三角形的内角和专题练习
三角形的内角和
18、如图③,在△ABC中,∠ABC的平分钱与∠ACB的平分线交于点O,如果∠A=α,那么∠BOC=。
19、在Rt△ABC中,若∠C=90度,∠B—∠A=30度,则∠A=度。
20、在以下四个条件①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=2∠B=3∠C;④∠A=∠B=∠C中能确定△ABC是直角三角形的有。
练习题:
4、在△ABC中,如果∠A=300,∠B=2∠C,则∠C=
5、如二班作业图①,∠1=600,则∠2+∠3+∠4+∠500,∠3=600,则∠4=度。
7、如二班作业图③,在△ABC中,∠ABC的平分钱与∠ACB的平分线交于点O,如果∠A=700,那么∠BOC=0;如果∠A=α,那么∠BOC=。
24、填写证明过程。如下图,求证△ABC的内角和是180度。
证明:作CD∥
∴∠B=∠(两直线平行,)
∴∠A=∠(两直线平行,)
∵∠ACB+∠1+∠2=
∴∠A+∠B+∠C=
∴△ABC的内角和是180度。
三角形的内角和(一班)
知识点:
1、三角形三个内角的和是。
2、直角三角形的两个锐角。
3、有两个角互余的三角形是。
10、在直角三角形中,两个锐角的差等30度,则这个三角形中最小角的度数是。
11、如图①,∠A=500,则∠2+∠3+∠4+∠1=度。
12、如图②,如果∠1=300,∠2=500,∠3=600,则∠4=度。
13、如图③,在△ABC中,∠ABC的平分钱与∠ACB的平分线交于点O,如果∠1=20度,∠2=40度,那么∠A的度数是,∠BOC的度数是。
三角形内角和定理练习题
三角形内角和定理练习题2.如图,在△ABC中,BE、CF分别是ang;ABC和ang;ACB 的角平分线,它们相交于点I,已知ang;A=56deg;,则ang;BIC= .3.如图,在△ABC中,ang;B=25deg;,延长BC至E,过点E作AC的垂线ED,垂足为O,且ang;E=40deg;,则ang;A= .4.如图,若AB=AC,BG=BH,AK=KG,则ang;BAC的度数为.5.若等腰三角形一腰上的高和另一腰上的高的夹角为58deg;,则这个等腰三角形顶角的度数是.6.如图,将三角形纸片ABC的一角折叠,折痕为EF,若ang;A=80deg;,ang;B=68deg;,ang;CFB=22deg;,则ang;CEA= .7.在一个三角形中,三个内角中至少有个锐角,最多有个直角或钝角.8.如图,AB∥CD,若ang;ABE=135deg;,ang;CDE=110deg;,则ang;DEF= .9.如图,在△ABC中,ang;B=ang;C,FDperp;BC,DEperp;AB,ang;AFD=158deg;,则ang;EDF等于( )A.64deg;B.65deg;C.67deg;D.68deg;10.如图,已知AB∥CD,BE平分ang;ABD,DE平分ang;BDC,则ang;E是( )A.锐角B.直角C.钝角D.无法确定12.如图,在△ABC中,ang;ABC和ang;ACB的外角平分线交于点D,设ang;BAC=ang;a,则ang;D等于( )A.180deg;-2ang;aB.180deg;- ang;aC.90deg;- ang;aD.90deg;-2ang;a13.如果三角形的一个外角等于与它相邻的内角,那么这个三角形的形状是( )A.锐角三角形B.直角三角形C.钝角三角形 D.任意三角形14.如图,ang;1=20deg;,ang;2=25deg;,ang;A=35deg;,则ang;BDC的度数等于( )A.60deg;B.70deg;C.80deg;D.无法确定15.如图,ang;A=32deg;,ang;B=45deg;,ang;C=38deg;,则ang;DFE等于( ) A.108deg; B.110deg; C.115deg; D.无法计算16.如图,在△ABC中,D是BC边延长线上的一点,连接AD,ang;BAC=ang;BCA,ang;B=ang;D=ang;a,ang;CAD=ang;beta;,则ang;a与ang;beta;之间的关系是( )A.ang;a+ang;beta;=180deg;B.3ang;a+2ang;beta;=180deg;C.ang;a=2ang;beta;D.3ang;a+ang;beta;=180deg;17.如图,在△ABC中,ADperp;BC,ang;DAC=ang;B,判断△ABC是什么形状的三角形,并写出你的判断理由.18.在△ABC中,ang;B=ang;C,BD是AC边上的高,ang;ABD=20deg;,求ang;C的度数.19.如图,已知E是BC上一点,且ang;1=ang;2,ang;3=ang;4,且AB∥CD.求证:AFperp;DE.20.如图,在△ABC中,ang;B=ang;C,点D在BC上,ang;BAD=50deg;,AE=AD.求ang;EDC的度数.21.如图,点D是△ABC中ang;ACE的外角平分线与BA 延长线的交点. 求证:ang;BACgt;ang;B.更多精彩内容请点击:初中gt;初一gt;数学gt;初一数学试题。
四年级下数学同步练习-三角形的内角和(带解析)(附答案)
人教版小学数学四年级下册三角形的内角和练习卷(带解析)1.一个三角形中,有1个角是44°,另外两个角可能是()A.96°,50° B.80°,56° C.90°,36°2.用10倍的放大镜看一个三角形,这个三角形三内角和是()。
A.108° B.180° C.1800° D.1080°3.三角形中最大的一个角一定()A.不小于60° B.大于90° C.小于90° D.大于60°而小于90°4.两个不相等的三角形,它们的内角和()。
A.相等 B.面积大的三角形内角和大C.面积小的三角形内角和小 D.不能比较5.一个三角形最小的内角是50度,这是一个()A.锐角三角形B.直角三角形C.钝角三角形D.以上都不对6.一个三角形中,有两个角都是锐角,另一个角()A.一定是钝角 B.一定是锐角C.可能是钝角、锐角或直角7.下面能组成一个三角形的三个角是()A.∠1= 80度,∠2= 70度,∠3 =15度B.∠1= 50度,∠2= 85度,∠3 =63度C.∠1= 60度,∠2= 60度,∠3 =70度D.∠1= 74度,∠2= 16度,∠3 =90度8.把一个等边三角形从顶点起用一条直线分成两个同样大小的三角形,其中一个三角形的内角和是()A.30 B.60° C.90° D.180°9.一个三角形中,如图所示,∠1=70度,∠3=35度,∠2=()A.45度 B.180度 C.75度 D.90度10.在一个等腰直角三角形中,它的一个底角是()A.30° B.45° C.60°11.下列图形中,内角和不是180度的图形是()A.等腰三角形 B.平行四边形 C.锐角三角形12.一个等腰三角形的顶角是60度,它的底角和是()A.70° B.120° C.140°13.下面每组三个角,不可能在同一个三角形内的是()A.15度、87度、78度B.120度、55度、5度C.80度、50度、50度D.90度、16度、104度14.一个直角三角形中的一个锐角是另一个锐角的2倍,则这个三角形中最小锐角是()A.450° B.30° C.25°15.一个等腰三角形的底角为a度,顶角可表示为()度。
三角形内角和的应用专练
………外…………○…装…………○……订………………线…____姓名:___________班________考号:___内…………○…………装…………订…………○…………线…○……………………内…………○…专题三 三角形内角和的应用专练类型一 直接利用三角形的内角和计算角度1.如图,AD 是△ABC 的外角∠CAE 的平分线,∠B =30°,∠DAE =55°,则∠ACB 的度数是( A )A . 80°B . 85°C . 100°D . 110°2.如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC ,若∠1=30°,∠2=20°,则∠B =__50°___.3.如图,BE 是∠ABD 的平分线,CF 是∠ACD 的平分线,BE 与CF 交于G ,若∠BDC=140°,∠BGC=110°,则∠A 为( C )A .70°B .75°C .80°D .85°4.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=50°,∠C=70°,求∠DAC 及∠BOA 的度数.试题解析:∵AD 是高 ∴∠ADC=90° ∵∠C=70°∴∠DAC=180°﹣90°﹣70°=20° ∵∠BAC=50°,∠C=70°,AE 是角平分线 ∴∠BAO=25°,∠ABC=60°试卷第2页,总6页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………线…………○…………∵BF 是∠ABC 的角平分线 ∴∠ABO=30° ∴∠BOA=180°﹣∠BAO ﹣∠ABO=125° 类型二 在三角板或直尺中的角度计算5.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是14.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=50°,∠C=70°,求∠DAC 及∠BOA 的度数.试题解析:∵AD 是高 ∴∠ADC=90° ∵∠C=70°∴∠DAC=180°﹣90°﹣70°=20°∵∠BAC=50°,∠C=70°,AE 是角平分线 ∴∠BAO=25°,∠ABC=60°∵BF 是∠ABC 的角平分线 ∴∠ABO=30° ∴∠BOA=180°﹣∠BAO ﹣∠ABO=125°( B )A .90°B .120°C .135°D .150°6.将一副直角三角尺如图放置,若∠AOD=20°, 则∠BOC 的大小为( B )A . 140°B . 160°C . 170°D . 150°7.如图,把一根直尺与一块三角尺如图放置,若么∠1=55°,则∠2的度数为 145 ° .类型三 与平行线的性质有关的角度计算8.如图,直线AB ∥ CD ,∠ B=50°,∠ C=40°,则∠E 等于( C )……○………………○…订…………○………线………学校:_________________班级:_考号:__________装…………○…………○…………线……………………○…内…………○…………A . 70° B . 80° C . 90° D . 100°9.如图,m∥n,直线l 分别交m ,n 于点A ,点B ,AC⊥AB,AC 交直线n 于点C ,若∠1=35°,则∠2等于( C )A . 35°B . 45°C . 55°D . 65°10.如图,已知AB ∥CD ,∠1=100°,∠2=120°,则∠α=_40°____.类型四 与折叠有关的角度计算11.如图,△ABC 中,∠ACB=90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若∠A=22°,则∠BDC 等于( C )A . 44°B . 60°C . 67°D . 77°12.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCED 的外部时,则∠A 与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( A )A . 2∠A=∠1﹣∠2B . 3∠A=2(∠1﹣∠2)C . 3∠A=2∠1﹣∠2D . ∠A=∠1﹣∠213.如图,△ABC 中,DE∥BC,将△ADE 沿DE 翻折,使得点A 落在平面内的A′处,若∠B=50°,则∠BDA′的度数是__80°____.试卷第4页,总6页………外…………○……○…………订…○……………………○……※※装※※订※※线※※内※※※ ……○…线………○………类型五利用三角形内角和探究14.如图, ∠A +∠B +∠C +∠D +∠E 等于( B )A . 90 °B . 180°C . 360°D . 270°15.如图,已知AB//CD ,猜想图1、图2、图3中∠B,∠BED,∠D 之间有什么关系?请用等式表示出它们的关系,并对图2的等式说明理由。
三角形内角和综合习题精选(含答案)
三角形内角和综合习题精选一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?2.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,求∠BFE的度数.3.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?4.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.5.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=_________,∠XBC+∠XCB=_________.(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ 的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.6.如图1,△ABC中,∠A=50°,点P是∠ABC与∠ACB平分线的交点.(1)求∠P的度数;(2)猜想∠P与∠A有怎样的大小关系?(3)若点P是∠CBD与∠BCE平分线的交点,∠P与∠A又有怎样的大小关系?(4)若点P是∠ABC与∠ACF平分线的交点,∠P与∠A又有怎样的大小关系?【(2)、(3)、(4)小题只需写出结论,不需要证明】8.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.9.如图所示,点E在AB上,CE,DE分别平分∠BCD,∠ADC,∠1+∠2=90°,∠B=75°,求∠A的度数.10.如图,∠AOB=90°,点C、D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F.(1)当∠OCD=50°(图1),试求∠F.(2)当C、D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.11.如图,△ABC中,AE、BF是角平分线,它们相交于点O.(∠ABC>∠C),(1)试说明∠BOA=90°+∠C;(2)当AD是高,判断∠DAE与∠C、∠ABC的关系,并说明理由.12.已知△ABC中,∠BAC=100°.(1)若∠ABC和∠ACB的角平分线交于点O,如图1所示,试求∠BOC的大小;(2)若∠ABC和∠ACB的三等分线(即将一个角平均分成三等分的射线)相交于O,O1,如图2所示,试求∠BOC的大小;(3)如此类推,若∠ABC和∠ACB的n等分线自下而上依次相交于O,O1,O2…,如图3所示,试探求∠BOC的大小与n的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.答案与评分标准一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?考点:三角形的角平分线、中线和高;角平分线的定义;垂线;三角形内角和定理。
人教版数学八年级上册11.2《三角形内角和定理》典型例题
例析三角形内角和定理三角形三个内角的和等于180°,这是三角形内角和定理.三角形内角和定理应用广泛,下面以例说明.一、求三角形的内角例1 在△ABC中,∠B=40°,∠C=80°,那么∠A的度数为〔〕A.30° B.40° C.50° D.60°解:由三角形内角和定理,得∠A=180°-∠B-∠C=180°-40°-80°=60°,答案选D.例2 如图,∠1=100°,∠2=140°,那么∠3=______.54321解:∠4=180°-∠1=180°-100°=80°,∠5=180°-∠2=180°-140°=40°,由三角形内角和定理,得∠3=180°-∠4-∠5=180°-80°-40°=60°.说明:在求出∠4=80°后,也可根据三角形外角性质,得∠2=∠4+∠3,所以∠3=∠2-∠4=140°-80°=60°.例3 △ABC中,假设∠A-2∠B+∠C=0°,那么∠B的度数是〔〕A.30°B.45°C.60°D.75°解析:在△ABC中,有∠A+∠B+∠C=180°,可适当变形为∠A+∠C=180°-∠B,而条件∠A-2∠B+∠C=0°,也可变形为∠A+∠C=2∠B,所以可知180°-∠B=2∠B,解此方程即可得到∠B=60°,答案选C.二、判断三角形的形状例4 一个三角形三个内角的度数之比为2:3:7,这个三角形一定是〔〕C B A 21O A .直角三角形 B .等腰三角形 C .锐角三角形D .钝角三角形 解:设三个内角分别为2k ,3k ,5k ,由三角形内角和定理,得2k+3k+5k=180°.解得k=15°,所以2k=30°,3k=45°,7k=105°,所以这个三角形是钝角三角形,答案选D .三、求角平分线的夹角例5 △ABC 中,∠A=60°,∠ABC 、∠ACB 的平分线交于点O ,那么∠BOC 的度数为______.解:如图,由BO 平分∠ABC ,得∠1=12∠ABC ; 由CO 平分∠ACB ,得∠2=12∠ACB . ∴∠1+∠2=12(∠ABC +∠ACB) =12(180°-∠A) =12(180°-60°)=60°. 所以∠BOC=180°-〔∠1+∠2〕=180°-60°=120°例6 ,如图,在△ABC 中,AD 、AE 分别是△ABC 的高和角平分线,〔1〕假设∠B=30°,∠C=50°,求∠DAE 的度数.〔2〕假设∠C >∠B ,试写出∠DAE 与〔∠C -∠B 〕的数量关系.〔不需要证明〕解析:(1)有三角形内角和180°,可知△ABC 中∠BAC=100°,AE 是∠BAC 的角平分线,所以∠EAC=50°,在△ADC 中,∠C=50°, ∠ADC=90°,由三角形内角和知∠DAC=180°-∠C -∠ADC=40°,∠DAE=∠EAC -∠DAC=50°-40°=10°(2)由〔1〕的求解过程可知,要求得∠DAE 的度数,需知道∠EAC 与∠DAC 的度数,而我们知道∠DAC=180°-∠C -∠ADC=90°-∠C ,∠EAC 的度数为1218011802-1180-90-212EAC BAC BAC B C EAC B C DAE EAC DACB C C C ∠=∠∠=︒-∠-∠∠=︒-∠-∠∠=∠∠=︒-∠-∠︒∠=∠-∠B ,而,则(),所以()()()。
八年级上册三角形内角和练习题.docx
八年级上册三角形内角和练习题一、填空题1.△ABC中,∠A=40o,∠B=60o,则与∠ C相邻外角的度数是 ______.2.三角形三个内角的比为2:3:4,则最大的内角是 _______度.3.如果△ABC扣,∠A+∠B=∠C—10o,则△ABC是________三角形.4.一个五边形的 4 个内角都是 100o,则第五个内角的度数是_______.5.一个 n 边形的内角和与外角和的比为2:1,则 n=________.6.三角形三个外角的比为2:3:4,则三个内角的比为 _______.二、选择题7.一个多边形的每个内角都等于 156o,则此多边形是 A.十五边形 B.十六边形 C.十七边形 D.十八边形 8.具备下列条件的△ABC中,不是直角三角形的是 A.∠A+∠B=∠ C B.∠A—∠B=∠CC.∠A:∠B:∠C=1:2:D.∠A=∠B=3∠C9.一个三角形的三个外角中,钝角的个数最少为A.0 个 B.1 个 C.2 个 D.3 个10.如图,一块四边形绿化园地,四角都做有半径为 R 的圆形喷水池,则这四个喷水xx占去的绿化园地的面积为A.2?RB.47?RC. ?RD.不能确定11.小明不慎将一块三角形的玻璃摔碎成如图所示的四块,你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形 ?应该带A.第 1 块 B.第 2 块 C.第 3 块 D.第 4 块12.如图,光线 a 照射到平面镜 CD上,然后在平面镜舳和 CD之间来回反射,这时光线的入射角等于反射角,即∠l=∠6,∠ 5=∠3,∠2=∠ 4.若已知∠l=55o,∠3=75o,那么∠2 等于A.50o B.5o C.6oDo三、解答题13.如图所示,求∠A+∠B+∠C+∠D+∠ E+∠F 的度数. 14.已知:在△ABC 中,∠ A+∠B=2∠C,∠A—∠B=20o,求三角形三个内角的度数.15.如图,∠A=65o,∠ABD=30o,∠ACB=72o,且 CE平分∠ACB,求∠ BEC的度数.16.如果一个 n 边形的内角都相等,且它的每一个外角与内角的比为2:3,求这个多边形的内角和.17.本题 8 分)如果一个多边形的每个内角都相等,每个内角与每个外角的差是 90o,求这个多边形的内角和.18.如图,在 ?ABC中,∠ B、∠C 的平分线交于点 O.若∠A=50o,求∠BOC的度数.设∠ A=no,求∠BOC的度数.当∠ A 为多少度时,∠BOC=3∠A?19.一个同学在进行多边形的内角和计算时,所得的内角和为1125o,当了以后,重新少了一个内角,个内角是多少度,他所求的是几形的内角和 ?20.接多形不相的两个点的段,叫做多形的角,如,AC、AD 是五形 ABCDE的角.思考下列:如n 形 A1, A2,A3⋯ An中,点 A1 可以画 ______条角,它分是 ________;点 A2 可以画 ________条角,点 A3 可以画条角.点 A1 的角与点 A2 的角有相同的 ?点 A1 的角与点 A3 的角有相同的 ?在此基上,你能竹形的角条数的律 ?参考答案一、填空1.100o2.80o3.角4.140o5.66.5:3:1二、7.A.D.C 10.C 11.B 12.D三、解答13.360o14.∠A=70o、∠B=50 o、∠C=60 o15.∠BEC=131o16.540o17.1080o18.∠BOC=115o∠BOC=90o+1on∠A=36o19.135oxx 形20.n-A1A3、AlA4、A1A5、⋯、A1An-1没有角相同有一条角相同,n八年上学期三角形的内角和一、填空1.△ABC中,∠A=40o,∠B=60o,与∠ C相外角的度数是 ______.2.三角形三个内角的比2:3:4,最大的内角是 _______度.3.如果△ABC扣,∠A+∠B=∠C—10o,△ABC是________三角形.4.一个五形的 4 个内角都是 100o,第五个内角的度数是_______.5.一个 n 形的内角和与外角和的比2:1, n=________.6.三角形三个外角的比2:3:4,三个内角的比 _______.二、7.一个多形的每个内角都等于 156o,此多形是 A.十五形 B.十六形 C.十七形 D.十八形8.具备下列条件的△ABC中,不是直角三角形的是 A.∠A+∠B=∠CB.∠A—∠B=∠CC.∠A:∠B:∠C=1:2:D.∠A=∠B=3∠C9.一个三角形的三个外角中,钝角的个数最少为 A.0 个 B.1 个 C.2 个D. 3 个10.如图,一块四边形绿化园地,四角都做有半径为 R 的圆形喷水池,则这四个喷水池占去的绿化园地的面积为A.2?RB.47?RC. ?RD.不能确定11.小明不慎将一块三角形的玻璃摔碎成如图所示的四块,你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形 ?应该带A.第 1 块 B.第 2 块 C.第 3 块 D.第 4 块12.如图,光线 a 照射到平面镜 CD上,然后在平面镜舳和 CD之间来回反射,这时光线的入射角等于反射角,即∠l=∠6,∠ 5=∠3,∠2=∠ 4.若已知∠l=55o,∠3=75o,那么∠ 2 等于A.50o B.5o C.6oDo三、解答题13.如图所示,求∠A+∠B+∠C+∠D+∠ E+∠F 的度数.14.已知:在△ABC中,∠A+∠B=2∠C,∠A—∠B=20o,求三角形三个内角的度数.15.如图,∠A=65o,∠ABD=30o,∠ACB=72o,且 CE平分∠ACB,求∠ BEC的度数.16.如果一个 n 形的内角都相等,且它的每一个外角与内角的比2:3,求个多形的内角和.17.本 8 分)如果一个多形的每个内角都相等,每个内角与每个外角的差是90o,求个多形的内角和.18.如,在 ?ABC中,∠ B、∠C 的平分交于点 O.若∠A=50o,求∠BOC的度数.∠ A=no,求∠BOC的度数.当∠ A 多少度,∠BOC=3∠A?19.一个同学在行多形的内角和算,所得的内角和1125o,当了以后,重新少了一个内角,个内角是多少度,他所求的是几形的内角和 ?20.接多形不相的两个点的段,叫做多形的角,如,AC、AD 是五形 ABCDE的角.思考下列:如n 形 A1, A2,A3⋯ An中,点 A1 可以画 ______条角,它分是________;点 A2 可以画 ________条角,点 A3 可以画条角.点 A1 的角与点 A2 的角有相同的 ?点 A1 的角与点A3 的角有相同的 ?在此基上,你能竹形的角条数的律参考答案1.100o2.80o3.角4.140o5.66.5:3:1二、7.A.D.C 10.C 11.B 12.D 三、解答13.360o14.∠A=70o、∠B=50 o、∠C=60 o 15.∠BEC=131o16.540o17.1080o18.∠BOC=115o∠BOC=90o+1on∠A=36o19.135oxx 形20.n-A1A3、AlA4、A1A5、⋯、A1An-1没有对角线相同有一条对角线相同,n八年级上学期三角形的内角和练习题一、填空题1.△ABC中,∠A=40o,∠B=60o,则与∠ C相邻外角的度数是 ______.2.三角形三个内角的比为2:3:4,则最大的内角是 _______度.3.如果△ABC扣,∠A+∠B=∠C—10o,则△ABC是________三角形.4.一个五边形的 4 个内角都是 100o,则第五个内角的度数是_______.5.一个 n 边形的内角和与外角和的比为2:1,则 n=________.6.三角形三个外角的比为2:3:4,则三个内角的比为 _______.二、选择题7.一个多边形的每个内角都等于 156o,则此多边形是 A.十五边形 B.十六边形 C.十七边形 D.十八边形 8.具备下列条件的△ABC中,不是直角三角形的是 A.∠A+∠B=∠ C B.∠A—∠B=∠CC.∠A:∠B:∠C=1:2:D.∠A=∠B=3∠C9.一个三角形的三个外角中,钝角的个数最少为 A.0 个 B.1 个 C.2 个D. 3 个10.如图,一块四边形绿化园地,四角都做有半径为 R 的圆形喷水池,则这四个喷水xx占去的绿化园地的面积为A.2?RB.47?RC. ?RD.不能确定11.小明不慎将一块三角形的玻璃摔碎成如图所示的四块,你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形 ?应该带A.第 1 块 B.第 2 块 C.第 3 块 D.第 4 块12.如图,光线 a 照射到平面镜 CD上,然后在平面镜舳和 CD之间来回反射,这时光线的入射角等于反射角,即∠l=∠6,∠ 5=∠3,∠2=∠4.若已知∠l=55o,∠3=75o,那么∠ 2 等于A.50o B.5o C.6oDo三、解答题13.如图所示,求∠A+∠B+∠C+∠D+∠ E+∠F 的度数. 14.已知:在△ABC 中,∠ A+∠B=2∠C,∠A—∠B=20o,求三角形三个内角的度数.15.如图,∠A=65o,∠ABD=30o,∠ACB=72o,且 CE平分∠ACB,求∠ BEC的度数.16.如果一个 n 边形的内角都相等,且它的每一个外角与内角的比为2:3,求这个多边形的内角和.17.本题 8 分)如果一个多边形的每个内角都相等,每个内角与每个外角的差是 90o,求这个多边形的内角和.18.如图,在 ?ABC中,∠ B、∠C 的平分线交于点 O.若∠A=50o,求∠BOC的度数.设∠ A=no,求∠BOC的度数.当∠ A 多少度,∠BOC=3∠A?19.一个同学在行多形的内角和算,所得的内角和1125o,当了以后,重新少了一个内角,个内角是多少度,他所求的是几形的内角和?20.接多形不相的两个点的段,叫做多形的角,如,AC、AD 是五形 ABCDE的角.思考下列:如n 形 A1, A2,A3⋯ An中,点 A1 可以画 ______条角,它分是 ________;点 A2 可以画 ________条角,点A3 可以画条角.点 A1 的角与点 A2 的角有相同的 ?点 A1 的角与点 A3 的角有相同的 ?在此基上,你能竹形的角条数的律 ?参考答案一、填空1.100o2.80o3.角4.140o5.66.5:3:1二、7.A.D.C 10.C 11.B 12.D三、解答13.360o14.∠A=70o、∠B=50 o、∠C=60 o 15.∠BEC=131o16.540o17.1080o18.∠BOC=115o∠BOC=90o+1on∠A=36o19.135oxx 形20.n-A1A3、AlA4、A1A5、⋯、A1An-1没有角相同有一条角相同,n11 / 11。
三角形内角和定理练习题(供参考)
三角形内角和定理练习题1.在△ABC中,∠A=∠B=∠C,那么△ABC是三角形.2.如图,在△ABC中,BE、CF别离是∠ABC和∠ACB的角平分线,它们相交于点I,已知∠A=56°,那么∠BIC =.3.如图,在△ABC中,∠B=25°,延长BC至E,过点E作AC的垂线ED,垂足为O,且∠E=40°,那么∠A =.4.如图,假设AB=AC,BG=BH,AK=KG,那么∠BAC的度数为.5.假设等腰三角形一腰上的高和另一腰上的高的夹角为58°,那么那个等腰三角形顶角的度数是.6.如图,将三角形纸片ABC的一角折叠,折痕为EF,假设∠A=80°,∠B=68°,∠CFB=22°,那么∠CEA =.7.在一个三角形中,三个内角中至少有个锐角,最多有个直角或钝角.8.如图,AB∥CD,假设∠ABE=135°,∠CDE=110°,那么∠DEF=.9.如图,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,那么∠EDF等于( )A.64°B.65°C.67°D.68°10.如图,已知AB∥CD,BE平分∠ABD,DE平分∠BDC,那么∠E是( )A.锐角B.直角C.钝角D.无法确信11.如图,已知在△ABC中,AD平额外角∠EAC,AD∥BC,那么△ABC的形状是( ) A.等边三角形 B.直角三角形 C.等腰三角形 D.任意三角形12.如图,在△ABC中,∠ABC和∠ACB的外角平分线交于点D,设∠BAC=∠α,那么∠D等于( )A.180°-2∠αB.180°-∠αC.90°-∠αD.90°-2∠α13.若是三角形的一个外角等于与它相邻的内角,那么那个三角形的形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.如图,∠1=20°,∠2=25°,∠A=35°,那么∠BDC的度数等于( )A.60°B.70°C.80°D.无法确信15.如图,∠A=32°,∠B=45°,∠C=38°,那么∠DFE等于( )A.108°B.110°C.115°D.无法计算16.如图,在△ABC中,D是BC边延长线上的一点,连接AD,∠BAC=∠BCA,∠B=∠D=∠α,∠CAD=∠β,那么∠α与∠β之间的关系是( )A.∠α+∠β=180°B.3∠α+2∠β=180°C.∠α=2∠βD.3∠α+∠β=180°17.如图,在△ABC中,AD⊥BC,∠DAC=∠B,判定△ABC是什么形状的三角形,并写出你的判定理由.18.在△ABC中,∠B=∠C,BD是AC边上的高,∠ABD=20°,求∠C的度数.19.如图,已知E是BC上一点,且∠1=∠2,∠3=∠4,且AB∥CD.求证:AF⊥DE.20.如图,在△ABC中,∠B=∠C,点D在BC上,∠BAD=50°,AE=AD.求∠EDC的度数.21.如图,点D是△ABC中∠ACE的外角平分线与BA延长线的交点.求证:∠BAC>∠B.类型一:三角形内角和定理的应用1.已知一个三角形三个内角度数的比是1:5:6,那么其最大内角的度数为()A.60° B.75° C.90° D.120°触类旁通:【变式1】在△ABC中,∠A=55°,∠B比∠C大25°,那么∠B的度数为()A.50° B.75°C.100° D.125°【变式2】三角形中至少有一个角不小于________度。
四年级数学 三角形内角和专项练习 带答案
三角形内角和典题探究一个1、三角形的两个内角和是850,你知道这是一个什么三角形吗?2、在一个三角形中,已知∠1是∠2的2倍,∠2是∠3的31。
这个三角形各个角是多少度?这是一个什么三角形?3、同学们知道三角形的内角和是1800,你能运用这个知识分别求出四边形、五边形、六边形的内角和吗?4、如图,两个三角形都是等腰三角形,∠3是多少度?演练方阵A 档(巩固专练)1.由三条( )围成的图形叫三角形。
2.三角形按角可分为( )三角形、( )三角形、( )三角形。
3.三角形的内角和是( )。
4.等腰直角三角形中三个内角分别是( ),( )和( )。
5、判 断,(对的画“√”,错的画“X ”)(1).一个三角形有一个锐角,那么,这个三角形就一定是锐角三角形。
( )(2).直角三角形中只能有一个角是直角。
( )(3).等边三角形一定是锐角三角形。
( )(4).三角形共有一条高。
( )(5).一个三角形中,最大的角是锐角,那么,这个三角形一定是锐角三角形。
( )(6).两个底角都是280的三角形,一定是钝角三角形。
( )6、选 择。
(1).一个等腰三角形,其中一个底角是750,顶角是( )A .750B .450C .300D .600(2).任意一个三角形都有( )高。
A .一条B .两条C 三条D .无数条(3).( )个角是锐角的三角形,叫锐角三角形。
A.三 B.二 C.—(4).三角形越大,内角和( )A.越大 B.不变 C.越小7、求下面三角形中/3的度数,并指出是什么三角形。
1.∠1=300,∠2=1080,∠3= ( ),它是( )三角形。
2.∠1=900,∠2=450,∠3=( ),它是( )三角形。
3.∠1=700,∠2=700,∠3=( )。
它是( )三角形。
4.∠1=900,∠2=300,∠3=( ),它是( )三角形。
8、一个三角形的两个内角和是1100,你知道这是一个什么三角形吗?9、在△ABC中,已知∠A是∠B的3倍,且∠A比∠B大600,这个三角形各个角是多少度?你知道这是一个什么三角形?10、一个等腰三角形的顶角是一个底角的2倍,这个三角形各个角是多少度?B档(提升精练)1、任意三角形的内角和是度;一个直角三角形的两个锐角的和是度。
中考数学总复习《三角形内角和定理》专题复习练习及答案
初三中考数学复习三角形内角和定理专题复习练习1. 把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )A.125° B.120° C.140° D.130°2. 如图所示,∠A,∠1,∠2的大小关系是( )A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠1 3. 如图,射线AD,BE,CF构成∠1,∠2,∠3,则∠1+∠2+∠3等于( )A.180° B.360° C.540° D.无法确定4. 如图,a∥b,∠1=50°,∠2=60°,则∠3的度数为( )A.50° B.60° C.70° D.80°5. 如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为( )A.110° B.80° C.70° D.60°6. 下面四个图形中,能判断∠1>∠2的是( )7. 如图,AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数为( )A.53° B.63° C.73° D.83°8. 已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为( )A.30° B.35° C.40° D.45°9. 如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC 沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于( )A.40° B.35° C.30° D.25°10. 如图,a,b,c,d互不平行,对它们截出的一些角的数量关系描述错误的是( )A.∠1+∠5+∠4=180° B.∠4+∠5=∠2C.∠1+∠3+∠6=180° D.∠1+∠6=∠211. 如图所示,AB∥CD,AD与BC交于点E,EF是∠BED的平分线.若∠1=30°,∠2=40°,则∠BEF=____度.12. 如图,已知∠1=100°,∠2=140°,那么∠3=______.13. 如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=____度.14. 当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为_______.15.如图所示,∠A+∠B+∠C+∠D+∠E+∠F等于_______.16.在△ABC 中,∠A∶∠B=2∶1,∠C=60°,则∠A =____°. 17. 如图,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.18. 如果等腰三角形的一个外角为110°,求它的底角.19. 在三角形ABC 中,∠BAE =12∠BAC ,∠C>∠B ,且FD ⊥BC 于D 点.(1)试推出∠EFD ,∠B ,∠C 的关系;(2)当点F 在AE 的延长线上时,其余条件不变,你在题(1)推导的结论还成立吗?请直接写出结论.20. 如图,CE 是△ABC 外角∠ACD 的平分线,CE 与BA 的延长线相交于点E ,求证:∠BAC>∠B.21. 如图所示,在△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,试说明:∠BOC =90°+12∠A.参考答案1---10 DBBCC DBCAD 11. 35 12. 60° 13. 45 14. 30° 15. 360° 16. 8017. 解:在△ABN 中,∠A +∠B +∠1=180°,在△CDP 中,∠C +∠D +∠3=180°,在△EFM 中,∠E +∠F +∠2=180°,∴∠A +∠B +∠1+∠C +∠D +∠E +∠F +∠3+∠2=540°,在△MNP 中,∠5+∠4+∠6=180°,∴∠1+∠2+∠3=180°,∴∠A +∠B +∠C +∠D +∠E +∠F =540°-(∠1+∠2+∠3)=360°18. 解:①当110°是顶角的外角时,则底角为110°×12=55°,②当110°是底角的外角时,则底角为180°-110°=70°,即它的底角是55°或70°19. 解:(1)∠EFD =90°-∠FED =90°-(∠B +∠BAE)=90°-∠B -12∠BAC=90°-∠B -12(180°-∠B -∠C)=90°-∠B -90°+12∠B +12∠C =12(∠C-∠B)(2)在(1)中推导的结论成立,∠EFD =12(∠C -∠B)20. 证明:∵∠BAC>∠ACE ,∠DCE>∠B ,又∠ACE =∠DCE ,∴∠BAC>∠B 21. 证明:∠BOC =180°-(∠OBC +∠OCB)=180°-12(∠ABC +∠ACB)=180°-12(180°-∠A)=90°+12∠A。
完整版三角形内角和练习题
三角形的内角和练习例1. 在△A B C 中,已知∠A =21∠B =31∠C ,请你判断三角形的形状。
分析:三角形的形状按边分和按角分两类,本题由于不可能按边分,因此只有计算各角的度数,按角来确定形状,由于在该题中∠C 是最大的角,因此只需求出∠C 的度数即可判断三角形的形状。
例2. 如图,已知D F ⊥A B 于点F ,且∠A =45°,∠D =30°,求∠A C B 的度数。
例3. 如图,在△A B C 中,∠1=∠2,∠3=∠4,∠B A C =54°,求∠D A C 的度数。
例4. 已知在△A B C 中,∠A =62°,B O 、C O 分别是∠A B C 、∠A C B 的平分线,且B O 、C O 相交于O ,求∠B O C 的度数。
〖拓展与延伸〗(1)已知△A B 中C ,B O 、C O 分别是∠A B C 、∠A C B 的平分线,且B O 、C O 相交于点O ,试AB C DB D C2 43 1AB CA探索∠B O C与∠A之间是否有固定不变的数量关系。
(2)已知B O、C O分别是△A B C的∠A B C、∠A C B的外角角平分线,B O、C O相交于O,试探索∠B O C与∠A之间是否有固定不变的数量关系。
(3)已知:B D为△A B C的角平分线,C O为△A B C的外角平分线,它与B O的延长线交于点O,试探索∠B O C与∠A的数量关系。
由前面的探索同学们可以发现三角形三个角(或外角)的平分线所夹的角与第三个内角之间存在着一定的数量关系。
例5.已知多边形的每一个内角都等于135°,求这个多边形的边数。
例6. 一个零件的形状如图,按规定∠A =90°,∠B 和∠C 应分别是32°和21°,检验工人量得∠B D C =149°,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。
三角形内角和综合习题精选(含答案)
...三角形内角和综合习题精选一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?2.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,求∠BFE的度数.3.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?4.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.5.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB= _________ ,∠XBC+∠XCB= _________ .(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.6.如图1,△ABC中,∠A=50°,点P是∠ABC与∠ACB平分线的交点.(1)求∠P的度数;(2)猜想∠P与∠A有怎样的大小关系?(3)若点P是∠CBD与∠BCE平分线的交点,∠P与∠A又有怎样的大小关系?(4)若点P是∠ABC与∠ACF平分线的交点,∠P与∠A又有怎样的大小关系?【(2)、(3)、(4)小题只需写出结论,不需要证明】8.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.9.如图所示,点E 在AB 上,CE ,DE 分别平分∠BCD ,∠ADC ,∠1+∠2=90°,∠B=75°,求∠A 的度数.10.如图,∠AOB=90°,点C 、D 分别在射线OA 、OB 上,CE 是∠ACD 的平分线,CE 的反向延长线与∠CDO 的平分线交于点F. (1)当∠OCD=50°(图1),试求∠F .(2)当C 、D 在射线OA 、OB 上任意移动时(不与点O 重合)(图2),∠F 的大小是否变化?若变化,请说明理由;若不变化,求出∠F .11.如图,△ABC 中,AE 、BF 是角平分线,它们相交于点O .(∠ABC >∠C ), (1)试说明∠BOA=90°+∠C;(2)当AD 是高,判断∠DAE 与∠C 、∠ABC 的关系,并说明理由.12.已知△ABC 中,∠BAC=100°.(1)若∠ABC 和∠ACB 的角平分线交于点O ,如图1所示,试求∠BOC 的大小;(2)若∠ABC 和∠ACB 的三等分线(即将一个角平均分成三等分的射线)相交于O ,O 1,如图2所示,试求∠BOC 的大小;(3)如此类推,若∠ABC 和∠ACB 的n 等分线自下而上依次相交于O ,O 1,O 2…,如图3所示,试探求∠BOC 的大小与n 的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.答案与评分标准一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?考点:三角形的角平分线、中线和高;角平分线的定义;垂线;三角形内角和定理。
三角形的内角和练习题
三角形的内角和练习题一、基础练习1、判断下列说法是否正确,并说明理由。
(1)一个三角形的内角和是180度。
(2)一个三角形的内角和等于3个直角。
(3)一个等边三角形的内角和等于一个等腰三角形的内角和。
2、一个三角形的三个内角分别为A、B、C,已知A=30度,B=80度,求C的度数。
二、提升练习1、一个三角形的三个内角分别为A、B、C,已知A=70度,B=90度,求C的度数。
2、一个等边三角形的三个内角分别为A、B、C,已知A=60度,求B 和C的度数。
3、一个等腰三角形的两个内角分别为A、B,已知A=80度,求B的度数(该三角形是等腰三角形,有两边长度相等)。
三、拓展练习1、一个四边形由两个等边三角形组成,它的四个内角分别为A、B、C、D,求A+B+C+D的度数。
2、一个五边形由三个等边三角形组成,它的五个内角分别为A、B、C、D、E,求A+B+C+D+E的度数。
3、一个n边形(n≥3)的所有内角之和是多少?在解答上述问题的过程中,我们可以使用三角形内角和定理以及多边形的内角和公式来进行计算。
我们还需要了解等边三角形和等腰三角形的性质,以便解决相关问题。
三角形的内角和教学设计一、教材分析三角形的内角和是义务教育课程标准实验教科书(人教版)四年级下册第8单元数学广角里的内容,本节课是在学生已经学习了三角形的概念及分类的基础上进一步研究三角形的有关知识,教材中安排了三部分内容:第一部分是例1通过测量计算三个内角的度数和,第二部分是例2通过撕拼、旋转、翻转等不同的方法验证三角形的内角和等于180度,第三部分是例3用已知的两个角度求出第三个角的度数。
通过这些活动,培养学生动手操作能力和数学思维能力。
同时,还体现了数学来源于生活,又应用于生活这一理念。
二、学情分析作为四年级的学生,他们已经具备了一定的观察、猜测、动手操作、积极思考的能力,因此他们可以根据自己的实际情况选择喜欢的方法来研究验证三角形的内角和。
三角形内角和定理练习题
书山有路勤为径;学海无涯苦作舟今天的努力是为了明天的幸福三角形内角和定理练习题1.在△ABC 中,∠A=∠B= ∠C,则△ABC 是三角形.2.如图,在△ABC 中,BE、CF 分别是∠ABC 和∠ACB 的角平分线,它们相交于点I,已知∠A=56 度,则∠BIC=.3.如图,在△ABC 中,∠B=25 度,延长BC 至E,过点E 作AC 的垂线ED,垂足为O,且∠E=40 度,则∠A=.4.如图,若AB=AC,BG=BH,AK=KG,则∠BAC 的度数为.5.若等腰三角形一腰上的高和另一腰上的高的夹角为58 度,则这个等腰三角形顶角的度数是.6.如图,将三角形纸片ABC 的一角折叠,折痕为EF,若∠A=80 度,∠B=68 度,∠CFB=22 度,则∠CEA=.7.在一个三角形中,三个内角中至少有个锐角,最多有个直角或钝角.8.如图,AB∥CD,若∠ABE=135 度,∠CDE=110 度,则∠DEF=.9.如图,在△ABC 中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158 度,则∠EDF 等于()A.64 度B.65 度C.67 度D.68 度10.如图,已知AB∥CD,BE 平分∠ABD,DE 平分∠BDC,则∠E 是()A.锐角B.直角C.钝角D.无法确定一、选择题(本大题共12 小题, 每小题3 分, 共36 分, 在每小题给出的四个。
三角形内角的和练习题
三角形内角的和练习题一、选择题1. 一个三角形的三个内角之和是多少度?A. 90度B. 180度C. 270度D. 360度2. 如果一个三角形的一个内角是70度,另一个内角是60度,那么第三个内角是多少度?A. 40度B. 50度C. 60度D. 70度3. 直角三角形的两个锐角之和是多少度?A. 45度B. 90度C. 180度D. 270度4. 等边三角形的每个内角是多少度?A. 30度B. 45度C. 60度D. 90度5. 如果一个三角形的两个内角分别是50度和70度,那么这个三角形是什么类型的三角形?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定二、填空题6. 在一个三角形中,如果一个内角是x度,另一个内角是y度,且x+y=100度,那么第三个内角是________度。
7. 已知三角形ABC中,∠A=45度,∠B=60度,那么∠C=________度。
8. 如果一个三角形的三个内角分别为a度、b度和c度,且a+b+c=180度,那么a=________度,b=________度,c=________度(答案不唯一)。
9. 等腰三角形的两个底角相等,如果底角为40度,那么顶角是________度。
10. 一个三角形的三个内角之和是180度,如果其中一个角是锐角,另一个角是钝角,那么第三个角一定是________角。
三、简答题11. 请解释为什么三角形的内角和总是180度。
12. 如果一个三角形的内角和不是180度,那么它可能是什么形状?13. 描述如何使用三角形内角和的性质来解决实际问题。
14. 为什么直角三角形的两个锐角之和总是90度?15. 等边三角形的每个内角相等,为什么它们都是60度?四、计算题16. 已知三角形ABC中,∠A=30度,∠B=45度,求∠C的度数。
17. 如果一个三角形的两个内角之和为120度,且这两个角相等,求第三个角的度数。
18. 在一个等腰三角形中,如果底角为50度,求顶角的度数。
三角形内角和解答题专项练习60题(有答案)
三角形内角和解答题专项练习60题(有答案)1.如图,在△ABC中,∠BAC=60°,∠B=45°,AD是△ABC的一条角平分线,求∠ADC的度数?2.如图△ABC中,AD,AE分别是△ABC的高和角平分线,∠B=36°,∠DAE=16°.求∠CAD的度数.3.如图,已知∠CBE=96°,∠A=27°,∠C=30°,试求∠ADE的度数.4.如图,△ABC中,BD、CD分别是∠ABC和∠ACB的角平分线,BD、CD相交于点D,求证:∠D=90°+∠A.5.如图,在△ABC中,∠A=3x°,∠ABC=4x°,∠ACB=5x°,BD,CE分别是边AC,AB上的高,且BD,CE相交于点H,求∠BHC的度数.2013年10月1581698636的初中数学组卷6.如图,D是△ABC的BC边上一点,∠ABC=40°,∠BAC=80°.求:(1)∠C的度数;(2)如果AD是△ABC的BC边上的角平分线,求∠ADC的度数.7.如图,在△ABC中,点D是∠ACB与∠ABC的角平分线的交点,BD的延长线交AC于E,且∠EDC=60°.求∠A的度数.8.如图,∠A=50°∠ABC=60°.(1)若BD为∠ABC平分线,求∠BDC.(2)若CE为∠ACB平分线且交BD于E,求∠BEC.9.如图,在△ABC中,∠B和∠C的平分线相交于O点.(1)若∠A=60°,求∠BOC的度数.(只需写出结果)(2)若∠A=α,求∠BOC的度数.10.如图,已知∠ABC=∠ACB,∠1=∠2,∠3=∠F,(1)试判断EC与DF是否平行,并说明理由;(2)若∠ACF=110°,求∠A的度数.11.在三角形中,每两条边所组成的角叫三角形的内角,如图1,在三角形ABC中,∠B,∠BAC和∠C是它的三个内角.其实,在学习了平行线的性质以后,我们可以用几何推理的方法去证明“三角形的内角的和等于180°”.请在以下给出的证明过程中填空或填写理由.证明:如图2,延长BA,过点A作AE∥BC.∵AE∥BC(已作)∴∠1=∠(_________ ),(_________ )又∵AE∥BC(已作)∴∠2=∠(_________ ),(_________ )∵∠1+∠2+∠BAC=180°(平角定义)∴∠B+∠C+∠BAC=180°(_________ ),即,三角形的内角的和等于180°.12.如图,已知△ABC中,∠B=40°,∠C=62°,AD是BC边上的高,AE是∠BAC的平分线.求:∠DAE的度数.(写出推导过程)13.如图,已知,D、E分别是△ABC的边AB、AC上的点,DE交BC的延长线于F,∠B=67°,∠ACB=74°,∠AED=48°,求∠F和∠BDF的度数.14.如图,已知三角形ABC,∠ACB=90°,∠BCD+∠B=90°,∠A与∠BCD有怎样的大小关系?说明你的理由.15.如图,△ABC中,∠C=70°,AD、BD是△ABC的外角平分线,AD与BD交于点D,(1)求∠D的度数;(2)若去掉∠C=70°这个条件,试写出∠C与∠D之间的数量关系.16.(1)如图1,在△ABC中,∠C=90°,∠BAC=45°,∠BAC的平分线与外角∠CBE的平分线相交于点D,则∠D= _________ 度.(2)如图2,将(1)中的条件“∠BAC=45°”去掉,其他条件不变,求∠D的度数.17.已知:如图,AC∥DE,∠ABC=70°,∠E=50°,∠D=75°.求:∠A和∠ABD的度数.18.△ABC中,(1)若∠A=70°,BO、CO分别平分∠ABC和∠ACB,求∠BOC的度数;(2)若∠OBC=∠ABC,∠OCB=∠ACB,∠A=n°,请直接写出用n°表示∠BOC的关系式.19.已知,如图,在△ABC中,BD⊥AC于D,若∠A:∠ABC:∠ACB=3:4:5,试求∠ABD的度数.20.如图,把△ABC纸片沿DE折叠,使点C落在四边形BADE内部点F的位置.(1)已知∠CDE=50°,求∠ADF的大小;(2)已知∠C=60°,求∠1+∠2的大小.21.已知△ABC中,∠A=∠B=∠C,判断三角形的形状?22.如图,在△ABC中,BA平分∠DBC,∠BAC=124°,BD⊥AC于D,求∠C的度数.23.如图,AD是△ABC的BC边上的高,AE是∠BAC的角平分线,若∠B=47°,∠C=73°,求∠DAE的度数.24.如图,已知△ABC中,∠A=40°,角平分线BE、CF相交于O,求∠BOC的度数.25.如图,在△ABC中,CF⊥AB于F,ED⊥AB于D,∠1=∠2.(1)求证:FG∥BC;(2)若∠A=60°,∠AFG=40°,求∠ACB的度数.26.已知△ABC中,∠BAC=90°,∠C=30°,点D为BC边上一点,连接AD,作DE⊥AB于点E,DF⊥AC于点F.(1)若AD为△ABC的角平分线(如图1),图中∠1、∠2有何数量关系?为什么?(2)若AD为△ABC的高(如图2),求图中∠1、∠2的度数.27.如图:证明“三角形的内角和是180°”已知:_________求证:_________证明:过B点作直线EF∥AC.28.如图,BD平分∠ABC,CD平分∠ACE,请写出∠A和∠D的关系式,并说明理由.29.已知△ABC.(1)若∠BAC=40°,画∠BAC和外角∠ACD的角平分线相交于O1点(如图①),求∠BO1C的度数;(2)在(1)的条件下,再画∠O1BC和∠O1CD的角平分线相交于O2点(如图②),求∠BO2C的度数;(3)若∠BAC=n°,按上述规律继续画下去,请直接写出∠BO2012C的度数.30.(1)如图(1),在△ABC中,∠ABC、∠ACB的平分线相交于点O,∠A=40°,求∠BOC的度数.(2)如图(2),△DEF两个外角的平分线相交于点G,∠D=40°,求∠EGF的度数.(3)由(1)、(2)可以发现∠BOC与∠EGF有怎样的数量关系?设∠A=∠D=n°,∠BOC与∠EGF是否还具有这样的数量关系?为什么?31.在△ABC中,已知∠ABC=66°,∠ACB=54°,BE,CF分别是AC和AB边上的高,H是BE和CF的交点,求∠BHC 的度数.32.如图,△ABC中,∠ACB=∠B=2∠A,CD是AB边上的高,求∠BCD.33.如图,已知DM平分∠ADC,BM平分∠ABC,∠A=36°,∠M=44°,求∠C的度数.34.如图,在△ABC中,∠A=40°,∠B=72°,CD是AB边上的高;CE是∠ACB的平分线,DF⊥CE于F,求∠BCE 和∠CDF的度数.35.已知:点D是△ABC的BC边的延长线上的一点,DF⊥AB交AB于F,交AC于E,∠A=30°,∠D=20°,求∠ACB 的度数.36.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°,求∠DAE的度数.37.如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D,E,∠AFD=158°,求∠EDF的度数.38.如图,CD是∠ACB的平分线,DE∥BC,∠B=70°,∠ACB=50°,求∠EDC,∠BDC的度数.39.已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°;求∠DAE的度数.40.如图,△ABC中,AD是BC边上的高,AE是三角形∠BAC的角平分线,若∠B=40°,∠C=70°,则∠DAE为多少度?41.如图所示,已知DF⊥AB于F,∠A=40°,∠D=50°,求∠ACB的度数.42.在△ABC中,∠B=∠A+10°,∠C=∠B+10°,求△ABC各内角的度数.43.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°.(1)求∠DAE的度数;(2)试写出∠DAE与∠C﹣∠B有何关系?(不必证明)44.如图,△ABC中,D在BC的延长线上,过D作DE⊥AB于E,交AC于F.已知∠A=30°,∠FCD=80°,求∠D.45.如图,已知△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.46.如图:在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=34度.求∠DAE的度数.47.如图,若AB∥CD,EF与AB、CD分别相交于E、F,EP⊥EF,∠EFD的平分线与EP相交于点P,且∠BEP=40°,求∠P的度数.48.如图已知△ABC中,∠B和∠C外角平分线相交于点P.(1)若∠ABC=30°,∠ACB=70°,求∠BPC度数.(2)若∠ABC=α,∠BPC=β,求∠ACB度数.49.如图,∠B=42°,∠A+10°=∠1,∠ACD=64°,求证:AB∥CD.50.如图:AB∥CD,直线l交AB、CD分别于点E、F,点M在EF上,N是直线CD上的一个动点(点N不与F重合)(1)当点N在射线FC上运动时,∠FMN+∠FNM=∠AEF,说明理由;(2)当点N在射线FD上运动时,∠FMN+∠FNM与∠AEF有什么关系并说明理由.51.如图,△ABC中,∠B=40°,∠C=70°,AD为∠BAC的平分线,AE为BC边上的高,求∠DAE的度数.52.如图,在△ABC中,∠ABC=60°,∠ACB=50°,BD平分∠ABC,CD平分∠ACB.求∠D的度数.53.如图,已知∠A=20°,∠B=27°,AC⊥DE,求∠1,∠D的度数.54.已知:图中,∠B=40°,∠C=60°,AD、AF分别是△ABC的角平分线和高.(1)∠BAC等于多少度?(2)∠DAF等于多少度?55.△ABC中,BE平分∠ABC,AD为BC上的高,且∠ABC=60°,∠BEC=75°,求∠DAC的度数.56.如图,在△ABC中,∠ABC=80°,∠ACB=50°,BP平分∠ABC,CP平分∠ACB,求∠BPC的度数.57.如图,BE∥AO,∠1=∠2,OE⊥OA于点O,EH⊥CO于点H,那么∠5=∠6,为什么?58.如图,已知△ABC中,∠ABC和∠ACB的平分线BD、CE相交于点O,且∠A=60°,求∠BOC的度数.259.已知:如图,在△ABC中,∠C>∠B,AD⊥BC交于点D,AE平分∠BAC,试说明:∠EAD=(∠C﹣∠B).60.如图(1),△ABC中,AB=AC,∠B=2∠A.(1)求∠A和∠B的度数;(2)如图(2),BD是△ABC中∠ABC的平分线:①写出图中与BD相等的线段,并说明理由;②直线BC上是否存在其它的点P,使△BDP为等腰三角形,如果存在,请在图(3)中画出满足条件的所有的点P,并直接写出相应的∠BDP的度数;如果不存在,请说明理由.三角形内角和解答题60题参考答案:1.∵AD是△ABC的一条角平分线,∴∠BAD=∠BAC=×60°=30°,∴∠ADC=∠BAD+∠B=30°+45°=75°2.∵AD⊥BC,∴∠ADB=90°,∴∠B+∠BAD=90°,∵∠B=36°,∴∠BAD=90°﹣36°=54°,∵∠DAE=16°,∴∠BAE=54°﹣16°=38°,∵AE平分∠BAC,∴∠CAE=∠BAE=38°,∴∠CAD=38°﹣16°=22°3.∵∠A=27°,∠C=30°,∴∠DFC=∠A+∠C=57°,∵∠DBF=∠CBE=96°,∴∠ADE=180°﹣∠DFC﹣∠FBD=180°﹣57°﹣96°=27°.4.在△ABC中,∠ABC+∠ACB=180°﹣∠A,∵BD、CD分别是∠ABC和∠ACB的角平分线,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,在△BCD中,∠D=180°﹣(∠DBC+∠DCB)=180°﹣(90°﹣∠A)=90°+∠A,即:∠D=90°+∠A.5.在△ABC中,∵∠A=3x°,∠ABC=4x°,∠ACB=5x°.又∵∠A+∠ABC+∠ACB=180°.∴3x°+4x°+5x°=180°,解得x=15,∠A=3x°=45°,∵BD,CE分别是边AC,AB上的高,∴∠ADB=90°,∠BEC=90°,∵在△ABD中,∠ABD=180°﹣∠ADB﹣∠A=180°﹣90°﹣45°=45°,∴∠BHC=∠ABD+∠BEC=45°+90°=135°6.(1)∵∠ABC=40°,∠BAC=80°,∴∠C=180°﹣∠ABC﹣∠BAC=180°﹣40°﹣80°=60°;(2)∵∠BAC=80°,AD是△ABC的BC边上的角平分线,∴∠DAC=∠BAC=40°,∵∠C=60°,∴∠ADC=180°﹣∠CAD﹣∠C=180°﹣40°﹣60°=80°7.∵BD平分∠ABC,CD平分∠ACB,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A),∵∠EDC=∠DBC+∠DCB=60°,∴(180°﹣∠A)=60°,∴∠A=60°8.(1)∵BD为∠ABC平分线,∴∠ABD=∠ABC=×60°=30°,∴∠BDC=∠A+∠ABD=50°+30°=80°.(2)∵∠ACB=180°﹣∠A﹣∠ABC=180°﹣50°﹣60°=70°,又∵CE为∠ACB平分线,∴∠DCE=∠ACB=×70°=35°,∴∠BEC=∠DCE+∠BDC=35°+80°=115°9.(1)∵∠A=60°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣60°=120°,∵∠B和∠C的平分线相交于O点,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=×120°=60°,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣60°=120°;(2))∵∠A=α,∴∠ABC+∠ACB=180°﹣∠A=180°﹣α,∵∠B和∠C的平分线相交于O点,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣α)=90°﹣α,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(90°﹣α)=90°+α10.(1)BC∥DF,理由:∵∠ABC=∠ACB,∠1=∠2,∴∠ABC﹣∠1=∠ACB﹣∠2,即∠3=∠ECB,∵∠3=∠F,∴∠ECB=∠F,∴EC∥DF(同位角相等,两直线平行);(2)∵∠ACF=110°,∴∠ACB=70°,∵∠ABC=∠ACB,∴∠ABC=70°,∴∠A=∠ACF﹣∠ABC=110°﹣70°=40°11.证明:如图2,延长BA,过点A作AE∥BC.∵AE∥BC(已作)∴∠1=∠(∠B ),(两直线平行,同位角相等)又∵AE∥BC(已作)∴∠2=∠(∠C ),(两直线平行,内错角相等)∵∠1+∠2+∠BAC=180°(平角定义)∴∠B+∠C+∠BAC=180°(等量代换),即,三角形的内角的和等于180°.12.∵△ABC中,∠B=40°,∠C=62°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣62°=78°,∵AE是∠BAC的平分线,∴∠EAC=∠BAC=39°,∵AD是BC边上的高,∴在直角△ADC中,∠DAC=90°﹣∠C=90°﹣62°=28°,∴∠DAE=∠EAC﹣∠DAC=39°﹣28°=11°13.∵∠CEF=∠AED=48°,∠ACB=∠CEF+∠F,∴∠F=∠ACB﹣∠CEF=74°﹣48°=26°;∵∠BDF+∠B+∠F=180°,∴∠BDF=180°﹣∠B﹣∠F=180°﹣67°﹣26°=87°14.∠A=∠BCD,理由是:∵∠ACB=90°,∴∠A+∠B=90°,∵∠BCD+∠B=90°,∴∠A=∠BCD15.(1)∵∠C=70°,∴∠CAB+∠CBA=180°﹣70°=110°,∴∠EAB+∠FBA=360°﹣110°=250°,∵AD、BD是△ABC的外角平分线,∴∠DAB+∠DBA=(∠EAB+∠FBA)=125°,∴∠D=180°﹣125°=55°;(2)由题意可得,∠CAB+∠CBA=180°﹣∠C,∴∠EAB+∠FBA=360°﹣(∠CAB+∠CBA),=360°﹣(180°﹣∠C),=180°+∠C,∵AD、BD是△ABC的外角平分线,∴∠DAB+∠DBA=(∠EAB+∠FBA),=(180°+∠C),=90°+∠C,∴∠D=180°﹣(90°+∠C),=90°﹣∠C.16.(1)∵∠CBE 是△ABC的外角,∴∠CBE=∠CAB+∠C,∴∠C=∠CBE﹣∠CAB,∵∠BAC的平分线与外角∠CBE的平分线相交于点D,∴∠1=∠CAB,∠2=∠CBE,∵∠2是△ABD的外角,∴∠2=∠1+∠D,∴∠D=∠2﹣∠1=(∠CBE﹣∠CAB)=∠C=×90°=45°;故答案为:45;(2)∵∠CBE 是△ABC的外角,∴∠CBE=∠CAB+∠C,∴∠C=∠CBE﹣∠CAB,∵∠BAC的平分线与外角∠CBE的平分线相交于点D,∴∠1=∠CAB,∠2=∠CBE,∵∠2是△ABD的外角,∴∠2=∠1+∠D,∴∠D=∠2﹣∠1=(∠CBE﹣∠CAB)=∠C=×90°=45°.17.∵AC∥DE,∠E=50°,∠D=75°,∴∠ACB=∠E=50°…(1分)∠1=∠D=75°(3分)又∵∠ABC=70°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣50°=60°…(6分)∠ABD=∠1﹣∠A=75°﹣60°=15°…(9分)∴∠A=60°,∠ABD=15°.18.(1)∵BO、CO分别平分∠ABC和∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∵∠A=70°,∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣(180°﹣70°)=125°.故∠BOC的度数为:125°.(2)∵∠OBC=∠ABC,∠OCB=∠ACB,∠A=n°,∵∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣(∠OBC+∠OCB)=180°﹣(180°﹣n°)=120°+n°.故∠BOC=120°+n°19.设∠A、∠ABC、的度数分别为3x、4x、5x.则3x+4x+5x=180°,解得x=15°.∴∠A=45°,∠ACB=75°.又∵∠A+∠ABD=90°,∴∠ABD=90°﹣45°=45°20.(1)由折叠的过程可知:∠3=∠CDE,∵∠CDE=50°,∴∠3=50°,∴∠1=180°﹣∠3﹣∠CDE=80°,即∠ADF=80°;(2)∵∠C=60°,∴∠CDE+∠CED=120°,∵由折叠的过程可知∠CDE+∠CED=∠3+∠4=180°﹣∠C=120°,∴∠CDE+∠CED+∠3+∠4=240°,∵∠1+∠3+∠CDE+∠2+∠4+∠CED=360°,∴∠1+∠2+∠3+∠4+∠CDE+∠CED=360°,∴∠1+∠2=120°21.∵∠ABC+∠ACB+∠BAC=180°,∠A=∠B=∠C,∴∠A+2∠A+3∠A=180°.∴∠A=30°,∠B=60°,∠C=90°.所以△ABC是直角三角形22.在△ABD中,∠BAC=∠D+∠DBA,∵BD⊥AC,∴∠D=90°.又∵∠BAC=124°,∴∠DBA=34°.∵BA平分∠DBC,∴∠DBC=2∠DBA=68°,在△CBD中,∠C=180°﹣(∠D+∠DBC)=22°.23.∵∠B=30°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AE是角平分线,∴∠EAC=∠BAC=30°.∵AD是高,∠C=73°,∴∠DAC=90°﹣∠C=17°,∴∠EAD=∠EAC﹣∠DAC=30°﹣17°=13°24.如图,∵角平分线BE、CF相交于O,∴∠ABC=2∠1,∠ACB=2∠2,又∵∠A+∠ABC+∠ACB=180°,∴∠A+2∠1+2∠2=180°,∴∠1+∠2=90°﹣∠A,又∵∠1+∠2+∠BOC=180°,∴∠1+∠2=180°﹣∠BOC,∴180°﹣∠BOC=90°﹣∠A,∴∠BOC=90°+∠A,而∠A=40°,∴∠BOC=90°+×40°=11025.(1)证明:如图,∵CF⊥AB,ED⊥AB,∴DE∥FC,∴∠1=∠3.又∵∠1=∠2,∴∠2=∠3,∴FG∥BC;(2)解:如图,在△AFG中,∠A=60°,∠AFG=40°,∴∠AGF=180°﹣∠A﹣∠AFG=100°.又由(1)知,FG∥BC,∴∠ACB=∠AGF=80°,即∠ACB的度数是80°.26.(1)∠1=∠2,理由如下:∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=∠BAC=90°,∴DE∥AC,DF∥AB,∴∠1=∠DAC,∠2=∠DAB,∵AD平分∠BAC,∴∠DAC=∠DAB,∴∠1=∠2;(2)∵DE⊥AB,DF⊥AC,AD⊥BC,∴∠ADB=∠ADC=∠DEB=∠DFC=∠BAC=90°,∴DE∥AC,∴∠BDE=∠C=30°,∴∠1=∠ADB﹣∠BDE=30°,∵∠FDC=180°﹣∠DFC﹣∠C=60°,∴∠2=∠ADC﹣∠FDC=60°27.过点B作EF∥AC,∴∠EBA=∠A,∠FBC=∠C,∵∠EBA+∠ABC+∠FBC=180°,∴∠A+∠C+∠ABC=180°,∴三角形的内角和等于180°.故答案为△ABC,∠A+∠B+∠C=180°28.∠A=2∠D.理由如下:∵BD平分∠ABC,CD平分∠ACE,∴∠DBC=∠ABC,∠DCE=∠ACE,∴∠A=∠ACE﹣∠ABC,∠D=∠DCE﹣∠DBC=(∠ACE﹣∠ABC),∴∠A=2∠D29.∵O1B、O1C分别平分∠ABC和∠ACD,∴∠ACD=2∠O1CD,∠ABC=2∠O1BC,而∠O1CD=∠O1+∠O1BC,∠ACD=∠ABC+∠A,∴∠A=2∠01=40°,∴∠O1=20°,同理可得∠O1=2∠O2,即∠A=22∠02=40°,∴∠O2=10°,∴∠A=2n∠A n,∴∠A n=n °×()n.则∠BO2012C=0.30.(1)∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°.∵BO、CO分别是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×140°=70°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣70°=110°;(2)设△ABC的两个外角为α、β.则∠G=180°﹣(α+β)(三角形的内角和定理),利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.可知α+β=∠D+∠DFE+∠D+∠DEF=180°+40°=220°,∴∠G=180°﹣(α+β)=70°;(3)∠A=∠D=n°,∠BOC与∠EGF互补.证明:当∠A=n°时,∠BOC=180°﹣[(180°﹣n°)÷2]=90°+,∵∠D=n°,∠EGF=180°﹣[360°﹣(180°﹣n°)]÷2=90°﹣,∴∠A+∠D=90°++90°﹣=180°,∴∠BOC与∠EGF互补.31.如图,在△ABC中,∵∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB180°﹣66°﹣54°=60°,∵BE和CF分别为AC和AB边上的高,∴∠AEB=∠BFC=90°,在Rt△ABE中,∠1=180°﹣∠A﹣∠AEB=180°﹣90°﹣60°=30°,在△BHC中,∠BHC=∠1+∠BFC=30°+90°=120°32.∵∠ACB=∠B=2∠A,∴∠A+∠B+∠ACB=∠A+2∠A+2∠A=180°,解得∠A=36°,∴∠B=2∠A=2×36°=72°,∵CD是AB边上的高,∴∠BCD=90°﹣∠B=90°﹣72°=18°33.∵DM平分∠CDA,∴∠CDM=∠MDA,又∵BM平分∠ABC,∴∠CBM=∠ABM,又∵∠MDA+44°=∠CBM+36°,∴∠CBM﹣∠MDA=8°,∴2∠CBM﹣2∠MDA=16°,即∠ABC﹣∠ADC=16°,又∵∠ADC+∠C=∠ABC+∠A,∴∠C=36°+16°=52°34.∵∠A+∠B+∠ACB=180°,∠A=40°,∠B=72°,∴∠ACB=68°,∵CE平分∠ACB,∴∠BCE=∠ACB=×68°=34°,∵CD⊥AB,∴∠CDB=90°,∵∠B=72°,∴∠BCD=90°﹣72°=18°,∴∠FCD=∠BCE﹣∠BCD=16°,∵DF⊥CE,∴∠CFD=90°,∴∠CDF=90°﹣∠FCD=74°,即∠BCE=34°,∠CDF=74°35.在△BFD中,∵DF⊥AB,∠D=20°,∴∠B=90°﹣∠D=90°﹣20°=70°,在△ABC中,∵∠B=70°,∠A=30°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣30°﹣70°=80°.答:∠ACB度数是80°36.∵∠BAC+∠B+∠C=180°,而∠B=30°,∠C=50°,∴∠BAC=180°﹣30°﹣50°=100°,∵AE是△ABC的角平分线,∴∠EAC=∠BAC=50°又∵AD为高线,∴∠ADC=90°,而∠C=50°,∴∠DAC=180°﹣90°﹣50°=40°,∴∠DAE=∠EAC﹣∠DAC=50°﹣40°=10°37.∵FD⊥BC,所以∠FDC=90°,∵∠AFD=∠C+∠FDC,∴∠C=∠AFD﹣∠FDC=158°﹣90°=68°,∴∠B=∠C=68°.∵DE⊥AB,∵∠DEB=90°,∴∠BDE=90°﹣∠B=22°.又∵∠BDE+∠EDF+∠FDC=180°,∴∠EDF=180°﹣∠BDE﹣∠FDC=180°﹣22°﹣90°=68°38.∵CD是∠ACB的平分线,∴∠BCD=25°.∵DE∥BC,∴∠EDC=∠BCD=25°,∴在△BDC中,∠BDC=180°﹣∠B﹣∠BCD=180°﹣70°﹣25°=85°.39.∵AD⊥BC,∴∠BDA=90°.∵∠B=60°,∴∠BAD=180°﹣90°﹣60°=30°∵∠BAC=80°∴∠DAC=∠BAC﹣∠BAD=80°﹣30°=50°.∵AE平分∠DAC,∴∠DAE=0.5∠DAC=25°140.∵∠B=40°,∠C=70°,∴在△ABC中,∠BAC=180°﹣40°﹣70°=70°,又∵AE是∠BAC的角平分线,∴∠EAC=∠BAC=35°,又∵AD是BC边上的高,∴AD⊥BC,∴∠ADC=90°,∴在△ADC中,∠DAC=180°﹣∠ADC﹣∠C=20°,∴∠DAE=∠EAC﹣∠DAC=35°﹣20°=15°41.在△BDF中,∠B=180﹣∠BFD﹣∠D=180°﹣90°﹣50°=40°,在△ACB中,∠A=40°,故∠ACB=180°﹣∠A﹣∠B=180°﹣40°﹣40°=100°42.∵∠B=∠A+10°,∠C=∠B+10°,又∵∠A+∠B+∠C=180°,∴∠A+(∠A+10°)+(∠A+10°+10°)=180°,3∠A+30°=180°,3∠A=150°,∠A=50°.∴∠B=60°,∠C=70°.43.(1)∵∠B=30°,∠C=50°,∴∠BAC=180°﹣30°﹣50°=100°.∵AE是∠BAC的平分线,∴∠BAE=50°.在Rt△ABD中,∠BAD=90°﹣∠B=60°,∴∠DAE=∠BAD﹣∠BAE=60°﹣50=10°;(2)∠C﹣∠B=2∠DAE44.∵DE⊥AB(已知),∴∠FEA=90°(垂直定义).∵在△AEF中,∠FEA=90°,∠A=30°(已知),∴∠AFE=180°﹣∠FEA﹣∠A(三角形内角和是180)=180°﹣90°﹣30°=60°.又∵∠CFD=∠AFE(对顶角相等),∴∠CFD=60°.∴在△CDF中,∠CFD=60°∠FCD=80°(已知)∠D=180°﹣∠CFD﹣∠FCD=180°﹣60°﹣80°=40°45.在△ABC中,∵∠BAC=180°﹣∠B﹣∠C=70°,∵AE是∠BAC的平分线,∴∠BAE=∠CAE=35°.又∵AD是BC边上的高,∴∠ADB=90°,∵在△ABD中∠BAD=90°﹣∠B=25°,∴∠DAE=∠BAE﹣∠BAD=10°46.在△ABC中∠BAC=180﹣∠B﹣∠C=76°,又∵AE平分∠BAC,∴∠EAC=38°,在直角△ACD中,∠DAC=90﹣∠C=56°,∴∠DAE=∠DAC﹣∠EAC=18°47.∵EP⊥EF,∴∠PEM=90°,∠PEF=90°.∵∠BEP=40°,∴∠BEM=∠PEM﹣∠BEP=90°﹣40°=50°.∵AB∥CD,∴∠BEM=∠EFD=50°.∵FP平分∠EFD,∴∠EFP=∠EFD=25°,∴∠P=90°﹣25°=65°.48.(1)∠BPC =180°﹣(∠EBC+∠BCF)=180°﹣(∠EBC+∠BCF)=180°﹣(180°﹣∠ABC+180°﹣∠ACB)=180°﹣(180°﹣30°+180°﹣70°)=50°;(2)∠BPC=180°﹣(180°﹣∠ABC+180°﹣∠ACB)=(∠ABC+∠ACB),∵∠BPC=β,∠ABC=α,∴β=(α+∠ACB).故∠ACB=2β﹣α49.在△ABC中,∠A+∠B+∠1=180°,∠B=42°,∴∠A+∠1=138°,又∵∠A+10°=∠1,∴∠A+∠A+10°=138°,解得:∠A=64°.∴∠A=∠ACD=64°,∴AB∥CD(内错角相等,两直线平行)50.(1)∵AB∥CD,∴∠AEF+∠MFN=180°.∵∠MFN+∠FMN+∠FNM=180°,∴∠FMN+∠FNM=∠AEF.(2)∠FMN+∠FNM+∠AEF=180°.理由:∵AB∥CD,∴∠AEF=∠MFN.∵∠MFN+∠FMN+∠FNM=180°,∴∠FMN+∠FNM+∠AEF=180°.51.∵∠B=40°,∠C=70°,∴∠BAC=180°﹣40°﹣70°=70°,又AD为平分线,∴∠DAC=35°.∵AE⊥BC,∴∠EAC=90°﹣∠C=20°,∴∠DAE=35°﹣20°=15°252.∵BD平分∠ABC,CD平分∠ACB,∴∠DBC=∠ABC=30°,∠DCB=∠ACB=25°,又∵∠DBC+∠DCB+∠D=180°,∴∠D=180°﹣∠DBC﹣∠DCB=180°﹣30°﹣25°=125°53.∵AC⊥DE,∴∠APE=90°.∵∠1是△AEP的外角,∴∠1=∠A+∠APE.∵∠A=20°,∴∠1=20°+90°=110°.在△BDE中,∠1+∠D+∠B=180°,∵∠B=27°,∴∠D=180°﹣110°﹣27°=43°54.(1)根据三角形的内角和定理,得:∠BAC=180°﹣∠B﹣∠C=80°;(2)∵AD是△ABC的角平分线,∴∠BAD=∠BAC=40°,∴∠ADF=∠B+∠BAD=80°,又∵AF是△ABC的高,∴∠DAF=10°55.∵BE平分∠ABC,且∠ABC=60°,∴∠ABE=∠EBC=30°,∴∠C=180°﹣∠EBC﹣∠BEC=180°﹣30°﹣75°=75°.又∵∠C+∠DAC=90°,∴∠DAC=90°﹣∠C=90°﹣75°=15°56.在△ABC中,∵∠ABC=80°,BP平分∠ABC,∴∠CBP=∠ABC=40°.∵∠ACB=50°,CP平分∠ACB,∴∠BCP=∠ACB=25°.在△BCP中∠BPC=180°﹣(∠CBP+∠BCP)=115°57.由OE⊥OA,得∠2+∠3=90°,又∵∠1=∠2,∠1+∠2+∠3+∠4=180°,∴∠3=∠4,∵EH⊥CO,∴∠5=90°﹣∠3=90°﹣∠4,∴∠5=∠2,∵BE∥AO,∴∠2=∠6,∴∠5=∠658.∵∠ABC和∠ACB的平分线BD、CE相交于点O,∴∠1=∠2,∠3=∠4,∴∠2+∠4=(180°﹣∠A)=(180°﹣60°)=60°,故∠BOC=180°﹣(∠2+∠4)=180°﹣60°=120°.59.∵AE平分∠BAC,∴∠BAE=∠CAE=∠BAC∵∠BAC=180°﹣(∠B+∠C)∴∠EAC=[180°﹣(∠B+∠C)]∵AD⊥BC,∴∠ADC=90°,∴∠DAC=180°﹣∠ADC﹣∠C=90°﹣∠C,∵∠EAD=∠EAC﹣∠DAC∴∠EAD=[180°﹣(∠B+∠C)]﹣(90°﹣∠C)=(∠C﹣∠B)60.(1)∵AB=AC,∠B=2∠A∴AB=AC,∠C=∠B=2∠A又∵∠C+∠B+∠A=180°∴5∠A=180°,∠A=36°∴∠B=72°;(2)①∵BD是△ABC中∠ABC的平分线∴∠ABD=∠CBD=36°∴∠BDC=72°∴BD=AD=BC;②当BD是腰时,以B为圆心,以BD为半径画弧,交直线BC于点P1(点C除外)此时∠BDP=∠DBC=18°.以D为圆心,以BD为半径画弧,交直线BC于点P3(点C除外)此时∠BDP=108°.当BD是底时,则作BD的垂直平分线和BC的交点即是点P2的一个位置.此时∠BDP=∠PBD=36°。
(完整版)三角形内角和综合习题精选(含答案)
三角形内角和综合习题精选一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?2.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?3.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,求∠BFE的度数.4.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.5.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=_________ ,∠XBC+∠XCB=_________ .(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.6.如图1,△ABC中,∠A=50°,点P是∠ABC与∠ACB平分线的交点.(1)求∠P的度数;(2)猜想∠P与∠A有怎样的大小关系?(3)若点P是∠CBD与∠BCE平分线的交点,∠P与∠A又有怎样的大小关系?(4)若点P是∠ABC与∠ACF平分线的交点,∠P与∠A又有怎样的大小关系?【(2)、(3)、(4)小题只需写出结论,不需要证明】7.如图,已知△ABC中,∠B=∠E=40°,∠BAE=60°,且AD平分∠BAE.(1)求证:BD=DE;(2)若AB=CD,求∠ACD的大小.8.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.9.如图所示,点E在AB上,CE,DE分别平分∠BCD,∠ADC,∠1+∠2=90°,∠B=75°,求∠A的度数.10.如图,∠AOB=90°,点C、D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F.(1)当∠OCD=50°(图1),试求∠F.(2)当C、D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.11.如图,△ABC中,AE、BF是角平分线,它们相交于点O.(∠ABC>∠C),(1)试说明∠BOA=90°+∠C;(2)当AD是高,判断∠DAE与∠C、∠ABC的关系,并说明理由.12.已知△ABC中,∠BAC=100°.(1)若∠ABC和∠ACB的角平分线交于点O,如图1所示,试求∠BOC的大小;(2)若∠ABC和∠ACB的三等分线(即将一个角平均分成三等分的射线)相交于O,O1,如图2所示,试求∠BOC 的大小;(3)如此类推,若∠ABC和∠ACB的n等分线自下而上依次相交于O,O1,O2…,如图3所示,试探求∠BOC的大小与n的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.答案与评分标准一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?考点:三角形的角平分线、中线和高;角平分线的定义;垂线;三角形内角和定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7. A 8. D 9. C 10. C 11. B
三、解答题 13. 360o 14.∠ A=70 o、∠ B=50 o、∠ C=60 o 15.∠ BEC=131 o 16. 540o 17. 1080o 18. (1) ∠ BOC=115 o
(2) ∠ BOC=90 o+ 1 no 2
(3) ∠ A=36 o 19. 135o 九边形
(2)过顶点 A 1 的对角线与过顶点 A 2 的对角线有相同的吗 点 A 3 的对角线有相同的吗 ?
(3)在此基础上,你能发现竹边形的对角线条数的规律吗
?过顶点 A 1 的对角线与过顶 ?
参考答案
一、填空题 1. 100o 2. 80o
3.钝角 4. 140o
5. 6
6. 5: 3:1 二、选择题
B . 55 o
C. 66 o
D 65 o
()
三、解答题 (8 题,共 64 分 ) 13. (本题 6 分)如图所示,求∠ A+ ∠ B+∠ C+∠ D+∠ E+ ∠F 的度数.
14. (本题 6 分)已知:在△ ABC 中,∠ A+ ∠ B=2 ∠ C,∠ A—∠ B=20 o,求三角形三 个内角的度数.
10 .如图,一块四边形绿化园地,四角都做有半径为
R 的圆形喷水池,则这四个喷水
池占去的绿化园地的面积为
()
A. 2 7 R2
B .47 R2
C. R2
D .不能确定
11.小明不慎将一块三角形的玻璃摔碎成如图所示的四块
(即图中标有 1、2、3、4 的四
块 ) ,你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形
三角形的内角和 专题练习
(60 分钟,满分 100 分 )
一、填空题 (6 题,每题 3 分,共 18 分 ) 1.△ ABC 中,∠ A=40 o,∠ B=60 o,则与∠ C 相邻外角的度数是
_Hale Waihona Puke ____.2.三角形三个内角的比为 2: 3: 4,则最大的内角是 _______ 度. 3.如果△ ABC 扣,∠ A+ ∠ B=∠ C— 10o,则△ ABC 是 ________ 三角形. 4.一个五边形的 4 个内角都是 100o,则第五个内角的度数是 _______.
12.D
20. (1)n-3
A 1A 3、 A lA 4、 A 1A 5、…、 A 1A n-1
(2)没有对角线相同 有一条对角线相同 (即 A 1A 3),
n(n 3)
(3)
2
5.一个 n 边形的内角和与外角和的比为 2:1,则 n=________ .
6.三角形三个外角的比为 2: 3: 4,则三个内角的比为 _______.
二、选择题 (6 题,每题 3 分,共 18 分 ) 7.一个多边形的每个内角都等于 156o,则此多边形是
()
A.十五边形
B.十六边形
C .十七边形
15. (本题 8 分)如图,∠ A=65 o,∠ ABD=30 o,∠ ACB=72 o,且 CE 平分∠ ACB ,求 ∠BEC 的度数.
16. (本题 8 分)如果一个 n 边形的内角都相等,且它的每一个外角与内角的比为 求这个多边形的内角和.
2: 3,
17.本题 8 分 )如果一个多边形的每个内角都相等,每个内角与每个外角的差是 求这个多边形的内角和.
D .十八边形
8.具备下列条件的△ ABC 中,不是直角三角形的是
()
A.∠ A+ ∠ B= ∠ C
B.∠ A —∠ B= ∠ C
C.∠ A :∠ B:∠ C=1: 2:3 D.∠ A= ∠ B=3 ∠ C
9.一个三角形的三个外角中, 钝角的个数最少为
()
A. 0 个 B.1 个 C.2 个 D.3 个
?应该带
()
A.第 1 块 B.第 2 块 C.第 3 块 D.第 4 块
12.如图,光线 a 照射到平面镜 CD 上,然后在平面镜舳和 CD 之间来回反射,这时光 线的入射角等于反射角, 即∠ l= ∠ 6,∠ 5=∠3,∠ 2=∠ 4.若已知∠ l=55 o,∠3=75o,
那么∠ 2 等于
A . 50o
1125o,当
发现错了以后,重新检测发现少了一个内角,问这个内角是多少度,他所求的是
几边形的内角和 ?
20.( 本题 10 分 )连接多边形不相邻的两个顶点的线段, 叫做多边形的对角线, 如图 (1) , AC、 AD 是五边形 ABCDE 的对角线.思考下列问题: (1)如图 (2)n 边形 A 1, A2, A 3… A n 中,过顶点 A 1可以画 ______条对角线,它们分 别是 ________;过顶点 A 2 可以画 ________条对角线,过顶点 A 3 可以画条对角 线.
90o,
18.(本题 8 分 )如图,在 ? ABC 中,∠ B、∠ C 的平分线交于点 O. (1)若∠ A=50 o,求∠ BOC 的度数. (2)设∠ A=n o(n 为已知数 ),求∠ BOC 的度数.
(3)当∠ A 为多少度时,∠ BOC=3 ∠ A?
19. (本题 10 分 )一个同学在进行多边形的内角和计算时,所得的内角和为