量子力学教程Ch33
量子力学教程-第四章PPT课件

C (p ,t)* C (p ,t) d p d( p p p )
C (p,t) p*(x) (x,t)dx
量子力学
C(p,t)*C(p,t)dp
.
3
C(p,t) 物理意义
|Ψ(x,t)| 2d x 是在Ψ(x,t)所描写的状态中,测量粒子的 位置所得结果在 x → x + d x 范围内的几率。
(x,t)
m
am(t)um(x)
(x,t) bm(t)um(x)
m
b m ( t) u m (x ) F ˆ(x , i x ) a m ( t) u m (x )
m
m
两边左乘 u*n(x) 并对 x 积分
b m ( t )u n * u m ( x ) d x [u n * F ˆ ( x , i x ) u m ( x ) d ] a m ( t x ) Q表象的
波函数
Q的本征函数u1(x), u2(x), ..., un(x), ... 是 Q表象的基本矢量简称基矢。这相当于直
角坐标系中的单位矢量i,j,k.
a 1 ( t )
a 2(t)
a n(t)
量子力学
是态矢量Ψ在Q表象中沿各基矢方向上 的“分量”。正如矢量A沿i,j,k 三个方 向的分量是(Ax, Ay, Az)一样。Q表 象的基矢有无限多个,所以态矢量所 在的空间是一个无限维的抽象的函数 空间,称为”Hilbert空间”。
b1(t) F11 b2(t) F21
F12 F22
F1m F2m
a1(t) a2(t)
bn(t) Fn1
Fn2
Fnm
am(t)
用F表示这个矩阵,用 Φ表示左边的列矩阵, 用Ψ表示右边的列矩阵
北大《量子力学》chpt3

3.4.续谱本征函数的归一化一、δ函数1. δ函数的定义和表示δ函数不是一般意义下的函数,而是一分布,因对一个处处为0,而仅一点不为零的函数其积分为0。
但习惯上将它看作一函数。
其重要性和意义在积分中体现出来,它可用一函数的极限来定义。
先看不定积分10()00xx x dx x δ-∞>⎧''=⎨<⎩⎰。
这是一阶梯函数,设10()00x U x x >⎧=⎨<⎩,则()()x U x δ'= ,即000()()()()()lim lim lim ()()()2aa a a U x a U x a U x a U x a x F x x a x a aδ+++→→→+--+--===+-- ,所以,当0a +→,()a F x →∞(x )a ,a (∈-)。
但总面积恒为1,即 ()1a F x dx +∞-∞=⎰ (对任意a ),可以证明1()2izxc e U x dz i z π=⎰,所以11()().22izxikx c x U x e dz e dk δππ'===⎰⎰作为函数参量极限δ还可表示为:222222011cos 11sin ()lim lim lim i x x L L Lx Lx x LxLx x x ασασααδππαπ+-→+∞→∞→→-======+ 2.性质:⎩⎨⎧-==∞≠=-⎰+∞∞-dx x x ik x x x x x x )](exp[210)(0000πδ;)'()'(x x x x -=-δδ为偶函数;⎰+∞∞-=-1)'(dx x x δ;⎰⎰+++∞∞-=-=-εεδδ00)()()()()(00x x x f dx xx x f dx xx x f ; )'()'(0)(x x x x x x --⇒==δδ;由傅立叶积分公式得, ⎰⎰+∞∞-+∞∞--=dk x x ik x f dx x f )](exp[)(21)(00π,)'(]/)'(exp[21)'(],/)(exp[21)(00p p p p ix dx p p x x ip dp x x -=-=--==-∴⎰⎰+∞∞-+∞∞-δπδπδ δ函数具有任何级的导数,可以证明()()00()()(1)()n n n x x f x dx f x δ+∞-∞-=-⎰ (注意:微商是对宗量进行的)。
量子力学教程(第二版)周世勋习题解答

(10) (11) (12) (13)
ek1a B sin k 2aC cosk 2aD 0 0
k1ek1a B k 2 cosk 2aC k 2 sin k 2a D 0 0
0 sin k 2aC cosk 2aD ek1a F 0
(x) c (x)
⑤
④乘 ⑤,得 (x) (x) c2 (x) (x) , 可见,c 2 1 ,所以 c 1
当 c 1时, (x) (x) , (x) 具有偶宇称,
当 c 1时, (x) (x) , (x) 具有奇宇称,
18
当势场满足 U (x) U (x) 时,粒子的定态波函数具有确定的宇称。
3
第一章 绪论
1.1.由黑体辐射公式导出维恩位移定律: mT b, b 2.9 10 3 m0C 。
证明:由普朗克黑体辐射公式:
d
8h c33Βιβλιοθήκη 1hd ,
ekT 1
及 c 、 d c d 得
2
8hc 5
1,
hc
ekT 1
令 x hc ,再由 d 0 ,得 .所满足的超越方程为
kT
d
2
(x)
E
2
(x)
②
12
Ⅲ: x a
2 2m
d2 dx2
3
(x)
U
(x)
3
(x)
E
3
(x)
③
由于(1)、(3)方程中,由于U (x) ,要等式成立,必须
1(x) 0 2 (x) 0
即粒子不能运动到势阱以外的地方去。
方程(2)可变为
d
2 2 ( dx2
量子力学教程(第三版)周世勋课后答案详解高等教育出版社.pdf

1量子力学课后习题详解第一章量子理论基础1.1由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λT=b (常量);并近似计算b 的数值,准确到二位有效数字。
解根据普朗克的黑体辐射公式dv ec hvd kThv vv 11833−⋅=πρ,(1)以及c v =λ,(2)λρρd dv v v −=,(3)有,118)()(5−⋅=⋅=⎟⎠⎞⎜⎝⎛−=−=kT hcv v e hc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:201151186'=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−⋅+−−⋅=−kThc kThce kT hc ehc λλλλλπρ⇒115=−⋅+−−kThc ekThc λλ⇒kThc ekThc λλ=−−)1(5如果令x=kThcλ,则上述方程为xe x =−−)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知Km T m ⋅×=−3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e µ<<动),那么ep E µ22=如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0×,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λ3nmm mE c hc E h e e 71.01071.031051.021024.1229662=×=××××===−−µµ在这里,利用了meV hc ⋅×=−61024.1以及eVc e 621051.0×=µ最后,对Ec hc e 22µλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学教程习题答案周世勋

解:
= 1
= 0
*
= 0
同理可证其它的正交归一关系。
*
1
综合两方面,两电子组成体系的波函数应是反对称波函数,即
2
独态:
*
三重态:
单击添加文本具体内容简明扼要地阐述你的观点
单击此处添加副标题
*
解:电子波函数的空间部分满足定态S-方程
*
*
两电子的空间波函数能够组成一个对称波函数和一个反对称波函数,其形式为
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
跟课本P.39(2.7-4)式比较可知,线性谐振子的能量本征值和本征函数为
式中
02
为归一化因子,即
03
求线性谐振子哈密顿量在动量表象中的矩阵元。
01
解:
02
*
第五章 微扰理论
*
运营计划简约通用模板
《量子力学教程》 习题解答
单击此处添加副标题
《量子力学教程》 习题解答说明 为了满足量子力学教学和学生自学的需要,完善精品课程建设,我们编写了周世勋先生编写的《量子力学教程》的课后习题解答。本解答共分七章,其中第六章为选学内容。 第一章 第二章 第三章 第四章 第五章 第六章 第七章
*
01
第一章 绪论
第七章 自旋和全同粒子
03
第三章 力学量的算符表示
单击此处添加正文
05
第五章 微扰理论
单击此处添加正文
02
第二章 波函数和薛定谔方程
单击此处添加正文
04
第四章 态和力学量的表象
单击此处添加正文
量子力学教程量子力学教程

归一化条件表示为
d3 r (r, sz ) 2
sz /2
d3
r(
(r,
/
2),
(r
,
/
2))
(r, / (r,
2) / 2)
d3 r[ r, / 2 2 r, / 2 2 ]
(2)
d3 r 1
(12)
并且
2 x
2 y
2 z
I
(单位算符)
(13)
可以证明 的三个分量反对易
x y y x 0 y z z y 0 z x x z 0
(14)
8.1 电子自旋态与自旋算符
量量子子力力学学教程教程(第二版)
式(11)和(14)联立得
)
1
(6)
a 与β构成电子自选态空间的一组正交完备基.一
般自旋态可以展开为
sz
a b
aa
b
波函数表示为
(7)
(r, sz ) r, / 2a r, / 2 (8)
8.1 电子自旋态与自旋算符
量量子子力力学学教程教程(第二版)
பைடு நூலகம்
x
y
y x
i z
y z z y i x
z x x z i y
式(15)与(13)归纳为
(15)
a a i a
(16)
上式与 概括了Pauli 算符的全部代数性质.
量子力学教程-周世勋-第一章基础

一部分就是电子离开金属表面后的功能。这个能量关系式可以写为:
1 m 2
2
= hυ − w0
为电子脱出金属表面后的运动速度。 w0 为电子脱出金属表面所需要作
其中 m 为电子质量。
的功,称为脱出功。 w0 的大小与材料有关。显然只有当 hυ 大于 w0 时才有光电子产生。 ,光的频率 决定光子的能量,光的强度只决定光子的数目。光子的数目越多,此产生的光电子也越多。这样, 经典理论所不能解释的光电效应便得到了说明。必须注意,自由电子不可能吸收单个光子,这是由 于不能同时满足能量守恒与动量守恒之故。 2 光子 相对论中,质能关系式为:
ρυ dυ = c1υ 3e
− c2
dυ
(1.2-2)
公式(1.2-2)只在辐射频率较高(波长较短)时与实验符合,而在频率较低时与实验不符。 设光波的波点为 k = k1υ + k2 j + k3 k , L1 , L2 , L3 为长方体沿 υ , j , k 方向的三条边,且满足下述 周期性边界条件:
( hυ ) 2 = k
e kT − 2 + e
hυ
1 T2
−
hυ kT
1 (hυ ) 2 2T 2 = k ch hυ − 1 kT
应用洛毕达(L’Hospital,G..F.)法则得:
1 1 2 k T k 1 k lim 2T = lim = lim( ) = ( )2 T →∞ T →∞ hυ hυ hυ T →∞ hυ hυ hυ −1 ch sh ch kT kT kT 1 2 k 1 lim 2T = lim( ) 2 =0 T →0 T → 0 hυ hυ hυ −1 ch ch kT kT
C 以致可将 C 视为无限大时,则用非相对论也就可以了。
量子力学教程共45页

辐射热平衡状态: 处于某一温度T下的腔壁,单位面积所发射 出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡 状态。
实验发现:
热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线无关。
物理与光电工程学工程学院
能 量 密 度
0
5
10
(104 cm)
物理与光电工程学工程学院
内容
No Image
第一节 经典物理学的困难 第二节 光的波粒二象性 第三节 原子结构的波尔理论 第四节 微光粒子的波粒二象性
物理与光电工程学工程学院
§1 经典I物m 理N 学a 的o g 困难e
(一)经典物理学的成功
19世纪末,物理学理论在当时看来已经发展到 相当完善的阶段。主要表现在以下两个方面:
——光的粒子性的进一步证实 (四)波尔(Bohr)的量子论
物理与光电工程学工程学院
No Image
(一)Planck 黑体辐射定律
究竟是什么机制使空腔的原子产生出所观察到 的黑体辐射能量分布,对此问题的研究导致了 量子物理学的诞生。
•1900年12月14日Planck 提出: 如果空腔内的黑体辐射和腔壁原子处
(1) 应用牛顿方程成功的讨论了从天体到地上各种 尺度的力学客体的运动,将其用于分子运动上, 气体分子运动论,取得有益的结果。1897年汤姆 森发现了电子,这个发现表明电子的行为类似于 一个牛顿粒子。
(2) 光的波动性在1803年由杨氏衍射实验有力揭示 出来,麦克斯韦在1864年发现的光和电磁现象之 间的联系把光的波动性置于更加坚实的基础之上。
能
No
量 密
Image
度
•该式称为 Planck
辐射定律
0
Planck 线
《量子力学教程》教学大纲QuantumMechanics

课程编号:适用专业:电子科学与技术专业级学时数:学分数:执笔者:熊新强编写日期:年月一、课程性质和目地量子力学是电子科学与技术专业地一门必修专业基础主干课程.根据电子科学与技术专业地培养目标,设置量子力学地目地要求主要有:使学生了解微观世界矛盾地特殊性和微观粒子地运动规律,初步掌握量子力学地原理和基本方法,为进一步学习与钻研打下必要地基础. 个人收集整理勿做商业用途二、课程内容与考试要求第一章绪论(学时)、内容:)、经典物理学地困难)、光地波粒二象性)、原子结构地波尔理论)、微粒地波粒二象性、考核要求:)、了解量子物理学发展简史、量子力学地研究对象及其特点;)、掌握微观粒子地波粒二象性.第二章波函数和薛定谔方程(学时)、内容:)、波函数地统计解释)、态叠加原理)、薛定谔方程)、粒子流密度和粒子数守恒定律)、定态薛定谔方程)、一维无限深势阱)、线性谐振子)、势垒贯穿、考核要求:)、掌握波函数地物理意义;)、理解薛定谔方程建立地过程;)、掌握薛定谔方程地简单应用.第三章量子力学中地力学量(学时)、内容:)、表示力学量地算符)、动量算符和角动量算符)、电子在库仑场中地运动)、氢原子)、厄米算符本征函数地正交性)、算符与力学量地关系)、算符地对易关系、两力学量同时有确定值地条件、测不准关系)、力学量平均值随时间地变化、守恒定律、考核要求:)、掌握量子力学中地力学量用算符表示地基本原理;)、掌握氢原子问题地求解方法;)、掌握算符间地关系及其物理意义.第四章态和力学量地表象(学时)、内容:)、态地表象)、算符地矩阵表示)、量子力学公式地矩阵表述)、么正变换*)、狄喇克符号*)、线性谐振子与占有数表象、考核要求:)、掌握态、力学量、量子力学中公式在各种表象中地表述方式;)、掌握表象变换理论;)、了解狄拉克符号.第五章微扰理论(学时)、内容:)、非简并定态微扰理论)、简并情况下地微扰理论)、氢原子地一级斯塔克效应*)、变分法*)、氢原子基态(变分法)*)、与时间有关地微扰理论)、跃迁几率)、光地发射和吸收)、选择定则、考核要求:)、掌握定态微扰理论地基本思想和应用条件;)、了解变分法;)、了解含时微扰论及其应用.三、课程教学地基本要求、本课程以课堂讲授为主.在课堂教学中可适当补充难易适中地考研题目作为例题,开阔学生地视野,拓宽知识面.在作业和练习方面,任课教师可以有针对性地增加一定量地附加题,题地难度略高于教材上地习题,以锻炼学生解决实际问题地能力. 个人收集整理勿做商业用途、根据教育发展地趋势和教学改革地要求,在本课程地教学过程中,应逐步引入现代化教学手段. 四、考试方式:闭卷笔试时间为分钟五、试题类型:()概念题()简答题()计算题()证明题六、课程成绩评定办法:本课程考试评分采用百分制评分法.期末考试成绩占课程总成绩地,平时成绩占(其中平时作业情况占,考勤及其它占).个人收集整理勿做商业用途七、建议教材与教学参考书:、《量子力学》教材⑴《量子力学教程》周世勋编高等教育出版社()元书号:个人收集整理勿做商业用途⑵《量子力学教程学习辅导书》张宏宝高等教育出版社() 元书号:个人收集整理勿做商业用途、《量子力学》教学参考书《量子力学基础》,关洪编,高等教育出版社()《量子力学》,曾谨言,科学出版社()《研究生量子力学入学试题选解》,马涛等,福建科技出版社()《量子力学习题精选与剖析》,钱伯初等,科学出版社()。
周世勋《量子力学教程》(第2版)-绪论笔记和课后习题(含考研真题)详解(圣才出品)

子由能量为 Em 的定态跃迁到能量为 En 的定态时所吸收或发射的辐射频率 满足:
四、微粒的波粒二象性
1.玻尔理论所遇到的困难说明探索微观粒子运动规律的迫切性
在光的波粒二象性的启示下,德布罗意提出微粒具有波粒二象性的假设。
微粒的粒子性(E,p)与波动性( , 或,k )的关系满足
E h
p
h
n
k
这公式称为德布罗意公式,或德布罗意关系。
戴维孙-革末的电子衍射实验 该实验充分说明电子具有波动性,验证了德布罗意波的存在。
vd
v
8hv 3 c3
1
hv
dv ,
e kT 1
以及
(1)
v c ,
(2)
v dv d ,
(3)
有
dv d
v
()
d
d
c
v () 2
c
8 hc 1
5
hc
ekT 1
这里的 的物理意义是黑体内波长介于λ与λ+dλ之间的辐射能量密度。
本题关注的是λ取何值时, 取得极大值,因此,就得要求 对λ的一阶导数为零,
的,这样则有
mT
hc xk
把 x 以及三个物理常量代入到上式便知
b mT 2.9 103 m K
这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较
量子力学教程高等教育出版社周世勋课后答案-第三章

第三章 量子力学中的力学量3.1 一维谐振子处在基态t i x e x ωαπαψ2222)(--=,求:(1)势能的平均值2221x U μω=; (2)动能的平均值μ22p T =;(3)动量的几率分布函数。
解:(1) ⎰∞∞--==dx e x x U x 2222222121απαμωμωμωμωαμωαπαπαμω ⋅==⋅=22222241212121221ω 41=(2) ⎰∞∞-==dx x p x p T )(ˆ)(2122*2ψψμμ ⎰∞∞----=dx e dx d e x x22222122221)(21ααμπα⎰∞∞---=dx e x x 22)1(22222αααμπα][222222222⎰⎰∞∞--∞∞---=dx e x dx e x x ααααμπα ]2[23222απααπαμπα⋅-=μωμαμαπαμπα⋅===442222222ω 41= 或 ωωω 414121=-=-=U E T(3)*(,)()()p c p t x x dx ψψ=⎰ 2222x iit px e dx αωαππ∞----∞=⎰22122i i x px t ee dxeαωαππ∞----∞=⎰2222221()222ip p i x t edxe αωαααππ-+-∞--∞=⎰2222221()222p ip ix t e edxeαωαααππ--+∞--∞=⎰222222p i t e ωαααππ--=22222p i t e eωααπ--=动量几率分布函数为 2222()(,)p p c p t eαωαπ-==3.2.氢原子处在基态0/301),,(a r e a r -=πϕθψ,求:(1)r 的平均值;(2)势能re 2-的平均值;(3)最可几半径; (4)动能的平均值;(5)动量的几率分布函数。
解:(1) ϕθθπτϕθψππd rd d r re a d r r r a r sin 1),,(0220/23020⎰⎰⎰⎰∞-==⎰∞-=/233004dr a r a a r04030232!34a a a =⎪⎪⎭⎫⎝⎛=2203020/232020/232202/2322214 4 sin sin 1)()2(000a e a a e drr e a e d drd r e a e d drd r e ra e r e U a r a r a r -=⎪⎪⎭⎫ ⎝⎛-=-=-=-=-=⎰⎰⎰⎰⎰⎰⎰∞-∞-∞-ππππϕθθπϕθθπ(3)电子出现在r+dr 球壳内出现的几率为 ⎰⎰=ππϕθθϕθψω02022 sin )],,([)(d drd r r dr r dr r e a a r 2/23004-=2/23004)(r e a r a r -=ω0/2030)22(4)(a r re r a a dr r d --=ω 令0321 , ,0 0)(a r r r drr d =∞==⇒=,ω 当0)( ,0 21=∞==r r r ω时,为几率最小位置/22203022)482(4)(a r e r a r a a dr r d -+-=ω08)(230220<-=-=e a dr r d a r ω ∴ 0a r =是最可几半径。
曾谨言《量子力学教程》(第3版)笔记和课后习题答案(含考研真题)详解

曾谨⾔《量⼦⼒学教程》(第3版)笔记和课后习题答案(含考研真题)详解曾谨⾔《量⼦⼒学教程》(第3版)笔记和课后习题(含考研真题)详解曾谨⾔主编的《量⼦⼒学教程》是我国⾼校采⽤较多的量⼦⼒学权威教材之⼀。
作为该教材的配套辅导书,本书具有以下⼏个⽅⾯的特点:1.整理名校笔记,浓缩内容精华。
本书每章的复习笔记均对该章的重难点进⾏了整理,并参考了国内名校名师讲授该教材的课堂笔记。
因此,本书的内容⼏乎浓缩了该教材的知识精华。
2.解析课后习题,提供详尽答案。
本书参考⼤量量⼦⼒学相关资料,对曾谨⾔《量⼦⼒学教程》(第3版)的课后习题进⾏了详细的分析和解答。
3.精选考研真题,巩固重难点知识。
为了强化对重要知识点的理解,本书精选了部分名校近年的量⼦⼒学考研真题和相关典型习题,这些学校均以该教材作为考研参考教材。
所选考研真题基本涵盖了每章的考点和难点,特别注重理论联系实际,凸显当前热点。
第1章 波函数与Schrödinger⽅程 1.1 复习笔记 1.2 课后习题详解 1.3 名校考研真题详解第2章 ⼀维势场中的粒⼦ 2.1 复习笔记 2.2 课后习题详解 2.3 名校真题详解第3章 ⼒学量⽤算符表达 3.1 复习笔记 3.2 课后习题详解 3.3 名校真题详解第4章 ⼒学量随时间的演化与对称性 4.1 复习笔记 4.2 课后习题详解 4.3 名校考研真题详解第5章 中⼼⼒场 5.1 复习笔记 5.2 课后习题详解 5.3 名校考研真题详解第6章 电磁场中粒⼦的运动 6.1 复习笔记 6.2 课后习题详解 6.3 名校考研真题详解第7章 量⼦⼒学的矩阵形式与表象变换 7.1 复习笔记 7.2 课后习题详解 7.3 名校考研真题详解第8章 ⾃ 旋 8.1 复习笔记 8.2 课后习题详解 8.3 名校考研真题详解第9章 ⼒学量本征值问题的代数解法 9.1 复习笔记 9.2 课后习题详解 9.3 名校考研真题详解第10章 微扰论 10.1 复习笔记 10.2 课后习题详解 10.3 名校考研真题详解第11章 量⼦跃迁 11.1 复习笔记 11.2 课后习题详解 11.3 名校考研真题详解第12章 其他近似⽅法 12.1 复习笔记 12.2 课后习题详解 12.3 名校考研真题详解。
量子力学课件

量子力学彭斌地址:微固楼211电话:83201475Email: bpeng@引言牛顿力学质点运动牛顿力学(F、p、a)22dtvdmmaF==牛顿力学成功应用到从天体到地上各种尺度的力学客体的运动中。
引言牛顿力学热力学●统计物理Ludwig Boltzmann Willard Gibbs引言牛顿力学热力学●统计力学 电动力学电磁现象——Maxwell方程组¾统一电磁理论¾光─> 电磁波1600170018001900时间t力学电磁学热学物理世界(力、光、电磁、热…)经典热力学(加上统计力学)经典电动力学(Maxwell 方程组)经典力学(牛顿力学)迈克尔逊-莫雷实验黑体辐射动力学理论断言,热和光都是运动的方式。
但现在这一理论的优美性和明晰性却被两朵乌云遮蔽,显得黯然失色了……——开尔文(1900年)引言什么是量子力学?什么是量子力学?——研究微观实物粒子(原子、电子等)运动变化规律的一门科学。
相对论量子力学量子电动力学量子场论高能物理相对论力学经典电动力学V~C量子力学(非相对论)经典力学v<<C微观宏观量子力学的重要应用量子力学的重要应用¾自从量子力学诞生以来,它的发展和应用一直广泛深刻地影响、促进和促发人类物质文明的大飞跃。
¾百年(1901-2002)来总颁发Nobel Prize 97次单就物理奖而言:——直接由量子理论得奖25次——直接由量子理论得奖+与量子理论密切相关而得奖57次¾量子力学成为整个近代物理学的共同理论基础。
在原理和基础方面,仍然存在着至今尚未完全理解、物理学家普遍的困惑的根本性问题。
在原理和基础方面,仍然存在着至今尚未完全理解、物理学家普遍的困惑的根本性问题。
任何能思考量子力学而又没有被搞得头晕目眩的人都没有真正理解量子力学"Anyone who has not been shocked by quantum physics has not understood it." -Niels Bohr 任何能思考量子力学而又没有被搞得头晕目眩的人都没有真正理解量子力学"Anyone who has not been shocked by quantum physics has not understood it."-Niels Bohr 我想我可以相当有把握地说,没有人理解量子力学。
量子力学教程课件

量子力学教程课件1. 简介量子力学是一门研究微观粒子行为的物理学分支,描述了微观世界的基本原理和规律。
本教程课件旨在介绍量子力学的基本概念、数学描述和常见应用,帮助学生深入理解和应用量子力学知识。
2. 量子力学基础2.1 波粒二象性介绍波粒二象性的基本概念,包括波动性和粒子性的相互转化,以及双缝实验等经典实例。
2.2 不确定性原理解释不确定性原理的概念和意义,说明无法同时准确确定粒子的位置和动量的原理。
2.3 波函数和 Schrödinger 方程介绍波函数的概念,以及薛定谔方程的基本形式和求解方法,引导学生理解波函数描述微观粒子的性质和行为。
3. 定态量子力学3.1 定态和定态方程介绍定态的概念,以及定态方程的推导和求解方法,帮助学生理解波函数与能量之间的关系。
3.2 算符和本征值问题解释算符和本征值问题的基本概念,包括算符的作用和本征函数的定义,引导学生掌握本征值问题的求解方法。
3.3 动量和位置算符介绍动量和位置算符的定义和性质,解释它们对应的本征函数和本征值,讨论动量-位置不确定性关系。
4. 哈密顿力学和波函数演化4.1 哈密顿量和状态演化解释哈密顿量的概念和物理意义,讨论波函数演化的基本原理,引导学生理解时间演化和态矢量的变化关系。
4.2 边界条件和量子力学稳定态探讨边界条件对量子力学系统稳定态的影响,以及波函数在无穷深势阱等特定势场中的求解。
4.3 时间演化和量子力学测量介绍时间演化算符的定义和性质,讨论量子力学测量的基本原理和微扰态的提取方法。
5. 特殊系统和量子力学应用5.1 含时量子力学引入含时量子力学的概念,解释含时薛定谔方程的物理意义,介绍准确求解和近似求解的方法。
5.2 简谐振子讨论简谐振子的基本性质和量子化过程,引导学生理解能级和激发态的概念。
5.3 氢原子和多电子系统介绍氢原子的量子力学描述和能级结构,讨论多电子系统的波函数形式和近似求解方法。
5.4 量子力学与量子信息探索量子力学与量子信息科学的联系,简要介绍量子计算、量子通信和量子加密等前沿应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典力学中物质运动的状态总用坐标、动量、角 动量、自旋、动能、势能、转动能等力学量以决定论 的方式描述。而量子力学的第一个惊人之举就是引入
了波函数 这样一个基本概念,以概率的特征全面地
描述了微观粒子的运动状态。但 并不能作为量子力
学中的力学量。于是,又引入了一个重要的基本概 念——算符,用它表示量子力学中的力学量。算符与 波函数作为量子力学的核心概念相辅相成、贯穿始终。
Chap.3 The Dynamical variable in Quantum Mechanism
第三章 量子力学中的力学量
The Dynamical variable in Quantum Mechanism
1
引言
Chap.3 The Dynamical variable in Quantum Mechanism
这部分是量子力学的重要基础理论之一,也是我 们学习中的重点。
2
讲授内容
Chap.3 The Dynamical variable in Quantum Mechanism
3.1 表示力学量的算符
operator for dynamical variable
3.2 动量算符与角动量算符
momentum operator and angular momentum operator
(r,t)d 3r (r,t) 2 d 3r
坐标平均值
r
r(r,t)d 3r
*(r,t)r (r,t)d 3r
7
3.1 表示力学量的算符(续2)
利用 计算出坐标 r 的平均值 C(P, t)
Chap.3 The Dynamical variable in Quantum Mechanism
4
重点掌握内容
Chap.3 The Dynamical variable in Quantum Mechanism
一个基本概念:厄米算符(作用及其基本性质); 两个假设: 力学量用厄米算符表示;
状态用厄米算符本征态表示,力学量 算符的本征值为力学量的可测值 三个力学量计算值:确定值、可能值、平均值; 四个力学量算符的本征态及本征值:坐标算符,动量 算符,角动量算符及能量算符(哈密顿算 符)及它们的本征值。 一个关系:力学量算符间的对易关系(特别是坐标 算符与动量算符的对易关系,角动量算符 对易关系) 三个定理: 共同本征态定理(包括逆定理) 不确定关系 力学量守恒定理
Relationship between Operator and dynamical variable
3.7 算符的对易关系 两力学量同时有确定值的条件 测不准关系
Operator commute The Heisenberg Uncertainty Principle
3.8 力学量随时间的变化 守恒律
若已知粒子在坐标表象中的状态波函数 (r,t) ,
按子照坐波标函(x统, y计, z)解或释rr,的利平用均统值计平均方法,可求得粒
若知道粒子在动量表象中的波函数 C( p,t) ,同理
可求出粒子动量
(Px , Py , Pz )或
P
的平均值。
6
3.1 表示力学量的算符(续1)
Chap.3 The Dynamical variable in Quantum Mechanism
C
(
v P,
t
)
h i
Pe
i h
Pvrv
d
v 3P]d
3rv
对此作一次分部积分
8
3.1 表示力学量的算符(续3)
Chap.3 The Dynamical variable in Quantum Mechanism
The dynamical variable with respect to time The conservation laws
3
学习内容
Chap.3 The Dynamical variable in Quantum Mechanism
1.坐标算符、动量算符的表示形式及它们间的对易关系; 2.角动量算符的表示形式及相关的对易关系;
3.动量算符本征函数的两种归一化:箱归一化和 函数归一
化; 4.角动量算符的共同本征函数及所对应的本征值; 5.正点电荷库仓场中电子运动的定态薛定谔方程及其求解的
基本步骤;定态波函数的表达形式;束缚态的能级及其简 并度;氢原子的能级、光谱线的规律;电子在核外的概率 分布;电离能和里德伯常数; 6.量子力学的力学量与厄米算符的关系;厄米算符的本征函 数组成正交完备集; 7.在什么情况下力学量具有确定值;力学量可能值、概率、 平均值的计算方法,两个力学量同时具有确定值的条件; 8.不确定关系及其应用; 9.守恒量的判断方法。
5
3.1 表示力学量的算符
Chap.3 The Dynamical variable in Quantum Mechanism
1.坐标与动量的平均值及坐标算符与动量算符的引入
由前面的讨论,我们看到,当微观粒子处在某 一状态时,一般而言,其力学量(如坐标、动量和 能量等)不一定具有确定的值,而以一定几率分布 取一系列可能值(当然,可能在某些特殊的状态, 有些力学可取确定值)。
3.3 电子在库仑场中的运动
The motion of electrons in Coulomb field
3.4 氢原子
Hydrogen atom
3.5 厄米算符本征函数的正交性
Orthonormality for eigenfunction of Hermitean operators
3.6 力学量算符与力学量的关系
(1)坐标平均值
设粒子的状态波函数为 (r,t)
或
C ( P, t )
ห้องสมุดไป่ตู้
(rv,
t
)
1
(2 h)3/
2
C
v (P,
t
)e
i h
Pvrv
d
v 3P
v
C(P,
t)
1
(2 h)3/
2
(rv,
t)e
i h
Pvrv
d
3rv
粒子的位置处在:x ~ x dx, y ~ y dy, z ~ z dz 间的几率为
r
C
*
(
P,
t
)rˆC
(
P, t
)d
3
P
rvˆ
ihP
r ih i
Px
r j
Py
v k
Pz
称为坐标算符
Prove: r *(r,t)r (r,t)d3r
1
*(rv,t)rv[
C
(
v P,
t
)e
i h
Pvrv
d
3
v P]d
3rv
(2 h)3/2
1 *(rv,t)[
(2 h)3/2