聚合物改性

合集下载

聚合物材料的改性与应用

聚合物材料的改性与应用

聚合物材料的改性与应用聚合物材料作为一类重要的材料,具有广泛的应用前景。

为了满足不同领域的需求,人们经过不断地研究与改良,开发出了许多改性方法以及相关的应用技术。

本文将介绍一些聚合物材料的改性方法,并探讨它们在不同领域中的应用。

一、改性方法1. 添加填料填料可以提高聚合物材料的性能,比如增加强度、改进耐热性、改善导电性等。

常见的填料包括纳米颗粒、纤维素、碳纤维等。

添加填料的改性方法可以通过挤出、共混等工艺实现。

2. 合金化改性聚合物可以通过与其他合适的材料进行合金化,改变聚合物的性质。

比如与金属合金化可以增加强度和刚度,与陶瓷合金化可以提高耐磨性和耐热性等。

3. 化学改性化学改性是通过引入功能基团或进行聚合反应来改变聚合物的特性。

比如,通过交联反应可以提高聚合物的热稳定性和耐化学性;通过接枝反应可以增加聚合物的附着力和耐老化性。

4. 表面修饰表面修饰可以通过改变聚合物材料的表面性质来得到所需的性能。

比如,通过等离子体处理可以增加聚合物的亲水性和粘附性;通过涂层技术可以提高聚合物的耐磨性和耐腐蚀性等。

二、应用领域1. 包装材料聚合物材料的优良特性使其成为广泛应用于包装领域的理想选择。

通过改性可以提高聚合物材料的耐撕裂性、耐渗透性、耐撞击性等,在食品包装、药品包装、电子产品包装等领域发挥重要作用。

2. 汽车工业改性后的聚合物材料在汽车工业中有着广泛的应用。

例如,通过纳米填料的添加可以显著提高塑料汽车零部件的强度和耐磨性,降低重量,提高燃油效率。

3. 医药领域聚合物材料在医药领域的应用也日益广泛。

通过改性可以提高聚合物的生物相容性、机械性能和药物释放性能等。

例如,改性后的聚合物可以用于制备人工骨骼、医疗器械和药物缓释系统等。

4. 纳米技术聚合物材料与纳米技术结合可以产生许多独特的性能和应用。

通过纳米颗粒的引入,可以改善聚合物的力学性能、导电性能和光学性能等。

这些改性后的聚合物材料在电子学、光电子学和纳米生物技术等领域有着广泛的应用。

材料的改性

材料的改性

材料的改性材料的改性是指通过对材料的物理或化学处理,改变其性质和特性的过程。

改性材料可以具有更好的机械、热学、电学、光学等性能,以满足特定的需求。

以下是关于材料改性的一些常见方法和应用。

1. 聚合物改性:聚合物是一种常见的材料,可以通过掺杂、共聚、交联、化学修饰等方法来改性。

例如,在聚合物中添加纳米填料,可以提高材料的强度、硬度和抗磨损性;通过共聚反应,可以改变聚合物的化学结构,使其具有特定的功能,如光学透明性、高温耐性等。

2. 金属改性:金属是一种常见的结构材料,可以通过热处理、表面处理、合金化等方法来改性。

例如,通过热处理可以改变金属的晶体结构,提高材料的强度和韧性;通过合金化可以改变金属的化学成分,使其具有特定的性能,如耐腐蚀性、耐高温性等。

3. 纳米材料改性:纳米材料具有特殊的物理和化学性质,可以通过控制纳米结构的大小、形状和组成来改变其性能。

例如,通过纳米颗粒的掺杂可以增强材料的导电性和导热性;通过纳米层的覆盖可以改善材料的光学透过性和光学效应。

4. 复合材料改性:复合材料是由两种或多种不同材料组合而成的新材料,可以通过控制材料的成分和结构来改变其性能。

例如,通过在聚合物基质中添加纤维增强剂,可以提高材料的强度和刚度;通过在金属基质中添加陶瓷颗粒,可以提高材料的耐磨性和耐腐蚀性。

材料的改性在许多领域具有广泛应用。

例如,在汽车制造中,可以通过改性材料来提高汽车的轻量化和节能性能;在电子器件制造中,可以通过改性材料来提高电子元器件的性能和可靠性;在环境保护中,可以通过改性材料来提高废水处理和废气治理的效率和效果。

但是,在材料的改性过程中也存在一些问题和挑战。

一方面,改性过程可能会改变材料的其他性能,导致性能的退化或不稳定;另一方面,改性过程可能需要复杂的工艺和设备,增加生产成本和复杂度。

因此,在进行材料改性时,需要综合考虑材料的特性和需求,选择合适的改性方法和条件,以实现最佳的改性效果。

总之,材料的改性是一项重要的技术,通过改变材料的结构和组成,可以使其具有特定的性能和特性,以满足不同领域的需求。

聚合物改性总结

聚合物改性总结

零、绪论聚合物改性的定义:通过物理和机械方法在高分子聚合物中加入无机或有机物质,或将不同类高分子聚合物共混,或用化学方法实现高聚物的共聚、接枝、嵌段、交联,或将上述方法联用,以达到使材料的成本下降,成型加工性能或最终使用性能得到改善,或使材料仅在表面以及电、磁、光、热、声、燃烧等方面赋予独特功能等效果,统称为聚合物改性。

聚合物改性的目的:所谓的聚合物改性,突出在一个改字。

改就是要扬长补短,要发扬和保留聚合物原有的优势,抑制和克服聚合物原有的缺点,并根据实际需要赋予聚合物新的性能。

聚合物改性的三个主要目的:①克服聚合物原有的缺点,赋予聚合物某些高新的性能与功能②改善聚合物的加工工艺性能③降低材料的生产成本总之,聚合物改性就是要在聚合物的使用性能、加工性能与生产成本三者之间寻求一个最佳的平衡点。

聚合物改性的意义:1.新品种的开发越来越困难(已开发的品种数以万计,工业化的三百余种。

资源限制、开发费用、环境污染)2.使用性能的多样化、复杂化,要求材料有多种性能及功能,单一聚合物难以实现。

3.聚合物改性科学应运而生——获取新性能聚合物的简洁而有效的方法。

聚合物改性的主要方法:共混改性;填充改性;纤维增强复合材料;化学改性;表面改性聚合物改性发展概况几个重要的里程碑事件:1942年,采用机械熔融共混法将NBR掺和于PVC之中,制成了分散均匀的共混物。

这是第一个实现了工业化生产的聚合物共混物。

1948年,HIPS1948年,机械共混法ABS问世,聚合物共混工艺获得重大进展。

二者可称为高分子合金系统研究开发的起点。

1942年,制成了苯乙烯和丁二烯的互穿聚合物网络(IPN),商品名为“Styralloy”,首先使用了聚合物合金这一名称。

1960年,建立了IPN的概念,开始了一类新型聚合物共混物的发展。

IPN已成为共混与复合领域一个独立的重要分支。

1965年,Kato研究成功OsO4电镜染色技术,使得可用透射电镜直接观察到共混物的形态,这一实验技术大大促进了聚合物改性科学理论和实践的发展,堪称聚合物发展史上重要的里程碑。

聚合物材料的表面改性方法

聚合物材料的表面改性方法

聚合物材料的表面改性方法聚合物材料是一类具有广泛应用前景的材料,具有质轻、高强度、耐腐蚀等特点。

然而,由于其表面的化学稳定性较差,导致其在某些特殊环境下容易受到损伤。

为了改善聚合物材料的性能,人们通过表面改性方法对其进行处理,并赋予其更多的功能。

本文将介绍一些常见的聚合物材料的表面改性方法。

物理气相沉积(PVD)是一种常见的表面改性方法。

通过将金属等材料以适当的气氛转变为气体态,然后使其在高真空环境中与聚合物材料表面发生反应,从而形成一层新的材料。

PVD能够显著提高聚合物材料的硬度、耐磨性和耐腐蚀性。

此外,PVD还可以通过控制沉积参数来调节材料层的粗糙度和结构,从而实现对材料性能的精确调控。

化学沉积是另一种常见的聚合物表面改性方法。

化学沉积利用化学反应使金属或其他材料以原子或分子的形式沉积在聚合物材料的表面上。

与物理气相沉积不同,化学沉积可以在常压或低压下进行。

化学沉积能够根据反应条件的不同,形成不同厚度、形貌和成分的材料层,从而使聚合物表面的性能得到改善。

例如,通过化学沉积薄层二氧化硅,可以增强聚合物材料的耐候性和耐磨性。

离子注入是一种通过将离子注入到聚合物表面来改变其性能的方法。

离子注入可以显著改变聚合物的化学结构和表面性质,从而实现对材料性能的调节。

通过控制注入的离子种类和能量,可以使聚合物材料表面发生化学反应,形成新的摩擦性能、光电性能等。

离子注入方法具有对材料表面改性效果持久、成本低廉等优点,因此得到了广泛应用。

高能束流 (EB) 辐照是一种利用电子束对聚合物材料进行表面改性的方法。

在高能束流辐照下,能量较高的电子束穿透聚合物材料,与其分子相互作用,从而引发一系列化学反应。

这些反应可以引起预期的表面改性效果,如增加表面粗糙度、提高耐久性和改善光学性能等。

由于高能束流辐照能够实现材料的局部改性,因此在一些特定应用中得到了广泛应用。

总之,聚合物材料的表面改性是提高其性能的重要途径。

通过物理气相沉积、化学沉积、离子注入和高能束流辐照等方法,可以赋予聚合物材料更多的功能性和改善其性能。

聚 合 物 改 性

聚 合 物 改 性

聚合物改性聚合物定义:聚合物即高分子化合物,所谓的高分子化合物,就是指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。

聚合物改性通过物理与机械的方法在聚合物中加入无机或有机物质,或将不同种类聚合物共混,或用化学方法实现聚合物的共聚、接枝、交联,或将上述方法联用、并用,以达到使材料的成本下降、成型加工性能或最终使用性能得到改善,或在电、磁、光、热、声、燃烧等方面被赋予独特功能等效果,统称为聚合物改性。

聚合物改性的方法总体上分为: 物理方法化学方法表面细分:共混改性、填充改性、纤维增强复合材料化学改性、表面改性、共混改性:两种或者两种以上聚合物经混合制备宏观均匀材料的过程。

可分为物理、化学共混。

填充改性:向聚合物中加入适量的填充材料(如无机粉体或者纤维),以使制品的某些性能得到改善,或降低原材料成本的改性技术。

纤维增强复合材料又称聚合物基复合材料,就就是以有机聚合物为基体,纤维类增强材料为增强剂的复合材料。

化学改性:在改性过程中聚合物大分子链的主链、支链、侧链以及大分子链之间发生化学反应的一种改性方法。

原理:主要靠大分子主链或支链或侧基的变化实现改性。

改性手段有:嵌段、接枝、交联、互穿网络等特点:改性效果耐久,但难度大,成本高,可操作性小,其一般在树脂合成厂完成,在高分子材料加工工厂应用不多。

表面改性:就是指其改性只发生在聚合物材料制品的表层而未深入到内部的一类改性。

特点:性能变化不均匀种类:表面化学氧化处理,表面电晕处理,表面热处理,表面接枝聚合,等离子体表面改性等适应于只要求外观性能而内部性能不重要或不需要的应用场合,常见的有:表面光泽,硬度,耐磨、防静电等的改性。

接枝反应:以含极性基团的取代基,按自由基反应的规律与聚合物作用,生成接枝链,从而改变高聚物的极性,或引入可反应的官能团。

官能团反应:可以发生在聚合物与低分子化合物之间,也可发生在聚合物与聚合物之间。

可以就是聚合物侧基官能团的反应,也可以就是聚合物端基的反应接枝共聚改性对聚合物进行接枝,在大分子链上引入适当的支链或功能性侧基,所形成的产物称作接枝共聚物。

聚合物材料的改性及其应用研究

聚合物材料的改性及其应用研究

聚合物材料的改性及其应用研究聚合物材料已经成为现代工业中最重要的材料之一。

它们具有出色的特性,包括良好的化学稳定性、耐热性、耐候性、抗氧化性、电气绝缘性等等。

然而,聚合物材料仍然存在一些局限性,如强度、刚度和耐腐蚀性等方面。

为了克服这些局限性,聚合物材料的改性成为了一个重要领域。

一、改性聚合物材料的种类改性聚合物材料的种类非常多,常见的有以下几种:1. 共聚物材料共聚物材料是由两种或更多种不同单体聚合而成的材料。

共聚物材料通常具有更好的性能,如强度、耐热性和耐腐蚀性等方面。

2. 涂层材料涂层材料可以增加聚合物材料的表面强度、耐热性和耐腐蚀性,同时也可以为聚合物材料提供更好的表面光洁度和外观。

3. 接枝聚合物材料接枝聚合物材料由两种或更多种聚合物分子通过共价键连接而成。

这种材料具有更好的强度和耐热性。

4. 填料材料填料材料是一种将天然或合成的颗粒添加到聚合物中以增强材料性能的方法。

常用的填料材料有硅酸盐、玻璃珠、纤维、碳黑等。

5. 交联聚合物材料交联聚合物材料是一种通过化学交联处理或物理交联处理提高聚合物材料性能的方法。

常用的交联处理方法有紫外线交联、电子束交联和热交联等。

二、改性聚合物材料的应用研究改性聚合物材料广泛应用于工业、医疗、电子、建筑和汽车等多个领域。

下面介绍一下其中一些应用研究的情况。

1. 汽车领域改性聚合物材料在汽车领域的应用研究非常广泛。

聚碳酸酯、聚苯乙烯和聚丙烯等聚合物材料经过改性后可以用于汽车零部件中,包括前脸、车门、仪表盘和中控台等部位。

这些改性聚合物材料具有更好的强度、耐热性和耐腐蚀性。

2. 医疗领域医疗领域对材料性能要求非常高,因此改性聚合物材料在这个领域的应用也非常广泛。

聚酯、聚氨酯和聚丙烯等聚合物材料经过改性后可以用于制造医疗器械、医用敷料和医用手套等,这些改性聚合物材料具有更好的耐热性、细菌滤过性和生物相容性。

3. 电子领域电子领域对材料性能的要求也非常高。

改性聚合物材料可以用于生产光学电缆、微处理器封装材料和耐高温电缆等电子元器件。

聚合物改性(完整版)

聚合物改性(完整版)

聚合物改性的目的、意义;聚合物改性的定义、改性的方法(大分类和小分类)答:改性目的及意义:①改善材料的某些物理机械性能②改善材料的加工性能③降低成本④赋予材料某些特殊性能、获得新材料的低成本方法⑤提高产品技术含量,增加其附加值的最适宜的途径⑥调整塑料行业产品结构、增加企业经济效益最常采用的途径聚合物改性的定义:通过各种化学的、物理的或二者结合的方法改变聚合物的结构,从而获得具有所希望的新的性能和用途的改性聚合物的过程改性的方法:①化学改性:a、改变聚合物的分子链结构b、接枝、嵌段共聚、互穿聚合物网络、交联、氯化、氯磺化等②物理改性:a、改变聚合物的高次结构b、共混改性、填充改性、复合材料、表面改性等1.化学改性(改变分子链结构)和物理改性(高次结构)的本质区别答:化学改性—改变聚合物分子的链结构物理改性—改变聚合物分子的聚集状态2.共混物和合金的区别答:共混(指物理共混)的产物称聚合物共混物。

高分子合金:不能简单等同于聚合物共混物,高分子合金---指含多种组分的聚合物均相或多相体系,包括聚合物共混物、嵌段和接枝共聚物,而且一般言,高分子合金具有较高的力学性能。

工业上称:塑料合金。

3.共混改性的分类(熔融、溶液、乳液、釜内)答:分类一:化学方法:如接枝、嵌段等;--化学改性物理方法:机械混合、溶液混合、胶乳混合、粉末混合---混合物理-化学方法---反应共混分类二:熔融共混:机械共混的方法,最具工业价值,是共混改性的重点;溶液共混:用于基础研究领域,工业上用于涂料和黏合剂的制备;乳液共混:共混产品以乳液的形式应用;釜内共混:是两种或两种以上聚合物单体同在一个反应釜中完成其;聚合过程,在聚合的同时也完成了共混。

4.共混物形态研究的重要性5.共混物形态的三种基本类型(均相、海-岛、海-海)答:均相体系:一般本体聚合、溶液聚合才形成均相体系非均相体系:①海-岛结构:连续相+分散相(基体)②海-海结构:两相均连续,相互贯穿6.相容性对共混物形态结构的影响答:①在许多情况下,热力学相容性是聚合物之间均匀混合的主要推动力;良好的相容性是聚合物共混物获得良好性能的重要前提。

聚合物表面改性的技术手段及其应用

聚合物表面改性的技术手段及其应用

聚合物表面改性的技术手段及其应用聚合物是一种非常重要的高分子材料,广泛应用于工业、医疗和生活中。

然而,由于聚合物的物化性质和表面特性不稳定,需要对聚合物进行改性以提高其性能,使之更符合实际应用需求。

其中,聚合物表面改性技术是最具有效性和实用性的手段之一。

本文将介绍聚合物表面改性的技术手段及其应用。

1. 聚合物表面改性的技术手段1.1 化学表面改性化学表面改性是一种通过化学反应来将物质附着到聚合物表面的方法,从而改变聚合物表面的特性。

通常采用的化学表面改性方法包括:酸碱处理、溶液浸润、化学键结合等。

例如,微波辐射方法可用于对聚乙烯表面进行氧化改性,将氧原子的引入到聚合物表面,增加其亲水性。

1.2 物理表面改性物理表面改性是一种通过物理手段来改变材料表面性质的方法,可通过改变表面形貌、纹理、颜色、色泽等方面来改变物质表面性质。

例如,凸点纳米表面可增强材料的粘附性、硬度和磨损性,从而提高材料的性能。

1.3 光化学表面改性光化学表面改性是一种以光为驱动力通过化学反应来改变材料或材料表面性质的方法,可用于材料的光降解、光合成、光催化等。

例如,光降解技术可将有机分子通过可见光辐照分解成无害物质,减少聚合物的环境污染。

2. 聚合物表面改性的应用2.1 材料涂层聚合物表面改性技术可用于涂层领域,以提高涂层的附着力、耐磨性、防腐蚀性和耐老化性。

例如,在航空航天领域,采用聚合物表面改性技术制备出具有高温稳定性和防腐蚀性的涂层,可以提高航空器的性能。

2.2 生物医学材料聚合物表面改性技术可用于生物医学材料领域,以提高其组织相容性、生物降解性、生物相容性和抗菌性能。

例如,聚合物表面改性技术可以用于制备具有超支链结构的聚己内酯材料,提高其生物降解性,从而可以作为内部骨钉等医疗器械的材料。

2.3 环保领域聚合物表面改性技术可用于环保领域,以提高材料的光降解和光催化能力,减少聚合物的环境污染。

例如,通过聚合物表面改性技术制备出具有光降解能力的聚苯乙烯材料,可以在光照条件下将污染物分解成无害物质。

聚合物表面改性

聚合物表面改性

聚合物表面改性聚合物表面改性根据方法可以分为以下几种:化学改性、光化学改性、表面改性剂改性、力化学处理、火焰处理与热处理、偶联剂改性、辐照与等离子体表面改性。

一、化学改性化学改性是通过化学手段对聚合物表面进行改性处理,其具体方法包括化学氧化法、化学浸蚀法、化学法表面接枝等。

1.1化学氧化法是通过氧化反应改变聚合物表面活性,例如聚乙烯这种材料的表面能很低,用氧化剂处理聚乙烯,使其表面粗糙并氧化生成极性基团,从而使其表面能增高;在室温下将聚乙烯在标准铬酸洗液中浸泡1-1.5h,66-71℃条件下浸泡1-5min,80-85℃处理几秒钟,也可以达到同样效果;通过臭氧氧化处理可有效地改善聚丙烯表面的亲水性,处理前的表面接触角为97°,臭氧氧化处理后,表面接触角将达到67°。

1.2化学浸蚀法是用溶剂清洗可除去聚烯烃表面的弱边界层,例如通过用脱脂棉蘸取有机溶剂,反复擦拭聚合物表面多次等1.3聚合物表面接枝,是通过在表面生长出一层新的有特殊性能的接枝聚合物层,从而达到显著的表面改性效果。

二、光化学改性光化学改性主要包括光照射反应、光接枝反应。

2.1光照射反应是利用可见光或紫外光直接照射聚合物表面引起化学反应,如链裂解、交联和氧化等,从而提高了表面张力。

如用波长184nm的紫外线在大气中照射聚乙烯能使表面发生交联,粘接的搭接剪切强度提高到15.4Mpa。

2.2光接枝反应就是利用紫外光引发单体在聚合物表面进行的接枝反应,该技术尤其适用于聚合物的表面改性,这是因为紫外线能量低,条件温和,只是在聚合物表面引发接枝聚合反应,很难影响到聚合物本体。

例如对于一些含光敏基(如羰基),特别是侧链含光敏基的聚合物,当紫外线光照射其表面时,会发生反应,产生表面自由基。

三、表面改性剂改性采用将聚合物表面改性剂与聚合物共混的方式是一种简单的改性办法,它只需要在成型加工前将改性剂混到聚合物中,加工成型后,改性剂分子迁移到聚合物材料的表面,从而达到改善聚合物表面性能的目的。

混凝土中的聚合物改性技术及其应用

混凝土中的聚合物改性技术及其应用

混凝土中的聚合物改性技术及其应用一、前言混凝土作为建筑材料的重要组成部分,在建筑领域有着广泛的应用。

然而,传统的混凝土存在着一些缺陷,如低强度、易龟裂、不耐久等问题。

为了解决这些问题,聚合物改性技术应运而生。

本文将从以下几个方面详细介绍聚合物改性技术在混凝土中的应用。

二、聚合物改性技术的概述聚合物改性技术是将聚合物添加到混凝土中,通过聚合物与水泥凝胶的反应,使混凝土的性能得到改善的一种技术。

聚合物改性技术可以提高混凝土的抗拉强度、抗压强度、抗裂性、耐久性等多个方面的性能,是现代建筑领域中一种重要的技术。

三、聚合物改性材料的分类1.纤维素醚类纤维素醚类聚合物是一种常见的聚合物改性材料,包括羟丙基甲基纤维素(HPMC)、羟丙基纤维素(HPC)等。

这类材料能够增加混凝土的流动性和延展性,提高混凝土的工作性能。

2.丙烯酸类丙烯酸类聚合物主要包括丙烯酸酯共聚物(例如聚甲基丙烯酸甲酯)、聚丙烯酸、聚丙烯酸酯等。

这类聚合物可以提高混凝土的抗裂性和耐久性,特别是在低温环境下具有更好的性能。

3.丁苯橡胶类丁苯橡胶是一种高分子弹性体,具有优异的耐热性、耐寒性和耐腐蚀性。

加入丁苯橡胶可以提高混凝土的韧性和耐久性,尤其是在地震和爆炸等恶劣环境下具有更好的抗震性能。

4.聚乙烯醇类聚乙烯醇是一种水溶性高分子材料,具有良好的抗裂性和耐久性。

加入聚乙烯醇可以提高混凝土的强度和韧性,是一种常用的聚合物改性材料。

四、聚合物改性技术在混凝土中的应用1.提高混凝土的强度和耐久性聚合物改性技术可以通过增加混凝土的抗压强度、抗拉强度和耐久性来提高混凝土的性能。

例如,在高速公路、机场、码头等工程中,使用聚合物改性混凝土可以提高混凝土的强度和耐久性,从而提高工程的安全性和经济性。

2.改善混凝土的工作性能聚合物改性技术可以改善混凝土的工作性能,使混凝土具有更好的流动性、延展性和可塑性。

这对于在复杂结构中灌注混凝土、在窄小空间中施工等有特殊要求的工程非常重要。

第一章聚合物的化学改性

第一章聚合物的化学改性

是在酯基的甲基上。
2.活性基团引入法 原理:首先在聚合物的主干上导入易分解的活性基团,然后 在光、热作用下分解成自由基与单体进行接枝共聚。
Br C H2 H C C H2 C
hv
BBB C H2 C C H2 C
nB
叔碳上的氢很容易氧化,生成氢过氧化基团,进而分解为自由 基,由此可利用聚对异丙基苯乙烯支取甲基丙烯酸甲酯接枝物。
PMMA-g-NR
第三节 嵌段共聚改性
一.基本原理
定义:嵌段共聚物分子链具有线型结构,是由至少两种以上 不同单体聚合而成的长链段组成。嵌段共聚可以看成是接枝 共聚的特例,其接枝点位于聚合物主链的两端。 嵌段共聚物可分为三种链段序列基本结构形式:
图2-2
放射状嵌段共聚物的链段序列结构

嵌段共聚类型
Si
O
C
2.嵌段共聚物的应用
主要应用材料可分为三类:嵌段共聚物弹性体,增韧热塑性
弹性树脂和表面活性剂。
●嵌段共聚物弹性体:嵌段共聚物热塑性弹性体主
合成大单体的主要方法有阴离子聚合、阳离子聚合、自由基 聚合等方法。
(2)大单体与小单体合成接枝共聚物技术:
主链由小单体聚合而成;
支链为相对分子质量分布均匀的大单体。
优点:
●更简单、更广泛的合成接枝共聚物;
●能合成数量繁多的接枝共聚物; ●大单体技术还可将两种性能差异较大的聚合物(如亲水和亲 油)以化学键结合。
定义:利用反应体系中的自由基夺取聚合物主链上的氢而链
转移,形成链自由基,进而引发单体进行聚合,产生接枝。
CH2
CH2
CH
CH
CH2
CH
+ R
+ RH
CH

聚合物改性总结

聚合物改性总结

零、绪论聚合物改性的定义:通过物理和机械方法在高分子聚合物中加入无机或有机物质,或将不同类高分子聚合物共混,或用化学方法实现高聚物的共聚、接枝、嵌段、交联,或将上述方法联用,以达到使材料的成本下降,成型加工性能或最终使用性能得到改善,或使材料仅在表面以及电、磁、光、热、声、燃烧等方面赋予独特功能等效果,统称为聚合物改性。

聚合物改性的目的:所谓的聚合物改性,突出在一个改字。

改就是要扬长补短,要发扬和保留聚合物原有的优势,抑制和克服聚合物原有的缺点,并根据实际需要赋予聚合物新的性能。

聚合物改性的三个主要目的:①克服聚合物原有的缺点,赋予聚合物某些高新的性能与功能②改善聚合物的加工工艺性能③降低材料的生产成本总之,聚合物改性就是要在聚合物的使用性能、加工性能与生产成本三者之间寻求一个最佳的平衡点。

聚合物改性的意义:1.新品种的开发越来越困难(已开发的品种数以万计,工业化的三百余种。

资源限制、开发费用、环境污染)2.使用性能的多样化、复杂化,要求材料有多种性能及功能,单一聚合物难以实现。

3.聚合物改性科学应运而生——获取新性能聚合物的简洁而有效的方法。

聚合物改性的主要方法:共混改性;填充改性;纤维增强复合材料;化学改性;表面改性聚合物改性发展概况几个重要的里程碑事件:1942年,采用机械熔融共混法将NBR掺和于PVC之中,制成了分散均匀的共混物。

这是第一个实现了工业化生产的聚合物共混物。

1948年,HIPS1948年,机械共混法ABS问世,聚合物共混工艺获得重大进展。

二者可称为高分子合金系统研究开发的起点。

1942年,制成了苯乙烯和丁二烯的互穿聚合物网络(IPN),商品名为“Styralloy”,首先使用了聚合物合金这一名称。

1960年,建立了IPN的概念,开始了一类新型聚合物共混物的发展。

IPN已成为共混与复合领域一个独立的重要分支。

1965年,Kato研究成功OsO4电镜染色技术,使得可用透射电镜直接观察到共混物的形态,这一实验技术大大促进了聚合物改性科学理论和实践的发展,堪称聚合物发展史上重要的里程碑。

聚合物的改性方法

聚合物的改性方法

聚合物的改性方法
聚合物的改性方法有很多种,常见的改性方法包括物理改性和化学改性。

物理改性方法主要包括以下几种:
1. 混合改性:将两种或多种聚合物混合并加热或者进行机械混合,以改变聚合物的物理性质,如增加韧性、改善加工性能等。

2. 加填料改性:向聚合物中加入填料(如纤维、颗粒等)以增强其力学性能,如增加强度、刚度等。

3. 拉伸改性:通过拉伸、冷拉伸等方式对聚合物进行物理拉伸改性,可使聚合物的结晶度增加,从而改善其力学性能。

4. 放射线改性:通过辐射(如γ射线、电子束)照射聚合物,使其分子链断裂或交联,从而改变其性能。

化学改性方法主要包括以下几种:
1. 共聚改性:通过将两种或多种不同单体反应聚合,得到共聚物来改变聚合物的性能,如共聚物可以提高聚合物的强度、耐热性等。

2. 交联改性:通过交联剂对聚合物进行交联反应,使聚合物分子之间发生交联,从而增加聚合物的热稳定性、耐化学腐蚀性等。

3. 功能改性:向聚合物中引入具有特殊功能的化学基团,如引入亲水基团可以增加聚合物的亲水性,引入光敏基团可以实现光响应性等。

4. 化学修饰:通过对聚合物表面进行化学修饰,如引入活性基团、磁性粒子等,以改变聚合物表面的性质,如增加亲附性、增强稳定性等。

不同的改性方法适用于不同的聚合物和需求,通过合理选择和组合这些改性方法,可以获得特定性能的改性聚合物。

聚合物改性的方法

聚合物改性的方法

聚合物改性的方法聚合物改性是在聚合物基础上进行化学或物理性质调整的过程,旨在改善聚合物的性能,以满足特定要求。

聚合物改性方法包括物理改性、化学改性和混合改性等。

物理改性是通过物理手段改变聚合物的性能。

常用的物理改性方法有填充改性、增强改性、合金化改性和辐射改性等。

填充改性是将填料添加到聚合物中,例如纤维素、石墨、玻璃纤维、纳米颗粒等。

填料可以改变聚合物的力学性能、热稳定性、尺寸稳定性等。

常见的填充改性材料有增强剂、助剂、着色剂等。

增强改性是通过增强聚合物的强度和刚度来改善其力学性能。

常用的增强改性方法有增加纤维素纤维、添加无机颗粒、引入纤维素纤维等。

这些增强材料可以提高聚合物的抗压强度、抗弯强度和抗冲击性能。

合金化改性是将两种或更多种聚合物材料混合制备成新材料。

通过合金化改性,可以获得具有综合性能的新材料。

合金化改性可使聚合物改善机械性能、耐热性、耐老化性、耐化学性等。

合金化改性还可以解决单一聚合物的固有缺点,例如脆化、收缩等。

辐射改性是利用辐射源(例如电子束、γ射线、紫外线)照射聚合物,从而改善其性能。

辐射改性可以提高聚合物的物理性能、化学性能和耐候性。

常用的辐射改性方法有交联、致孔、溶解破坏等。

化学改性是通过化学手段改变聚合物的性质。

常用的化学改性方法有共聚改性、交联改性、引入功能基团改性等。

共聚改性是将两种或更多种具有不同性质的单体共聚,得到具有新性质的共聚物。

共聚改性可以改善聚合物的力学性能、热稳定性、耐刺破性等。

例如,丙烯酸甲酯与苯乙烯共聚可以提高聚合物的韧性和抗冲击性。

交联改性是通过引入交联剂使聚合物形成三维网络结构,从而提高其力学性能和耐热性。

交联改性可以改善聚合物的抗拉强度、抗切割性、耐磨性等。

交联改性常用的交联剂有环氧树脂、双酮、多官能团化合物等。

引入功能基团改性是通过引入具有特定功能的化学基团来改变聚合物的性能。

例如引入亲水基团可以提高聚合物的吸湿性和增湿性,引入官能团可以提高聚合物的活性和选择性。

聚合物材料的改性与应用

聚合物材料的改性与应用

聚合物材料的改性与应用聚合物材料是指在聚合物基础上对其进行物理、化学或者结构上的改变,以满足特殊的性能需求。

聚合物材料具有广泛的应用领域,从日常生活中的塑料制品到高科技领域中的薄膜、纤维等都有着重要的地位。

然而,传统的聚合物材料在某些方面的性能还有待提升,如强度、耐热性、防腐性等。

因此,聚合物材料的改性与应用成为了研究的重点。

一、聚合物材料的改性聚合物材料的改性是指在聚合物基础上进行物理、化学或结构上的改变,以改善其性能。

改性的方式主要有以下几种:1.添加剂改性添加剂是指一些能够在聚合物材料中协同作用,改善其性能的化学品。

常见的添加剂包括增塑剂、稳定剂、填料等。

增塑剂可以增加聚合物的可加工性和柔韧性,稳定剂可以提高聚合物的抗氧化性、抗紫外线性等,填料可以增加聚合物的硬度和耐磨性。

2.共聚改性共聚改性是指将两种或更多的单体聚合在一起,形成聚合物混合物。

由于其中不同单体聚合时的结构不同,所以可以通过共聚来得到更好的性能。

例如,将苯乙烯与丁苯橡胶共聚,可以得到一个既有坚硬度又有韧性的ABS材料。

3.交联改性交联改性是指通过一定的化学反应,在聚合物材料中形成交联结构,使其硬度、强度、耐热性等性能得到提升。

通常采用的交联剂有过氧化物、硫化剂等。

交联改性的聚合物又称为热塑性弹性体(TPE)。

二、聚合物材料的应用聚合物材料具有轻质、耐腐蚀、高强度、绝缘性好等优点,因此在众多领域中有广泛的应用。

1.包装领域聚合物材料在包装领域中应用广泛,如塑料袋、瓶子、盒子等。

经过改性后,聚合物材料的各项性能得到提升,可以更好地保护物品,并增加包装的美观性。

2.建筑领域聚合物材料在建筑领域中应用广泛,如隔热材料、防水材料、地板材料等。

通过改性,聚合物材料可以满足建筑材料的强度、耐腐蚀性等要求,同时还具有重量轻、易加工等优点。

3.汽车领域汽车零部件中常常采用聚合物材料,如车身外壳、车门、座椅等。

聚合物材料的轻量化、材质坚韧可塑性好等特点,可以满足汽车制造中的要求。

聚合物表面改性方法及其在涂料工业上的应用详解

聚合物表面改性方法及其在涂料工业上的应用详解

聚合物表面改性方法及其在涂料工业上的应用详解聚合物是一种常见的高分子化合物,具有广泛的应用领域,如塑料制品、纺织品、建筑材料等。

然而,由于其表面性质限制了其在某些领域的应用,因此需要对聚合物表面进行改性处理。

本文将详细介绍聚合物表面改性的方法,并重点讨论其在涂料工业上的应用。

聚合物表面改性方法主要包括物理方法和化学方法两种。

一、物理方法1. 表面涂覆表面涂覆是一种常见的聚合物表面改性方法,通过在聚合物表面涂覆一层薄膜或涂层,改变其表面性质。

常见的表面涂覆方法包括溶液涂覆、溅射涂层和电镀等。

2. 离子注入离子注入是一种通过将离子注入聚合物表面改变其性质的方法。

通过特定的离子注入装置,将带有高能量的离子注入到聚合物表面,使其发生物理或化学改变。

离子注入可以改变聚合物的表面硬度、疏水性和电导率等性质。

3. 气体等离子体处理气体等离子体处理是一种利用高能量等离子体处理聚合物表面的方法。

通过将聚合物表面暴露在含有等离子体的气体环境中,聚合物表面会发生化学交联、化学改性及物理改变等过程,从而改变其表面性质。

二、化学方法1. 表面修饰表面修饰是一种将化学物质通过化学反应与聚合物表面进行结合的方法。

常用的表面修饰方法包括聚合物表面接枝、聚集态修饰和功能化修饰等。

表面修饰可以改变聚合物表面的化学性质、疏水性、疏油性等。

2. 表面包覆表面包覆是一种将聚合物表面包覆上一层具有特定性质的化合物的方法。

表面包覆可以改变聚合物表面的光学性质、耐候性、耐腐蚀性等。

常见的表面包覆方法包括溶胶-凝胶法、沉积法和压电喷雾法等。

聚合物表面改性在涂料工业上具有重要的应用。

1. 提高涂料附着力聚合物表面经过改性处理后,可以在涂料与基材之间形成更牢固的结合,提高涂料的附着力。

改性处理可以增加聚合物表面的粗糙度和亲水性,从而使涂料更容易附着在聚合物表面上,减少剥离和脱落现象。

2. 提高涂层的耐磨性和耐化学性聚合物表面改性可以增加涂料的耐磨性和耐化学性,提高涂层的使用寿命。

第七章 聚合物改性工艺

第七章 聚合物改性工艺

互穿聚合物网络制备
• 两种制备方法的比较: • 由于同步IPN要求两种聚合反应互不干扰、
具有大致相同的聚合温度和聚合速率,故 IPN的应用范围较窄,不适合大部分IPN结构 的制备。
互穿聚合物网络制备
(3)胶乳IPN (Latex IPNs) 胶乳IPN是指用乳液聚合法制得IPN,是目前 IPN中研究较多的一种。因为互穿网络仅限于 各个乳胶粒范围之内,所以也称微观IPN
互穿聚合物网络制备
可通过2种方法制备:(1)熔融状态或在共 同溶剂下的机械共混(机械共混IPN);(2)
模板聚合技术(化学共IPN)即把单体Ⅱ溶胀 到聚合物Ⅰ中(或在单体Ⅱ中溶解聚合物 Ⅰ)并就地聚合形成IPN。
互穿聚合物网络应用
• 阻尼材料是一种能吸收机械振动并将其转 化为热能而耗散的新型功能材料。高分子 材料在一定温度和频率范围内发生的玻璃 化转变,是阻尼作用的根本原因。但是, 阻尼材料的应用必须有一个合适的Tg。
4)光子:激发态中间体回落低能级,能使分子 断裂,由于分子密度低,作用小
5)自由基 占绝大多数,高活性
• 等离子体存在处:
宇宙中99%物质处于等离子体态。由地球 表面向外,等离子体是几乎所有可见物质 的存在形式,它与众所周知的物质三态也 就是气态、液态、固态并列称为物质的第 四态,即等离子体态。
固体 冰
液体 水
气体
水汽
等离子体
电离气体
00C
1000C
100000C
温度
1)高温等离子体:也叫聚变或热平衡等离子 体,在此类等离子体中,电子与其它粒子的温 度相等,一般在5000K以上。 Te≈Ti,Te-电子温度; Ti-离子温度
由于高温等离子体对聚合物表面的作用过 于强烈,因此在日常实际应用中很少使 用,目前投入使用的只有低温等离子体。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
得到海海结构最终产品。 用两阶共混法制备的共混体系与一步共
混法相比,力学性能明显提高。
NR/PE 性能对比
性能
一步共混
拉伸强度/MPa 21.9
ε/%
807
500%定伸强度 5.1 /MPa 永久变形/% 38
两阶共混 33.0 872 6.5 36
两阶共混法
粒径小
粒径分布窄
无大粒子拖尾
T*附近,微小的温度波动,会使共混物 性能发生大的变化。
控制熔体粘度的方法
①温度:调节的最有效方法 ②助剂:对于橡胶,加炭黑 ↗↗ ;充油
↙↙ 对于PVC加填料, ↗;加增塑剂↙ ③分子量:调节分子量大小,可控制
3.界面张力与相容剂对R的影响
据公式, ↙R ↙,添加相容剂,可使 ↙
例:PA/PE 加入PE-g-MAH,R ↙
PA6/LDPE
PA6/LDPEg-MAH
粒径分 布 不均一
均匀
粒径尺寸 m 20~30
1
相界 面 清晰
模糊
冲击性能
改善不明 显 提高7~8 倍
2.4.4两阶共混分散历程
为了获得较为理想的分散效果,可以采 用两阶共混的方法。这种共混方法是北 京化工大学高分子系陈耀庭教授在研究 PP/SBS共混体系时首次提出的,现已得 到广泛应用。
2.4共混过程、 共混工艺及 共混设备
2.4.1简单混合与分散混合
简单混合:指在混合过程中,分散相粒径大小 不变,只增加分散相在空间分布的随机性的混 合过程。 在共混中,采用高速搅拌机对粉末状原料进行 的混合就是简单混合——共混的预备过程。
分散混合:指在混合过程中,既增加分散相分 布的随机性,又减小粒径,改变分散相粒径分 布的混合过程。熔融共混,就属于分散混合。
分散与集聚是一个动力学平衡过程。 破碎过程:分散相由大粒子变为小粒子,界面积↗,体系界面能↗。
需要外力的过程,不是自发的过程。共混初始阶段,破碎过程占 主导地位。 集聚过程:界面能下降的过程,自发的过程。主要依赖粒子间的 碰撞完成。随共混得进行,大粒子数目 ↙,小粒子数目↗,粒子
之间碰撞几率就增加了。
3 V总
n 4 R3
V总
3 D
N总
NV总

3
2 D
2R3
n 4 R3
3 D
4
n
D

k2
N总 n
P
4
nD n

P
4
P D

平衡时 k1 k2

2
EDk
3
R
4
P D

(EDk
3
R
)4

PD

2
4
P
D

EDk
4
P
D
•பைடு நூலகம்
3
R

2
12 R
P D

4
P D EDk
平衡粒径R*——共混过程的经 典共式
1混炼时间: ①为达到降低分散相粒径及使粒径均化的目的,
保证有足够得混炼时间;大粒子易于破碎,小 粒子难破碎。 ②相同体系,相同设备,粒径随共混时间延长而 下降,直到达“平衡粒径” ③平衡后,继续共混物意义 ④提高共混设备效率,大大降低共混时间 ⑤改善组分之间的相容性,
共混物形态随时间的变化
2.熔体粘度的影响
R
k1
k1 EDk
k1

k1 k1
EDk k1 2 k1
k1

k1
集聚过程
dn dt
k2n
dn dt
P
N总
N总 ——单位时间内总碰撞次数 P ——碰撞有效率
N总 N V总
N ——单位时间单位体积的碰撞次数

N
32D 2R3
D
VD V总
n
4 R3
平衡粒径的推导k1=k2
破碎过程:
动力学方程:
dn dt
k1 n
dn/dt——分散相粒子增长速率
k1——破碎速度常数 n——分散相粒子总数

k1
E EDb

E
——单位体积得到的外界剪切能
EDb ——分散相物料的破碎能 影响破碎过程的两个主要因素



E 2
——剪切应力
——体系黏度
等粘点的作用 线R平对缓温度不敏感,曲 曲P对线温较度陡变化敏感, 两曲线出现交汇点—
—等粘点 等粘点对应的温度—
—等粘温度T*
适当的配比范围内
T混>T*,
橡胶相粘度高——分 散相
塑料相粘度低——连 续相
T混< T*,
塑料相粘度高——分 散相
橡胶相粘度低——连 续相
T*的选择十分重要

——剪切速率
EDb= EDk+ EDf EDk——分散相物料的宏观破碎能 EDf——分散相粒子的表面能
S——分散相总表面积
VD——分散相总体积
——界面张力
EDf
S
VD
S 4R2n
n
VD
4 R3
3
EDf
S D
4R2n 4 R3n
3
R
3
EDb
EDk
3
R


k1
E EDb
2
EDk
3
分散混合中物料受到的三种作用
剪切作用:在剪切力的作用下,分散相产生变形,以 至破裂,分散相粒子的粒径变小,分布也发生变化。 是产生分散混合的条件。
对流作用:物料通过对流而增加分布的随机性,简单 混合主要依靠这种对流作用。
扩散作用:发生在两相界面上,产生相互扩散的过渡 层。
2.4.2 分散相的分散与集聚过程
软包硬规律制约两者的粘度
分散相粘度2再低,也不能低于连续相的粘度 1,否则,它就会倾向于生成连续相;
连续相粘度1再高,也不能高与分散相的粘度 2 ,否则,它就会倾向于生成分散相。
由此得到一个推论:
两相粘度接近于相等的情况下,最有利 于获得良好的分散效果。两相粘度相等 的一点,叫做等粘点。
2.4.3控制分散相粒径的方法
第一步:拿出用量较多的组分中的一部分,与另一部 分的全部先进行第一阶段的混合。
关键:尽可能使η1≈η2,两组分用量大致相等 目的:得到海海结构中间产物
第二步:将剩余部分加到海海结构的中间产物中,进 一步分散。制得具有较小分散粒径,且粒径分布均匀 的海岛结构共混体系。
实例:
橡胶/PE=90/10 先用少量橡胶与10份PE掺和→海海结构 然后再加剩余的橡胶与海海结构共混,
R
12
P
D

4
P D EDk
我们在共混中所做的工 作,就是要降低R*从公 式看,有四个手段
R
EDk R
R

R
分散相与连续相的粘度
➢ Edk ↙ ,分母 ↗, R ↙ Edk由分散相物料的粘度及粘弹性决定, 降低2, Edk ↙, R ↙
另一方面,外界作用与分散相的剪切力, 是通过连续相传递给分散相的,因而, ↗ 1,,R ↙ 共混时希望: 1 ↗, 2 ↙
这是由于预先配制的海海 结构在继续混炼中易被 剪成细丝,然后断开成 均匀小粒。小粒一部分 溶入海中,另一部分均 匀地分散在海中形成了 岛。
相关文档
最新文档