自动控制原理时域指标

合集下载

自动控制原理课件之第三章 (一) 时域性能指标,时域分析 (5)

自动控制原理课件之第三章 (一) 时域性能指标,时域分析 (5)

故 20lg ( j) 3(dB)
b
系统带宽频率与带宽
一阶和二阶系统,带宽和系统参数具有解析关系。
自动控制原理教案
一阶系统的带宽: 一阶系统: 因为
1 (s) Ts 1
, 按带宽定义
1 1 T 2b
2
( j 0) 1
20lg ( jb ) 20lg
解 因为该系统为I型系统,单位速度输入下的稳态误差为 查表
1 K 9 K
60
0.62 % e
/ 1 2
7.5%
K 2 1 n , 2n n 2 K 11.6 T T 3.5 ts 0.506
n
自动控制原理教案
G ( j ) G ( j ) 1 G ( j ) A( )
1 2
[1 A2 ( ) 2 A( ) cos ( )] 1 1 [ cos ( )]2 sin 2 ( ) A( )
一般情况下,在M (ω)的极大值附近, γ(ω) 变化较小,且使M (ω)为极值的谐振频率ωr常位于ωc附近,即有
( j 0) 1 , 按带宽定义
b 2 2 b 2 (1 2 ) 4 2 2 2 n n
b n (1 2 2 ) (1 2 2 )2 1


1 2
二阶系统的带宽和自然频率成正比。与阻尼比成反比。
自动控制原理教案
带宽指标意义
根据一阶系统和二阶系统上升时间和过渡过程时间与参数的 关系,可以推论:系统的单位阶跃响应的速度和带宽成正比。 对于任意阶次的控制系统,这一关系仍然成立。 当系统的带宽扩大λ 倍,系统的响应速度则加快λ 倍。 对于输入端信号,带宽大,则跟踪控制信号的能力强;而在另一 方面, 抑制输入端高频干扰的能力则弱,因此系统带宽的选择在设计中应折 衷考虑,不能一味求大。

自动控制原理-第3章-时域分析法

自动控制原理-第3章-时域分析法
系统响应达到峰值所需要的时间。
调节时间
系统响应从峰值回到稳态值所需的时间。
振荡频率
系统阻尼振荡的频率,反映系统的动态性能。
系统的阶跃响应与脉冲响应
阶跃响应
系统对阶跃输入信号的响应,反映系 统的动态性能和稳态性能。
脉冲响应
系统对脉冲输入信号的响应,用于衡 量系统的冲激响应能力和动态性能。
03
一阶系统时域分析
01
单位阶跃响应是指系统在单位阶跃函数作为输入时的
输出响应。
计算方法
02 通过将单位阶跃函数作为输入,代入一阶系统的传递
函数中,求出系统的输出。
特点
03
一阶系统的单位阶跃响应是等值振荡的,其最大值为1,
达到最大值的时间为T,且在时间T后逐渐趋于0。
一阶系统的单位脉冲响应
定义
单位脉冲响应是指系统在单 位脉冲函数作为输入时的输
无法揭示系统结构特性
时域分析法主要关注系统的动态行为和响应,难以揭示系统的结构特 性和稳定性。
对初值条件敏感
时域分析法的结果对系统的初值条件较为敏感,初值条件的微小变化 可能导致计算结果的较大偏差。
感谢您的观看
THANKS
计算简便
时域分析法通常采用数值积分方法进 行计算,计算过程相对简单,易于实 现。
时域分析法的缺点
数值稳定性问题
对于某些系统,时域分析法可能存在数值稳定性问题,例如数值积分 方法的误差累积可能导致计算结果失真。
计算量大
对于高阶系统和复杂系统,时域分析法需要进行大量的数值积分计算, 计算量较大,效率较低。
自动控制原理-第3章-时域 分析法
目录
• 时域分析法概述 • 时域分析的基本概念 • 一阶系统时域分析 • 二阶系统时域分析 • 高阶系统时域分析 • 时域分析法的优缺点

自动控制原理时域指标

自动控制原理时域指标

自动控制原理时域指标自动控制原理是一门研究在给定的输入条件下,使系统按照预定要求自动运行的学科。

在自动控制系统中,时域指标是用来描述系统动态响应的性能指标,它们与时间的关系比较直观,可以反映出系统的稳定性、快速性、精确性和抗干扰性等特性。

本文将分别介绍自动控制原理中的三个重要时域指标:稳态误差、动态响应和稳定性。

1.稳态误差稳态误差是描述系统响应与期望输入之间差距的指标,它反映了系统在稳定运行状态下的准确性。

对于系统的静态误差,可以通过稳态增益来衡量,其定义为系统输出与期望输入间的比值。

具体来说,当输入信号为阶跃函数时,稳态误差可以分为四种类型:零误差、有限稳态误差、无限稳态误差和不稳态。

其中,零误差表示系统的输出完全和期望输入一致,有限稳态误差表示系统在稳定状态下存在一定的误差,无限稳态误差表示系统永远无法消除误差,而不稳态则意味着系统无法达到稳定状态。

2.动态响应动态响应是指系统在外部输入变化时的响应情况。

通过分析动态响应,可以揭示系统的快速性、稳定性和阻尼特性等。

常见的动态指标包括:超调量、峰时间、上升时间、调整时间和稳定时间等。

其中,超调量描述了系统过渡过程中最大偏差与期望输入之间的差距,峰时间表示系统过渡至稳态所需的时间,上升时间是指系统从初值到达稳态之间的时间,调整时间则是指系统达到稳态所需的时间。

3.稳定性稳定性是自动控制系统最基本的性质,它决定了系统对干扰和噪声的抵抗能力。

在时域中,稳定性可以通过系统的极点位置来判断。

当系统的所有极点的实部都小于零时,系统是稳定的;当一些极点的实部大于零时,系统则是不稳定的。

此外,稳定性还可以通过系统的阶数来判断,一般而言,阶数越高的系统越不稳定。

在自动控制原理中,时域指标能够直观地描述系统的动态特性,为系统设计和性能评估提供了重要的依据。

通过深入了解稳态误差、动态响应和稳定性等时域指标,可以更好地理解和分析自动控制系统的运行特性,从而进行优化和改进。

自动控制原理第3章

自动控制原理第3章
本方法是分析系统的最早、也是最基本的分析 方法,时域分析法直覌、物理概念清晰。
2
一、典型的输入信号
1、阶跃信号 数学表达式
r(t) A t 0
拉氏变换式
R(s) A s
当A=1时,称为单位阶跃信号!
r(t) 1
2.斜坡信号 数学表达式
r(t)
R(s) 1 s
At t 0 0 t0
3
典型的输入信号
y(tr ) 1
经整理得
tr
n
1
2
25
二阶系统分析
t tp
2、超调量 :
暂态过程中被控量的最大值超过稳态值的百分数。

%
y(t
P ) y y
100
%
峰值时间 t t p
在 t 时t p刻对 求y导t,令其等于零,经整理得
tp 1 2n
将其代入超调量公式得
% e 1 2 100%
r(t)
A 0t 0 t0 t
拉氏变换式 R(s) A
5
典型的输入信号
当A=1时, 称为单位理想脉冲信号
r(t) (t) R(s) 1
5、正弦信号 数学表达式
r(t) Asin t t 0
拉氏变换式
R(s)
A s2 2
6
二、时域性能指标
以单位阶跃信号输入时,系统输出的一些特征值来表示。
系统对输入信号微分(积分)的响应,就等于该输入 信号响应的微分(积分)。
例3-1(解释)
14
第三节 二阶系统分析 一、二阶系统
用二阶微分方程描述的系统。 二、二阶系统典型的数学模型
先看例:位置跟踪系统
15
二阶系统分析 系统结构图:

自动控制原理第09讲

自动控制原理第09讲


C 2 mK
系统的阶跃 响应:
Fi ( s )
1 s
X (s) Fi (s)G(s)
14
解题思路: (1)根据Mp表达式求出ξ; (2)根据tp表达式求出wn; (3)根据虎克定律,求出K; (4)对系统变形,使之成为标准型,求出m 和C。
15
例题3-3:
已知系统的单位阶跃响应为:
16
X o ( s) 600 600 ( s ) 2 X i ( s) ( s 60)(s 10) s 70s 600
2)对比二阶系统的标准形式:
2 n ( s ) 2 2 s 2n s n
有:
2 n 600 2 n 70
n 24.5rad / s 1.429
ss lim s
s0
1 1 1 X i ( s) lim 2 2 s0 s s G( s) H ( s) 1 G( s) H ( s) Ka
s0
其中, Ka lim s 2G(s) H (s)
称为稳态加速度误差(偏差)系数。
30
1 1 易知: ess H (0) K a
s0
ss
ss
1 1 Kv K
1 Ka
Ka lim s G(s) H (s) 0
2 s0
35
Ⅱ型系统
G( s) H ( s) K (1s 1)( 2 s 1)( m s 1) s 2 (T1s 1)(T2 s 1)(Tnv s 1)
6
7
(4)调整时间ts 对于欠阻尼二阶 系统,其单位阶跃 响应的包络线为一 对对称于响应稳态 分量1的指数曲线
8

自动控制原理--二阶系统的时域响应

自动控制原理--二阶系统的时域响应

y(t ) L-1[Y (s)]
-n
1 - e-nt (cos d t
1 - 2 sin d t )
s2
1-
e - nt (
1- 2
1 - 2 cos d t sin d t )
j jd
0
1-
e - nt 1 - 2 sin(n
1 - 2 t tg-1
1- 2 )
y(t)
单位阶跃响应( 0<<1 )
esst
2
a K
K
0.25
a 0.187
比例微分控制与输出微分反馈的比较
1、增加阻尼的来源不同:两者都增大了系 统阻尼,但来源不同;
2、对于噪声和元件的敏感程度不同; 3、对开环增益和自然振荡角频率的影响不
同; 4、对动态响应的影响不同。
(1)增加阻尼的来源
• 比例微分的阻尼来自误差信号的速度;
1)
阶跃响应:y(t) 1
1
-1t
e T1
1
-1t
e T2
T2 T1 -1
T1 T2 -1
yt
j
1
0
0
t
单位阶跃响应(>1)
无振荡、无超调
2、临界阻尼 =1
j 0
两个相同的负实根
闭环系统的极点为 s1,2 -n
闭环传递函数为
GB
Y (s) R(s)
(s
n2 n )2
阶跃响应: y(t) 1- e-nt (1 nt)
阻尼振荡频率
衰减振荡
d 1- 2n
4、零阻尼 0
阶跃响应y(t)=1-cos nt
n --无阻尼振荡角频率
j 0
一对纯虚根

自动控制原理

自动控制原理



28
3.3 二阶系统的阶跃响应
输出量的时间函数:
xc (t ) 1 ent (1 nt ), t 0
xc (t ) L1 X c ( s) 1 e 1
nபைடு நூலகம்t
( s a)2 2 sa at L e cos t ( s a)2 2
sin d t cos d t 2 1
2
自动控制原理
第3章 自动控制系统的时域分析
第3章 自动控制系统的时域分析
系统的分析方法
时域、频域
时域分析的目的
不必准确地把微分方程解出来,而是 从微分方程判断出系统运动的主要特征— —从工程角度分析系统运动规律。
2
控制系统的性能指标
在典型信号作用下,控制系统的时间响应是由动态 过程和稳态过程两部分组成。所以控制系统的性能 指标,通常由动态性能和稳态性能两部分组成。 1.动态过程和动态性能 动态过程(过渡过程、暂态过程):在典型输入 信号作用下,系统从初态到终态的响应过程。
8
3.1 自动控制系统的时域指标
(2)斜坡函数
0,t 0 xr (t ) At,t 0
A=1时称为单位斜坡函数
1 X r ( s) 2 s
单位斜坡信号的拉氏变换
等速度函数
9
3.1 自动控制系统的时域指标
(3)抛物线函数
0,t 0 xr (t ) 2 At ,t 0
特征根的性质取决于阻尼比 的大小;二阶系统的时间 响应取决于 和 n 两个参数,按以下情况来研究二阶系 统的时间响应。
1 1
0 1
0
0

朱玉华自动控制原理第3章 时域分析3-1,2,3

朱玉华自动控制原理第3章 时域分析3-1,2,3

1
1
ቤተ መጻሕፍቲ ባይዱ
s4 3s3 s2 3s 1 0 s3 3 3
试判别该系统的稳定性。 s2 0 1
当 0时,3 3 0,
s1 3 3 0
s0
1
有2个特征根在s平面第右3章边控. 制系系统统的是时域不分析稳定的
10 0 0
(2) 劳斯表中某一行的元素全为零。
——这时系统在s平面上存在一些大小相等符号相反的
61
s0 6
劳斯表中第一列元素大于零,所以该系统是稳定的。 这时,系统所有的特征根均处于s平面的左半平面。
第3章 控制系统的时域分析
课程回顾(1)
1、 稳态性能指标 2、 动态性能指标
ess
lim[r(t)
t
cr (t)]
(1)延迟时间td (2)上升时间tr
(3)峰值时间tp
(4)调整时间ts
负可化为全为正) (2)劳斯表中第一列所有元素均大于零。
第3章 控制系统的时域分析
例3-1 已知三阶系统特征方程为 a0s3 a1s2 a2s a3 0
试写出系统稳定的充要条件
解:列写劳斯表 s3
a0
a2
0
s2
a1
a3
0
s1 a1a2 a0a3 0
a1
s0
a3
0
故得出三阶系统稳定的充要条件为:
0
9
s0 5
s1 32
0
s0 5
所得结论不变
第3章 控制系统的时域分析
2、劳斯稳定判据的特殊情况
(1) 劳斯表中某一行的第一个元素(系数)为零,而该 行其它元不为零。
——计算下一行第一个元素时将出现无穷大,以至劳斯 表的计算无法进行。

自动控制原理 第三章时域分析方法

自动控制原理 第三章时域分析方法
位脉冲响应,由此可以求得系统的传递函数。
总结与分析:
一阶系统对典型试验信号的响应 输入信号x(t) 输出响应y(t)
1 2 3
t
1() δ(t)
t T Te t / T
1 et /T
1 T
et /T
l 线性定常系统对输入信号导数的响应,可以通过 把系统对输入信号的响应进行微分求得; l 系统对输入信号积分的响应,可以通过把系统对原 输入信号的响应进行积分求得,而积分常数则由初 始条件决定。
3.1.1 控制系统的输入信号
● 在分析和设计控制系统时,需要有一个对各种
系统性能进行比较的基础。
● 从实际应用中抽象出一些典型的输入信号,它
们具有广泛的代表性和实际意义。
● 通过比较各类系统对这些典型试验信号的响
应来分析它们的性能。
常用的典型试验信号:
r(t) A t (a) 阶跃信号
r(t)
1 E
实验方法求取一阶系统的传递函数:
63.2% T
1 Ts 1
对一阶系统的单位阶跃响应曲线, 1、直接从达到稳态值的63.2%对应的时间求出一阶 系统的时间常数;
2、从t=0处的切线斜率求得系统的时间常数。 思考题:
若系统增益K不等于1,系统的稳态值应是多少?如何用实
验方法从响应曲线中求取K值?
3.2.2单位斜坡响应
2、系统的稳态响应为y(∞)=t-T,是一个与输入斜 坡函数斜率相同但时间迟后T的斜坡函数。
3、输出总是小于输入,误差逐步从零增大到时间 常数T并保持不变,因此T也是稳态误差。系统 的时间常数T越愈小,系统跟踪输入信号的稳态 误差也越小。
3.2.3 单位脉冲响应
1 R( s) L[ ( t )] 1 Y ( s) G ( s) R( s) G (s ) Ts 1 系统输出量的拉氏变换式就是系统的传递函数

《自动控制原理》名词解释

《自动控制原理》名词解释

1.控制概念(1)开环控制:开环控制是最简单的一种控制方式。

它的特点是,按照控制信息传递的路径,控制量与被控制量之间只有前向通路而没有反馈通路。

闭环控制:凡是将系统的输出量反送至输入端,对系统的控制作用产生直接的影响,都称为闭环控制系统或反馈控制系统。

复合控制:是开、闭环控制相结合的一种控制方式。

(2)反馈:指将系统的输出返回到输入端并以某种方式改变输入,进而影响系统功能的过程,即将输出量通过恰当的检测装置返回到输入端并与输入量进行比较的过程。

(3)传递函数:在零初始条件下,系统输出信号的拉手变换与输出信号的拉氏变换的比。

(4)被控对象:指需要给以控制的机器、设备或生产过程。

执行机构:一种能提供直线或旋转运动的驱动装置,它利用某种驱动能源并在某种控制信号作用下工作。

(5)线性化:a条件:连续且各阶导数存在 b方法:工作点附近泰勒级数展开。

2.时域指标(1)上升时间tr:响应从终值10%上升到终值90%所需时间;对有振荡系统亦可定义为响应从零第一次上升到终值所需时间。

上升时间是响应速度的度量。

峰值时间tp:响应超过其终值到达第一个峰值所需时间。

调节时间ts:响应到达并保持在终值内所需时间。

(2)超调量σ%:响应的最大偏离量h(tp)与终值h(∞)之差的百分比。

振荡次数:是在阶跃信号作用下,系统在达到指定deta范围下,系统所震荡的总次数。

(3)动态降落:系统稳定运行时,突然加一个扰动量N,在过度过程中引起输出量的最大降落值Cmax称为动态降落。

恢复时间:系统从波动回复到稳态时候所需要的时间。

(4)稳态误差:对单位负反馈系统,当时间t趋于无穷大时,系统对输入信号响应的实际值与期望值(即输入量)之差的极限值,称为稳态误差,它反映系统复现输入信号的(稳态)精度。

3.频域特性(1)频率特性:对于线性系统来说,当输入信号为正弦信号时,稳态时的输出信号是一个与输入信号同频率的正弦信号,不同的只是其幅值与相位,且幅值与相位随输入信号的频率不同而不同。

自动控制原理第三章

自动控制原理第三章
单击此处添加标题
3.3.1 典型二阶系统的暂态特性
单击此处添加标题
系统的闭环特征方程:
单击此处添加标题
二阶系统的闭环传递函数为
单击此处添加标题
当 时,
特征根:
1. 当 时,特征方程有一对不等的实根,称为过阻尼系 统,系统的阶跃响应为非振荡过程。
3.3.1.1 过阻尼( )的情况
特点:由 明显看出,暂态响应曲线应由稳态分量和暂态分量 组成。暂态分量又包含两项衰减的指数项,衰减的快慢取决于指数的 大小。指 数大者衰减快,对最终输出影响小,若将其忽略,二阶 系统的暂态响应就近似为一阶系统。故此时电路的输出量为单调上 升曲线。
分析结论:
由上图可看出: 使得 比 响应迅速且有较大超调量。
PART ONE
闭环传递函数的标准形式如下:
2.二阶系统加极点的暂态响应
其中 是负实数极点 与共轭复数极点的负实部之比。
4) 脉冲函数
在 处的单位脉冲函数用 来表示,它满足如下条件:
单位脉冲函数可看作单位阶跃函数的倒数,即
反之,单位脉冲函数 的积分就是单位阶跃函数。
单位脉冲函数:
面积 A = 1 时脉冲函数,称为单位脉冲函数 。 其拉氏变换后的像函数为 于是,强度为A的脉冲函数 可表示为
单击此处添加大标题内容
结论(1)三阶系统的暂态响应由三部分组成,即 稳态分量 由极点 构成的指数函数项 由共轭复数极点构成的二阶系统暂态响应分量 (2)当 时,系统的暂态特性主要由 和 决 定,系统呈现二阶系统的特性。 当 时,系统的暂态特性主要由 决定, 系统呈现一阶系统特性。 (3)一般情况下, ,因此具有负实数极点的 三阶系统,其暂态特性的振荡性减弱,而 和 增长, 减小,相当于系统的惯性增加了。

自动控制原理 第二十一章 频率特性和时域性能指标的关系

自动控制原理 第二十一章 频率特性和时域性能指标的关系
1
Ts 1
L( )
3dB
c
1 T
b log
频域性能指标:
由频b 宽的c 定T1义知:A(我b们) 知1道2 一A(0阶) 惯 0性.70环7 ,节20的log调A整(时bt)s间是33Td:(B, 5)
则频宽越大,调整时间越小。
二阶系统:
开环频率特性为:Gk ( j
第七节 频率特性和时域性能指标的 关系
主要内容
通过频率特性曲线获得稳态性能指标 频率域性能指标 频率域特性指标与时域瞬态指标的关系
一、稳态性能指标分析:
如果通过频率特性曲线能确定系统的无差度阶数 (即积分
环节的个数)和开环放大系数k的话,则可求得系统的稳态误差。 (见第三章第六节 稳态误差分析)
数定义为幅值稳定裕度。所对应的频率 称为相角穿越频率。

L
hA2(01 lgg),A(满 足)。
(
) 180 。实际中常用对数幅值稳定裕度
相角稳定裕度 系统开环频率特性的幅值为1时,系统开环频率特性的相角
与180 之和定义为相角稳定裕度,所对应的频率 称为系统截 止频率或幅值穿越频率。即 180 ( ) , 满足 A( ) 1
闭环频率特性为:( j)
)
(
n2
(
j)((
j ) 2
n2
2
n
(
j)2 2 n ( j) n
j ))
2 A(
)e
j
(
)
频域性能指标主要有相位稳定裕度(开环指标)和频宽、谐振
峰值(闭环指标)。
幅频特性为:A()
n2
(n2 2 )2 (2 n )2
由带宽的定义知当 A()
1 A(0) 2

自动控制原理7第七节频率特性和时域性能指标的关系

自动控制原理7第七节频率特性和时域性能指标的关系

案例剖析:某型导弹控制系统设计优化
1. 调整控制器参数,改善系统频率特性。
2. 引入先进的控制算法,如自适应控制、鲁棒控 制等。
3. 对执行器和传感器进行改进,提高系统动态性 能。
优化效果:经过优化后,导弹控制系统的稳定性 和快速性得到了显著提高,超调量和稳态误差明 显减小。在实际飞行试验中,导弹的命中精度得 到了有效提升。
02 4. 对实验数据进行处理和分析,提取时域性能指 标。
03 5. 对比不同频率特性下的时域性能指标,分析它 们之间的关系。
数据采集、处理及结果展示
数据采集
使用高精度传感器采集系统响应数据,包括输出信号、误差信号等。
数据处理
对采集到的数据进行滤波、去噪等预处理操作,以提高数据质量。 然后,计算时域性能指标,如超调量、调节时间、稳态误差等。
05
实验验证与案例分析
实验设计思路及步骤介绍
实验设计思路及步骤介绍
01
步执行器、传感器等硬件设备 ,以及相应的软件系统。
03
2. 设计不同频率特性的控制器,如低通、高通、带通等,并 分别进行实验。
实验设计思路及步骤介绍
01 3. 对每个实验,施加相同的输入信号,并记录系 统响应数据。
高频段增益越大,系统的稳态误差越小。
稳态误差与带宽的关系
带宽越宽,系统的稳态误差越小。
04
典型系统频率特性和时域 性能指标关系探讨
一阶系统
频率特性
一阶系统的频率响应是单调的,没有谐振峰。其幅频特性随频率的增加而单调下降,相频特性则随频 率的增加而线性增加。
时域性能指标
一阶系统的主要时域指标包括上升时间、峰值时间和调节时间。这些指标与系统的阻尼比和自然频率 有关,阻尼比越小,上升时间和峰值时间越短,调节时间越长;自然频率越高,系统的响应速度越快 。

自动控制原理课件之第三章 (一) 时域性能指标,时域分析(w)

自动控制原理课件之第三章 (一) 时域性能指标,时域分析(w)

自 动 控 制 原 理 第 三 章
42
因此,怎样选择适中的阻尼比,以兼 顾系统的稳定性和快速性,便成了研究自 动控制系统的一个重要的课题。
控制工程中一般希望具有适度的阻尼, 较快的响应速度和较短的调节时间.二阶系 统一般取0.4~0.8,最佳阻尼0.707
欠阻尼二阶系统的动态过程分析
自 动 控 制 原 理 第 三 章
26
自 动 控 制 原 理 第 三 章
27
自 动 控 制 原 理 第 三 章
28
自 动 控 制 原 理 第 三 章
系统的单位跃响应无振荡、无超调、无稳态误差。
29
自 动 控 制 原 理 第 三 章
30
自 动 控 制 原 理 第 三 章
31
自 动 控 制 原 理 第 三 章
32
自 动 控 制 原 理 第 三 章
40
et / T1 et / T2 h(t ) 1 ,t 0 T2 / T1 1 T2 / T1 1
自 动 控 制 原 理 第 三 章
41
由以上的分析可见,典型二阶系统在不 同的阻尼比的情况下,它们的阶跃响应输出 特性的差异是很大的。 若阻尼比过小,则系统的振荡加剧,超 调量大幅度增加; 若阻尼比过大,则系统的响应过慢,又 大大增加了调整时间。
t

第 三 章
44
% e
1 2
(5) 调节时间ts:
100% 3 . 5 3 .5 ts
n

欠阻尼二阶系统的动态分析小结
自 动 控 制 原 理
n G(S ) 2 2 S 2 n S n
2
R(S)
0 1
C(S)
n 2 s(s 2n )

自动控制原理 第三章 时域分析c1

自动控制原理 第三章 时域分析c1


2时 5时
h(t)
其他动态性能指标:
td 0.69T
tr 2.20T
ts 3T (5%误差带)
16 t
3-2 一阶系统的时域分析
自控原理
3.一阶系统单位脉冲响应
当输入信号为理想单位脉冲函数δ (t)时,R(S)=1,输出量的拉氏
变换与传递函数相同,即 C(s) 1 TS 1
t
eT
)
t0
2
S3
2
上述几种典型响应有如下关系:
积分
积分
积分
单位脉冲
单位阶跃
单位斜坡
函数响应
函数响应
函数响应
微分
微分
微分
单位抛物线 函数响应
20
3-2 一阶系统的时域分析
自控原理
例: 设某高阶系统可用下列一阶微分方程近似描述:


T ct ct rt rt
其中, 1 (T ) 0
结论:一阶系统无法跟踪加速度形式的输入信号
19
3-2 一阶系统的时域分析
自控原理
输入信号 输入信号
时域
频域
输出响应
传递函数
(t)
1
1
t
eT
T
(t 0)
1
1(t)
S
t
1e T t 0
1
t
1
t
TS 1
S2
t T Te T t 0
1 t2
1
1
t2
Tt

T
2 (1
2.能熟练运用劳斯稳定性判据判断系统的稳定性
3.正确理解对控制信号和干扰作用的稳态误差定义, 能熟练应用静态误差系数法计算稳态误差。

自动控制原理3.1

自动控制原理3.1
显然,系统的响应从t=0时开始跟踪输入信号而单调 上升,在达到稳态后,它与输入信号同速增长,但它们 之间存在跟随误差。即
t T
e(t ) r (t ) c(t ) T (1 e


)
lim e(t ) T
t
可见,当t趋于无穷大时,误差趋近于T,因此系统 在进入稳态以后,在任一时刻,输出量c (t) 将小于输入 量r(t)一个T的值,时间常数T越小,系统跟踪斜坡输入 信号的稳态误差也越小。
t
第三章 时域分析法

三、一阶系统时域分析
可以用一阶微分方程描述的系统被称为一阶系统。 C (s) 1 一阶系统的传递函数为 ( s) R( s) Ts 1 典型闭环控制的一阶系统的结构图为
R(s) 1 Ts
C(s)
三、一阶系统时域分析

1一阶系统的单位阶跃响应
设系统的输入为单位阶跃函数r(t) = 1(t) ,其拉氏变换 为R(s)=1/s ,则输出的拉氏变换为
0
t0
R s L r t 1
1.典型输入信号

㈢ 斜坡函数
Rt 斜坡函数的数学表达式为 r t 0
t0 t<0
其中R为常数。 当R=1时表示的是单位斜坡函数,记为t· 1(t),它等 于单位阶跃函数对时间的积分。单位斜坡函数的拉氏变换 为 R(S)=L[r(t)]=1/s2

一阶系统的单位脉冲响应是单调下降的指数曲线, 曲线的初始斜率为-1/T2,输出量的初始值为1/T 。 当t趋于∞时,输出量c (∞)趋于零,所以它不存在 C(t) 稳态分量。在实际中一般认为在 t=3T~4T时过渡过程结束,故系 1 统过渡过程的快速性取决于T的值, T 1 斜率 T越小系统响应的快速性也越好。 T
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制原理时域指标
自动控制原理是研究如何设计和优化自动控制系统的学科。

在自动控制系统设计中,需要对系统在时域上的行为进行分析和评估。

时域是指系统随时间变化的过程,在自动控制中通常关注系统的稳定性、动态响应和误差性能等指标。

自动控制系统的时域指标主要包括系统的稳定性、阶跃响应、过渡过程、超调量和稳态误差等。

首先,系统的稳定性是指系统在输入信号与外部干扰的作用下,输出信号是否趋向于稳定的状态。

稳定性是一个基本的要求,对于开环控制系统来说,需要系统的传递函数的所有极点的实部都小于0;对于闭环控制系统来说,需要系统的传递函数的所有极点的实部都小于零,且没有极点位于虚轴上。

其次,阶跃响应是指系统对于单位阶跃输入信号的响应。

通过分析系统的阶跃响应,可以得到系统的动态性能指标,如上升时间、峰值时间、峰值过冲和调节时间等。

上升时间是指系统从初始状态到达稳态所需的时间;峰值时间是指系统输出达到峰值的时间;峰值过冲是指系统输出超过稳态值的最大幅度;调节时间是指系统从初始状态到达稳态的时间。

过渡过程是指系统由一个状态转移到另一个状态的过程,可以通过系统的阶跃响应曲线来观察。

过渡过程中,一般通过衡量系统的快速性、稳定性和平稳性来评估系统的性能。

超调量是指系统在过渡过程中,输出信号超过稳态值的最大幅度。

超调量的大小反映了系统的稳定性和响应速度之间的平衡关系。

稳态误差是指系统在稳态下,输出信号与期望信号的差值。

稳态误差用于评估系统对不同输入信号的跟踪能力和稳定性。

在实际的自动控制系统设计中,需要根据具体的应用要求,对不同的时域指标进行权衡和优化。

通过选择合适的控制器参数和调节算法,可以提高系统的稳定性、动态响应和误差性能。

同时,通过对系统的时域指标进行分析和优化,可以满足不同控制任务的要求,提高自动控制系统的性能和效果。

相关文档
最新文档