平衡与加速问题;掌握洛伦兹力的概念,会分析和计算带电粒子在有界磁场中运动的临界、极值问题,会分析计算带电粒子在组合场、叠加场中的问题;掌握带电粒子在磁场中的多解问题、交变磁场和立体空间中的问题;了解与磁场相关的仪器,重点掌握质谱仪、回旋加速器和霍尔效应的原理。
核心考点01 磁场中的概念一、磁场 (4)二、磁感线 (4)三、磁感应强度 (6)四、磁通量 (8)核心考点02 安培力 (10)一、安培力的方向 (10)二、安培力的大小 (11)三、安培力作用下导体的平衡与加速问题 (12)核心考点03 洛伦兹力 (14)一、洛伦兹力 (14)二、带电粒子在匀强磁场中的运动 (15)三、有界匀强磁场的运动模型 (18)四、动态圆模型 (22)五、带电粒子在组合场中的运动 (24)六、带电粒子在叠加场中的运动 (27)七、带电粒子在交变磁场的运动 (30)八、带电粒子在磁场中的多解问题 (32)九、带电粒子在立体空间的运动 (34)核心考点04 与磁场相关的仪器 (36)一、速度选择器 (36)二、质谱仪 (37)三、回旋加速器 (39)四、磁流体发电机 (41)五、电磁流量计 (42)六、霍尔效应模型 (43)01一、磁场1、磁性物质吸引铁、钴、镍等物质的性质。
2、磁体具有磁性的物体,如磁铁。
3、磁极磁体上磁性最强的区域。
任何磁体都有两个磁极,一个叫北极(N极),另一个叫南极(S极)。
并且,任何一个磁体都有两个磁极,无论怎样分割磁体,磁极总是成对出现,不存在磁单极。
【注意】同名磁极相互排斥,异名磁极相互吸引。
4、磁场的定义磁体或电流周围存在的一种特殊物质,能够传递磁体与磁体之间、磁体与电流之间、电流与电流之间的相互作用。
高中物理高考 高考物理一轮复习专题课件 专题9+磁场(全国通用)
2.回旋加速器 (1)基本构造:回旋加速器的核心部分是放置在磁场中的两个D形 的金属扁盒 (如图所示),其基本组成为:
①粒子源 ②两个D形金属盒 ③匀强磁场 ④高频电源 ⑤粒子引出装置
(2)工作原理
①电场加速 qU=ΔEk; ②磁场约束偏转 qBv=mvr2,v=qmBr∝r;
③加速条件:高频电源的周期与带电粒子在 D 形盒中运动的周 2πm
知识点一 磁场及其描述 1.磁场 (1)基本特性:对放入其中的磁体、电流和运动电荷都有_磁__场__力__的 作用. (2)方向:磁场中任一点小磁针_北__极__(N__极__)的受力方向为该处的磁场 方向.
2.磁感应强度
B=IFL
强弱
方向
北极(N极)
3.磁感应强度与电场强度的比较
磁感应强度 B 电场强度 E
要点一 通电导线在安培力作用下的运动的判断方法 [突破指南]
电流元法
把整段导线分为直线电流元,先用左手定则判 断每段电流元受力的方向,然后判断整段导线 所受合力的方向,从而确定导线运动方向.
等效法
环形电流可等效成小磁针,通电螺线管可以等 效成条形磁铁或多个环形电流,反过来等效也 成立.
特殊 通过转动通电导线到某个便于分析的特殊位置,然 位置法 后判断其所受安培力的方向,从而确定其运动方向.
A.FN1<FN2,弹簧的伸长量减小 B.FN1=FN2,弹簧的伸长量减小 C.FN1>FN2,弹簧的伸长量增大 D.FN1>FN2,弹簧的伸长量减小
解析 采用“转换研究对象法”:由于条形磁铁的磁感线是从N 极出发到S极,所以可画出磁铁在导线A处的一条磁感线,此处磁 感应强度方向斜向左下方,如图,导线A中的电流垂直纸面向外, 由左手定则可判断导线A必受 斜向右下方的安培力,由牛顿 第三定律可知磁铁所受作用力的方向是斜向左上方,所以磁铁对 斜面的压力减小,FN1>FN2.同时,由于导线A比较靠近N极,安 培力的方向与斜面的夹角小于90°,所以电流对磁铁的作用力有 沿斜面向下的分力,使得弹簧弹力增大,可知弹簧的伸长量增大, 所以正确选项为C.
高考物理一轮总复习课后习题 第11章 磁场 第2讲 磁场对运动电荷的作用力
第2讲磁场对运动电荷的作用力基础对点练题组一洛伦兹力1.(江苏连云港模拟)电视机显像管的偏转线圈示意图如图所示,线圈中心O处的黑点表示电子枪射出的电子,它的方向垂直纸面向外。
当偏转线圈中的电流方向如图所示时,电子束应( )A.向左偏转B.向上偏转C.向下偏转D.不偏转2.粗糙绝缘水平面上垂直穿过两根长直导线,两根导线中通有相同的电流,电流方向竖直向上。
水平面上一带正电滑块静止于两导线连线的中垂线上,俯视图如图所示,某时刻给滑块一初速度,滑块沿中垂线向连线中点运动,滑块始终未脱离水平面。
则在运动过程中( )A.滑块一定做曲线运动B.滑块可能做匀速直线运动C.滑块的加速度一直增大D.滑块的速度一直减小3.(多选)(广东惠州模拟)如图所示,导线中带电粒子的定向运动形成了电流。
电荷定向运动时所受洛伦兹力的矢量和,在宏观上表现为导线所受的安培力。
下面的分析正确的是( )A.洛伦兹力和安培力是性质相同的两种力B.洛伦兹力的方向、粒子运动方向和磁场方向不一定相互垂直C.粒子在只受到洛伦兹力作用时动能会减少D.带电粒子在匀强磁场中做匀速圆周运动时,其运动半径与带电粒子的比荷无关题组二带电粒子在匀强磁场中的运动4.(广东佛山模拟)一个带电粒子沿垂直于磁场的方向射入一匀强磁场,粒子的一段径迹如图所示,径迹上每小段可近似看成圆弧,由于带电粒子使沿途空气电离,粒子的动能逐渐减小,粒子所带的电荷量不变,则由图中情况可判定下列说法正确的是( )A.粒子从a运动到b,带正电B.粒子从b运动到a,带正电C.粒子从a运动到b,带负电D.粒子从b运动到a,带负电5.托卡马克装置是一种利用磁约束来实现受控核聚变的环形容器,其结构如图所示。
工作时,高温等离子体中的带电粒子被强匀强磁场约束在环形真空室内部,而不与器壁碰撞。
已知等离子体中带电粒子的平均动能与等离子体的温度T成正比。
为了约束更高温度的等离子体,需要更强的磁场,以使带电粒子在磁场中的运动半径不变。
高考物理复习高三一轮复习:课时跟踪检测30磁场对运动电荷的作用
高考物理复习课时跟踪检测(三十) 磁场对运动电荷的作用高考常考题型:选择题+计算题1.(2012·北京高考)处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圆周运动。
将该粒子的运动等效为环形电流,那么此电流值( )A .与粒子电荷量成正比B .与粒子速率成正比C .与粒子质量成正比D .与磁感应强度成正比2.如图1所示,ABC 为与匀强磁场垂直的边长为a 的等边三角形,磁场垂直于纸面向外,比荷为em的电子以速度v0从A 点沿AB 方向射入,欲使电子能经过BC 边,则磁感应强度B 的取值应为( )A .B>3mv0aeB .B<2mv0ae 图1C .B<3mv0ae D .B>2mv0ae3. (2012·兰州模拟)如图2所示,在匀强磁场中有1和2两个质子在同一平面内沿逆时针方向做匀速圆周运动,轨道半径r1>r2并相切于P 点,设T1、T2,v1、v2,a1、a2,t1、t2,分别表示1、2两个质子的周期,线速度,向心加速度以及各自从经过P 点算起到第一次通过图中虚线MN 所经历的时间,则( ) 图2A .T1=T2B .v1=v2C .a1>a2D .t1<t24.(2013·苏州模拟)电视显像管上的图像是电子束打在荧光屏的荧光点上产生的。
为了获得清晰的图像电子束应该准确地打在相应的荧光点上。
电子束飞行过程中受到地磁场的作用,会发生我们所不希望的偏转。
关于从电子枪射出后自西向东飞向荧光屏的过程中电子由于受到地磁场的作用的运动情况(重力不计)正确的是( )A .电子受到一个与速度方向垂直的恒力B .电子在竖直平面内做匀变速曲线运动C .电子向荧光屏运动的过程中速率不发生改变D .电子在竖直平面内的运动轨迹是圆周5. (2012·北京朝阳期末)正方形区域ABCD 中有垂直于纸面向里的匀强磁场,一个α粒子(不计重力)以一定速度从AB 边的中点M 沿既垂直于AB 边又垂直于磁场的方向射入磁场,正好从AD 边的中点N 射出。
2015届高三物理大一轮复习:8-2 磁场对运动电荷的作用
(4)左手判断洛伦兹力方向,但一定分正、负电荷.
(5)洛伦兹力一定不做功.
2.洛伦兹力与安培力的联系及区别 (1) 安培力是洛伦兹力的宏观表现,二者是相同性质的 力,都是磁场力. (2)安培力可以做功,而洛伦兹力对运动电荷不做功.
【典例1】 如图8-2-7所示,空间的某一区域存在
着相互垂直的匀强电场和匀强磁场,一个带电粒 子以某一初速度由A点进入这个区域沿直线运 动,从 C 点离开区域;如果将磁场撤去,其他条 件不变,则粒子从 B 点离开场区;如果将电场撤
3.半径和周期公式:(v⊥B)
判断正误,正确的划“√”,错误的划“×”. (1)带电粒子在磁场中一定会受到磁场力的作用. ( )
(2)洛伦兹力的方向在特殊情况下可能与带电粒子的速度方 向不垂直. (3)洛伦兹力不做功,但安培力却可以做功. ( ( ) )
2πr (4)根据公式 T= v , 说明带电粒子在匀强磁场中的运动周期 T 与 v 成反比. ( )
已知电子质量为m 、电荷量为e,纸面上 S、 P两点间距为
L.则 ( ).
图8-2-4
BeL A.能击中 P 点的电子的最小速率为 vmin= 2m BeL B.能击中 P 点的电子的最大速率为 vmax= 2m BeL C.能击中 P 点的电子的最小速率为 vmin= m D.只要磁场足够大, 无论电子速率多大, 总有电子可以击中 P 点
(∠PAM),画出该角的角平分线,它与已知点的速度的垂线
交于一点O,该点就是圆心.
A.t1=t2<t3 C.Ek1>Ek2=Ek3 审题指导
B.t1<t2=t3 D.Ek1=Ek2<Ek3
(1)当电场、磁场同时存在时,粒子做什么运动?
2025年高考物理一轮总复习(提升版)第十一章磁场第1讲磁场及其对电流的作用
相同 ,
磁感线是疏密程度相同、方向相同的平行直线。
目录
高中总复习·物理(提升版)
(4)地磁场
①地磁的N极在地理
南极 附近,S极在地理
北极 附
近,磁感线分布如图所示。
②在赤道平面上,距离地球表面高度相等
的各点,磁感应强
度大小 相等
,且方向水平 向北
。
③地磁场在南半球有竖直向上的分量,在北半球有竖直向下
目录
高中总复习·物理(提升版)
解析:
磁感应强度B= 是用比值定义法定义B的,但磁感应强
度是磁场的固有性质,与通电导线所受磁场力F及Il的乘积等外界因
素无关,故A、B错误;B= 是在电流与磁场垂直的情况下得出
的,如果不垂直,设电流方向与磁场方向夹角为θ,则根据F=
IlBsin
θ得B=
度,相应的电流方向沿两端点连线由始端流向末端,如图
所示。
目录
高中总复习·物理(提升版)
安培力方向的判断
【例1】
法拉第电动机原理如图所示。条形磁铁竖直固定在圆形水
银槽中心,N极向上。一根金属杆斜插在水银中,杆的上端与固定在
水银槽圆心正上方的铰链相连。电源负极与金属杆上端相连,与电源
正极连接的导线插入水银中。从上往下看,金属杆(
2
目录
高中总复习·物理(提升版)
磁场叠加的基本思路
(1)确定磁场的场源是磁体还是电流。
(2)确定空间中需求解磁场的位置(点),利用安
培定则判定各个场源在该点产生的磁感应强度
的大小和方向。如图所示,BM、BN分别为电流
2016届高三物理一轮复习知能检测9-2《磁场对运动电荷的作用》
[随堂演练]1.关于带电粒子在匀强电场和匀强磁场中的运动,下列说法中正确的是( )A. 带电粒子沿电场线方向射入,静电力对带电粒子一定做正功,粒子动能增加B.带电粒子垂直于电场线方向射入,静电力对带电粒子不做功,粒子动能不变C.带电粒子沿磁感线方向射入,洛伦兹力对带电粒子做正功,粒子动能一定增加D.不管带电粒子怎样射入磁场,洛伦兹力对带电粒子都不做功,粒子动能不变解析:带电粒子在电场中受到的静电力F=qE,只与q和E有关,与运动状态无关,静电力做正功还是做负功由静电力与位移的夹角决定,选项A只适用于沿电场线方向射入的带正电粒子,故选项A错;带电粒子只要垂直电场线射入,不论正电荷还是负电荷,静电力都做功,故选项B错;带电粒子不论怎样射入磁场,洛伦兹力都不做功,故选项C错,D对.答案:D2.(2013年新课标全国卷Ⅱ)空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R,磁场方向垂直于横截面.一质量为m、电荷量为q(q>0)的粒子以速率v0沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°.不计重力,该磁场的磁感应强度大小为( )A.3mv03qRB.mv0qRC.3mv0qRD.3mv0qR解析:带电粒子在磁场中做匀速圆周运动,利用几何关系和洛伦兹力公式即可求解.如图所示,粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,即qv0B=m v20r,据几何关系,粒子在磁场中的轨道半径r=Rtan 60°=3R,解得B=3mv03qR,选项A正确.答案:A3.如图所示,在第Ⅰ象限内有垂直于纸面向里的匀强磁场,一对正、负电子分别以相同速率与x轴成30°角的方向从原点射入磁场,则正、负电子在磁场中运动的时间之比为( )A .1∶2B .2∶1C .1∶ 3D .1∶1解析:由T =2πmqB 可知,正、负电子的运动周期相同,故所用时间之比等于轨迹对应的圆心角之比.作出正、负电子运动轨迹如图所示,由几何知识可得正电子运动的圆心角等于120°,负电子运动的圆心角等于60°,而电荷在磁场中的运动时间t =θ2πT ,所以t 正:t 负=θ正:θ负=2∶1,故B 正确.答案:B4.(2014年宣城检测)如图所示,一足够长的矩形区域abcd 内充满方向垂直纸面向里的、磁感应强度为B 的匀强磁场,在ad 边中点O ,垂直于磁场射入一速度方向跟ad 边夹角θ=30°、大小为v 0的带正电粒子.已知粒子质量为m ,电荷量为q ,ad 边长为L ,ab 边足够长,粒子重力不计,求:(1)粒子能从ab 边上射出磁场的v 0大小范围;(2)如果带电粒子不受上述v 0大小范围的限制,求粒子在磁场中运动的最长时间. 解析:(1)若粒子速度为v 0,轨迹半径为R ,由 qv 0B =m v 2R ,则R =mv 0qB若轨迹与ab 边相切,如图所示,设此时相应速度为v 01,则 R 1+R 1sin θ=L2将R 1=mv 01qB代入上式并由题给数据可得v 01=qBL 3m若轨迹与cd 边相切,设此时粒子速度为v 02,则 R 2-R 2sin θ=L2将R 2=mv 02qB 代入上式可得v 02=qBLm所以粒子能从ab 边上射出磁场的v 0应满足 qBL 3m <v 0≤qBL m.(2)粒子在磁场中经过的弧所对的圆心角越大,在磁场中运动的时间越长.由图可知,在磁场中运动的半径r≤R 1时,运动时间最长,此时弧所对的圆心角为(2π-2θ).所以最长时间为t =π-2θqB=5πm3qB. 答案:(1)qBL 3m <v 0≤qBL m (2)5πm3qB[限时检测](时间:45分钟,满分:100分) [命题报告·教师用书独具]一、选择题(选项前的字母填在题后的括号内)1.(2014年滁州模拟)电视显像管上的图像是电子束打在荧光屏的荧光点上产生的.为了获得清晰的图像电子束应该准确地打在相应的荧光点上.电子束飞行过程中受到地磁场的作用,会发生我们所不希望的偏转.关于从电子枪射出后自西向东飞向荧光屏的过程中电子由于受到地磁场的作用的运动情况(重力不计)正确的是( )A .电子受到一个与速度方向垂直的恒力B .电子在竖直平面内做匀变速曲线运动C .电子向荧光屏运动的过程中速率发生改变D .电子在竖直平面内的运动轨迹是圆周解析:电子在飞行过程中受到地磁场洛伦兹力的作用,洛伦兹力是变力而且不做功,所以电子向荧光屏运动的速率不发生改变;又因为电子在自西向东飞向荧光屏的过程中所受的地磁场磁感应强度的水平分量可视为定值,故电子在竖直平面内所受洛伦兹力大小不变、方向始终与速度方向垂直,故电子在竖直平面内的运动轨迹是圆周.答案:D2.(2012年高考北京卷)处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圆周运动.将该粒子的运动等效为环形电流,那么此电流值( )A .与粒子电荷量成正比B .与粒子速率成正比C .与粒子质量成正比D .与磁感应强度成正比解析:由电流概念知,该电流是通过圆周上某一个位置(即某一截面)的电荷量与所用时间的比值.若时间为带电粒子在磁场中做匀速圆周运动的周期T ,则公式I =q/T 中的电荷量q 即为该带电粒子的电荷量.又T =2πm qB ,解出I =q 2B2πm.故只有选项D 正确.答案:D3.(2013年高考安徽理综)图中a 、b 、c 、d 为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示.一带正电的粒子从正方形中心O 点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是( )A .向上B .向下C .向左D .向右解析:由安培定则分别判断出四根通电导线在O 点产生的磁感应强度的方向,再由磁场的叠加原理得出O 点的合磁场方向向左,最后由左手定则可判断带电粒子所受的洛伦兹力方向向下,故选项B 正确.答案:B4.如图所示,在平面直角坐标系中有一个垂直于纸面向里的圆形匀强磁场,其边界过原点O 和y 轴上的点a(0,L).一质量为m 、电荷量为e 的电子从a 点以初速度v 0平行于x 轴正方向射入磁场,并从x 轴上的b 点射出磁场,此时速度方向与x 轴正方向的夹角为60°.下列说法中正确的是( )A .电子在磁场中运动的时间为πLv 0B .电子在磁场中运动的时间为πL3v 0C .磁场区域的圆心坐标为(3L 2,L 2) D .电子在磁场中做圆周运动的圆心坐标为(0,-2L)解析:由题图可以计算出电子做圆周运动的半径为2L ,故在磁场中运动的时间为t =π3·2L v 0=2πL 3v 0,选项A 、B 错;ab 连线是磁场区域圆的直径,故圆心坐标为(32L ,L2),电子在磁场中做圆周运动的圆心为O′,计算出其坐标为(0,-L),所以选项C 正确,选项D 错.答案:C5.一电子以与磁场垂直的速度v 从P 处沿PQ 方向进入长为d ,宽为h 的匀强磁场区域,从N 点射出,如图所示,若电子质量为m ,电荷量为e ,磁感应强度为B ,则( )A .h =dB .电子在磁场中运动的时间为d vC .电子在磁场中运动的时间为PNvD .洛伦兹力对电子做的功为Bevh解析:过P 点和N 点作速度的垂线,两垂线的交点即为电子在磁场中做匀速圆周运动时PN 的圆心O ,由勾股定理可得(R -h)2+d 2=R 2,整理知d =2Rh -h 2,而R =mv eB,故d =2mvh eB-h 2,所以选项A错误.由带电粒子在有界磁场中做匀速圆周运动,得t=PNv,故选项B错误,选项C正确.又由于洛伦兹力方向和粒子运动的速度方向总垂直,对粒子永远也不做功,故选项D错误.答案:C6.(2013年高考广东理综改编)如图,两个初速度大小相同的同种离子a和b,从O点沿垂直磁场方向进入匀强磁场,最后打到屏P上.不计重力.下列说法正确的有( )A.a、b均带负电B.a在磁场中飞行的时间比b的短C.a在磁场中飞行的路程比b的短D.a在P上的落点与O点的距离比b的近解析:带电离子打到屏P上,说明带电离子向下偏转,根据左手定则,a、b两离子均带正电,选项A错误;a、b两离子垂直进入磁场的初速度大小相同,电荷量、质量相等,由r=mvqB知半径相同.b在磁场中运动了半个圆周,a的运动大于半个圆周,故a在P上的落点与O点的距离比b的近,飞行的路程比b长,选项C错误,选项D正确;根据tθ=T2π知,a在磁场中飞行的时间比b的长,选项B错误.答案:D7.如图所示,在x轴上方存在垂直于纸面向里的匀强磁场,磁感应强度为B.在xOy平面内,从原点O处沿与x轴正方向成θ角(0<θ<π)以速率v发射一个带正电的粒子(重力不计).则下列说法中正确的是( )A .若v 一定,θ越大,则粒子在磁场中运动的时间越短B .若v 一定,θ越大,则粒子在离开磁场的位置距O 点越远C .若θ一定,v 越大,则粒子在磁场中运动的角速度越大D .若θ一定,v 越大,则粒子在磁场中运动的时间越短解析:粒子运动周期T =2πm qB ,当v 一定时,粒子在磁场中运动的时间t =2π-2θ2πT =π-θπT ,θ越大,则粒子在磁场中运动的时间越短,故选项A 对;当v 一定时,由r =mvBq 知,r 一定;当θ从0变至π2的过程中,θ越大,粒子离开磁场的位置距O 点越远;当θ大于π2时,θ越大,粒子离开磁场的位置距O 点越近,故选项B 错;当θ一定时,粒子在磁场中运动时间t =2π-2θ2πT =π-θπT ,ω=2πT.由于t 、ω均与v 无关,故选项C 、D 错.答案:A8.如图所示,一个质量为m 、电荷量为+q 的带电粒子,不计重力,在a 点以某一初速度水平向左射入磁场区域Ⅰ,沿曲线abcd 运动,ab 、bc 、cd 都是半径为R 的圆弧.粒子在每段圆弧上运动的时间都为t.规定垂直纸面向外的磁感应强度方向为正,则磁场区域Ⅰ、Ⅱ、Ⅲ三部分的磁感应强度B 随x 变化的关系可能是下图中的( )解析:由左手定则可判断出磁感应强度B 在磁场区域Ⅰ、Ⅱ、Ⅲ内磁场方向分别为向外、向里、向外,在三个区域中均运动14圆周,故t =T 4,由于T =2πm qB ,求得B =πm2qt .只有C 选项正确.答案:C9.如图所示,在屏MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直于纸面向里.P为屏上的一个小孔.PC 与MN 垂直.一群质量为m 、带电荷量为-q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场的方向射入磁场区域.粒子入射方向在与磁场B 垂直的平面内,且散开在与PC 夹角为θ的范围内.则在屏MN 上被粒子打中的区域的长度为( )A.2mv qBB.2mvcos θqBC.2m-sin θqBD.-cos θqB解析:由图可知,沿PC 方向射入磁场中的带负电的粒子打在MN 上的点离P 点最远,为PR =2mv Bq ,沿两边界线射入磁场中的带负电的粒子打在MN 上的点离P 点最近,为PQ =2mv Bq cos θ,故在屏MN 上被粒子打中的区域的长度为:QR =PR -PQ =-cos θqB,选项D 正确.答案:D10.如图所示,边界OA 与OC 之间分布有垂直纸面向里的匀强磁场,边界OA 上有一粒子源S.某一时刻,从S 平行于纸面向各个方向发射出大量带正电的同种粒子(不计粒子的重力及粒子间的相互作用),所有粒子的初速度大小相同,经过一段时间有大量粒子从边界OC 射出磁场.已知∠AOC =60°,从边界OC 射出的粒子在磁场中运动的最短时间等于T6(T 为粒子在磁场中运动的周期),则从边界OC 射出的粒子在磁场中运动的最长时间为( )A.T 3B.T 2C.2T 3D.5T 6解析:由左手定则可知,粒子在磁场中做逆时针方向的圆周运动.由于粒子速度大小都相同,故轨迹弧长越小,粒子在磁场中运动时间就越短;而弧长越小,所对弦长也越短,所以从S 点作OC 的垂线SD ,则SD 为最短弦,可知粒子从D 点射出时运行时间最短,如图,根据最短时间为T6,可知△O′SD 为等边三角形,粒子圆周运动半径R =SD ,过S 点作OA 垂线交OC 于E 点,由几何关系可知SE =2SD ,SE 为圆弧轨迹的直径,所以从E 点射出,对应弦最长,运行时间最长,且t =T2,故B 项正确.答案:B二、非选择题(本大题共2小题,共30分,解答时应写出必要的文字说明、方程式和演算步骤,有数值计算的要注明单位)11.(15分)如图所示,虚线圆所围区域内有方向垂直纸面向里的匀强磁场,磁感应强度为B.一束电子沿圆形区域的直径方向以速度v 射入磁场,电子束经过磁场区后,其运动方向与原入射方向成θ角.设电子质量为m ,电荷量为e ,不计电子之间相互作用力及所受的重力,求:(1)电子在磁场中运动轨迹的半径R ; (2)电子在磁场中运动的时间t ; (3)圆形磁场区域的半径r.解析:(1)由牛顿第二定律和洛伦兹力公式得 evB =mv 2R 解得R =mv eB.(2)设电子做匀速圆周运动的周期为T , 则T =2πR v =2πm eB由如图所示的几何关系得圆心角α=θ, 所以t =θ2πT =m θeB.(3)由如图所示几何关系可知, tan θ2=rR ,所以r =mv eB tan θ2.答案:(1)mv eB (2)m θeB (3)mv eB tan θ212.(15分)一个质量为m ,带电荷量为+q 的带电粒子(不计重力),以初速度v 0沿y 轴向+y 方向运动,从图中O 点处开始进入一个边界为圆形的匀强磁场中,已知磁场方向垂直于纸面向外,磁感应强度大小为B ,磁场边界半径为r.粒子进入磁场中做匀速圆周运动,已知它做圆周运动的轨道半径比圆形磁场的半径r 大.(1)改变圆形磁场圆心的位置,可改变粒子在磁场中的偏转角度.求粒子在磁场中的最大偏转角(用反三角函数表示).(2)当粒子在磁场中的偏转角最大时,它从磁场中射出后沿直线前进一定能打到x 轴上,求满足此条件的r 的取值范围.解析:(1)粒子进入匀强磁场后做匀速圆周运动,设轨道半径为R ,根据牛顿第二定律得Bqv 0=m v 2R,所以R =mv 0Bq粒子在半径为r 的圆形磁场区域中运动,要想偏转角最大,应使射入点O 、射出点A 与磁场圆心O′在同一条直线上,如图所示粒子在磁场中的最大偏转角为φ=π-2θ=π-2arccos r R =π-2arccos rBqmv 0.(2)要想使粒子打到x 轴上,需要满足的条件是φ>π2,即r>2mv 02Bq. 由题意知r<R故r 的取值范围为2mv 02Bq <r<mv 0Bq. 答案:(1)π-2arccos rBq mv 0(2)2mv 02Bq <r<mv 0Bq。
2025届高三物理一轮复习磁场对运动电荷的作用(53张PPT)
答案 AB
考向4 运动的周期性形成多解带电粒子在两个相邻磁场或电场、磁场相邻的空间内形成周期性的运动而形成多解。
【典例11】 (多选)(2022·湖北卷)在如图所示的平面内,分界线SP将宽度为L的矩形区域分成两部分,一部分充满方向垂直于纸面向外的匀强磁场,另一部分充满方向垂直于纸面向里的匀强磁场,磁感应强度大小均为B,SP与磁场左右边界垂直。离子源从S处射入速度大小不同的正离子,
解析 电子在磁场中都做匀速圆周运动,根据题意画出电子的运动轨迹,如图所示,电子1垂直射进磁场,从b点离开,则运动了半个圆周,ab即为直径,c点为圆心,电子2以相同速率垂直磁场方向射入磁场,经t2时间从a、b
答案 A
考向2 带电粒子在平行边界磁场中的运动平行边界(存在临界条件,如图所示)。
【典例4】 如图所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直射入匀强磁场,入射方向与CD边界间夹角为θ。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求:(1)电子的速率v0至少多大?(2)若θ角可取任意值,v0的最小值是多少?
答案 C
1.洛伦兹力的特点:洛伦兹力不改变带电粒子速度的_______,只改变带电粒子速度的方向。2.粒子的运动性质。(1)若v0∥B,则粒子不受洛伦兹力,在磁场中做_____________。(2)若v0⊥B,则带电粒子在匀强磁场中做_____________。
考点2 带电粒子在匀强磁场中的匀速圆周运动
平面
0
qvB
(1)带电粒子在磁场中的速度不为零,一定受到洛伦兹力作用( )(2)洛伦兹力对运动电荷不做功( )(3)同一带电粒子在A处受到的洛伦兹力大于在B处受到的洛伦兹力,则A处的磁场一定大于B处的磁场( )
高三物理一轮复习 磁场课件
磁场对通电导线的作用力
安培力
安培力是指磁场对通电导线的吸引力或排斥力,其大小与电流强度、导线长度和磁场强度有 关。
安培力的方向可以用左手定则来判断:伸开左手,让大拇指与其余四指垂直,并处于同一平 面内,将左手放入磁场中,让磁感线穿过手心,四指指向电流方向,大拇指所指的方向即为 安培力的方向。
安培力在生产生活中有广泛的应用,如电动机、发电机等。
描述磁场强弱和方向的物 理量,用符号B表示。
定义
在磁场中垂直于磁场方向 的通电导线中受到的安培 力与电流和导线长度乘积 的比值。
单位
特斯拉(T),国际单位 制中的基本单位。
磁感线的概念
STEP 01
磁感线
STEP 02
特点
描述磁场分布的闭合曲线, 曲线上每一点的切线方向 表示该点的磁场方向。
STEP 03
带电粒子在磁场中的速度选择器
速度选择器是一种特殊装置, 能够将速度为某一特定值的带 电粒子筛选出来。
在速度选择器中,电场和磁场 共同作用,使得只有满足$qE = qvB$的带数器等领域有广泛应用。
磁感应强度与磁感线
磁感应强度的定义
磁感应强度
详细描述
磁场是一种传递磁力的媒介,它对处于其中的磁体或电流产生力的作用。这种 力是相互作用的,即磁场会对处于其中的每一个磁体或电流产生力的作用,而 每一个磁体或电流也会对磁场产生反作用力。
磁场的方向
总结词
磁场的方向是指磁场中某一点处磁力线的指向,它可以用小磁针的北极指向来表示。
详细描述
磁场中某一点处的磁场方向是指该点处磁力线的指向,即在该点处放置一个小磁针时,小磁针北极所指的方向就 是该点处磁场的方向。由于磁场是一种矢量场,因此不同点处的磁场方向可能是不同的。在三维空间中,磁场方 向可以用三维向量来表示。
高考物理一轮总复习精品课件 第10章 磁场 第2讲 磁场对运动电荷的作用
A.T1=T2
B.v1=v2
C.a1>a2
D.t1<t2
答案 ACD
)
解析 对于 1、2
两个质子,其 相同且在同一匀强磁场中运动,因
则 T1=T2,A 正确;根据
2π
T= 得
2π
a= v,则
2
qvB=m 可得
r= ,且 r1>r2,则 v1>v2,B
如图所示,由几何关系得
1
lDQ=lDF=2lCD=L,故粒子从
DE 边飞出的区域长度为
L,C 正确;粒子与 CE 相切飞出时在磁场中运动的时间最长,由几何关系可得
∠FDC=60°,粒子在磁场中运动的最长时间为
60°
2π
t=
×
360°
=
π
,D
3
正确。
4.(2021广东卷)某种花瓣形电子
加速器简化示意图如图所示。
2π
联立解得
(2π-2)
t= 。
0 2
qv0B=m
考点二
带电粒子在有界磁场中的临界极值问题(名师破题)
1.直线边界(进出磁场具有对称性,如图甲所示)。
甲
2.平行边界(存在临界条件,如图乙所示)。
乙
3.圆形边界(沿径向射入必沿径向射出,如图丙所示)。
丙
典例1.(2020全国Ⅱ卷)如图所示,在0≤x≤h,-∞<y<+∞区域中存在方向垂直
度v做
匀速圆周
运动。
3.半径和周期公式(v⊥B)
2
基本公式:qvB=m
⇨导出公式:半径
R= ,周期
2025人教版高考物理一轮复习讲义-第十一章 第2课时 磁场对运动电荷(带电体)的作用
考点一 洛伦兹力
4.洛伦兹力与安培力的联系及区别 (1)_安__培__力__是_洛__伦__兹__力__的宏观表现,二者性质相同,都是磁场力。 (2)_安__培__力__可以做功,而_洛__伦__兹__力__对运动电荷不做功。 注意:洛伦兹力的分力可能对运动电荷做功。
2025人教版高考物理一轮复习讲义
第十一章
磁场
第 2
磁场对运动电荷(带电体)的作用
课
时
目标 1.掌握洛伦兹力的大小和方向的判断方法。2.会分析洛伦兹力作用下带电体的运动。3.学会分析处理带电粒子 要求 在匀强磁场中的圆周运动问题,能够确定粒子运动的圆心、半径、运动时间。
内
考点一 洛伦兹力
容
索
考点二 洛伦兹力作用下带电体的运动
qB 则在该点沿洛伦兹力方向距离为r的位置为圆心,如图丙。
考点三 带电粒子在匀强磁场中的运动
(2)半径的计算方法 方法一 由 R=mqBv求得。 方法二 连半径构出三角形,由数学方法解三角形 或勾股定理求得。 如图甲,由 R=sinL θ或 R2=L2+(R-d)2 求得
考点三 带电粒子在匀强磁场中的运动
√C.小球在ab中点受到的洛伦兹力为零
D.小球受到洛伦兹力时,洛伦兹力方向始终竖直向上
考点一 洛伦兹力
根据安培定则可知,直导线产生的磁场的磁感线如图 中虚线所示,洛伦兹力始终与小球运动方向垂直,故 不做功,小球速率不变,A错误; 当运动到ab中点时,磁感线与速度方向平行,所受洛 伦兹力为零,自a端到中点洛伦兹力竖直向下,中点到b端洛伦兹力竖 直向上,B、D错误,C正确。
2021高考人教版物理一轮复习讲义:第9章第2讲磁场对运动电荷的作用(含解析)
第2讲磁场对运动电荷的作用主干梳理对点激活知识点1 洛伦兹力、洛伦兹力的方向 I洛伦兹力公式 n 1.定义:_01运动电荷在磁场中所受的力称为洛伦兹力。
2. 方向(1) 判定方法:应用左手定则,注意四指应指向正电荷运动方向或负电荷运动 的反方向。
⑵方向特点:F 丄B , F 丄V 。
即F 垂直于02 B 和 v 所决定的平面。
(注意B 和 v 可以有任意夹角)。
由于F 始终03垂直于v 的方向,故洛伦兹力永不做功。
3. 洛伦兹力的大小:F = qvBsin B其中B 为电荷运动方向与磁场方向之间的夹角。
⑴当电荷运动方向与磁场方向垂直时, F = qvB 。
(2) 当电荷运动方向与磁场方向平行时,F = 0。
(3) 当电荷在磁场中静止时,F = 0。
知识点2 带电粒子在匀强磁场中的运动 n1. 两种特殊运动⑴若v // B ,带电粒子以入射速度v 做丽匀谏直线运动(2)若v 丄B ,带电粒子在垂直于磁感线的平面内,以入射速度 周运动。
2. 基本公式向心力公式: qvB = m* = m 罕2「。
3. 导出公式注意:T 、f 和①的大小与轨道半径r 和运行速率v 无关,只与磁场的[03 磁感v 做l~02匀速圆(1)轨道半径:mvBq (2)周期: 2 n r qB应强度B和粒子的「04比荷m有关。
比荷m相同的带电粒子,在同样的匀强磁场中----- m mT、f、3相同。
「双基夯实一堵点疏通1 .带电粒子在磁场中运动时,一定会受到磁场力的作用。
()2. 洛伦兹力的方向垂直于B和v决定的平面,洛伦兹力对带电粒子永远不做功。
()2 n3. 根据公式T=晋,说明带电粒子在匀强磁场中的运动周期T与v成反比。
()4. 用左手定则判断洛伦兹力方向时,四指指向电荷的运动方向。
()5. 带电粒子在磁场中运动时的轨道半径与粒子的比荷成正比。
()6. 当带电粒子进入匀强磁场时,若v与B夹角为锐角,带电粒子的轨迹为螺旋线。
高三一轮复习学案-磁场对运动电荷的作用
1磁场对运动电荷的作用一、洛仑兹力——磁场对运动电荷的作用力洛仑兹力的大小:如图,当v 与B 之间夹角为θ时,F =__________________当v 与B 平行时,F =____________当v 与B 垂直时,F =____________洛仑兹力的方向:左手定则F 始终垂直于v ,洛仑兹力永不_________ 练习:下列各种情况中,匀强磁场的磁感应强度均为B ,带电粒子的速率均为v ,带电荷量均为q 。
试求出各带电粒子所受洛仑兹力的大小,并指出其方向二、带电粒子在匀强磁场中的运动当v 与B 平行时,粒子做____________运动当v 与B 垂直时,粒子做____________运动,由洛仑兹力提供________qvB =半径公式:R =周期公式:T =练习:两个粒子在匀强磁场中某时刻的速度和轨迹如图所示,则1.两粒子各带什么电?2.若两粒子种类相同,比较二者速度和周期大小。
3.若两粒子速度和电荷量相同,比较二者质量和周期大小。
三、部分圆轨迹的几何特征 mv 21.速度偏向角、轨迹对应圆心角2.速度偏向角、位移与初(末)速度间夹角3.确定圆心的四条直线四、由轨迹的初末状态求解轨迹信息核心任务:求_______和_________基本思路:四线找圆心,圆规作轨迹,勾股求半径,三角算角度练习:某粒子在匀强磁场中只受洛仑兹力作用,在下列情景中找圆心、作轨迹、求半径并计算轨迹对应的圆心角。
1.粒子初位置在A点,速度水平,末位置在B点2.粒子初位置在A点,速度竖直,末位置在虚线上某处,速度向顺时针偏转了60度3.粒子初位置在A点,速度方向如图,末位置恰好与虚线相切4.粒子半径如图,初位置在虚线上某处,速度与虚线垂直,末位置恰好和实线相切5.粒子半径如图,初位置在A点,末位置恰好和实线相切6.粒子半径如图,轨迹的某条直径一端在A点,另一端在虚线上某点Bar rAr θ。
高考物理总复习第八章 第2讲 磁场对运动电荷的作用
,与速率无关,A、B两项均错.运动方向与磁场方向
垂直,C项错,D项对.
答案
D
有志者事竟成
15
高考复习· 物理
4.(2012· 广东)质量和电量都相等的带电粒子M和N,以 不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹如 图8-2-2中虚线所示,下列表述正确的是( )
图8-2-2
有志者事竟成
16
解析
根据洛伦兹力的特点,洛伦兹力对带电粒子不做
功,A项错误,B项对.根据F=qvB可知,大小与速度有 关.洛伦兹力的效果就是改变物体的运动方向,不改变速度 的大小.
答案
B
有志者事竟成
10
高考复习· 物理
2.(多选题)图8-2-1对应的四种情况中,对各粒子所 受洛伦兹力的方向的描述,其中正确的是( )
有志者事竟成
8
高考复习· 物理
考 点 自 测
考点一 洛伦兹力
1.带电粒子垂直匀强磁场方向运动时,会受到洛伦兹力的 作用.下列表述正确的是( )
A.洛伦兹力对带电粒子做功 B.洛伦兹力不改变带电粒子的动能 C.洛伦兹力的大小与速度无关 D.洛伦兹力不改变带电粒子的速度方向
有志者事竟成
9
高考复习· 物理
有志者事竟成
19
高考复习· 物理
图8-2-3 1 A. Δt 2 1 C. Δt 3 B.2Δt D.3Δt
有志者事竟成
20
高考复习· 物理
解析 粒子以速度v进入磁场时轨迹如答图8-2-1①所 π θ1 示.由几何关系可知θ1= ,r1= 3R,t1= T. 3 2π v mv r1 3 粒子以 进入磁场,由r= qB 可知r2= = R, 3 3 3 v 粒子以速度 进入磁场中轨迹如答图8-2-1②所示.由 3 2π θ2 几何关系可知θ2= ,t2= T,由以上各式可得t2=2t1= 3 2π 2Δt.
高考一轮复习:8.2《磁场对运动电荷的作用》ppt课件
本题只C.有不选带项电A 正确。
关闭
A D.可能带正电,也可能带负电
考点一
考点二
考点三
解析 答案
第八章
第二节 磁场对运动电荷的作用
-1144-
考点二 涉及洛伦兹力的一般力学问题
涉及洛伦兹力的一般力学问题(尤其是带电粒子在有束缚条件的环境 下的运动问题)一般受力复杂、运动过程多变,在高考试题中通常以选择或 计算题形式呈现,能较好地考查学生的综合分析能力。对于带电粒子在复合 场中有约束情况下的运动,要具体问题具体分析,切忌出现想当然的低级错 误。
8
基础自测
1234
4.(2014·浙江温州联考)匀强磁场中的一个带电粒子,仅在磁场力作用下做 匀速圆周运动。将该粒子的运动等效为环形电流,那么此电流值( )
A.与粒子电荷量成正比 B.与粒子速率成正比 C.与粒子质量成正比 D.与磁感应强度成正比
关闭
D 答案
第二节 磁场对运动电荷的作用 第八章
9-9-
(5)带电粒子在匀强磁场中完成一段圆弧所引起的偏向角是该段圆弧所对
应的圆心角的 2 倍。( )
关闭
(6)由(于1)×安培带力电能粒对子导在磁体场做中功,当,所v以≠0洛且伦v兹与力B也不能平对行运时才动受电洛荷伦做兹功力。作(用。 )
(2)× 只有带电粒子的运动方向与磁场方向垂直时才可能做圆周运动。
-1133-
拓展训练 1(单选)如图为云室中某粒子穿过铅板 P 前
后的运动轨迹,室中匀强磁场的方向与轨迹所在平面垂直(图中垂直于纸面 向里),由此可知此粒子( )
关闭
带 半电 径粒 应AB..子 变一一穿 小定定过,由带带铅题正负板图电电有可能知量带损电失粒,其 子速 应度 从减 下小 往上,由运R动=������。���������������再���可由知左,带手电定粒则子判做定圆粒周子运带动正的电,
磁场对运动电荷的作用
带电粒子在磁场中运动1.如图所示的区域共有六处开口,各相邻开口之间的距离都相等,匀强磁场垂直于纸面,不同速度的粒子从开口a 进入该区域,可能从b 、c 、d 、e 、f 五个开口离开,粒子就如同进入“迷宫”一样,可以称作“粒子迷宫”。
以下说法正确的是()A .从d 口离开的粒子不带电B .从e 、f 口离开的粒子带有异种电荷C .从b 、c 口离开的粒子运动时间相等D .从c 口离开的粒子速度是从b 口离开的粒子速度的2倍2.如图所示,用洛伦兹力演示仪研究带电粒子在匀强磁场中的运动,以虚线表示电极K 释放出来的电子束的径迹。
不加磁场,电子经加速后沿直线运动,如图甲所示;加磁场后电子束的径迹,如图乙所示;再调节演示仪可得到图丙所示的电子束径迹。
下列说法正确的是()A .施加的磁场方向为垂直纸面向里B .在图乙基础上仅提高电子的加速电压,可得到图丙所示电子束径迹C .在图乙基础上仅增大磁感应强度,可得到图丙所示电子束径迹D .图乙与图丙中电子运动一周的时间不相等3.如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B和B 、方向均垂直于纸面向外的匀强磁场。
一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限。
粒子在磁场中运动的时间为()A .5π6m qBB .7π6m qB C .11π6mqBD .13π6m qB4.如图所示,一个电子沿AO 方向垂直射入匀强磁场中,磁场只限于半径为R 的圆内.若电子速度为v ,质量为m ,带电量为q ,磁感应强度为B ,电子在磁场中偏转后从C 点射出,120AOC ∠=︒,下面结论正确的是()A .电子经过磁场的时间为2 3mBqπB .电子经过磁场的时间为2m BqπC .磁场半径R 为 mv BqD .AC 间的距离为 mv qB5.地磁场能有效抵御宇宙射线的侵入赤道剖面外地磁场可简化为包围地球一定厚度的匀强磁场,方向垂直该剖面,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三物理《磁场对运动电荷的作用》知识梳理:1.洛伦兹力:磁场对 的作用力。
2.洛伦兹力的方向(1)判断方法:左手定则⎩⎪⎨⎪⎧磁感线垂直穿过手心四指指向正电荷运动的方向拇指指向正电荷所受洛伦兹力的方向(2)方向特点:F ⊥B ,F ⊥v 。
即F 垂直于 决定的平面。
(注意:B 和v 不一定垂直)。
3.洛伦兹力的大小:F = ,θ为v 与B 的夹角,如图所示。
(1)v ∥B 时,θ=0°或180°,洛伦兹力F = 。
(2)v ⊥B 时,θ=90°,洛伦兹力F = 。
(3)v =0时,洛伦兹力F = 。
4、对洛伦兹力的理解(1).洛伦兹力和安培力的关系洛伦兹力是单个运动电荷在磁场中受到的力,而安培力是导体中所有定向移动的自由电荷受到的洛伦兹力的宏观表现,洛伦兹力对运动电荷永不做功,而安培力对通电导线,可做正功,可做负功,也可不做功。
(2).洛伦兹力与电场力的比较洛伦兹力电场力性质 磁场对在其中运动电荷的作用力电场对放入其中电荷的作用力 产生条件 v ≠0且v 不与B 平行 电场中的电荷一定受到电场力作用大小F =qvB (v ⊥B )F =qE力方向与场方向的关系一定是F ⊥B ,F ⊥v ,与电荷电性无关正电荷与电场方向相同,负电荷与电场方向相反做功情况 任何情况下都不做功 可能做正功、负功,也可能不做功力F 为零时场的情况F 为零,B 不一定为零 F 为零,E 一定为零 作用效果只改变电荷运动的速度方向,不改变速度大小既可以改变电荷运动的速度大小,也可以改变电荷运动的方向例1.以下说法正确的是( )A.电荷处于电场中一定受到电场力 B.运动电荷在磁场中一定受到洛伦兹力C.洛伦兹力对运动电荷一定不做功 D.洛伦兹力可以改变运动电荷的速度方向和速度大小例2.如图所示,在通电直导线下方,有一电子沿平行导线方向以速度v向左运动,则关于电子的运动轨迹和运动半径的判断正确的是( )A.将沿轨迹Ⅰ运动,半径越来越小B.将沿轨迹Ⅰ运动,半径越来越大C.将沿轨迹Ⅱ运动,半径越来越小D.将沿轨迹Ⅱ运动,半径越来越大二、带电粒子在匀强磁场中的运动1、若v∥B,带电粒子不受洛伦兹力,在匀强磁场中做运动。
2、若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内做运动。
①向心力由洛伦兹力提供:qvB=;②轨道半径公式:R=③周期:T==;(周期T与速度v、轨道半径R无关)例3.如图一束电子流沿管的轴线进入螺线管,忽略重力,电子在管内的运动应该是( )A.当从a端通入电流时,电子做匀加速直线运动B.当从b端通入电流时,电子做匀加速直线运动C.不管从哪端通入电流,电子都做匀速直线运动D.不管从哪端通入电流,电子都做匀速圆周运动3、带电粒子在有理想边界的匀强磁场中的运动带电粒子在有理想边界的匀强磁场中做匀速圆周运动,其运动规律是洛伦兹力做向心力,解题的关键是画粒子运动的示意图,确定圆心、半径及圆心角。
(1)圆心的确定:①已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图8-2-2甲所示,图中P为入射点,M为出射点)。
②已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图乙所示,P为入射点,M为出射点)。
(2)半径的确定:用几何知识求出半径大小。
(3)运动时间的确定:①粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为α时,其运动时间为:t=α2πT(或t=α360°T);②速度为v的粒子在磁场中运动的弧长为s时,其运动时间为:t=s v。
(4)常见的几种情形:①直线边界:进出磁场具有对称性,如图8-2-3所示。
②平行边界:存在临界条件,如图8-2-4所示。
③圆形边界:沿径向射入必沿径向射出,如右图所示。
(5)三步法解题:①画轨迹:即确定圆心,用几何方法求半径并画出运动轨迹。
②找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角、入射方向、出射方向相联系,在磁场中运动的时间与周期相联系。
③用规律:即牛顿第二定律和圆周运动的规律,特别是周期公式和半径公式。
4、带电粒子在匀强磁场中运动的多解问题(1)带电粒子电性不确定形成多解:受洛伦兹力作用的带电粒子,可能带正电,也可能带负电,在相同的初速度的条件下,正、负粒子在磁场中运动的轨迹不同,形成多解。
如图8-2-6所示,带电粒子以速度v垂直进入匀强磁场,如果带正电,其轨迹为a;如果带负电,其轨迹为b。
(2)磁场方向不确定形成多解:有些题目只告诉了磁感应强度的大小,而未具体指出磁感应强度的方向,此时必须考虑因磁感应强度方向不确定而形成的多解。
如图8-2-7所示,带正电粒子以速率v垂直进入匀强磁场,图8-2-7如果B 垂直于纸面向里,其轨迹为a;如果B垂直于纸面向外,其轨迹为b。
(3)临界状态不唯一形成多解:带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,因此,它可能穿过去了,也可能转过180°从入射界面这边反向飞出,如图8-2-8所示,于是形成了多解。
图8-2-8 (4)运动的周期性形成多解:带电粒子在磁场或部分是电场、部分是磁场的空间运动时,运动往往具有周期性,从而形成多解,如图8-2-9所示。
图8-2-9 图8-2-13题型一:带电粒子在单边界磁场中的运动例4、如图8-2-13所示,在x轴上方存在着垂直于纸面向里、磁感应强度为B的匀强磁场,一个不计重力的带电粒子从坐标原点O处以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x轴正方向成120°角,若粒子穿过y轴正半轴后在磁场中到x轴的最大距离为a,则该粒子的比荷和所带电荷的电性分别是( )A.3v2aB,正电荷 B.v2aB,正电荷 C.3v2aB,负电荷D.v2aB,负电荷题型二:带电粒子在双边界磁场中的运动例5、如图所示,一束电子(电量为e)以速度v垂直射入磁感强度为B,宽度为d的匀强磁场中,穿透磁场时速度方向与电子原来入射方向的夹角是30°,则电子的质量是,穿透磁场的时间是。
例6:一个质量为m电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。
求匀强磁场的磁感应强度B和射出点的坐标。
yxovvaO/例7.长为L的水平极板间,有垂直纸面向内的匀强磁场,如图所示,磁感应强度为B,板间距离也为L,板不带电,现有质量为m、电荷量为q的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v水平射入磁场,欲使粒子不打在极板上,可采用的办法是( ) A.使粒子的速度v<BqL/4mB.使粒子的速度v>5BqL/4mC.使粒子的速度v>BqL/mD.使粒子的速度BqL/4m<v<5BqL/4m题型三:带电粒子在圆边界磁场中的运动例8、如图所示,虚线圆所围区域内有方向垂直纸面向里的匀强磁场,磁感应强度为B。
一束电子沿圆形区域的直径方向以速度v射入磁场,电子束经过磁场区后,其运动方向与原入射方向成θ角。
设电子质量为m,电荷量为e,不计电子之间相互作用力及所受的重力,求:(1)电子在磁场中运动轨迹的半径R;(2)电子在磁场中运动的时间t;(3)圆形磁场区域的半径r。
题型四:带电粒子在匀强磁场中临界和极值问题例8、如图所示,在xOy坐标系的第一象限内有匀强磁场,磁场方向垂直纸面向里,磁场区域上边界刚好与直线y=2a重合,磁感应强度为B.一个带负电的粒子在坐标为(x,0)的A点以某一速度进入磁场区域,进入磁场时的速度方向与x轴负方向的夹角为30°,粒子的质量为m,电荷量为q.不计粒子的重力.(1)若粒子离开磁场时的位置在C点,其坐标为(x,2a),求粒子运动的速度大小v与x的对应条件;(2)求粒子进入磁场的速度满足什么条件时可使离子在磁场区域运动的时间最长,并求出最长时间是多少.高三物理《磁场对运动电荷的作用》针对练习1、带电荷量为+q 的粒子在匀强磁场中运动,下面说法中正确的是( )A .只要速度大小相同,所受洛伦兹力就相同B .如果把+q 改为-q ,且速度反向大小不变,则洛伦兹力的大小和方向均不变C .洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直D .粒子只受到洛伦兹力作用时,运动的速度、动能均不变2. 如图所示,MN 为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出)。
一带电粒子从紧贴铝板上表面的P 点垂直于铝板向上射出,从Q 点穿越铝板后到达PQ 的中点O 。
已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变。
不计重力,铝板上方和下方的磁感应强度大小之比为( )A .2 B. 2 C .1 D.223.如图所示,匀强磁场中有一个电荷量为q 的正离子,自a 点沿半圆轨道运动,当它运动到b 点时,突然吸收了附近若干电子,接着沿另一半圆轨道运动到c 点,已知a 、b 、c 在同一直线上,且ac =12ab ,电子的电荷量为e ,电子质量可忽略不计,则该离子吸收的电子个数为( ) A.3q 2e B.q e C.2q 3e D.q 3e4.如图所示,三个速度大小不同的同种带电粒子,沿同一方向从图中长方形区域的匀强磁场上边缘射入,当它们从下边缘飞出时对入射方向的偏角分别为90°、60°、30°,则它们在磁场中运动的时间之比为( )A .1∶1∶1B .1∶2∶3C .3∶2∶1D .1∶2∶ 35、如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角.现将带电粒子的速度变为v3,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为( ) A.12Δt B .2ΔtC.13Δt D .3Δt6、如图,半径为R 的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B ,方向垂直于纸面向外.一电荷量为q (q >0)、质量为m 的粒子沿平行于直径ab 的方向射入磁场区域,射入点与ab 的距离为R2,已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)( ) A.qBR 2mB.qBR mC.3qBR 2mD.2qBR m7.如图8所示,O 点有一粒子源,在某时刻发射大量质量为m 、电荷量为q 的带正电的粒子,它们的速度大小相等、速度方向均在xOy 平面内.在直线x =a 与x =2a 之间存在垂直于xOy 平面向外的磁感应强度为B 的匀强磁场,与y 轴正方向成60°角发射的粒子恰好垂直于磁场右边界射出.不计粒子的重力和粒子间的相互作用力.关于这些粒子的运动,下列说法正确的是( ). A .粒子的速度大小为2aBq mB .粒子的速度大小为aBqmC .与y 轴正方向成120°角射出的粒子在磁场中运动的时间最长D .与y 轴正方向成90°角射出的粒子在磁场中运动的时间最长8、一足够长的矩形区域abcd 内充满磁感应强度为B ,方向垂直纸面向里的匀强磁场,矩形区域的左边界ad 宽为L ,现从ad 中点O 垂直于磁场射入一带电粒子,速度大小为v 0方向与ad 边夹角为30°,如图8-2-12所示。