(完整版)难点6电磁感应中动量定理和动量守恒定律的运用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点6 电磁感应中动量定理和动量守恒定律的运用
1. 如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。求:
(1)棒从ab到cd过程中通过棒的电量。
(2)棒在cd处的加速度。
2. 如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈
A.完全进入磁场中时的速度大于(v0+v)/2
B.完全进入磁场中时的速度等于(v0+v)/2
C.完全进入磁场中时的速度小于(v0+v)/2
D.以上情况均有可能
3. 在水平光滑等距的金属导轨上有一定值电阻R,导轨宽d电阻不
计,导体棒AB垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B.现给导体棒一水平初速度v0,求AB在导轨上滑行的距离.
4. 如图3所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为:
A.1:1
B.1:2
C.2:1
D.1:1
5:如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。
ab、cd是质量均为m的金属棒,现让ab从离水平轨
道h高处由静止下滑,设导轨足够长。试求: (1)ab、
cd棒的最终速度;(2)全过程中感应电流产生的焦耳
热。
6、:如图所示,竖直放置的两光滑平行金属导轨,置于垂直于导轨平面向里的匀强磁场中,两根质量相同的导体棒a和b,与导轨紧密接触且可自由滑动。先固定a,释放b,当b的速度达到10m/s时,再释放a,经过1s后,a的速度达到12m/s,则(1)此时b的速度大小是多少?(2)若导轨很长,a、b棒最后的运动状态。
7、:两根平行的金属导轨,固定在同一水平面上,磁感强度B=0.5T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨间的距离l=0.20m,两根质量均为m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0时刻,两杆都处于静止状态。现有一与导
轨平行,大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨
上滑动。经过T=5.0s,金属杆甲的加速度为a=1.37 m/s2,求此时两
金属杆的速度各为多少?
b a
c d B R
M N P Q L 8.(12丰台期末12分)如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L ,导轨上平行放置两根导体棒ab 和cd ,构成矩形回路。已知两根导体棒的质量均为m 、电阻均为R ,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B ,导体棒均可沿导轨无摩擦的滑行。开始时,导体棒cd 静止、ab 有水平向右的初速度v 0,两导体棒在运动中始终不接触。求: (1)开始时,导体棒ab 中电流的大小和方向;
(2)从开始到导体棒cd 达到最大速度的过程中,矩形回路产生的焦耳热; (3)当ab 棒速度变为
4
3
v 0时,cd 棒加速度的大小。
9、如图,相距L 的光滑金属导轨,半径为R 的1/4圆弧部分竖直放置、直的部分固定于水平地面,MNQP 范围内有方向竖直向下、磁感应强度为B 的匀强磁场.金属棒ab 和cd 垂直导轨且接触良好,cd 静止在磁场中,ab 从圆弧导轨的顶端由静止释放,进入磁场后与cd 没有接触.已知ab 的质量为m 、电阻为r ,cd 的质量为3m 、电阻为r .金属导轨电阻不计,重力加速度为g .
(1)求:ab 到达圆弧底端时对轨道的压力大小
(2)在图中标出ab 刚进入磁场时cd 棒中的电流方向 (3)若cd 离开磁场时的速度是此刻ab 速度的一半, 求:cd 离开磁场瞬间,ab 受到的安培力大小 10、(20分)如图所示,电阻均为R 的金属棒a .b ,a 棒的质量为m ,b 棒的质量为M ,放在如图所示光滑的轨道的水平部分,水平部分有如图所示竖直向下的匀强磁场,圆弧部分无磁场,且轨道足够长;开始给a 棒一水平向左的的初速度v 0,金属棒a .b 与轨道始终接触良好.且a 棒与b 棒始终不相碰。请问: (1)当a .b 在水平部分稳定后,速度分别为多少?损失的机械能多少?
(2)设b 棒在水平部分稳定后,冲上圆弧轨道,返回到水平轨道前,a 棒已静止在水平轨道上,且b 棒与a 棒不相碰,然后达到新的稳定状态,最后a ,b 的末速度为多少?
(3)整个过程中产生的内能是多少?
11.(18分)如图所示,电阻不计的两光滑金属导轨相距L ,放在水平绝缘桌面上,半径为R 的1/4圆弧部分处在竖直平面内,水平直导轨部分处在磁感应强度为B ,方向竖直向下的匀强磁场中,末端与桌面边缘平齐。两金属棒ab 、cd 垂直于两导轨且与导轨接触良好。棒ab 质量为2 m ,电阻为r ,棒cd 的质量为m ,电阻为r 。重力加速度为g 。开始棒cd 静止在水平直导轨上,棒ab 从圆弧顶端无初速度释放,进入水平直导轨后与棒cd 始终没有接触并一直向右运动,最后两棒都离开导轨落到地面上。棒ab 与棒cd 落地点到桌面边缘的水平距离
之比为3: 1。求:
(1)棒ab 和棒cd 离开导轨时的速度大小;
(2)棒cd 在水平导轨上的最大加速度; (3)两棒在导轨上运动过程中产生的焦耳热。
12.(20分)如图所示,宽度为L 的平行光滑的金属轨道,左端为半径为r 1的四分之一圆弧轨道,右端为半径为r 2的半圆轨道,中部为与它们相切的水平轨道。水平轨道所在的区域有磁感应强度为B 的竖直向上的匀强磁场。一根质量为m 的金属杆a 置于水平轨道上,另一根质量为M 的金属杆b 由静止开始自左端轨道最高点滑下,当b 滑入水平轨道某位置时,a 就滑上了右端半圆轨道最高点(b 始终运动且a 、b 未相撞),并且a 在最高点对轨道的压力大小为mg ,此过程中通过a 的电荷量为q ,a 、b 棒的电阻分别为R 1、R 2,其余部分电阻不计。在b 由静止释放到a 运动到右端半圆轨道最高点过程中,求: (1)在水平轨道上运动时b 的最大加速度是多大? (2)自b 释放到a 到达右端半圆轨道最高点过程中
系统产生的焦耳热是多少?
(3)a 刚到达右端半圆轨道最低点时b 的速度是多大?