3.3v转5V电平转换
3.3v 转5v三极管电平转换电路
【3.3V转5V电平转换电路】在现代电子产品中,我们常常会遇到不同电平之间的通信和连接问题。
在使用不同电压的设备进行通信时,就需要通过电平转换电路来确保信号的正常传输。
其中,3.3V和5V之间的电平转换是一个常见的问题。
为了解决这个问题,我们可以使用三极管电平转换电路来实现。
三极管是一种常用的电子元件,具有放大和开关功能。
在电平转换电路中,三极管起到了信号转换和匹配的作用。
下面,我将从浅入深地介绍3.3V转5V三极管电平转换电路的原理和实现方法。
1. 电平转换原理在进行电平转换时,我们需要将3.3V的信号转换为5V的信号,以适应不同设备之间的电平要求。
而三极管作为一种双向放大器,可以很好地满足这一需求。
通过控制三极管的基极电压,我们可以实现对输入信号的放大和匹配,从而实现3.3V到5V的电平转换。
2. 3.3V转5V三极管电平转换电路图接下来,我们可以通过以下电路图来实现3.3V转5V的电平转换:(这里应当插入电路图,或者描述电路连接方式)在这个电路中,我们使用了一个双极性三极管,例如2N2222。
当输入信号为3.3V时,通过控制基极电压,可以使输出信号达到5V;当输入信号为5V时,三极管处于饱和状态,输出信号同样为5V。
这样一来,我们就实现了从3.3V到5V的电平转换。
3. 实际应用和注意事项在实际应用中,我们需要注意一些电路参数的选择和匹配。
三极管的型号、输入输出电阻的匹配等都会影响到电路的性能和稳定性。
另外,对于高频信号和大电流信号的转换,也需要进一步优化电路设计。
4. 个人观点和总结3.3V转5V三极管电平转换电路是一种简单有效的电平转换方案。
通过合理设计电路参数和选择合适的元件,我们可以轻松实现不同电平之间信号的转换和匹配。
在实际应用中,我们需要根据具体情况进行电路设计和优化,以确保信号的稳定和可靠传输。
通过本文的介绍,希望能给大家带来一些关于3.3V转5V三极管电平转换电路的启发和帮助。
5v和3.3v电平转换电路直接串电阻
标题:深入解析5v和3.3v电平转换电路直接串电阻1. 介绍电子产品中存在着不同电平之间的通信和数据传输问题,比如5v和3.3v之间的转换。
本文将深入探讨5v和3.3v电平转换电路中直接串电阻的原理和应用,帮助读者更好地理解和应用这一技术。
2. 原理与概念解析在5v和3.3v电平转换电路中,直接串电阻起到了重要的作用。
通过串联不同阻值的电阻,可以实现5v和3.3v之间的电平转换,从而使它们能够在不同电平系统中进行通信和数据传输。
3. 电路设计与实现在实际的电路设计中,直接串电阻的选择需要根据具体的电平转换需求和电路特性进行合理搭配。
通常情况下,我们需要结合输入输出电路的特性、电压范围和电流要求等因素来选择合适的电阻数值和串联方式。
4. 优缺点分析直接串电阻作为5v和3.3v电平转换电路的一种实现方式,具有简单、成本低廉的优点。
但是在一些场景下,由于电路的灵敏度要求和功耗考量,可能会对其进行优化或者选择其他更适合的电平转换方案。
5. 应用与展望在各种嵌入式系统和传感器设备中,5v和3.3v电平转换电路直接串电阻的应用非常广泛。
未来随着技术的发展,我们可以预见到更多更高效的电平转换器件和方案的出现,以满足不断变化的电子产品需求。
结语通过本文的深入解析,相信读者对5v和3.3v电平转换电路中直接串电阻的原理和应用有了更深入的了解。
电子技术的发展日新月异,我们需要不断学习和探索,以应对不断变化的需求和挑战。
6. 相关技术发展电子产品的快速发展,促进了电平转换技术的不断创新和改进。
除了直接串电阻的实现方式外,现在市面上还出现了许多更为高效的电平转换器件,比如双向电平转换器芯片、逻辑电平转换器等。
这些新技术在尺寸、速度和功耗等方面都有着更好的表现,为不同电平系统的通信和数据传输提供了更多选择。
7. 优化方案及适用场景与直接串电阻相比,新型电平转换器件具有更为完善的特性,能够满足更为复杂和严苛的电路需求。
特别是在对电路灵敏度和功耗有较高要求的场景下,优化方案和新型转换器件更能够发挥其优势。
3.3v与5v双向电平转换电路的工作状态_概述说明
3.3v与5v双向电平转换电路的工作状态概述说明1. 引言1.1 概述在现代电子设备中,不同芯片和模块之间的通信往往需要考虑到电平兼容性问题。
尤其是在3.3V和5V两种不同电压标准的设备之间,因为它们工作电压不同,直接连接可能会导致数据传输错误或者损坏。
因此,本文将详细介绍3.3V与5V 双向电平转换电路的工作状态,并探讨几种常用的设计和实现方法。
1.2 文章结构本文章分为五个部分来讨论与说明3.3V与5V双向电平转换电路的工作状态。
首先,在引言部分我们将对文章主题进行概述,并简要介绍整篇文章的结构安排。
然后,在第二部分,我们将对3.3V与5V双向电平转换电路进行简要介绍,包括其概念、工作原理以及应用领域。
接下来的第三部分将详细探讨三种常见的设计和实现方法:使用二极管和电阻、使用逻辑门芯片以及使用专门的电平转换芯片。
第四部分将展示并讨论实验结果,比较不同设备在双向转换时的工作状态,同时评估其转换效率。
最后,在第五部分我们将总结全文的内容,并对3.3V与5V双向电平转换电路的工作状态进行概述和说明。
1.3 目的本文的目的在于为读者提供一个全面的了解3.3V与5V双向电平转换电路工作状态的文章。
通过介绍不同设计和实现方法以及实验结果和讨论,读者可以更好地理解这个领域中常见问题和解决方案,并能够选择合适的方法来应对特定应用中的电平转换需求。
希望本文能够为读者提供有价值的参考,促进相关技术的进一步研究与发展。
2. 3.3v与5v双向电平转换电路简介2.1 电平转换概念在嵌入式系统和数字电路中,不同模块或设备之间的通信常涉及到不同的工作电压,其中最常见的是3.3伏特(V)和5伏特(V)两种电平。
然而,直接连接这些设备可能会导致信号误读或损坏。
为了解决这个问题,我们需要使用双向电平转换电路。
这种电路可以将3.3V的逻辑信号转换为5V,并将5V的逻辑信号转换为3.3V,以确保各个模块之间的正常通信。
2.2 工作原理一个常用的解决方案是使用二极管和电阻来实现双向电平转换。
3.3V转5V的双向电平转换电路
3.3V转5V的双向电平转换电路说说所有的电平转换方法,你自己参考~(1) 晶体管+上拉电阻法就是一个双极型三极管或MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。
(2) OC/OD 器件+上拉电阻法跟1) 类似。
适用于器件输出刚好为OC/OD 的场合。
(3) 74xHCT系列芯片升压(3.3V→5V)凡是输入与5V TTL 电平兼容的5V CMOS 器件都可以用作3.3V→5V 电平转换。
——这是由于3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而CMOS 的输出电平总是接近电源电平的。
廉价的选择如74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列(那个字母T 就表示TTL 兼容)。
(4) 超限输入降压法(5V→3.3V, 3.3V→1.8V, ...)凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。
这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制(改变了输入级保护电路)。
例如,74AHC/VHC 系列芯片,其datasheets 明确注明"输入电压范围为0~5.5V",如果采用3.3V 供电,就可以实现5V→3.3V 电平转换。
(5) 专用电平转换芯片最著名的就是164245,不仅可以用作升压/降压,而且允许两边电源不同步。
这是最通用的电平转换方案,但是也是很昂贵的(俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。
(6) 电阻分压法最简单的降低电平的方法。
5V电平,经1.6k+3.3k电阻分压,就是3.3V。
(7) 限流电阻法如果嫌上面的两个电阻太多,有时还可以只串联一个限流电阻。
某些芯片虽然原则上不允许输入电平超过电源,但只要串联一个限流电阻,保证输入保护电流不超过极限(如74HC 系列为20mA),仍然是安全的。
3.3V转5V电平转换方法参考
3.3V转5V 电平转换方法参考电平转换晶体管+上拉电阻法就是一个双极型三极管或 MO SFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。
(2) O C/OD器件+上拉电阻法跟 1)类似。
适用于器件输出刚好为OC/OD的场合。
(3) 74xH CT系列芯片升压(3.3V→5V) 凡是输入与 5VTTL 电平兼容的5V CM OS 器件都可以用作 3.3V→5V 电平转换。
——这是由于3.3V C MOS 的电平刚好和5V TT L电平兼容(巧合),而 CMO S 的输出电平总是接近电源电平的。
廉价的选择如 74x HCT(H CT/AH CT/VH CT/AH CT1G/VHCT1G/...) 系列(那个字母 T 就表示 TTL兼容)。
(4)超限输入降压法(5V→3.3V, 3.3V→1.8V,...)凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。
这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制(改变了输入级保护电路)。
例如,74AHC/VHC 系列芯片,其 data sheet s 明确注明"输入电压范围为0~5.5V",如果采用 3.3V 供电,就可以实现5V→3.3V 电平转换。
(5)专用电平转换芯片最著名的就是 164245,不仅可以用作升压/降压,而且允许两边电源不同步。
这是最通用的电平转换方案,但是也是很昂贵的 (俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。
mos 3.3v转5v电平转换电路
mos 3.3v转5v电平转换电路摘要:一、电平转换电路简介1.电平转换的概念2.电平转换电路的作用二、3.3v 转5v 电平转换电路设计1.电平转换器的工作原理2.3.3v 转5v 电平转换器的选择3.电路连接方式和注意事项三、电平转换电路应用1.常见应用场景2.实际应用案例四、电平转换电路的优缺点1.优点2.缺点正文:一、电平转换电路简介电平转换电路是一种将不同电压等级的信号进行转换的电路,常见的有3.3v 转5v 电平转换电路。
电平转换电路在电子设备中有着广泛的应用,主要作用是将不同电压等级的信号进行匹配,以便进行信号传输和处理。
通过电平转换,可以实现不同电压等级设备之间的通信,提高系统的兼容性和可靠性。
二、3.3v 转5v 电平转换电路设计1.电平转换器的工作原理电平转换器是一种能够实现不同电压等级信号转换的电子元件,其工作原理主要是通过控制开关器件的开关时间,实现输入电压与输出电压之间的能量传递。
在3.3v 转5v 电平转换电路中,电平转换器将3.3v 的输入电压转换为5v 的输出电压。
2.3.3v 转5v 电平转换器的选择在设计3.3v 转5v 电平转换电路时,需要选择合适的电平转换器。
根据实际应用需求,可以选择不同类型的电平转换器,如线性稳压器、开关稳压器等。
在选择过程中,需要考虑电平转换器的转换效率、输出电压稳定性、负载电流能力等因素。
3.电路连接方式和注意事项在设计3.3v 转5v 电平转换电路时,需要合理连接电平转换器与输入、输出负载。
通常情况下,电平转换器输入端连接3.3v 电压,输出端连接5v 电压。
在连接过程中,需要注意以下几点:- 确保输入、输出电压与电平转换器的输入、输出电压范围相匹配。
- 合理布局电路,尽量减小电路寄生参数对性能的影响。
- 考虑电路的散热问题,确保电平转换器在稳定工作范围内。
三、电平转换电路应用1.常见应用场景3.3v 转5v 电平转换电路在电子设备中有着广泛的应用,如微控制器、传感器、通信设备等。
5v和3.3v转换
一、3.3V信号转5V信号二、5V信号转3.3V信号一、3.3V信号转5V信号1、采用MOSFET如图1所示,电路由一个N沟道FET和一个上拉电阻构成。
在选择R1的阻值时,需要考虑输入的开关速度和R1上的电流消耗。
当R1值较小时,可以提高输入开关速度,获取更短的开关时间,但却增大了低电平时R1上的电流消耗。
图1,采用MOSFET实现3V至5V电平转换2、采用二极管钳位如图2所示,由于3.3V信号的低电平一般不高于0.5V,当3.3V系统输出低电平时,由于D1的钳位作用,使得5V输出端会得到0.7V~1.2V的低电压,低于ADM3251E的最高不超过1.5V的低电平阈值。
当3.3V系统输出高电平时,由于D2的钳位作用,使5V输出端会得到约4V的高电平电压,高于ADM3251E的最低不低于3.5V的高电平阈值。
图2,采用二极管实现3V至5V电平转换3、采用三极管如图3所示,当3.3V系统高电平信号输入时,Q1导通,Q2截止,在5V输出端得到5V电压。
当3.3V系统低电平信号输入时,Q1截止,Q2导通,在5V输出端得到低电平。
此电路同样也适用于5V转3V的情况,只要将上拉的电压换成3.3V即可。
图3,采用三极管实现3V至5V电平转换以上三种方法比较简单,能够很方便的实现电平转换,但对传输速率有一定的限制,对于9600,19200等常用传输速率,使用这些方法没有问题。
也可以采用电压比较器、运算放大器或OC门芯片74HC05来实现3V 至5V的电平转换。
对于高于100K传输速率的应用,我们可采用一些专门的电平转换芯片,如74LVX4245、SN74LVC164245、MAX3370等,但这些芯片价格偏高。
当然,我们也可以采用ADUM1201搭配DC-DC隔离电源模块和RS-232收发器的分立隔离方案,ADUM1201不但能对信号进行隔离,还能够在隔离信号的同时方便的实现3V至5V的电平转换。
二、5V信号转3.3V信号一些3.3V供电的控制芯片能够承受5V的输入电压,但更多的控制芯片只能接受3.3V的输入信号,因此需要将ADM3251E的Rout引脚输出5V信号转为3.3V电平信号。
3.3v转5v三极管电平转换电路
3.3v转5v三极管电平转换电路
3.3V转5V三极管电平转换电路可以通过以下步骤实现:
1.准备所需材料:3.3V电源、5V电源、三极管(如Q1和Q2)、电阻(如R1、R2、R3和R4)、二极管(如D1)和其他必要的元件,如电容等。
2.将
3.3V电源连接到电路中,作为输入电源。
3.将5V电源连接到电路中,作为目标电源。
4.将三极管Q1的基极连接到3.3V电源,集电极连接到5V电源,发射极输出信号。
5.将三极管Q2的基极连接到Q1的发射极,集电极连接到5V电源,发射极输出信号。
6.在Q1的发射极和Q2的基极之间连接一个适当的电阻R3,以控制电流的大小。
7.在Q2的发射极和5V电源之间连接一个适当的电阻R4,以控制电流的大小。
8.在Q1的集电极和Q2的集电极之间连接一个适当的电阻R2,以分压和保护三极管。
9.在Q1的集电极和5V电源之间连接一个适当的电阻R1,以分流和保护三极管。
10.根据需要,可以在电路中添加其他元件,如电容等以优化性能。
通过以上步骤,可以构建一个将3.3V电平转换为5V电平的三极
管电平转换电路。
请注意,在实际应用中,可能需要根据具体需求进行适当的调整和优化。
ttl电平3.3转5v电路
将3.3V TTL电平转换为5V电路,可以使用以下几种方法:
直接连接:如果3.3V输出的VOH大于5V输入的VIH,并且3.3V输出的VOL小于5V输入的VIL,那么可以直接连接两个电路。
然而,这种方法并不总是适用,因为它要求输出高电平大于输入高电平,同时输出低电平小于输入低电平。
使用电阻分压器:电阻分压器可以将5V器件的输出降低到适用于3.3V器件输入的电平。
选取适当的电阻值,以满足接收端负载电阻的需求,同时尽量减少功耗和瞬态时间的影响。
以上两种方法都可以实现3.3VTTL电平到5V电路的转换,但具体使用哪种方法,需要根据电路的具体需求和条件来决定。
请注意,无论使用哪种方法,都需要确保转换后的电路能正常工作,并不会对原电路产生影响。
5V3.3V电平转换问题
5V3.3V电平转换问题5V 3.3V电平转换问题总结在5V和3.3V芯⽚与模块之间经常要使⽤到电平之间的转换,现总结如下。
1、问题来源常⽤电平类型包括5V-CMOS、5V-TTL、3.3V-LVCMOS、3.3V-LVTTL,这四种电平允许输⼊和输出的最⼤、最⼩⾼低电平阈值有所差异,因此,在连接时,有时需要进⾏相应的电平转换以使输⼊和输出之间的电平匹配。
如下表所列是常⽤的上述四种电平⾼低电平阈值,需要注意的是,不同的芯⽚⼚商在制造时,上述值有所差异,具体以芯⽚的数据⼿册为准,以下表格中数值参照Texas InstrumentO=OUTPUT,I=INPUT,VOH(min)表⽰:输出在此值~VCC之间,均为⾼电平,其他依次类似。
假如,有⼀个3.3V-LVTTL器件,输出的⾼电平,且⾼电平值为2.4V,送到⼀个5V-CMOS 器件,对5V-CMOS,仅3.5V以上才能识别为⾼电平,⽽2.4V电平属于⾼低中间未知的⼀个电平范围之内,因此,不能保证其能够被准确的识别为⾼电平,在这种情况下,需要进⾏电平转换。
同时,对于3.3V器件,由于其引脚⼤多数情况下⽆法耐受5V的电压,因此,也需要进⾏相应的电平转换。
2、5V器件——>3.3V器件这种情况⼤部分情况下是由于3.3V器件⽆法耐受5V电平,导致需要增加相应的转换电路。
在此部分中,5V器件统称为前级,3.3V器件统称为后级。
(1)电阻分压法:前级输出通过两个电阻(常取kΩ级别的)进⾏分压,分压后输出给后级。
操作较为简单,但需要注意某些应⽤:a)若分压电阻过⼤,会导致后级流⼊电流过⼩,不适合某些需要⼀定驱动能⼒要求的器件;b)若分压电阻过⼩,会导致功耗过⼤,不适合低功耗的应⽤,且前级引脚输出会等效存在⼀定的⼩阻值电阻,影响分压;c)不适合⾼速应⽤场合,后级输⼊引脚⼤多存在对地的分布电容,通过RC⽹络构成充电电路,会造成信号传输的延时,低速信号链中可不考虑。
3.3v转5v电平
了解COMS的特性,如何更好的应用”CMOS"结构MCU及提高MCU的抗干扰了解COMS的特性,如何更好的应用”COMS”结构MCU及提高MCU的抗干扰现在市面上的MCU大多是COMS的制程,尤其在家电产品中的应用,例如SONIX,HOLTEK,EMC,51系列都是COMS的工艺,当然COMS有他的固有特性及不好的表现,我们在应用时如何避免这些不好特性例如栓锁效应,提供在应用上的参考.起到抛砖引玉!1.先了解TTL电平,CMOSS电平的概念,2.CMOS电平与TTL电平的区别.1,TTL电平(什么是TTL电平):输出高电平>2。
4V,输出低电平〈0。
4V。
在室温下,一般输出高电平是 3.5V,输出低电平是0。
2V。
最小输入高电平和低电平:输入高电平〉=2.0V,输入低电平<=0.8V,噪声容限是0。
4V.2,CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V.而且具有很宽的噪声容限。
3,电平转换电路:因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3。
3v),所以互相连接时需要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。
哈哈4,OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。
否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。
5,TTL和COMS电路比较:1)TTL电路是电流控制器件,而coms电路是电压控制器件。
2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。
COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。
COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。
3)COMS电路的锁定效应:COMS电路由于输入太大的电流,内部的电流急剧增大,除非切断电源,电流一直在增大.这种效应就是锁定效应。
三极管的电平转换及驱动电路分析
三极管的电平转换及驱动电路分析
3.3V-5V电平转换电路
如上图,左端接3.3V CMOS电平,可以是STM32、FPGA等的IO口,右端输出为5V电平,实现3.3V到5V电平的转换。
现在来分析下各个电阻的作用(抓住的核心思路是三极管的Vbe导通时为恒定值0.7V左右):
假设没有R87,则当US_CH0的高电平直接加在三极管的BE上,>0.7V
的电压要到哪里去呢?
假设没有R91,当US_CH0电平状态不确定时,默认是要Trig输出高电平还是低电平呢?因此R91起到固定电平的作用。
同时,如果无R91,则只要输入>0.7V就导通三极管,门槛电压太低了,R91有提升门槛电压的作用(可参见第二小节关于蜂鸣器的分析)。
但是,加了R91又要注意了:R91如果太小,基极电压近似
只有Vb>0.7V时才能使US_CH0为高电平时导通,上图的Vb=1.36V。
简单实用的双向电平转换电路(非常实用!)3.3V--5V
之袁州冬雪创作
当你使用3.3V的单片机的时候,电平转换就在所不免了,常常会遇到3.3转5V或者5V转3.3V的情况,这里先容一个简单的电路,他可以实现两个电平的相互转换(注意是相互哦,双向的,不是单向的!).电路十分简单,仅由3个电阻加一个MOS管构成,电路图如下:
(原文件名:3.3-5V转换.jpg) 上图中,S1,S2为两个信号端,VCC_S1和VCC_S2为这两个信号的高电平电压.别的限制条件为:
1,VCC_S1<=VCC_S2.
2,S1的低电平门限大于0.7V左右(视NMOS内的二极管压降而定).
3,Vgs<=VCC_S1.
4,Vds<=VCC_S2
对于3.3V和5V/12V等电路的相互转换,NMOS管选择AP2306即可.原理比较简单,大家自行分析吧!此电路我已在多处应用,效果很好.
对这个电路测试了下,MOS管采取的是2N7002小信号NMOS,输入电容很
小的,大概几十pF.下面是电路及实物
测试主要是对3.3向5V转换,下面奉上测试波形图.115KHz波形,这个是频率是常常使用串口较高的波特率
400KHz,高速IIC通信的时钟频率
1MHz,波形上升太慢了
4MHz,已经不克不及输出5V的电平了。
3.3V-5V 电平转换
© 2006 Microchip Technology Inc.
DS41285A_CN 第 i 页
技巧和诀窍
注:
DS41285A_CN 第 ii 页
2006 Microchip Technology Inc.
技巧和诀窍 技巧和诀窍简介
3.3 伏至 5 伏连接。 概述 我们对处理速度的需求日益增长,伴随着这种增 长,用来构建单片机的晶体管尺寸则在持续减小。 以更低的成本实现更高的集成度,也促进了对更小 的几何尺寸的需求。随着尺寸的减小,晶体管击穿 电压变得更低,最终,当击穿电压低于电源电压 时,就要求减小电源电压。因此,随着速度的提高 和复杂程度的上升,对于高密度器件而言,不可避 免的后果就是电源电压将从 5V 降至 3.3V,甚至 1.8V。 Microchip 单片机的速度和复杂性已经到达足以要 求降低电源电压的程度,并正在向 5V 电源电压以 下转换。但问题是绝大多数接口电路仍然是为 5V 电源而设计的。这就意味着,作为设计人员,我们 现在面临着连接 3.3V 和 5V 系统的任务。此外, 这个任务不仅包括逻辑电平转换,同时还包括为 3.3V 系统供电、 转换模拟信号使之跨越 3.3V/5V 的 障碍。
表 1: 方法 齐纳旁路 稳压器 串联线性 稳压器 开关降压 稳压器 电源比较 VREG IQ 效率 60% 60% 尺寸 小 小 成本 低 中 瞬态响应 差 极好
10% 5 mA 典型值 0.4% 1 µA 典型值 至 100 µA 0.4% 30 µA 典型值 至 2 mA
93%
中 到 大
高
好
© 2006 Microchip Technology Inc.
DS41285A_CN 第 2 页
© 2006 Microchip Technology Inc.
电平转换芯片_3.3转5伏_概述说明以及解释
电平转换芯片3.3转5伏概述说明以及解释1. 引言1.1 概述电平转换芯片是一种常见的集成电路,用于将输入信号的电平转换为不同的输出电平。
在现代电子设备中,由于不同模块之间使用的工作电压可能不同,需要进行电平转换以确保正常通讯和数据传输。
特别是在3.3伏逻辑与5伏逻辑之间进行转换时,常常会用到3.3转5伏的电平转换芯片。
1.2 文章结构本文将从以下几个方面对3.3转5伏电平转换芯片进行概述和解释。
首先,在第2节中,我们将对电平转换芯片进行详细介绍,并解释其定义、原理以及常用类型和适用场景。
接着,在第3节中,我们将重点探讨具体的3.3转5伏电平转换芯片的工作原理,并解释其输入输出特性、工作模式以及转换效率分析。
随后,在第4节中,我们将通过选型考虑因素、典型设计方案介绍以及实际应用案例分析展示来深入探讨该芯片的设计和应用相关内容。
最后,在第5节中,我们将总结文章主要观点和结果,并对未来发展前景提出展望和建议。
1.3 目的本文的目的是全面介绍和解释3.3转5伏电平转换芯片的概述、工作原理以及设计和应用案例分析。
通过阅读本文,读者将能够了解电平转换芯片的基本知识,并掌握3.3转5伏电平转换芯片的工作原理和实际应用情况。
同时,本文也旨在为相关领域的研究人员和工程师提供参考和借鉴,以便在实际项目中选择合适的电平转换芯片并进行设计与应用。
2. 电平转换芯片概述:2.1 定义和原理:电平转换芯片是一种能够将不同电压等级之间进行转换的集成电路器件。
它通过内部的逻辑电路或晶体管技术,实现将输入信号的电平从一个电压等级转换为另一个电压等级。
常见的应用场景是将3.3伏(V)逻辑电平转换为5伏(V)逻辑电平,或者反过来。
这种转换主要基于两种原理:一种是使用门级晶体管逻辑实现,通常通过晶体管的开关操作来控制信号传输;另一种是利用CMOS工艺技术,在输入引脚上放置一个引线器,以控制输出信号。
无论使用哪种原理,该芯片都必须具备稳定、可靠、低噪声、高速率和较小功耗等特性。
5v和3.3v芯片互转
3.3v和5v双向电平转换芯片74LVC4245,8位电平转换74LVC4245A,8位双向NLSX4373,2位电平转换NLSX4014,4位电平转换NLSX4378,4位电平转换NLSX3018,8位电平转换max3002,8路双向TXB0104?(她好像有一个系列?0102?0104?0106?0108),ADG330874HCT245:三态输出的八路总线收发器SN74A VCH2T45SN74A VC16T245:具有可配置电压转换和 3 态输出的16 位双电源总线收发器SN74LVC2T45DCT:双位双电源总线收发器可配置电压转换和三态输出SN74LVC4245A:8位德州仪器宣布推出SN74LVC1T45、SN74LVC2T45、SN74A VC8T245及SN74A VC20T245四款新型双电源电平转换收发器。
该新品能够在 1.5V、1.8V、2.5V、3.3V 与5V 电压节点之间进行灵活的双向电平转换,而且可提供全面的可配置性。
如果采用A VC 技术,则每条轨可从1.4V 配置为3.6V;而采用LVC 技术时则可从 1.65V 配置为5.5V。
适用于便携式消费类电子产品、网络、数据通信以及计算应用领域。
日前,德州仪器(TI)宣布推出四款新型的双电源电平转换器--A VC1T45、A VC2T45、A VC16T245及A VC32T245,从而进一步扩展其电平转换产品系列。
这些转换器能够在互不兼容的I/O之间进行通信。
这四款器件均支持1.2V、1.5V、1.8V、2.5V与3.3V节点之间的双向电平转换。
在混合信号环境中,可以使用这些电压电平的任意组合,从而提高这些器件的灵活性。
1位A VC1T45与2位A VC2T45可根据需要在电路板上集成单或双转换器功能,而不是通过较高位宽的器件进行路由,这有助于简化电路板布线作业(board routing),可适用于便携式手持应用的转换要求。
3.3V-5V电平转换电路
假设没有R83,当输入US_CH0为高电平(三极管导通时),D5V0(5V高电平)直接加在三极管的CE级,而三极管的CE,三极管很容易就损坏了。
再进一步分析其工作机理:
当输入为高电平,三极管导通,输出钳制在三极管的Vce,对电路测试结果仅0.1V
假设没有R91,当US_CH0电平状态不确定时,默认是要Trig输出高电平还是低电平呢?因此R91起到固定电平的作用。同时,如果无R91,则只要输入>0.7V就导通三极管,门槛电压太低了,R91有提升门槛电压的作用(可参见第二小节关于蜂鸣器的分析)。
但是,加了R91又要注意了:R91如果太小,基极电压近似
3.3V-5V电平转换电路
如上图,左端接3.3VCMOS电平,可以是STM32、FPGA等的IO口,右端输出为5V电平,实现3.3V到5V电平的转换。
现在来分析下各个电阻的作用(抓住的核心思路是三极管的Vbe导通时的高电平直接加在三极管的BE上,>0.7V的电压要到哪里去呢?
当输入为低电平,三极管不导通,输出相当于对下一级电路的输入使用10K电阻进行上拉,实际测试结果为5.0V(空载)
请注意:
对于大电流的负载,上面电路的特性将表现的不那么好,因此这里一直强调——该电路仅适用于10几mA到几十mA的负载的电平转换。
求3.3V转5V电平转换—FPGA实用??
求3.3V转5V电平转换—FPGA实用??话说最近用FPGA控制步进电机,因为电机的驱动芯片的控制信号等都是5V供电,FPGA输出的最高电压是3.3V,必须进行电平转换才能正常工作,同时也是对FPGA的保护,毕竟FPGA板子不便宜。
因为要控制两个电机,还有反馈,所以需要很多路,没有选择上拉电阻的方案,电路用的是74LVC4245A 芯片,是一款贴片芯片。
双向、8路、电平可控。
使用很简单。
就是要把贴片的芯片放到我的DIP的电路板上有点麻烦,不过还好,很省地方。
下面是网上收集的其他3.3V 5V 的方法:电平转换晶体管+上拉电阻法就是一个双极型三极管或MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。
(2) OC/OD 器件+上拉电阻法跟1) 类似。
适用于器件输出刚好为OC/OD 的场合。
(3) 74xHCT系列芯片升压(3.3V→5V)凡是输入与5V TTL 电平兼容的5V CMOS 器件都可以用作3.3V→5V 电平转换。
——这是由于3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而CMOS 的输出电平总是接近电源电平的。
廉价的选择如74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列(那个字母T 就表示TTL 兼容)。
(4) 超限输入降压法(5V→3.3V, 3.3V→1.8V, ...)凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。
这里的'超限'是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制(改变了输入级保护电路)。
例如,74AHC/VHC 系列芯片,其datasheets 明确注明'输入电压范围为0~5.5V',如果采用3.3V 供电,就可以实现5V→3.3V 电平转换。
(5) 专用电平转换芯片最著名的就是164245,不仅可以用作升压/降压,而且允许两边电源不同步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电平转换
晶体管+上拉电阻法
就是一个双极型三极管或 MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。
(2) OC/OD 器件+上拉电阻法
跟 1) 类似。适用于器件输出刚好为 OC/OD 的场合。
(3) 速度/频率
某些转换方式影响工作速度,所以必须注意。像方案(1)(2)(6)(7),由于电阻的存在,通过电阻给负载电容充电,必然会影响信号跳沿速度。为了提高速度,就必须减小电阻,这又会造成功耗上升。这种场合方案(3)(4)是比较理想的。
(4) 输出驱动能力
如果需要一定的电流驱动能力,方案(1)(2)(6)(7)就都成问题了。这一条跟上一条其实是一致的,因为速度问题的关键就是对负载电容的充电能力。
3:输出高电平(Voh):保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的输出为高电平时的电平值都必须大于此Voh。
4:输出低电平(Vol):保证逻辑门的输出为低电平时的输出电平的最大值,逻辑门的输出为低电平时的电平值都必须小于此Vol。
5:阀值电平(Vt): 数字电路芯片都存在一个阈值电平,就是电路刚刚勉强能翻转动作时的电平。它是一个界于Vil、Vih之间的电压值,对于CMOS电路的阈值电平,基本上是二分之一的电源电压值,但要保证稳定的输出,则必须要求输入高电平> Vih,输入低电平<Vil,而如果输入电平在阈值上下,也就是Vil~Vih这个区域,电路的输出会处于不稳定状态。
(5) 路数
某些方案元器件较多,或者布线不方便,路数多了就成问题了。例如总线地址和数据的转换,显然应该用方案(3)(4),采用总线缓冲器芯片(245,541,16245...),或者用方案(5)。
(6) 成本&供货
前面说的164245就存在这个问题。"五要素"冒出第6个,因为这是非技术因素,而且太根本了,以至于可以忽略。
·ECL/PECL和LVDS是差分输入输出。
·RS-422/485和RS-232是串口的接口标准,RS-422/485是差分输入输出,RS-232是单端输入输出。
�
TTL电平是多少呢?
TTL电平为2.0V~5V为逻辑正,0~0.8V为逻辑负
CMOS电路的电平是多少?
CMOS电平:
输出逻辑1电平电压接近于电源电压,逻辑电平0接近于0V。而且具有很宽的噪声容限。
输入逻辑1电平电压大于电源电压的1/2 VCC~VCC;
输入逻辑0电平电压小于电源电压的1/2 VCC~gnd;
·其中TTL和CMOS的逻辑电平按典型电压可分为四类:5V系列(5V TTL和5V CMOS)、3.3V系列,2.5V系列和1.8V系列。
·5V TTL和5V CMOS逻辑电平是通用的逻辑电平。
·3.3V及以下的逻辑电平被称为低电压逻辑电平,常用的为LVTTL电平。
·低电压的逻辑电平还有2.5V和1.8V两种。
(4) 超限输入降压法 (5V→3.3V, 3.3V→1.8V, ...)
凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。
这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制 (改变了输入级保护电路)。
例如,74AHC/VHC 系列芯片,其 datasheets 明确注明"输入电压范围为0~5.5V",如果采用 3.3V 供电,就可以实现 5V→3.3V 电平转换。
(5) 专用电平转换芯片
最著名的就是 164245,不仅可以用作升压/降压,而且允许两边电源不同步。这是最通用的电平转换方案,但是也是很昂贵的 (俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。
(6) 电阻分压法
最简单的降低电平的方法。5V电平,经1.6k+3.3k电阻分压,就是3.3V。
RS232的电平是多少呢?
RS232电平发送器为+5V~+15V为逻辑负,-5V~-15V为逻辑正
接收器典型的工作电平在+3~+12V与-3~-12V。由于发送电平与接收电平的差仅为2V至3V左右,所以其共模抑制能力差,再加上双绞线上的分布电容,其传送距离最大为约15米,最高速率为20kb/s。RS-232是为点对点(即只用一对收、发设备)通讯而设计的,其驱动器负载为3~7kΩ。所以RS-232适合本地设备之间的通信。
对于一般的逻辑电平,以上参数的关系如下:
Voh > Vih > Vt > Vil > Vol。
。
7:Iol:逻辑门输出为低电平时的负载电流(为灌电流)。
8:Iih:逻辑门输入为高电平时的电流(为灌电流)。
9:Iil:逻辑门输入为低电平时的电流(为拉电流)。
(9) 比较器法
运放法/比较器少用。
2. 电平转换的"五要素"
(1) 电平兼容
解决电平转换问题,最根本的就是要解决逻辑器件接口的电平兼容问题。而电平兼容原则就两条:
VOH > VIH
VOL < VIL
再简单不过了!当然,考虑抗干扰能力,还必须有一定的噪声容限:
|VOH-VIH| > VN+
(1): RL < (VCC-Voh)/(n*Ioh+m*Iih)
(2):RL > (VCC-Vol)/(Iol+m*Iil)
其中n:线与的开路门数;m:被驱动的输入端数。
:常用的逻辑电平
·逻辑电平:有TTL、CMOS、LVTTL、ECL、PECL、GTL;RS232、RS422、LVDS等。
(3) 74xHCT系列芯片升压 (3.3V→5V)
凡是输入与 5V TTL 电平兼容的 5V CMOS 器件都可以用作 3.3V→5V 电平转换。
——这是由于 3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而 CMOS 的输出电平总是接近电源电平的。
廉价的选择如 74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列 (那个字母 T 就表示 TTL 兼容)。
高电平低电平是什么意思
逻辑电平的一些概念
要了解逻辑电平的内容,首先要知道以下几个概念的含义:
1:输入高电平(Vih): 保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入电平高于Vih时,则认为输入电平为高电平。
2:输入低电平(Vil):保证逻辑门的输入为低电平时所允许的最大输入低电平,当输入电平低于Vil时,则认为输入电平为低电平。
门电路输出极在集成单元内不接负载电阻而直接引出作为输出端,这种形式的门称为开路门。开路的TTL、CMOS、ECL门分别称为集电极开路(OC)、漏极开路(OD)、发射极开路(OE),使用时应审查是否接上拉电阻(OC、OD门)或下拉电阻(OE门),以及电阻阻值是否合适。对于集电极开路(OC)门,其上拉电阻阻值RL应满足下面条件:
RS485的电平是多少呢?
发送驱动器A、B之间的正电平在+2~+6V,是一个逻辑状态1,负电平在-2~-6V,是另一个逻辑状态0。(具体数值可能有误,回头测试一下!)
当在收端AB之间有大于+200mV的电平时,输出正逻辑电平,小于-200mV时,输出负逻辑电平。接收器接收平衡线上的电平范围通常在200mV至6V之间。
(7) 限流电阻法
如果嫌上面的两个电阻太多,有时还可以只串联一个限流电阻。某些芯片虽然原则上不允许输入电平超过电源,但只要串联一个限流电阻,保证输入保护电流不超过极限(如 74HC 系列为 20mA),仍然是安全的。
(8) 无为而无不为法
只要掌握了电平兼容的规律。某些场合,根本就不需要特别的转换。例如,电路中用到了某种 5V 逻辑器件,其输入是 3.3V 电平,只要在选择器件时选择输入为 TTL 兼容的,就不需要任何转换,这相当于隐含适用了方法3)。
|VOL-VIL| > VN-
其中,VN+和VN-表示正负噪声容限。
只要掌握这个原则,熟悉各类器件的输入输出特性,可以很自然地找到合理方案,如前面的方案(3)(4)都是正确利用器件输入特性的例子。
(2) 电源次序
多电源系统必须注意的问题。某些器件不允许输入电平超过电源,如果没有电源时就加上输入,很可能损坏芯片。这种场合性能最好的办法可能就是方案(5)——164245。如果速度允许,方案(1)(7)也可以考虑。