(完整版)物理化学第二章热力学第一定律
物理化学(第二章)
系统在恒 且非体积功为零的过程中与环境交换的热量 的过程中与环境交换的热量。 系统在恒压,且非体积功为零的过程中与环境交换的热量。
Q= ∆U −W ∆U =Q+W
W = −p环(V −V ) 2 1
= − p 系 (V 2 − V1 )
= − ( p 2V 2 − p1V1 )
U2
Q+W
dU =δQ+δW
第一类永动机 是不可能造成的。 是不可能造成的。 永远在做功,却不消耗能量。 永远在做功,却不消耗能量。
∆U =Q+W = 0
若 <0 则 >0. W , Q
W < 0,
Q= 0
∆ = Q+W U
推论: 、 推论: 1、隔离系统 内能守恒
W = 0 Q= 0
∆ =0 U
4、热和功的分类 、 显热 热 相变热(潜热) 相变热(潜热) 化学反应热 功 非体积功( ) 非体积功(W’) 体积功
5、体积功的计算 、
dV = Asdl
截面 As
环 境
δW = Fd l
热 源
系统
Q F = p环 As
V=As l l dl
p环
∴δW = p环 Asdl
= p环d( Asl ) = p环dV
x = f ( y, z)
∂x dy+ ∂x dz dx = ∂y ∂z y z
(2)广度性质 ) 摩尔热力学能: 摩尔热力学能: (3)绝对值未知 ) 始态
U Um = n
∆ U
强度性质
末态
U1
U2
第二章 热力学第一定律
滨州学院化工与安全学院
B、相变过程(恒T恒P可逆相变) 1. 熔化
Qp = fus H = n fus H m W = − p(Vl −Vs ) 0
fusU = Qp + W fus H
物理化学
滨州学院化工与安全学院
2. 蒸发(或升华)
Qp = Vap H = nVap Hm W = − p(Vg −Vl ) − pVg = −nRT
Bc
H
$
m
(B,298.15
K)
B
(4) Kirchoff方程
[ r H T
]p
=
rCp
r Hm (T2 ) = r Hm (T1) +
T2 T1
rC
pdT
物理化学
滨州学院化工与安全学院
3. 反应最高温度的求算
恒容绝热 恒压绝热
Qv=△U Qp=△H
设反应物起始温度均为T1,产物温度为T2,整个
恒容热效应QV 反应在恒容下进行所产生的热效
应为QV ,如果不作非膨胀功,
QV = rU = U产物 − U反应物
r H m = rU m + B(g) RT
B
物理化学
滨州学院化工与安全学院
2. 反应热的求算
(1)Hess’slaw
(2)
r
H
m
=
B
f
H
m
(B)
B
(3) r Hm$ (298.15 K) = -
V2
U = V2 V1
n2a V2
dV
=
n2a V1
−
n2a V2
H = U + ( pV ) = U + ( p2V2 − p1V1)
物理化学第2章热力学第一定律
第二章热力学第一定律2.1 热力学的理论基础与方法1.热力学的理论基础热力学涉及由热所产生的力学作用的领域,是研究热、功及其相互转换关系的一门自然科学。
热力学的根据是三件事实:①不能制成永动机。
②不能使一个自然发生的过程完全复原。
③不能达到绝对零度。
热力学的理论基础是热力学第一、第二、第三定律。
这两个定律是人们生活实践、生产实践和科学实验的经验总结。
它们既不涉及物质的微观结构,也不能用数学加以推导和证明。
但它的正确性已被无数次的实验结果所证实。
而且从热力学严格地导出的结论都是非常精确和可靠的。
不过这都是指的在统计意义上的精确性和可靠性。
热力学第一定律是有关能量守恒的规律,即能量既不能创造,亦不能消灭,仅能由一种形式转化为另一种形式,它是定量研究各种形式能量(热、功—机械功、电功、表面功等)相互转化的理论基础。
热力学第二定律是有关热和功等能量形式相互转化的方向与限度的规律,进而推广到有关物质变化过程的方向与限度的普遍规律。
利用热力学第三定律来确定规定熵的数值,再结合其他热力学数据从而解决有关化学平衡的计算问题。
2.热力学的研究方法热力学方法是:从热力学第一和第二定律出发,通过总结、提高、归纳,引出或定义出热力学能U,焓H,熵S,亥姆霍茨函数A,吉布斯函数G;再加上可由实验直接测定的p,V,T等共八个最基本的热力学函数。
再应用演绎法,经过逻辑推理,导出一系列的热力学公式或结论。
进而用以解决物质的p,V,T变化、相变化和化学变化等过程的能量效应(功与热)及过程的方向与限度,即平衡问题。
这一方法也叫状态函数法。
热力学方法的特点是:(i)只研究物质变化过程中各宏观性质的关系,不考虑物质的微观结构;(ii)只研究物质变化过程的始态和终态,而不追究变化过程中的中间细节,也不研究变化过程的速率和完成过程所需要的时间。
因此,热力学方法属于宏观方法。
2.2 热力学的基本概念1.系统与环境系统:作为某热力学问题研究对象的部分;环境:与系统相关的周围部分;按系统与环境交换内容分为:(1)敞开系统(open system) :体系与环境间既有物质交换又有能量交换的体系。
物理化学第二章 热力学第一定律
1. 系统与环境
系统:作为研究对象的那部分物质 环境:系统以外与之相联系的那部分物质 物质交换
系统与环境 的相互作用
传热
能量交换 作功 体积功 非体积功
三类系统: 敞开系统(open system): 与环境间——有物质交换,有能量交换
封闭系统(closed system): 与环境间——无物质交换,有能量交换; 隔离(孤立)系统(isolated system): 与环境间——无物质交换,无能量交换;
C 状态函数之间互为函数关系。
状态函数是相互联系,相互制约,一个状态函数的 改变, 也会引起另一个状态函数的改变 。
例如对于一定量气体,体积V、温度T、 压力P。可把T 、 P当作状态变量,V当作它们的函数,记为V=f(T,P);也可把P 当作V、T的函数,记为P=f(T,V) 。
一般来说,质量一定的单组分均相体系,只需要指定两
循环过程 (始态=末态)
根据过程进行的特定条件 ,分为: 1) 恒温过程: 变化过程中T(系) = T(环) = 定值(dT=0) (T(始) = T(终),为等温过程)(ΔT=0) 2) 恒压过程: 变化过程中p(系) = p(环) = 定值(dp=0) (p(始)=p(终),为等压过程 )(Δp=0)
Q > 0 Q < 0
热是途径函数
单纯pVT变化时,系统吸收或放出的热 相变时,T不变,系统吸收或放出的热 化学反应时,系统吸收或放出的热
微量热记作Q,不是dQ ,一定量的热记作Q ,不是Q。
理解:
① 能量交换方式有两种,一种叫热,一种叫功 ② 热和功都是能量传递形式,与过程有关,不是系统本身的
U只取决于始末态的状态,与途径无关
不同途径,W、Q 不同
物理化学-第二章-热力学第一定律及其应用精选全文
上一内容 下一内容 回主目录
返回
2024/8/13
状态与状态函数
状态函数的特性: 异途同归,值变相等;周而复始,数值还原。
状态函数的性质:
(1) 状态函数的值取决于状态,状态改变则状态函数必定改 变(但不一定每个状态函数都改变);任何一个状态函数 改变,系统的状态就会改变。
上一内容 下一内容 回主目录
即
ΔU=Q+W (封闭系统)
对于无限小过程,则有
dU=δQ+δW (封闭系统)
上一内容 下一内容 回主目录
返回
2024/8/13
3. 焦耳实验 盖.吕萨克—焦尔实验
实验结果:水温未变 dT=0 dV≠0
表明:Q =0
自由膨胀 W=0
上一内容 下一内容 回主目录
返回
2024/8/13
dU= Q+ W =0
1. 热(heat)
a) 定义:体系与环境之间因温差而传递的能量称为热,用 符号Q 表示。单位:KJ 或 J。 b) Q的取号:体系吸热,Q>0;体系放热,Q<0 。
c) 性质:热不是状态函数,是一个过程量;热的大小和具 体的途径有关。
上一内容 下一内容 回主目录
返回
2024/8/13
功和热
不能说在某个状态时系统有多少热量,只能说 在某个具体过程中体系和环境交换的热是多少。
热力学能是状态函数,用符号U表示,单位为J。它 的绝对值无法测定,只能求出它的变化值。
U= U2 –U1
上一内容 下一内容 回主目录
返回
2024/8/13
热力学能
纯物质单相系统
若n确定
U=U ( n,T,V ) U=U (T,V )
第2章热力学第一定律
1、热力学的研究内容
经典热力学基本定律:
① 热力学第零定律: 热平衡定律(开尔文定律) ② 热力学第一定律: 能量转化与守恒定律 ③ 热力学第二定律: 判断过程的方向与限度 ④ 热力学第三定律: 计算规定熵
2、热力学研究方法及局限性
热力学研究方法:
以含有大量质点的宏观体系为研究对象,以两 个经典热力学定律为基础,用一系列热力学函数及
本堂课学习内容
§2.2
热力学第一定律
§2.3
恒容热、恒压热及焓
§2.2 热力学第一定律
1、热力学能(U) 2、热力学第一定律 3、焦耳实验
1、热力学能(thermodynamic energy)
•系统的总能量由以下三部分组成: ① 整体运动的动能;
② 在外力场中的势能;
③ 系统内部一切能量。 热力学研究对象为宏观静止体系,无整体运动; 并且一般没有特殊的外力场存在(电磁场、离心力场 等),因此只考虑系统内部能量。
4、热与功
•体积功(膨胀功)的计算:
W pamb dV
W PambdV
V1
V2
( 向真空膨胀: W 0 pamb 0)
恒容过程: W 0 dV 0) ( 恒外压过程: W Pamb (V2 V1 )
4、热与功
[例题] 300K下:
pamb p2 50kPa
(完整版)《物理化学》第二章热力学第一定律练习题(含答案)
(完整版)《物理化学》第⼆章热⼒学第⼀定律练习题(含答案)第⼆章练习题⼀、填空题1、根据体系和环境之间能量和物质的交换情况,可将体系分成、、。
2、强度性质表现体系的特征,与物质的数量⽆关。
容量性质表现体系的特征,与物质的数量有关,具有性。
3、热⼒学平衡状态同时达到四种平衡,分别是、、、。
4、体系状态发⽣变化的称为过程。
常见的过程有、、、、。
5、从统计热⼒学观点看,功的微观本质是,热的微观本质是。
6、⽓体各真空膨胀膨胀功W= 07、在绝热钢瓶中化学反应△U= 08、焓的定义式为。
⼆、判断题(说法对否):1、当体系的状态⼀定时,所有的状态函数都有⼀定的数值。
(√)2、当体系的状态发⽣变化时,所有的状态函数的数值也随之发⽣变化。
(χ)3.因= ΔH, = ΔU,所以与都是状态函数。
(χ)4、封闭系统在压⼒恒定的过程中吸收的热等于该系统的焓。
(χ)错。
只有封闭系统不做⾮膨胀功等压过程ΔH=Q P5、状态给定后,状态函数就有定值;状态函数确定后,状态也就确定了。
(√)6、热⼒学过程中W的值应由具体过程决定( √ )7、1mol理想⽓体从同⼀始态经过不同的循环途径后回到初始状态,其热⼒学能不变。
( √ )三、单选题1、体系的下列各组物理量中都是状态函数的是( C )A 、T、P、V、QB 、m、W、P、HC、T、P、V、n、D、T、P、U、W2、对于内能是体系的单值函数概念,错误理解是( C )A体系处于⼀定的状态,具有⼀定的内能B对应于某⼀状态,内能只能有⼀数值不能有两个以上的数值C状态发⽣变化,内能也⼀定跟着变化D对应于⼀个内能值,可以有多个状态3下列叙述中不具有状态函数特征的是(D )A体系状态确定后,状态函数的值也确定B体系变化时,状态函数的改变值只由体系的始终态决定C经循环过程,状态函数的值不变D状态函数均有加和性4、下列叙述中正确的是( A )A物体温度越⾼,说明其内能越⼤B物体温度越⾼,说明其所含热量越多C凡体系温度升⾼,就肯定是它吸收了热D凡体系温度不变,说明它既不吸热也不放热5、下列哪⼀种说法错误( D )A焓是定义的⼀种具有能量量纲的热⼒学量B只有在某些特定条件下,焓变△H才与体系吸热相等C焓是状态函数D焓是体系能与环境能进⾏热交换的能量6、热⼒学第⼀定律仅适⽤于什么途径(A)A同⼀过程的任何途径B同⼀过程的可逆途径C同⼀过程的不可逆途径D不同过程的任何途径7. 如图,将CuSO4⽔溶液置于绝热箱中,插⼊两个铜电极,以蓄电池为电源进⾏电解,可以看作封闭系统的是(A)(A) 绝热箱中所有物质; (B) 两个铜电极;(C) 蓄电池和铜电极;(D) CuSO4⽔溶液。
物理化学第二章 热力学第一定律
H称为焓
物理意义:恒压、非体积功为零的条件下,过程的恒压热在量值上等于其焓变。 适用条件:封闭系统、恒压、非体积功为零
12
3、焓 [1]焓的定义式 [2]焓变
ΔH=H2- H1 =(U2+p2V2)-(U1+p1V1) ΔH=ΔU+Δ(pV) 讨论:对于系统内只有凝聚态物质发生的PVT变化、相变化和 化学变化 Δ(PV)≈ 0
Zn+HCl
(2)广度量和强度量 广度量:性质与物质的数量成正比,如 V,U等;广度量具有加和性。 强度量:性质与物质的数量无关,如 T,p等; 强度量不具有加和性。
(3)平衡态 系统的温度、压力及各个相中各个组分的物质的量均不随时 间变化时的状态。
系统处在平衡态,满足 热平衡
4
力平衡
相平衡
化学平衡
第二章 热力学第一定律
§2.1 基本概念及术语 §2.2 热力学第一定律
§2.3 恒容热、恒压热及焓
Physical Chemistry
§2.4 摩尔热容 §2.5 相变焓
§2.7 化学反应焓
§2.8 标准摩尔反应焓的计算 §2.10 可逆过程与可逆体积功
§2.11 节流膨胀与焦耳-汤姆逊实验
1
教学重点及难点
6
体积功的定义式
※体积功W的计算
气缸的内截面积为As, 活塞至气缸底部的长度为l, 气体的体积为:V=As×l 在环境压力为Pamb下活塞移动了 dl的距离,则:
P<Pamb,dV<0,δW>0,系统得到功 P>Pamb,dV>0,δW<0,系统对环境作功 P>Pamb=0时,δW=0 体积功的定义式
绝大多数反应是在恒温、恒压或恒温、恒容条件下进行的,其反应热就分别 为恒压反应热和恒容反应热。
(完整版)物理化学课后答案-热力学第一定律
欢迎共阅第二章热力学第一定律【复习题】【1】判断下列说法是否正确。
(1)状态给定后,状态函数就有一定的值,反之亦然。
(2)状态函数改变后,状态一定改变。
(3)状态改变后,状态函数一定都改变。
(4)因为△ U=Q v, △H =Q p,所以Q v,Q p是特定条件下的状态函数。
(5)恒温过程一定是可逆过程。
(6)汽缸内有一定量的理想气体,反抗一定外压做绝热膨胀,则△H= Q p=0。
(7)根据热力学第一定律,因为能量不能无中生有,所以一个系统若要对外做功,必须从外界吸收热量。
(8)系统从状态Ⅰ变化到状态Ⅱ,若△T=0 ,则Q=0 ,无热量交换。
(9)在等压下,机械搅拌绝热容器中的液体,使其温度上升,则△H = Q p = 0。
(10)理想气体绝热变化过程中,W=△U,即W R=△U=C V△T,W IR=△U=C V△T,所以W R=W IR 。
(11)有一个封闭系统,当始态和终态确定后;(a)若经历一个绝热过程,则功有定值;(b)若经历一个等容过程,则Q 有定值(设不做非膨胀力);(c)若经历一个等温过程,则热力学能有定值;(d)若经历一个多方过程,则热和功的代数和有定值。
(12)某一化学反应在烧杯中进行,放热Q1,焓变为△ H 1,若安排成可逆电池,使终态和终态都相同,这时放热Q2,焓变为△ H2,则△ H1=△H 2。
【答】(1)正确,因为状态函数是体系的单质函数,体系确定后,体系的一系列状态函数就确定。
相反如果体系的一系列状态函数确定后,体系的状态也就被惟一确定。
(2)正确,根据状态函数的单值性,当体系的某一状态函数改变了,则状态函数必定发生改变。
(3)不正确,因为状态改变后,有些状态函数不一定改变,例如理想气体的等温变化,内能就不变。
(4)不正确,ΔH=Qp,只说明Qp 等于状态函数H 的变化值ΔH,仅是数值上相等,并不意味着Qp 具有状态函数的性质。
ΔH=Qp 只能说在恒压而不做非体积功的特定条件下,Qp 的数值等于体系状态函数H 的改变,而不能认为Qp 也是状态函数。
物理化学 第二章 热力学第一定律
(1)热与途径有关
途径a、b有相同始末态,则 Qa Wa Q b Wb
∵不同途径 Wa Wb
∴ Qa Qb
(2)第一类永动机不可能造成。
§2.3 恒容热、恒压热,焓
恒容热 恒压热 焓 QV=△U,Qp=△H两式的意义
一、恒容热:系统在恒容且非体积功为零的过
程中与环境交换的热。符号:QV
等压热容Cp:
Cp
Qp dT
(
H T
)p
H Qp CpdT
等容热容Cv:
CV
QV dT
(
U T
)V
U QV CV dT
标准定压热容C ⊖p,m
物质的Cp,m是温度和压力的函数, 通常将处 于标准压力 p=100 kPa下的Cp,m称为标准定压热 容,用C ⊖ p,m表示, ⊖上角标代表标准态。
步骤a1
H2O(l) 80℃ 47.360kPa
步骤b1
H2O(l) 步骤a2 H2O(l)
80 ℃
100 ℃
101.325kPa
101.325kPa
途径a
H2O(g)
H2O(g)
80 ℃
100℃
47.360kPa 步骤b2 47.360kPa
步骤a3
H2O(g) 100 ℃ 101.325kPa
步骤b3
平均摩尔热容C p,m
为了计算方便,引入平均摩尔热容
C
T 2 C p,m dT
p,m
T1 T2 T1
注意:不同的温度范围内,平均摩尔热容不同。 一般温度变化不大时, C p,m视为常数。
对理想其体混合物 CV yACV ,m,A yBCV ,m,B
(完整版)物理化学作业答案
第二章 热力学第一定律2.11 1 mol 理想气体于27°C ,101.325kPa 的始态下,先受某恒定外压温压缩至平衡态,再恒容 升温至97.0°C ,250.0 kPa ,求过程的W ,Q , U , H,已知气体的C v,m =20.92J 。
mol -1•K -1。
解:111325.10115.3001V kPa p K T mol n ===−−→−=0dT 22215.3001V p K T moln ==−−→−=0dV 233300.25015.3701V V kPap K T moln ====因为23V V =,有3322T p T p=,kPa kPa T T p p 72.20215.37015.30000.2503232=⨯==02=WkJJ p pnRT p nRT p nRT V V p W 497.2)]1325.10172.202(15.300314.81[)1()(12111211221=-⨯⨯⨯=-=+-=--=所以 kJ W W W 497.221=+=()()()kJkJ W U Q kJ J T T R Cn T TnC H kJJ T T nC U mV mp m V 033.1497.2464.1(046.2)]15.30015.370()314.892.20(1[)(464.1)15.30015.370(92.201[13,13,13,-=-=-∆==-⨯+⨯=-+=-=∆=-⨯⨯=-=∆2.39 某双原子理想气体1 mol 从始态350K ,200kPa 经过如下五个不同过程达到各自的平衡态,求各过程的功W1) 恒温可逆膨胀到50kPa ;2) 恒温反抗50kPa 恒外压不可逆膨胀; 3) 恒温向真空膨胀到50kPa ; 4) 绝热可逆膨胀到50kPa ;5) 绝热反抗50kPa 恒外压不可逆膨胀; 解:(1)kJ J p p nRT W 034.4)20050ln 350314.81(ln12-=⨯⨯⨯== (2)kJj p nRTp nRT p V V p V p W 182.2)]200350314.8150350314.81(50[)()(1212-=⨯⨯-⨯⨯⨯=--=--=∆-=(3)0=amb p ,0=∆-=V p W amb(4)对绝热可逆过程:R C m p 5.3,=,R C m V 5.2,=()K K T p p T R R C R T m p 5.235]350)20050[()(5.3/1/12,=⨯=⨯= 因为Q=0,所以()()[]kJJ T T nC Q U W m V 380.23505.235314.85.21012,-=-⨯⨯⨯=--=-∆=(5)Q=0,所以 ()12,T T nC U Q U W m V -=∆=-∆=而 )(11222p nRT p nRT p V p W --=∆-= 联合上述二式可得)350(314.85.21350314.8120050314.8)1(22K T K T -⨯⨯=⨯⨯⨯+⨯- 解出 K T 2752=于是()()[]kJ J T T nC U W m V 559.13505.235314.85.2112,-=-⨯⨯⨯=-=∆= 第三章 热力学第二定律 3.1 卡诺热机在的高温热源和的低温热源间工作。
物理化学第二章(第一定律)
热力学
8
系统的性质具有如下特点: 1.系统的性质只决定于它现在所处的状态,而与其过
去的历史无关。 2. 系统的状态发生变化时,它的一系列性质也随之而改
变,改变多少,只决定于系统的开始状态和终了状态, 而与变化的途径无关。
热力学把具有这种特征的系统性质称为状态函数。
或不能使一个自然发生的过程完全复原。
第一类永动机 (能量不守衡)
热源 Q W
第二类永动机
2
根据大量的实验结果和自然现象,得出热力学第一、 二定律。
热力学定律的特点: (1) 大量分子系统
(2)不管物质的微观结构 (3)不管过程的机理
优点:结论绝对可靠, 如从热力学导出纯液体 饱和蒸汽压与温度的关系:
(3) 热分为: 显热(Sensible heat)系统做单纯的pVT变化(没有相 变化),如: 25C水75C水时,系统与环境交换的热量。 潜热(Latent heat)系统发生相变化时,如:
100C水100C水汽时,系统与环境交换的热量。
27
§2-2 热力学第一定律 The First Law of Thermodynamics
活塞
p1 dV
pe
汽缸
如果p1>pe(外压),气体膨胀dV,
则系统对环境做体积功为:dWe= pedV
21
(1) 自由膨胀(Free expansion) 为外压等于零的膨胀,即 pe=0,所以:
We,1 0
(2) 恒外压膨胀pe=const.
We,2
V2
-
pedV
-pe (V2
V1 )
第二章 热力学第一定律及其应用
热力学第一定律
Cp,m与CV,m的关系
C p,m CV ,m
H m T p
T=f(p,V) p=f(T,V) V=f(p,T)
例如,理想气体的状态方程可表示为:pV=nRT
状态函数的分类
广度量(extensive properties) 性质的数值与系统的物质的 数量成正比,如V、m、熵等。这 种性质具有加和性。 强度量(intensive properties) 性质的数值与系统中物质的数 量无关,不具有加和性,如温度、 压力等。 两个广度量之比为强度量
系统
环境
系统的分类
根据系统与环境之间的关系,把系统分为三类:
(1)敞开系统(open system) 系统与环境之间既有物质交换,又有能量交换。
系统的分类
(2)封闭系统(closed system) 系统与环境之间无物质交换,但有能量交换。
系统的分类
(3)孤立系统(isolated system) 体系与环境之间既无物质交换,又无能量交换,故 又称为隔离系统。有时把封闭系统和系统影响所及的环 境一起作为孤立系统来考虑。
系统吸热
Q>0 环境 U >0 W>0 对系统作功 系统
系统放热
Q<0 U <0 W<0 对环境作功
U = Q + W
焦耳实验
W 0 U 0 Q0
dT 0 dV 0
dU 0
U U dU dT dV T V V T
2.1 热力学概论
热力学的研究内容:
研究热、功和其他形式能量之间的相互转换
及其转换过程中所遵循的规律
研究各种物理变化和化学变化过程中所发生
(完整版)物理化学热力学第一定律习题答案..
第二章 热力学第一定律2-1 1mol 理想气体于恒定压力下升温1℃,试求过程中气体与环境交换的功W 。
解:体系压力保持恒定进行升温,即有P 外=P ,即反抗恒定外压进行膨胀,JT nR nRT nRT pV pV V V p W amb 314.8)(121212-=∆-=+-=+-=--=2-2 系统由相同的始态经过不同途径达到相同的末态。
若途径a 的Q a =2.078kJ ,W a = -4.157kJ ;而途径b 的Q b = -0.692kJ 。
求W b 。
解:应用状态函数法。
因两条途径的始末态相同,故有△U a =△U b ,则 bb a a W Q W Q +=+所以有,kJQ W Q W b a a b 387.1692.0157.4078.2-=+-=-+=2-3 4mol 某理想气体,温度升高20℃,求△H -△U 的值。
解: 方法一: 665.16J208.3144 )20()( 2020,,20,20,=⨯⨯=-+==-=-=∆-∆⎰⎰⎰⎰++++T K T nR nRdT dT C C n dTnC dT nC U H K T TKT Tm V m p KT Tm V KT T m p 方法二:可以用△H=△U+△(PV)进行计算。
2-4 某理想气体。
今有该气体5 mol 在恒容下温度升高50℃,求过, 1.5V m C R =程的W ,Q ,△H 和△U 。
解:恒容:W=0;kJJ K nC T K T nC dT nC U m V m V K T Tm V 118.33118503145.823550 )50(,,50,==⨯⨯⨯=⨯=-+==∆⎰+kJJ KR C n T K T nC dT nC H m V m p KT Tm p 196.55196503145.8255 50)()50(,,50,==⨯⨯⨯=⨯+==-+==∆⎰+根据热力学第一定律,:W=0,故有Q=△U=3.118kJ2-5某理想气体。
物理化学02热力学第一定律
§2.1 热力学基本概念及术语
一、系统与环境 二、系统的性质 三、状态和状态函数 四、平衡态 五、过程和途径 六、过程函数 七、热力学能
一、系统与环境 1. 系统 系统(System): 研究的对象, 研究的对象,即我们感兴趣的那部 分物质或空间,也称物系或体系。 分物质或空间,也称物系或体系。 2. 环境 环境(Surroundings): 系统之外与之有直接联系的那部分 物质或空间
五、过程与途径
1. 过程 过程(process):系统状态发生的任何变化 : 2. 途径 途径(Path):系统状态发生变化过程的具体步骤 : 3. 热力学常见过程: 热力学常见过程: (1) 纯pVT变化、相变化、化学变化过程 变化、 变化 相变化、 (2)可逆过程与不可逆过程 可逆过程与不可逆过程 (3)循环与非循环过程 循环与非循环过程 (4)恒温、恒压、恒容、恒外压、绝热过程 : 体积功:系统由于体积变化与环境交换的能量 δW=Fdl=(F/A)(A dl)= p环dV
活塞,面积 活塞,面积A 气体
pamb dl
pamb < p: : dV>0,膨胀, ,膨胀, 系统对外作功 δW<0 pamb > p: : dV<0,压缩, ,压缩, 系统得到功 δW>0
l
图2.2.1 体积功示意图
2.4 变温过程热的计算
与恒容热Q 一、定容摩尔热容CV,m与恒容热 V 定容摩尔热容 与恒压热Q 二、定压摩尔热容Cp,m与恒压热 p 定压摩尔热容 三、CV,m与Cp,m的关系 四、 Cp,m与T的关系 的关系 五、平均摩尔定压热容 六、气体恒容变温和恒压变温过程热的计算 七、液体和固体变温过程热的计算
4.经验规律: .经验规律: 对组成不变的系统 两个强度性质确定 则所有强度性质确定; 确定, 强度性质确定 ①两个强度性质确定,则所有强度性质确定; ②两个强度性质和一个广延性质确定,则所有 两个强度性质和一个广延性质确定, 确定 性质都确定。 性质都确定。 由此可见: 由此可见: 对组成及数量不变的系统, 对组成及数量不变的系统,某一状态函数 可表示为另外两个状态函数的函数。 两个状态函数的函数 可表示为另外两个状态函数的函数。 如:压力可表示为体积和温度的函数 p = f (T,V)
【物理化学】2-02热力学第一定律
结论: 当始, 终态确定的条件下, 不 同途径有不同大小的热量.
热是途径函数!
2功 系统与环境间除热量外的另一种能量交换形式 (由微观粒子的有序运动所引起的) 环境对系统作功取“ + ”, 反之取“ - ”
体积功(本节) 功
电功(电化学章) 非体积功
表面功(表面现象章)
dl F (环) = p (环) A
•又要马儿跑, 又要马儿不吃草是不可能的. •将欲取之, 必先与之. •天上不会掉下馅饼. •一份耕耘, 一份收获.
的热“量”(Q), 而不是象状态函数那样的始, 终态
之间的“增量” ( T =T2-T1, Q=Q2-Q1 );
• 一个微小途径对应微小热“量”(dQ), 同时对应
各状态函数的微小“增量”(如 dT, T2 = T1 + dT );
• 上述提醒对“功”同样有效!
我们拥有一个家 名字叫状态函数 兄弟姐妹都很多 但是没有功和热
式中U是状态函数, Q和W是途径函数. 当系统从状态1
变化到状态2, 不同途径Q和W的不同, 但Q + W却与途径无
关.
状态1 U1
QW Q W
状态2 U2 U = U2-U1
Q + W = Q + W = U
5. 热力学第一定律的其它叙述方式
第一类永动机是不能创造的. 内能是系统的状态函数.
…………
T
V
n
p
一定状态的系统 Cp
U
A
HS
G
WQ
H2 1mol, 0℃ 101325Pa
Q=0
Q = 1135J
恒温 热源 0℃
11m01oH3l2,25H0P2℃5a, 15m66o真3lP,空a0℃p环, =0
物理化学 第二章 热力学第一定律
盖斯定律:在恒容或恒压过程中,化学反应的热仅与 始末状态有关而与具体途径无关。
Qv,a难测 Qv,b易测
Qv,c易测
(状态函数法)
恒容时
恒压力时:
Qp,a Qp,c Qp,b
在一个体积恒定为0.50 m3的绝热容器中发生某化学反应, 使容器内气体的温度升高750℃,压力增加60 kPa。此反应 的Q, W, rU , r H 各为若干?
(2)状态函数的分类——广度量和强度量
按状态函数的数值是否与物质的数量有关,将其分为广 度量(或称广度性质)和强度量(或称强度性质)。
广度量:具有加和性(如V、m、U)
状态函数 强度量:没有加和性(如p、T、 ) 注意:由任何两种广度性质之比得出的物理量则为强度 量,如摩尔体积Vm(V/n)等
U只取决于始末态的状态,与途径无关
例: 始态 1 2 3 不同途径,Q、W 不同 但 U= U1 = U2=U3 末态
§2.2 热力学第一定律 1. 热力学第一定律
热力学第一定律的本质是能量守恒原理,即隔离系统无论 经历何种变化,其能量守恒
热力学第一定律的其它说法: 不消耗能量而能不断对外作功的机器——第一类永动机是 不可能的。
p、V、T 等)。
公理:没有外场作用,组成确定的均相体系,只要两 个 独立变量确定,系统其他状态随之确定。p = p (T, V), U = U (T, V), U = U (T, p).
状态函数特点: 状态改变,状态函数值至少有一个改变 系统状态的微小变化所引起的状态函数X的变化用全微分 dX表示 状态函数的变化值ΔX 只取决于始、末状态,而与变化的 经历无关; 2 X X 2 X1 1
定义 :
def
第二章 热力学第一定律
主要贡献 焦耳是从磁效应和电动机效率的测定开始实验研究的。 焦耳是从磁效应和电动机效率的测定开始实验研究的。这些实 验探索导致了他对热功转换的定量研究。1840年起 年起, 验探索导致了他对热功转换的定量研究。1840年起,焦耳开始研究 电流的热效应,得到结论: 电流的热效应,得到结论:导体 中一定时间内所生成的热量与导 体的电流的二次方和电阻之积成正比。1842年 体的电流的二次方和电阻之积成正比。1842年,俄国著名物理学家 楞次也独立地发现了同样的规律,所以被称为焦耳-楞次定律。 楞次也独立地发现了同样的规律,所以被称为焦耳-楞次定律。他 提出了能量守恒和转化定律。用了近40年的时间, 40年的时间 提出了能量守恒和转化定律。用了近40年的时间,不懈地研究和测 定了热功当量。与汤姆逊合作共同进行了多孔塞实验(1852) (1852), 定了热功当量。与汤姆逊合作共同进行了多孔塞实验(1852),发现 气体经多孔塞膨胀后温度下降,现称为焦耳-汤姆逊效应, 气体经多孔塞膨胀后温度下降,现称为焦耳-汤姆逊效应,这个效 应在低温技术和气体液化方面有广泛的应用。 应在低温技术和气体液化方面有广泛的应用。他在气体运动理论方 面亦取得一些成果, ℃和 kPa下氢粒子的速 面亦取得一些成果,首次计算了在 0 ℃和 101 kPa下氢粒子的速 并得出粒子的速度与温度的二次方根成比例的结论。 度,并得出粒子的速度与温度的二次方根成比例的结论。 焦耳 的科研道路并不平坦。他在1843年证实热是能量的一种形式时, 1843年证实热是能量的一种形式时 的科研道路并不平坦。他在1843年证实热是能量的一种形式时,一 些大科学家都表示怀疑和不信任,多次受到科学界的冷遇。 些大科学家都表示怀疑和不信任,多次受到科学界的冷遇。但他以 坚韧不拔的精神,终于在1850 1850年使自己的科学成果获得了科学界的 坚韧不拔的精神,终于在1850年使自己的科学成果获得了科学界的 公认。为了纪念他对科学发展的贡献,国际计量大会将能量 能量、 公认。为了纪念他对科学发展的贡献,国际计量大会将能量、功、 热量的单位命名为焦耳。此外与焦耳名字相联系的实验现象有: 热量的单位命名为焦耳。此外与焦耳名字相联系的实验现象有:焦 楞次定律,气体自由膨胀(焦耳)实验、焦耳-汤姆逊效应、 耳-楞次定律,气体自由膨胀(焦耳)实验、焦耳-汤姆逊效应、焦 耳热功当量实验、焦耳热等。 耳热功当量实验、焦耳热等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 热力学第一定律一.基本要求1.掌握热力学的一些基本概念,如:各种系统、环境、热力学状态、系统性质、功、热、状态函数、可逆过程、过程和途径等。
2.能熟练运用热力学第一定律,掌握功与热的取号,会计算常见过程中的, , Q W U ∆和H ∆的值。
3.了解为什么要定义焓,记住公式, V p U Q H Q ∆=∆=的适用条件。
4.掌握理想气体的热力学能和焓仅是温度的函数,能熟练地运用热力学第一定律计算理想气体在可逆或不可逆的等温、等压和绝热等过程中,, , , U H W Q ∆∆的计算。
二.把握学习要点的建议学好热力学第一定律是学好化学热力学的基础。
热力学第一定律解决了在恒定组成的封闭系统中,能量守恒与转换的问题,所以一开始就要掌握热力学的一些基本概念。
这不是一蹴而就的事,要通过听老师讲解、看例题、做选择题和做习题等反反复复地加深印象,才能建立热力学的概念,并能准确运用这些概念。
例如,功和热,它们都是系统与环境之间被传递的能量,要强调“传递”这个概念,还要强调是系统与环境之间发生的传递过程。
功和热的计算一定要与变化的过程联系在一起。
譬如,什么叫雨?雨就是从天而降的水,水在天上称为云,降到地上称为雨水,水只有在从天上降落到地面的过程中才被称为雨,也就是说,“雨”是一个与过程联系的名词。
在自然界中,还可以列举出其他与过程有关的名词,如风、瀑布等。
功和热都只是能量的一种形式,但是,它们一定要与传递的过程相联系。
在系统与环境之间因温度不同而被传递的能量称为热,除热以外,其余在系统与环境之间被传递的能量称为功。
传递过程必须发生在系统与环境之间,系统内部传递的能量既不能称为功,也不能称为热,仅仅是热力学能从一种形式变为另一种形式。
同样,在环境内部传递的能量,也是不能称为功(或热)的。
例如在不考虑非膨胀功的前提下,在一个绝热、刚性容器中发生化学反应、燃烧甚至爆炸等剧烈变化,由于与环境之间没有热的交换,也没有功的交换,所以0, 0, 0Q W U ==∆=。
这个变化只是在系统内部,热力学能从一种形式变为另一种形式,而其总值保持不变。
也可以通过教材中的例题,选定不同的对象作系统,则功和热的正、负号也会随之而不同。
功和热的取号也是初学物理化学时容易搞糊涂的问题。
目前热力学第一定律的数学表达式仍有两种形式,即:, U Q W U Q W ∆=+∆=-,虽然已逐渐统一到用加号的形式,但还有一个滞后过程。
为了避免可能引起的混淆,最好从功和热对热力学能的贡献的角度去决定功和热的取号,即:是使热力学能增加的,还是使热力学能减少的,这样就容易掌握功和热的取号问题。
焓是被定义的函数,事实上焓是不存在的,仅是几个状态函数的组合。
这就要求理解为什么要定义焓?定义了焓有什么用处?在什么条件下,焓的变化值才具有一定的物理意义,即p H Q ∆=。
务必要记住, V p U Q H Q ∆=∆=这两个公式的使用限制条件。
凭空要记住公式的限制条件,既无必要,又可能记不住,最好从热力学第一定律的数学表达式和焓的定义式上理解。
例如,根据热力学第一定律,e ef f d d U Q W Q W W Q p V W δδδδδδδ=+=++=-+要使d V U Q δ=或V U Q ∆=,必须使f d 0, 0V W δ==,这就是该公式的限制条件。
同理:根据焓的定义式,H U pV =+d d d d H U p V V p =++将上面d U 的表达式代入,得e f d d d d H Q p V W p V V p δδ=-+++要使d p H Q δ=或p H Q ∆=,必须在等压条件下,d 0p =,系统与环境的压力相等,e p p =和f 0W δ=,这就是该公式的限制条件。
以后在热力学第二定律中的一些公式的使用限制条件,也可以用相似的方法去理解。
状态函数的概念是十分重要的,必须用实例来加深这种概念。
例如:多看几个不同的循环过程来求U ∆和H ∆,得到0U ∆=,0H ∆=,这样可以加深状态函数的“周而复始,数值还原”的概念。
例如2H (g)和2O (g)可以通过燃烧、爆鸣、热爆炸和可逆电池等多种途径生成水,只要保持始态和终态相同,则得到的U∆和H ∆的值也都相同,这样可以加深“异途同归,值变相等”的概念。
三.思考题参考答案1.判断下列说法是否正确,并简述判断的依据。
(1)状态给定后,状态函数就有定值;状态函数固定后,状态也就固定了。
(2)状态改变后,状态函数一定都改变。
(3)因为, V p U Q H Q ∆=∆=,所以, V p Q Q 是特定条件下的状态函数。
(4)根据热力学第一定律,因为能量不能无中生有,所以一个系统若要对外做功,必须从外界吸收热量。
(5)在等压下,用机械搅拌某绝热容器中的液体,使液体的温度上升,这时0p H Q ∆==。
(6)某一化学反应在烧杯中进行,热效应为1Q ,焓变为1H ∆。
若将化学反应安排成反应相同的可逆电池,使化学反应和电池反应的始态和终态都相同,这时热效应为2Q ,焓变为2H ∆,则12H H ∆=∆。
答:(1)对。
因为状态函数是状态的单值函数,状态固定后,所有的状态函数都有定值。
反之,状态函数都有定值,状态也就被固定了。
(2)不对。
虽然状态改变后,状态函数会改变,但不一定都改变。
例如,系统发生了一个等温过程,体积、压力等状态函数发生了改变,系统的状态已与原来的不同,但是温度这个状态函数没有改变。
(3)不对。
热力学能U 和焓H 是状态函数,而∆U ,∆H 仅是状态函数的变量。
V Q 和p Q 仅在特定条件下与状态函数的变量相等,所以V Q 和p Q 不可能是状态函数。
(4)不对。
系统可以降低自身的热力学能来对外做功,如系统发生绝热膨胀过程。
但是,对外做功后,系统自身的温度会下降。
(5)不对。
因为环境对系统进行机械搅拌,做了机械功,这时f 0W ≠,所以不符合p H Q ∆=的使用条件。
使用p H Q ∆=这个公式,等压和f 0W ≠,这两个条件一个也不能少。
(6)对。
因为焓H 是状态函数,只要反应的始态和终态都相同,则焓变的数值也相同,与反应具体进行的途径无关,这就是状态函数的性质,“异途同归,值变相等”。
但是,两个过程的热效应是不等的,即12Q Q ≠。
2.回答下列问题,并简单说明原因。
(1)可逆热机的效率最高,在其他条件都相同的前提下,用可逆热机去牵引火车,能否使火车的速度加快?(2)Zn 与盐酸发生反应,分别在敞口和密闭的容器中进行,哪一种情况放的热更多一些?(3)在一个用导热材料制成的圆筒中,装有压缩空气,圆筒中的温度与环境达成平衡。
如果突然打开筒盖,使气体冲出,当压力与外界相等时,立即盖上筒盖。
过一会儿,筒中气体的压力有何变化?答:(1)可逆热机的效率虽高,但是可逆过程是一个无限缓慢的过程,每一步都接近于平衡态。
所以,用可逆热机去牵引火车,在有限的时间内是看不到火车移动的。
所以,可逆功是无用功,可逆热机的效率仅是理论上所能达到的最高效率,使实际不可逆热机的效率尽可能向这个目标靠拢,实际使用的热机都是不可逆的。
(2)当然在密闭的容器中进行时,放的热更多一些。
因为在发生反应的物质的量相同时,其化学能是一个定值。
在密闭容器中进行时,化学能全部变为热能,放出的热能就多。
而在敞口容器中进行时,一部分化学能用来克服大气的压力做功,余下的一部分变为热能放出,放出的热能就少。
(3)筒中气体的压力会变大。
因为压缩空气冲出容器时,筒内的气体对冲出的气体做功。
由于冲出的速度很快,筒内气体来不及从环境吸热,相当于是个绝热过程,所以筒内气体的温度会下降。
当盖上筒盖又过了一会儿,筒内气体通过导热壁,从环境吸收热量使温度上升,与环境达成平衡,这时筒内的压力会增加。
3.用热力学的基本概念,判断下列过程中,W ,Q ,U ∆和H ∆的符号,是0>,0<,还是0=。
第一定律的数学表示式为 U Q W ∆=+。
(1) 理想气体的自由膨胀(2) van der Waals 气体的等容、升温过程(3) 反应 22Zn(s)2HCl(aq)ZnCl (aq)H (g)+=+在非绝热、等压条件下进行(4) 反应22H (g)Cl (g)2HCl(g)+=在绝热钢瓶中进行(5) 在273.15 K ,101.325kPa 下,水结成冰答:(1)W = 0 因为是自由膨胀,外压为零。
Q = 0 理想气体分子之间的相互引力小到可以忽略不计,体积增大,分子间的势能并没有变化,能保持温度不变,所以不必从环境吸热。
∆U = 0 因为温度不变,理想气体的热力学能仅是温度的函数。
或因为W = 0,Q = 0,所以∆U = 0。
∆H = 0 因为温度不变,理想气体的焓也仅是温度的函数。
或因为H U pV =+,∆U = 0,()()0pV nRT ∆=∆=所以∆H = 0。
(2)W = 0 因为是等容过程,膨胀功为零。
Q >0 温度升高,系统吸热。
∆U >0 系统从环境吸热,使系统的热力学能增加。
∆H >0 根据焓的定义式,()0∆=∆+∆=∆+∆>。
H U pV U V p(3)W <0 反应会放出氢气,要保持系统的压力不变,放出的氢气推动活塞,克服外压对环境做功。
Q <0 反应是放热反应。
∆U <0 系统既放热又对外做功,使热力学能下降。
∆H < 0 因为这是不做非膨胀功的等压反应,∆H = Q p。
(4)W = 0 在刚性容器中,进行的是恒容反应,不做膨胀功。
Q = 0 因为用的是绝热钢瓶∆U = 0 根据热力学第一定律,能量守恒,热力学能不变。
以后,在不考虑非膨胀功的情况下,只要是在绝热刚性容器中发生的任何变化,W,Q和U∆都等于零,绝热刚性容器相当于是一个孤立系统。
∆H >0 因为是在绝热钢瓶中发生的放热反应,气体分子数没有变化,钢瓶内的温度会升高,导致压力也增高,根据焓的定义式,可以判断焓值是增加的。
()0,0∆=∆+∆=∆∆∆>>H U pV V p p H或()0,0>>H U pV nR T T H∆=∆+∆=∆∆∆(5)W <0 在凝固点温度下水结成冰,体积变大,系统克服外压,对环境做功。
Q <0 水结成冰是放热过程。
∆U <0 系统既放热又对外做功,热力学能下降。
∆H < 0 因为这是等压相变,∆H = Q p。
4.在相同的温度和压力下,一定量氢气和氧气从四种不同的途径生成水:(1)氢气在氧气中燃烧,(2)爆鸣反应,(3)氢氧热爆炸,(4)氢氧燃料电池。
在所有反应过程中,保持反应方程式的始态和终态都相同,请问这四种变化途径的热力学能和焓的变化值是否相同?答:应该相同。