浅谈小学生数学思维能力的培养#精选、
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈小学生数学思维能力的培养
摘要:思维是人脑对客观事物的一般特殊性和规律性的一种间接的、概括的反映过程。学生的良好思维能力是他们获取新知识、进行创造性学习和发展智力的核心。数学思维是对数学对象(空间形式、数量关系、结构关系等)的本质属性和内部规律的间接反映,并按照一般思维规律认识数学内容的理性活动。学习数学的本质,是数学思维活动的过程。国内外一系列研究表明:在学生学习数学的一切能力之中,思维能力居于核心地位。所以,培养学生思维能力,是数学教学中一项非常重要的任务。
关键词:思维数学思维培养
在小学数学教学中,提高学生学习数学的兴趣,培养良好的学习习惯,培养学生的逻辑思维能力、运算能力、空间想象能力和解决简单实际问题的能力是实施素质教育重要前提条件。真正做到授人以渔而不是授人以鱼,为学生将来的学习奠定基础。
新课标确立了知识与技能、过程与方法、情感态度与价值观三纬一体的课程目标,将素质教育的理念体现在课程标准之中,通过引导学生主动参与、亲身实践、独立思考、合作探究,从而实现学习方式的转变,发展学生搜集信息、处理信息、获取新知、分析解决问题、合作交流的能力。那么,教师怎样通过明理启发、诱导,培养学生的思维能力,就此谈谈一些教学体会。
一、激发小学生的学习兴趣,引发数学思维。
大教育家赞科夫说:“在各科教学中要始终注意发展学生的逻辑思维,培养学生的思维灵活性和创造性。”大家都说:“兴趣是最好的老师。”这些都是站在自身的立场上来阐明思维与兴趣的重要性,这是把思维与兴趣分开来看。如果把思维和兴趣这两者结合起来,将会达到更加完美的效果。
随着教育教学改革的深入发展,在数学教学中如何有目的、有计划、有步骤地培养学生的思维能力,是每一个数学教师十分关心的问题。教师应吃透教材,把握教材中的智力因素,积极地进行教学。数学教学中激发学生的学习兴趣是非常重要的环节之一。从心理学角度看,如何抓住学生的某些心理特征,对教学将起到一个巨大的推动作用。兴趣的培养就是一个重要的方面,兴趣能激发大脑组织,有利于发现新事物和事物的新要素,并进行积极探索创造。兴趣是学生学习的最佳营养和催化剂。学生对学习有兴趣,对学习材料的反映也就最清晰。思维活动是最积极有效的,它能使学习达到事半功倍的效果。那么,怎样激发学生的数学思维兴趣,调动数学思维的积极性呢?
1、利用演示、操作。演示可把图由静变动,能更好吸引学生的注意,起到直观的效果;操作是一种辅助的教学手段,恰当运用直观操作,师生互动,让学生运用多种感官参与学习。这样,既提高了学生学习数学兴趣,又增强了思维能力。
2、保护好小学生的学习好奇心。好奇心是对所发生的新异事物感到惊奇,引发疑问,进行探究的心理倾问,它也能激发学生强烈的求知欲和浓厚的学习兴趣,有助于点燃思维的火花。
3、克服以教师思维代替学生思维、教师讲、问牵着学生听、答的教学现象。要为学生留出足够的思维活动的空间,让学生利用自己的学习方式,在已有的生活经验和认知结构的基础上,自己动手、动脑、动口,在活动探究中发挥创造性,进行自主的建构。
4、考虑到学生现有心理水平,按照维果茨基的最近发展区原理,为学生创造一定问题情境,是引发学生思维活动的外部环境因素。古人云:“学起于思,思源于疑”。有疑才能引发学生的求知欲,才能使他们处于积极主动的状态。在教学时通过谈话、设问、提问、实
验等各种方法,创设一定的问题情境,可以调动学生参与学习活动的积极性,引起学生主动观察和思考的兴趣。
二、以具体的感性材料为基础,逐步提高,促进学生的思维能力。
在数学基础知识教学中,加强对定义、法则、定律等的教学,这同时也是对学生进行初步的逻辑思维能力培养的重要手段。但是这方面的教学内容比较抽象,学生年龄小,生活经验不足,抽象能力较差,学习吃力等原因,因而我们只是重视了“算”而忽视了这样一个抽象思维训练的机会。小学生学习抽象的知识,是在感性认识的基础上而产生质的飞跃,感知认识是学生理解知识的基础,具体形象是数学抽象思维的有效途径和重要信息来源。在平时的日常教学中,我们应注意由具体到抽象,逐步提高培养学生的抽象思维的能力。如,在教学“圆的认识”时,先用学生在现实生活中遇到的圆形的物体举例,使学生认识圆与其它平面图形的不同之处,但如何画圆,老师不亲自示范,就让学生自己大胆尝试想法设法。“你们会画出标准的圆形吗?看谁的方法最好最多?”这样,学生学习的好奇心、积极性充分调动起来了,人人动手、动脑,很快,大部分学生知道并学会用圆规及借助圆形物体(如墨水瓶、茶杯盖、硬币等)画圆的方法。这时候,老师及时表扬他们主动动手参与、积极探索,然后再问:“如果要建设一个圆形大花坛或者大水池,能用圆规画出来吗?”这样又进一步激励了学生,他们争先恐后地投入思考动手实践中。通过实践操作,终于又发现了用标杆和绳子可以画较大的圆。多种形式的评价、鼓励、激励思维也很重要。学生个体思维水平因人而异采取不同的评价方式,借助各自思维的“亮点”进行激励,不使任何一个学生的思维火花因评价不当而熄灭。
三、精心设计教学内容,培养学生的数学思维迁移能力
这一点不仅要求老师要有过硬的专业知识,善于发现教材中所隐含的深意,还要将拓展意识运用到数学课上。例如涉及到语文知识,可以多讲一些与其相关的课外知识,让学生们理解到各学科之间的联系,学会融会贯通,从真正意义上产生对知识的渴望。因此培养学生学习数学的求异思维和立体思维至关重要。
1、求异思维。对于小学生而言,既要培养他们不盲从,喜欢质疑,打破框框,大胆发表自己意见的品质,又要培养他们敢于求“异”,发展他们的求异思维,进而养成独立思考独立解决问题的习惯。
如,一位教师在教学“乘法意义”的运用一课时,出示了这样一道加法题:7+7+7+5+7=?让学生用简便方法计算。于是一个学生提出了7×4+5的方法,而另一个学生则提出了“新方案”,建议用7×5-2的方法解。这个学生的思维有创见,这个方案是他自己发现的。在他的思维活动中,他“看见了”一个实际并不存在的7,他假设在5的位置上是一个7,那么就可以把题目先假设为7×5。接着他的思维又参与了论证:7-2才是原题中的实际存在的5。对于这种在别人看不到的问题中发现问题和提出问题,这种创造性思维的突现,我们要倍加珍惜和爱护。
2、立体思维。一题多解是学生产生浓厚学习兴趣的基础,也是培养学生数学立体思维能力的重要源泉。
如,一辆摩托车上午3小时行驶了163.5千米,照这样计算,下午又行驶2小时,这一天共行驶了多少千米?第一解法先求出平均l小时行驶多少千米,然后求出下午行驶多少千米,最后求出这一天行驶多少千米。综合算式是163.5÷3×2+163.5=272.5(千米)。第二种方法相对比较简便一些,先求出一天共行驶了多少小时,再求出平均每小时行驶多少千米,最后再求出一天共行驶多少千米。综合算式是:163.5÷3×(3+2)=272.5(千米)。以上两种方法都很普通,这里还有一种新的解法,算式为:l63.5×2-163.5÷3=272.5(千米)。其中,163.5×2,表示行驶6小时的千米数,163.5÷3,表示平均l小时行驶的千米数;最后用6小时行驶的千米数减去1小时行驶的千米数,就是这一天5小时行驶的千米数了。这便是一种创新的解法。