统计学第四章

合集下载

统计学原理第四章

统计学原理第四章

第二节 相对指标
(三)比较相对指标 比较相对指标是不同单位的同类现象数量对比而确定的相对指标, 用以说明某一同类现象在同一时间内各单位发展的不平衡程度,以 表明同类实物在不同条件下的数量对比关系。 甲单位某指标值 比较相对指标 乙单位同类指标值
比例指标与比较指标的区别?
比例相对指标和比较相对指标的区别是:⑴子项与母项的内容不同,比 例相对指标是同一总体内,不同组成部分的指标数值的对比;比较相对指 标是同一时间同类指标在空间上的对比。⑵说明问题不同,比例相对指标 说明总体内部的比例关系;比较相对指标说明现象发展的不均衡程度。 比较相对指标是不同单位的同类指标对比而确定的相对数,用以说明同类 现象在同一时期内各单位发展的不平衡程度。如:甲地职工平均收入是乙 地职工平均收入的1.3倍。
第二节 相对指标
例题4:某企业产值,计划完成程度指标为103%,比上期增长5%,试 问产值计划比上期增长多少? 解:设本期产值为a1,上期产a0,值为计划数为an, 则据题意有:a1/ an=103%, a1/ a0=105%, an/ a0=101.94%
选C
第三节 平均指标
一、平均指标的意义
第二节 相对指标
二、相对指标的种类及其计算方法
(一)结构相对指标 结构相对指标是在对总体分组的基础上,以总体总量作为比较标准, 求出各组总量占总体总量的比重,来反映总体内部组成情况的综合 指标。 各组(或部分)总量 结构相对指标 总体总量 计算结构相对指标能够反映总体内部结构和现象的类型特征,如各 工种的工人占全部工人的比重。 (二)比例相对指标 (轻重工业比例) 比例相对指标是总体中不同部分数量对比的相对指标,用以分析总 体范围内各个局部、各个分组之间的比例关系和协调平衡状况。 总体中某一部分数量 比例相对指标 总体中另一部分数值

统计学第四章

统计学第四章

第四章 差异量教学目的:1.理解全距、四分位距、百分位距、平均差、方差、标准差和差异系数等概念;2.掌握各种差异量指标的计算方法。

数据的分布特征不仅有集中趋势,还有离中趋势。

以动态的眼光,从不同的角度看,数据是向中间变动的,也是向两端变动的。

两组数据可能平均水平相同,但两组数据的分布特征并不完全相同。

【如】:比较下列两组数据 A 组:88、82、73、76、81 B 组:92、86、70、72、80两组平均数,80==B A X X 但R A =88-73=15,R B=92-70=22。

即A 组较集中,B 组较分散。

因此,我们描述一组数据的分布特征,既要描述其集中趋势,也要描述其离中趋势。

差异量:表示一组数据的离中趋势或变异程度的量称为差异量。

常用的差异量指标有全距、四分位距、百分位距、平均差、方差、标准差和差异系数。

第一节全距、四分位距、百分位距一、全距全距:是一组数距中最大值与最小值之差。

优点:意义明确,计算方便。

缺点:反应不灵敏,易受极端值影响。

二、四分位距(一)四分位距的的概念四分位距:是指一组按大小顺序排列的数据中间部位50%个频数距离的一半。

)(1.4213Q Q QD -=QD :表示四分位距; Q 3:表示第三四分位数;Q 1:表示第一四分位数。

所以:四分位距的公式又为:22575P P QD -=(二)四分位数的计算方法 1、原始数据计算法(1)将数据由小到大进行排列; (2)分别求出三位四分位数(点); (3)代入公式计算。

【例如】:有以下16个数据25、22、29、12、40、15、14、39、37、31、33、19、17、20、35、30,其中四分位距的计算方法如下:(1)先将原始数据从小到大排列好;12、14、15、17、*19、20、22、25、*29、30、31、33、*35、37、39、40Q 1=18 Md =27 Q 3=34(2)求出Q 1、Md 、Q 3;(3)将Q 1、Md 、Q 3的得数代入公式(4.1)。

《统计学》第4章总体指标与相对指标

《统计学》第4章总体指标与相对指标
21
• (四)动态相对指标 • 动态相对指标又称发展速度,它是同类现象 在不同时间上变动程度的相对指标。其计算 公式为:
报告期指标数值 100% • 动态相对指标(%)= 基期指标数值
• 动态相对指标就是发展速度。
22
• 例:某大学在校生人数1990年10000人, 2000年为15000人,则该校在校生人数 2000年是1990年的150%。 • 即:动态相对指标= 15000 100% 150%
380 100 % 76% 单位成本的计划完成相对数= 500
32
(3)当计划任务数是比上期提高或降低百分 之几的形式出现时 • 计划完成程度(%)=
1 实际提高(降低)百分数 100% 1 计划提高(降低)百分数
• 该指标是用于考核社会经济现象的降低率、 增长率的计划完成程度。
25
[例3]某城市人口1000000人,零售商店3000个。则: • 该城市商业网点密度=
3000个 3个 / 千人 1000000人
• 计算结果表明,该城市每千人拥有3个商业网点, 指标数值越大,商业越发达,人民生活越方便, 表示强度越高,这是正指标。
26
• 如果把分子和分母对换,则: 1000000人 • 该城市商业网点密度= 3000个 333人 / 个 • 计算结果表明,该城市每个商业网点为333 人服务,指标数值越大,需要服务的人数 越多,商业欠发达,即表示强度越低,这 是逆指标。
• 相对指标的概念 把两个有联系的指标加 以对比而得到的统计指 标 • 相对指标的表现形式为 相对比率,相对指标也 通称为相对数。
相对指标的计量单位
无名 数 系数 或倍 数 成 百分 翻番 数 数或 千分 数
有名 将相对指标中的分子和 数 分母指标数值计量单位 同时使用的一种表示方 法,主要用于部分强度 相对指标。

统计学课件 第四章 时间数列

统计学课件 第四章 时间数列

c a b
故对相对数或平均数时间数列计算平均发展水平,只需要对 其的分子、分母分别计算平均发展水平后再相除即可。即:
c a 分子代表分子数列的平均发展水平,分母代表分母数列的平均发展水平 b
(1)分子分母都是时期数列
某企业产值情况
时间
1月
2月
3月
产值计划完成程度(%) 105 100 109.1
计划产值(万)
某市财政收入情况
月份
1
2
3
4
5
6
财政收入 1(a0) 1.1(a1) 1.05(a2) 1.2(a3) 1.22(a4) 1.3(a5) (亿)
逐期增长量 ----
0.1
-0.05
0.15
0.02
0.08
(亿)
累计增长量 -----
0.1
0.05
0.2
0.22
0.3
(亿)
平均增长量=【0.1+(-0.05)+0.15+0.02+0.08】÷5 =0.3÷5=0.06(亿)
100 110 110
实际产值(万)
105 110 120
求该企业第一季度产值平均计划完成程度?
105110 120
c
3 100 110 110
104.69%
3
第二节 时间数列的水平指标
(2)分子分母都是时点数列
某企业员工情况
时间 1月初 2月初 3月初 4月初
男性比重 52
(%)
50.98 49.09 49.07
Ⅰ、资料逐日登记排列形成,用简单算术平均法。即:例:a a
某车间某月1到15日在册人数资料
n
日 期

统计学第四章总量指标和相对指标

统计学第四章总量指标和相对指标
12
第四章
以相对数形式计算计划完成程度相对指标
当计划任务以相对数的形式下达时,检查计划完成程度
就用相对数的形式检查。
实际完成程度(%)
公式:计划完成程度(%) = ————————————
计划规定的完成程度(%)
其中:
实际完成程度(%)=
本期实际完成数 ————————
上期实际完成数
计划规定的完成程度(%) = 上—本期—期实—计际—划完—任成—务数—数—
148.06 103.89
1、检查各月产量计划完成情况。 (计算结果见上表) 2、检查累计至二月份的产量计划完成程度情况。 3、简要说明一季度的计划完成情况。
累计至二成 月程 份 1度 2的 2 15 7计 2 10 0 % 划 05完 .5 4% 4 5400
21
作业2小题
第四章
第二节 相对指标(7)
(一)计划完成程度相对数
1、概念及基本计算公式 计划完成程度相对数(Relative number of
fulfilling plan)是现象在某一段时期内实际完 成数与计划任务数的对比,用以说明计划完成 的程度。 基本公式: 计划完成相对数=实际完成数÷计划任务数
11
第四章
第二节 相对指标(3)
1
作业2小题
第四章
•总量指标的含义、作用和种类 •相对指标的含义、种类和计算 •相对指标的运用
2
第四章
第四章 总量指标和相对指标
• 第一节 总量指标 • 第二节 相对指标 • 第三节 计算和运用相对指标的原则
3
第四章
第一节 总量指标(1)
• 一 总量指标的概念p.67
总量指标(Population quantity)是反映社会 经济现象发展的总规模、总水平的综合指标。

统计学第四章总量指标和相对指标

统计学第四章总量指标和相对指标
说 ⒈为无名数,可用百分数或一比几或几比几表示; 明 ⒉用来反映组与组之间的联系程度或比例关系。
比较相对指标
比较 某地区或单位某一数 指值 标 相对数另一地区或单位同标 类数 指值
例:某年某地区甲、乙两个公司商品销售额 分别为5.4亿元和3.6亿元。则
甲是公乙司公商司品的销倍售 数35额 ..64 1.5
2005 10.1 10.1 10.2 10.2 10.2 10.2 10.2 10.3 10.3 10.4 10.4 10.4
+0.5 +0.5 =120
要求计算: ⒈该厂“九五”期间产量计划的完成程度; ⒉提前完成计划的时间。
解:
计 程 划 度 1 1 完 2 2 10 3 成 0 ﹪ 010 .5 ﹪ 2
年份 产量(万辆)
2001 2002 2003 2004 2005 108 114 117 119 123
其中,最后两年各月份实际产量为(单位:万辆)::
月份 1 2 3 4 5 6 7 8 9 10 11 12
2004 9.6 9.6 9.8 9.8 9.9 9.9 10.0 10.0 10.1 10.1 10.1 10.1
已累计完成固定资产投资额60亿元 要求计算: ⒈该市“九五”期间固定资产投资计划的完成程度; ⒉提前完成计划的时间。
解:
计 程 划 度 6 完 6.7 10 1成 0 ﹪ 010 .8 ﹪ 2
提前完成计划时间: 因为到2005年10月底已完成固定资产累计投资 额60亿元(61.7–0.8–0.9=60),即已完成计 划任务,提前完成计划两个月。
• 例如:研究某地区国有企业的经营状况,该地国有 企业数是总体单位总量;该地国有企业的工人工资 总额,职工人数,利润额等是总体标志总量。

统计学第四章多个样本均数比较的方差分析

统计学第四章多个样本均数比较的方差分析
2
72.46
2.98
>0.05
区组间
2376.38
7
339.48
13.96
<0.01
误差
340.54
14
24.32总Βιβλιοθήκη 2861.8423
F0.01(7,14)=4.28, P<0.01。可认为8个区组的小白鼠体重增量有差别,即遗传因素对小白鼠体重增量有影响(但一般更关注处理组间差别的假设检验)。
02
单击此处添加正文,文字是您思想的提炼,请言简意赅地阐述您的观点。
第四章 多个样本均数比较的 方差分析
单击此处添加副标题
202X
方差分析
01.
方差分析的基本思想
单击此处添加正文
03.
随机区组设计的两因素方差分析
单击此处添加正文
05.
多个样本均数间的多重比较
单击此处添加正文
02.
完全随机设计的单因素
阶段
1
2
3
4
5
6
7
8
9
10
11
12
I
B
B
A
B
A
A
A
A
B
B
B
A
3.07
1.33
4.44
1.87
3.20
3.73
4.13
1.07
1.07
2.27
3.47
2.40
II
A
A
B
A
B
B
B
B
A
A
A
B
2.80
1.47
3.73
3.60
2.67
1.60

统计学(第4章)

统计学(第4章)

连续变动结果的总量指标,时期指标是
一个流量。
时间维度上
时期指标的三个特点 具有可加性
时期指标可以累计
时期指标数值大小与时期长短有直接关系
时期指标的数值一般为连续登记
2019/6/15
第四章 描述统计
5
统计学
2、时点指标
时点指标又叫存量指标,是指反映社 会经济现象在某一时点上的总量指标,
四 季度
1 500
计划完成百分数=
1400+1420+1470+1500 5000
=115.8%
注:2010年第一季度前的四个季度的累计量已达5000,说明五年计 划提前三个季度完成。
2019/6/15
第四章 描述统计
33
统计学
(2)累计法
如何确定提前 完成时间?
计算公式:
计划完成相对指标 长期计划期间实际累计完成数 长期计划规定的累计数
时点指标是一个存量。
时间维度上
时点指标的三个特点
不具可加性
不同时点指标数值是不能累加
时点指标数值大小与时点间隔长短无直 接关系
时点指标一般为间断统计
2019/6/15
第四章 描述统计
6
统计学
三、总量指标的计量单位
1、实物量单位(包括度量衡单位) 2、价值量单位 3、劳动量单位(工时和工日)
5 000 1 250 1 340 1 280
102.4
52.4
4 000 1 000 1 030 1 215
121.5
56.1
2 000 500 600 400
80.0
50.0
11 000 2 750 2 970 2 895 105.33

统计学4

统计学4
第四章 统计整理 教学目的: 通过本章学习,认识统计整理在统计活动中的作
用,掌握统计整理的方法,能够针对具体的调查资料
进行分类、汇总并编制统计表。
教学要求:
了解统计整理的概念和步骤,掌握统计分组、
分配数列及统计表的概念,重点掌握统计分组的
方法 、分配数列的编制,并学回会运用统计表来
表现统计资料。
4、1统计整理概述


检查数据是否真实反映客观实际情况,内 容是否符合实际 检查数据是否有错误,计算是否正确等
数据的审核—原始数据
(RAW DATA)

审核数据准确性的方法
1.
2.
逻辑检查 从定性角度,审核数据是否符合逻辑,内容 是否合理,各项目或数字之间有无相互矛盾 的现象 主要用于对分类和顺序据的审核 计算检查 检查调查表中的各项数据在计算结果和计算 方法上有无错误 主要用于对数值型数据的审核
饮料,就将这一饮料的品牌名字记录一次。
下面的表格是记录的原始数据。
顾客购买饮料的品牌名称
旭日升 露露 旭日升 可口可乐 百事可乐 可口可乐 汇源果汁 可口可乐 露露 可口可乐 可口可乐 旭日升 可口可乐 百事可乐 露露 旭日升 旭日升 百事可乐 可口可乐 旭日升 旭日升 可口可乐 可口可乐 旭日升 露露 旭日升 可口可乐 露露 百事可乐 百事可乐 汇源果汁 露露 百事可乐 可口可乐 百事可乐 汇源果汁 可口可乐 汇源果汁 可口可乐 汇源果汁 露露 可口可乐 旭日升 百事可乐 露露 汇源果汁 可口可乐 百事可乐 露露 旭日升
所以要选择组距式分组
第一步:确定组数。
K 1 lg 50 lg 2 7
第二步:确定各组的组距。 最大值为139,最小值为107,

统计学基础课件 第四章 总量指标和相对指标

统计学基础课件 第四章 总量指标和相对指标
之比,反映客观现象的数量对比关系。
❖ 作用
1. 反映总体内在的结构特征;
2. 用于不同对象的比较评价;
3. 反映事物发展变化的过程和趋势。
❖ 计量形式
1.有名数
2.无名数
第四章 总量指标和相对指标
二、相对指标的种类及计算方法
❖ 值
结构相对数
100%
总体全部数值
第四章 总量指标和相对指标
引例:
男性人口的 比重为50.8﹪
女性人口的 比重为49.2﹪
比1980年末的 9.9亿人增加
了28﹪
1999年末我国共有 总人口12.6亿人,其 中男性人口为6.4亿, 女性人口为6.2亿。
人口性别比 为1.03:1
人口出生率 为15.23‰
人口密度为 130人/平方公里
51.52﹪
特 ⒈为无名数,可用百分数或一比几或几比几表示; 点 ⒉分子分母可以互换;
3.用来反映组与组之间的联系程度或比例关系。
第四章 总量指标和相对指标
二、相对指标的种类及计算方法
3.比较相对指标 :比较相对数 某一总体的某指标数值
另一总体的该指标数值
例:某年某地区甲、乙两个公司商品销售额 分别为5.4亿元和3.6亿元。则
第四章 总量指标和相对指标
三、总量指标的计量单位 按计量单位分
实物量单位
价值量单位
劳动量单位
第四章 总量指标和相对指标
实物量单位
❖ 实物单位是根据事物的属性和特点而采用的计量单位,有 自然单位、度量衡单位和标准实物单位等。
1.自然单位 2.度量衡单位 3.复合计量单位 4.多重计量单位 3.标准实物单位
❖ 特点:
▪ 表现形式为绝对数 ▪ 总量指标反映了总体的规模信息 ▪ 只有有限总体才能准确计算总量指标

统计学 第四章 推断统计概述

统计学 第四章  推断统计概述

第四章 推断统计概述第一部分 概率论基本知识← 一、概率的定义;二、概率的性质;三、概率的加法定理和乘法定理← 四、概率分布类型四、概率分布类型← 概率分布(probability distribution )是指对随机变量取不同值时的概率的描述,一般用概率分布函数进行描述。

← 依不同的标准,对概率分布可作不同的分类。

1、离散型分布与连续型分布← 依随机变量的类型,可将概率分布分为离散型概率分布与连续型概率分布。

← 教育统计学中最常用的离散型分布是二项分布,最常用的连续型分布是正态分布。

2、经验分布与理论分布← 依分布函数的来源,可将概率分布分为经验分布与理论分布。

← 经验分布(empirical distribution )是指根据观察或实验所获得的数据而编制的次数分布或相对频率分布。

← 理论分布(theoretical distribution )是按某种数学模型计算出的概率分布。

3、基本随机变量分布与抽样分布← 依所描述的数据的样本特性,可将概率分布分为基本随机变量分布与抽样分布(sampling distribution )。

← 基本随机变量分布是随机变量各种不同取值情况的概率分布,← 抽样分布是从同一总体内抽取的不同样本的统计量的概率分布。

第二部分 几种常见的概率分布← 一、二项分布← 二项分布(binomial distribution )是一种具有广泛用途的离散型随机变量的概率分布,它是由贝努里创始的,因此又称为贝努里分布。

← 2.二项分布函数← 二项分布是一种离散型随机变量的概率分布。

← 用 n 次方的二项展开式来表达在 n 次二项试验中成功事件出现的不同次数(X =0,1…,n )的概率分布,叫做二项分布函数。

← 二项展开式的通式(即二项分布函数):← ←← ← ←← 成功概率 p ;样本容量 n← 在成功概率为p 的总体中随机抽样,抽取样本容量为n 的样本中,有X 次为成()011111100q p C q p C q p C q p C q p n n n n n n n n n n n ++++=+---Λ()Xn X X n X q p C P -⋅⋅=()X n X q p X n X n -⋅-=!!!功的概率: ←(X =0,1…,n ) ←称X 服从参数为n ,p 的二项分布,记为: ←X ~B(n ,p ) 其中,0<p<1 ←二项分布的性质 ←二项分布有如下性质: ←①当p=q 时,图形是对称的。

统计学第四章 综合指标

统计学第四章 综合指标

3、计划完成百分数的计算
A、计划数为绝对数。
绝对数的计划完成百分数 实际绝对水平 100% 计划绝对水平
某工业企业总产值资料如下表:
车 名
间 称
总产值(万元) 计划Hale Waihona Puke 实际数计划完成百分数 (%)
(甲)
甲 乙 丙
(1)
50 110 140
(2)
80 100 140
(3)=(2)/(1)
160.00 90.91 100.00
时期指标与时点指标的联系:
1、二者都属于总量指标。 2、二者通常是相互影响的。
总量指标的计算
总量指标的单位一般有: 实物量单位 价值量单位 劳动量单位
1. 实物单位是根据事物的自然属性和特点采用的计 量单位。 实物单位的分类: ①自然单位:它是按照研究现象的自然状况来计量其 数量的一种计量单位。 ②度量衡单位:它是按照同意的度量衡制度的规定来 计量客观事物数量的一种计量单位。 ③双重单位和复合单位:是指在需要同时采用两个或 两个以上单位来计量事物时采用的单位。 ④标准实物单位:按照统一折算的标准来度量被研究 现象数量的一种计量单位。
相对指标在统计分析中的作用:
• 相对指标为人们深入认识事物发展的质 量与状况提供客观的依据,社会经济现 象总是相互联系、相互制约的关系。 • 计算相对指标可以使不能直接对比的现 象找到可以对比的基础,进行有效的分 析。
二、相对指标的种类及计算方法:
1、结构相对指标: • 定义:是在资料分组的基础上,以总体 总量作为比较标准,求出各组总量占总 体总量的比重,来反映总体内部组成情 况的综合指标。


300
320
106.67
要求:计算各车间和全厂总产值的计划完成百分数。

统计学第四章抽样与参数估计

统计学第四章抽样与参数估计

疗效评价
通过参数估计和假设检验等方法,评价药物 的疗效和安全性。
案例三:工业生产过程质量控制
抽样检验计划制定
根据产品特性和质量要求,制定合适的抽样 检验计划。
不合格品控制
对不合格品进行统计分析和处理,找出原因 并采取措施加以改进。
过程能力分析
收集生产过程中的质量数据,进行过程能力 分析和参数估计。
抽样作用
通过样本信息推断总体特征,为决策提供依据。
抽样方法分类
随机抽样
按照随机原则从总体中抽取样本,每个个体 被抽中的概率相等。
系统抽样
按照某种规则从总体中抽取样本,如每隔一 定距离或时间抽取一个样本。
分层抽样
将总体分成若干层,然后从各层中随机抽取 样本。
整群抽样
将总体分成若干群,然后随机抽取若干群作 为样本。
05
案例分析:实际场景下抽样 与参数估计问题探讨
案例一:市场调查中消费者满意度测评
01
抽样方法选择
根据市场调查的目的和预算,选 择合适的抽样方法,如简单随机 抽样、分层抽样或整群抽样。
03
数据收集与处理
设计调查问卷,收集消费者满意 度数据,并进行数据清洗和整理

02
样本量确定
综合考虑调查的精度要求、总体 规模、抽样误差等因素,合理确
运用统计学方法进行假设检验和参数估计,验证研究假 设的可靠性。
THANKS
定样本量。
04
参数估计
运用统计学方法,对消费者满意 度进行参数估计,如计算满意度
均值、标准差等。
案例二:医学研究中药物疗效评价
试验设计
采用随机对照试验等方法,确保试验组和对 照组的可比性。
样本量计算

统计学第四章动态数列

统计学第四章动态数列
第四章
动态数列
第一节 动态数列的编制
第二节 动态数列水平分析指标
第三节 动态数列速度分析指标
第四节 长期趋势的测定与预测 第五节 季节变动的测定与预测
第一节
动态数列的编制
动态数列的概念
动态数列的种类
动态数列的编制原则
一、动态数列的概念
社会经济现象总是随着时间度加权平均
一季 度初 二季 度初
90天
三季 度初
90天
y1
y2
y3
次年一 季度初
180天
y4
y1 y2 2
y 2 y3 2
y3 y 4 2
y2 y3 y3 y4 y1 y 2 1 1 2 2 2 2 11 2
y2 y3 y1 y 2 y N 1 y N f1 f2 f N 1 2 2 2 y f 1 f 2 f N 1
99.49 118 .28 118 .28 140 .71 83.50 99.49 3 2 3 则该省1994年-2006 年服务业平均从业人数: 2 2 2 140 .71 168 .51 168 .51 183 .75 2 2 2 2 y 3 2 3 2 2 12 8.52 万人
国有经济单位职 工工资总额所占 78.45 比重(%)
77.55
77.78
45.06
74.81
职工平均货币工 资(元)
2365
2677
3236
4510
5500
动态数列的作用
描述社会经济现象在不同时间的发展状态和 过程。(研究过去)
研究社会经济现象的发展趋势和速度以及掌

《统计学》第四章

《统计学》第四章

•各个变量值与算术平均数的离差平方总和为最小 证 明 : 值。 设 x 为 不 等 于 x 的 任 意 值 , c = x − x
0 0
Σ ( x − x )2 = 最 小 值
x 0 = x − c , 则 以 x 0为 中 心 的 离 差 总 和 为 : Σ ( x − x0 )2 = Σ
[x − ( x − c ) ]
3、调和算术平均数:调和平均数是常 用的另一种平均指标,它是根据标志 值的倒数计算的,又称为倒数平均数。
m1 + m2 + ⋅⋅⋅ + mn H = m1 m2 = mn x1 + x2 + ⋅⋅⋅ + xn
∑m ∑
i =1 i =1 n mi xi
n
i
例、假定有A 例、假定有A、B两家公司员工的月工资资 料如下表所示:要求计算平均工资。
60 70 20 150
50 40 25 115
工资总额 平均工资 = ,但职工人数(分母)未知。 职工人数 各组工资总额 m 各组职工人数 = ,f = 各组工资水平 x H A公司 =
∑m ∑
i =1 i =1 3 mi xi
3
i
48000 + 70000 + 32000 = 48000 + 70000 + 32000 800 1000 1600
250
3.13
42 50 × 5 + 150 × 42 + 52.50 16 + 150 × 13 250 × 350 = + 200—300 16 5 + 42 + 16 + 132504 20.00 16900 = 300—400 13 16.25 350 80 =400以上 (百吨) 211 . 26 4 5.00 450 合计 80 100.00 —

统计学 第四章 参数估计

统计学 第四章  参数估计

由样本数量特征得到关于总体的数量特征 统计推断(statistical 的过程就叫做统计推断 的过程就叫做统计推断 inference)。 统计推断主要包括两方面的内容一个是参 统计推断主要包括两方面的内容一个是参 数估计(parameter estimation),另一个 数估计 另一个 假设检验 。 是假设检验(hypothesis testing)。
ˆ P(θ )
无偏 有偏
A
B
θ
ˆ θ
估计量的无偏性直观意义
θ =µ



• •
• • • •

2、有效性(efficiency)
有效性:对同一总体参数的两个无偏点估计 有效性: 量,有更小标准差的估计量更有效 。
ˆ P(θ )
ˆ θ1 的抽样分布
B A
ˆ θ2 的抽样分布
θ
ˆ θ
பைடு நூலகம்
3、一致性(consistency)
置信区间与置信度
1. 用一个具体的样本 所构造的区间是一 个特定的区间, 个特定的区间,我 们无法知道这个样 本所产生的区间是 否包含总体参数的 真值 2. 我们只能是希望这 个区间是大量包含 总体参数真值的区 间中的一个, 间中的一个,但它 也可能是少数几个 不包含参数真值的 区间中的一个
均值的抽样分布
总体均值的区间估计(例题分析)
25, 95% 解 : 已 知 X ~N(µ , 102) , n=25, 1-α = 95% , zα/2=1.96。根据样本数据计算得: x =105.36 96。 总体均值µ在1-α置信水平下的置信区间为 σ 10 x ± zα 2 = 105.36 ±1.96× n 25 = 105.36 ± 3.92

统计学第四章统计分析指标

统计学第四章统计分析指标

计划完成相对指标
产值计划完成程度若大于100%,说明超额完 成计划;若小于100%,说明没有完成计划, 为正指标。 单位成本计划完成程度若大于100%,说明成 本比计划高,没有完成计划;若小于100%, 说明超额完成计划,为逆指标。 计划完成相对数的分子分母不能互换,在指 标含义、计算范围、核算方法等方面要一致。
计划完成相对指标
长期(通常是五年)计划完成情况—水平法和累计法
总体的一部分单位 总体另一部分单位 比例相对数
人口性别比例 积累与消费比例 农轻重比例


比例相对指标
人口出生性别比正常值一般在103到107之间。但 我国人口的出生性别比自20世纪80年代中期以来 迅速攀升。 1995年,0岁~4岁人口性别比:118.38 2000年,0岁~4岁人口性别比:120.17 2003年,0岁~4岁人口性6
(1)计划数为绝对数
计划完成相对数=(实际完成数÷同期计划数)×100%
适用于研究分析社会经济现象的规模或水平的计划完成 程度。
计划完成相对指标
〔例〕 某公司2010年计划销售某种产品30万件, 实际销售32万件,则该公司2010年销售计划完成相对 指标是多少?超额完成计划多少?
销售计划完成相对指标 = (32/30)*100% = 106.7% 超额完成计划 = 106.7% - 100% = 6.7%
t1时段
t2时段
t3时段
时期指标的特点: 1. 不同时期的时期指标数值具有可加性; 2. 时期指标的数值大小与时期长短有直接关系; 3. 时期指标数值是连续登记、累计的结果。
时点指标的特点: 1. 不同时期的时点指标数值不具有可加性。 2. 时点指标的数值大小与时间间隔长短无关。 3. 时点指标的数值是间断计数的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 差异量教学目的:1、理解全距、四分位距、百分位距、平均差、方差、标准差与差异系数等概念;2、掌握各种差异量指标的计算方法。

数据的分布特征不仅有集中趋势,还有离中趋势。

以动态的眼光,从不同的角度瞧,数据就是向中间变动的,也就是向两端变动的。

两组数据可能平均水平相同,但两组数据的分布特征并不完全相同。

【如】:比较下列两组数据 A 组:88、82、73、76、81 B 组:92、86、70、72、80两组平均数,80==B A X X 但R A =88-73=15,R B=92-70=22。

即A 组较集中,B 组较分散。

因此,我们描述一组数据的分布特征,既要描述其集中趋势,也要描述其离中趋势。

差异量:表示一组数据的离中趋势或变异程度的量称为差异量。

常用的差异量指标有全距、四分位距、百分位距、平均差、方差、标准差与差异系数。

第一节全距、四分位距、百分位距一、全距全距:就是一组数距中最大值与最小值之差。

优点:意义明确,计算方便。

缺点:反应不灵敏,易受极端值影响。

二、四分位距(一)四分位距的的概念四分位距:就是指一组按大小顺序排列的数据中间部位50%个频数距离的一半。

)(1.4213Q Q QD -=QD :表示四分位距; Q 3:表示第三四分位数; Q 1:表示第一四分位数。

所以:四分位距的公式又为:22575P P QD -=(二)四分位数的计算方法 1、原始数据计算法 (1)将数据由小到大进行排列; (2)分别求出三位四分位数(点); (3)代入公式计算。

【例如】:有以下16个数据25、22、29、12、40、15、14、39、37、31、33、19、17、20、35、30,其中四分位距的计算方法如下:(1)先将原始数据从小到大排列好;12、14、15、17、*19、20、22、25、*29、30、31、33、*35、37、39、40 Q 1=18 Md =27 Q 3=34(2)求出Q 1、Md 、Q 3;(3)将Q 1、Md 、Q 3的得数代入公式(4、1)。

821834=-=DQ 2、频数分布表计算法 利用频数分布表计算公式为:)(2.422575P P QD -=关键就是分别计算P 75与P 25,百分位数计算方法掌握了,这里的计算就不会有什么问题。

(三)优缺点优点:意义明确,不受极端值影响。

缺点:反应不灵敏。

三、百分位距百分位距:就是指两个百分位数之差。

常用的百分位距有两种:P 90-P 10与P 93-P 7 优点:意义明确,不受极值影响。

缺点:反映不灵敏。

第二节 平均差一、平均差的概念平均差:就是指每个数据与本组数据的平均数(或中位数)之差的绝对值的算术平均数(用MD 表示)。

二、平均差的计算方法1、原始数据计算法 公式为:)(||||3.4⎪⎪⎭⎪⎪⎬⎫-=-=∑∑N Md X MD NX X MD 或【如】:求88、82、73、76、81的平均差。

4.45808180768073808280888058176738288|)||||||||(|||)(=÷-+-+-+-+-=∑-=∴=÷++++=∑=NX X MD NXX:解 2、频数分布表计算法 公式为:.)(||4.4为各组组中值:c cX NX Xf MD ∑-=【例】:求表4、1中30数据的平均差。

表4、130个分数的频数分布表分数 60— 70- 80- 90- 频数 5 12 10 3 组中值657585957.7830953851075126551=⨯+⨯+⨯+⨯=∑=N fX X c )(解:5.7307.789537.7885107.7875127.78655)2(|)|||||||(||=÷-⨯+⨯+-⨯+-⨯=∑-=-NX X f MD c 三、平均差的优缺点优点:意义明确,反应灵敏。

缺点:不适合代数运算。

第三节方差与标准差一、方差与标准差的概念1、方差:就是一组数据离差平方的算术平均数(用2x σ表示)。

定义公式为:)()(5.422NX X x ∑-=σ。

:;:为离差平方和为离差2)(∑--X X X X2、方差的方根即标准差)()(6.42NX X x ∑-=σ例:求72,78,80,86的方差与标准差 解:(1)求算术平均数79486807872=+++==∑NX X(2)求方差254)7986()7980()7978()7972()(222222=-+-+-+-=-=∑NX X xσ(3)求标准差5252===x x σσ※:标准差的值越大,说明数据越分散。

二、方差与标准差的计算方法 1、原始数据计算法)()(.)(222222222222NXX NX N X N X N X X N X NX N X X N X NXX X X N X X x ∑=∑-∑=-∑==∑+⋅-∑=∑∑∑+⋅-=∑-=ΘΘ)(σ所以得:)()()()(8.47.422222NX N X NX N X x x∑-∑=∑-∑=σσ【例】:计算80、78、84、80、72的方差与标准差。

解:9.336.1536.15572808478802722802842782802222])[(5)(===÷-=∑-∑=-+++++++x xN X N X σσ)(2、频数分布表计算法 公式为:)()()()(10.49.422222NfX N fX N fX N fX c cx c c x∑-∑=∑-∑=σσ。

:;:;:;:个数据的和为个数据的平方和为为组频数为组中值f fX f fX f X c cc 2例题:参瞧教材48。

三、方差与标准差的优缺点:优点:严密确定,反映灵敏,适合代数运算。

缺点:不太容易理解,易受两极端值影响。

第四节相对差异量一、相对差异量的概念平均差、方差、标准差等都带有单位,就是绝对差异量。

常常不能对不同组的数据差异直接比较。

差异系数:也叫相对差异量,就是指同一组数据的标准差与算术平均数的百分比(用CV 表示)。

公式为:)(11.4%100⨯=XCV xσCV 值越大,表明数据离散程度越大。

二、差异系数的用途1、比较不同单位资料的差异程度。

【例题】:某班学生的平均身高为152cm,标准差为5、1cm;平均体重为47公斤,标准差为3、2公斤,问该班学生身高变异大还就是体重变异大?解:%36.3%1001521.5%100=⨯=⨯=XCV xσ:身高%8.6%100472.3%100=⨯=⨯=XCV xσ:体重得:该班学生体重变异大。

2、比较单位相同平均数差异较大的两组资料的差程度。

【如】:某班语文测验平均分为86、5分,标准差为5、5分;英语平均分为71分,标准差为5分,则:%04.7%100715%36.6%1005.865.5=⨯==⨯=CVCV 英语:语文:所以,英语成绩的变异大。

3、可判断特殊情况:一般CV 值在5%~35%之间。

,性差;即对各个数据的代表,的计算可能有误或时当可能失去意义时当x X CVX CV σ535<>第五节 偏态量与峰态量偏态量与峰态量:就是判断频数分布就是否为正态分布的统计量,就是一种粗略指标。

正态性检验常用2χ检验。

一、偏态量偏态量有两种计算方法 1、皮尔逊指数法)()()()(13.432312.40xxxMd X X Md X SK M X SK σσσ-=--=-=或当SK =0则分布就是对称形;当SK>0时,分布为正偏;当SK < 0时,分布为负偏。

【例】:某校200名学生的英语平均分为80分,中位数为82分,标差为8分,其偏态度为:解:。

分布为负偏态该校学生的英语分数的)(∴<-=-=-⨯=-=,0)(75.075.08828033SK Md X SK xΘσ2、根据动差来计算动差:就是指力与力距的乘积(力学中的概念)。

)()()()(15.414.4333333xcxNX Xf NX X σασα∑∑-=-=当3α=0时,分布对称;当3α>0时,分布就是正偏态;当3α<0时,分布就是负偏态。

计算3α时,N 应大于200、例题:参瞧教材57页。

二、峰态量峰态量:就是用于说明分布曲线高狭与低阔程度的量。

1、用两个百分位距来计算)()(216.410902575P P P P K u --=当Ku =0、263时,分布就是正态峰;当Ku <0、263时,分布为高狭峰;当Ku >0、263时,分布低阔。

表4、1 小学二年级80个学生身高的四分位距计算表【例题】:根据表4、1数据将计算出的P 75=132、84,P 25=126、40,P 90=135、75,P 10=122、5代入 公式(4、17),则峰态量为:。

,则分布为高狭峰由于263.0243.0243.0)50.12270.135(240.12684.132<=--==u u K K2、根据动差来计算)(3][)(3][18.417.4444444-÷-=-÷-=∑∑x cx NX Xf NX X σασα)()(当α4=0时,分布就是正态峰;当α4>0时,分布就是高狭峰;当α4<0时,分布就是低阔峰。

计算α4时,N 应大于1000,峰态系数方比较可靠。

表4、4 以平均数为原点四种动差的计算表【例题】:表4、4,10个数据的标准差为:。

,个数据的分布呈低阔峰表明由于-,则峰态系数为:,将数据代入公式1056.1392.1010/15.204552)17.4(92.100444<==-=αασx。

相关文档
最新文档