截长补短法是解决这一类问题的常用方法,截长就

截长补短法是解决这一类问题的常用方法,截长就
截长补短法是解决这一类问题的常用方法,截长就

全等三角形之倍长中线法资料讲解

课题:《全等三角形之巧添辅助线——倍长中线法》 【方法精讲】常用辅助线添加方法一一倍长中线 △ ABC中,AD是BC边中线方式1 :直接倍长延长AD至U E, 例2: ABC中,AD是BAC的平分线,且BD=CD,求证AB=AC 方法1:作DE丄AB于E,作DF 丄AC于F,证明二次全等 方法2 :辅助线同上,利用面积 方法3 :倍长中线AD E 方式2 :间接倍长 作CF丄AD于F,作BE丄AD的延长线于E延长MD到 C 【经典例题】 例1 :△ ABC中,AB=5, AC=3求中线AD的取值范围. 提示:画出图形,倍长中线AD,利用三角形两边之和大于第三边 N,使DN=MD连接CN C 例3:已知在△ ABC中,AB=AC , D在AB 上, E在AC的延长线上,DE交BC于F,且DF=EF ,求证:BD=CE 方法1 :过D作DG // AE交BC于G,证明△ DGF^A CEF 使DE=AD,连接BE

方法2:过E 作EG // AB 交BC 的延长线于 G ,证明△ EFG^A DFB 方法3:过D 作DG 丄BC 于G,过E 作EHL BC 的延长线于 H,证明A BDG^A ECH 例4:已知在△ ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF 例5:已知:如图,在 ABC 中,AB 求证:AE 平分 BAC 方法1倍长AE 至G ,连结DG 方法2:倍长FE 至H ,连结CH 例 6:已知 CD=AB ,/ BDA= / BAD , AE 是厶 ABD 的中线,求证:/ C=Z BAE 提示:倍长 AE 至F ,连结DF,证明A ABE^A FDE ( SAS ,进而证明A ADF ^A ADC( SAS A 提示:倍长 AD 至G ,连接BG ,证明A BDG^A CDA 三角形BEG 是等腰三角形 AC , D E 在 BC 上,且 DE=EC 过 D 作 DF // BA 交 AE 于点 F , DF=AC. 第1题图

数学倍长中线法

数学倍长中线法集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

倍长中线法 1.如图,在正方形ABCD 中,E 为AB 边的中点,G 、F 分别为AD ,BC 边上的点,若AG=1,BF=2,∠GEF=90°,求GF 的长 2.如图,CB 、CD 分别是钝角△AEC 和锐角△ABC 的中线,且AC=AB .求证:①CE=2CD .②CB 平分∠DCE . 3.如图已知△ABC,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,求证EF =2AD. 4.如图,在△ABC 中,D 是BC 边的中点,E 是AD 上一点,BE =AC ,BE 的延长线交AC 于点F ,求证:∠AEF=∠EAF 5..如图,在△ABC 中,AD 交BC 于点D ,点E 是BC 中点,EF ∥AD 交CA 的延长线于点F ,交EF 于点G ,若BG=CF ,求证:AD 为△ABC 的角平分线. 6..如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证,AD 平分∠BAE. 7.:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE 9.在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论 10.已知:如图,ABC 中,C=90,CMAB 于M ,AT 平分BAC 交CM 于D ,交 BC 于T ,过D 作DE//AB 交BC 于E ,求证:CT=BE. 12. 13.四边形ABCD 是矩形,将ABE 沿着直线AE 翻折,点A 落在点F 处,直线AF 与直线CD 交于点G, 如图1,若E 为BC 的中点,请探究线段AB 、AG 、DG 之间的关系 F E C A B D E A B C

全等三角形截长补短拔高练习(含答案)

八年级数学全等三角形辅助线添加之截长补短 (全等三角形)拔高练习 试卷简介:本讲测试题共两个大题,第一题是证明题,共7个小题,每小题10分;第二题解答题,2个小题,每小题15分。 学习建议:本讲内容是三角形全等的判定——辅助线添加之截长补短,其中通过截长补短来添加辅助线是重点,也是难点。希望同学们能学会熟练通过截长补短来做辅助线,进而构造出全等的三角形。 一、解答题(共1道,每道20分) 1.如图,已知点C是∠MAN的平分线上一点,CE⊥AB于E,B、D分别在AM、AN上,且AE=(AD+AB).问:∠1和∠2有何关系? 答案: 解:∠1+∠2=180° 证明:过点C作CF⊥AN于点F,由于AC平分∠NAM,所以CF=CE,则在Rt△ACF和Rt△ACE 中 ∴△ACF≌△ACE(HL),∴AF=AE,由于2AE=AD+AB,所以AB-AE=AF-AD ∴DF=BE,在△CFD和△CEB中所以△CFD≌△CEB(SAS),∴∠2=∠FDC,又∠1+∠FDC=180°,∴∠1+∠2=180°。 解题思路:见到角平分线就要想到作垂直,找到全等关系是解决此类问题的关键 易错点:找到三角形全等的所有条件

试题难度:四颗星知识点:三角形 二、证明题(共8道,每道10分) 1.如图,已知△ABC中,∠A=90°,AB=AC,BE平分∠ABC,CE⊥BD于E,求证:CE=BD. 答案: 延长CE交BA的延长线于点H,由BE平分ABC,BE CE,得CE=EH=CH。 又1+H=90°,,2+H=90° 1= 2 在△ACH和△ABD中 HAC=DAB=90° AC=AB 1= 2 △ACH≌△ABD(ASA) CH=BD CE=CH=BD 解题思路: 根据题意,要证明CE=BD,延长CE与BA,由题意的垂直平分线可得CE的两倍长CH,只需证明CH=BD即可,很显然有全等可以证明出结论 易错点:不能正确利用题中已知条件BF平分∠ABC,CE⊥BD于E,做出辅助线,进而解答。试题难度:三颗星知识点:全等三角形的判定与性质 2. 如图,已知正方形ABCD中,E为BC边上任意一点,AF平分∠DAE.求证:AE-BE=DF.

初中数学全等专题倍长中线法(含答案)

初中数学全等专题倍长中线法(含答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初中数学全等专题倍长中线法 1.如图,在△ABC中,AC=5,中线AD=7,则AB边的取值范围是( ) A.2<AB<12 B.4<AB<12 C.9<AB<19 D.10<AB<19 答案:C 解题思路:延长AD至E,使DE=AD,连接CE,可先证明△ABD≌△ECD,则AB=CE,在△ACE中,根据三角形的三边关系,得AE-AC<CE<AE+AC,即9<CE<19.则9<AB<19.故选C. 2.如图,已知CB、CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB,给出下列结论:①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB平分∠DCE,则以上结论正确 的是() A.①②④ B.①③④ C.①②③ D.①②③④ 答案:A 解题思路:①正确,延长CD至点F,使得DF=CD,连接AF,可先证明△ADF≌△BDC,再证明△ACF≌△BEC,由这两个三角形全等可以得知②、④正确。由 △ACF≌△BEC,得∠ACD=∠E,若要∠ACD=∠BCE,则需∠E=∠BCE,则需BC=BE,显然不成立,故③选项错误 3.如图,点E是BC的中点,∠BAE=∠CDE,延长DE到点F使得EF=DE,连接BF,则下列说法正确的是() ①BF∥CD ②△BFE≌△CDE ③AB=BF ④△ABE为等腰三角形 A.①②③ B.②③④ C.①③④ D.①②③④ 答案:A 解题思路:可以先证明△BEF≌△CED,可以得到②正确,进而得到∠F=∠D,BF∥CD,①正确,又∵∠BAE=∠CDE=∠F,∴AB=BF,③正确。④不正确。 4.如图,在正方形ABCD中,E为AB边的中点,G、F分别为AD,BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为() 2

截长补短法例题精编版

截长补短法 例1. 已知,如图1-1,在四边形ABCD 中,BC >AB ,AD =DC ,BD 平分∠ABC . 求证:∠BAD +∠BCD =180°. 分析:因为平角等于180°,因而应考虑把两个不在一起的通过全等转化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形,可通过“截长补短法”来实现. 证明:过点D 作DE 垂直BA 的延长线于点E ,作DF ⊥BC 于点F ,如图1-2 ∵BD 平分∠ABC ,∴DE =DF , 在Rt △ADE 与Rt △CDF 中, ? ? ?==CD AD DF DE ∴Rt △ADE ≌Rt △CDF (HL ),∴∠DAE =∠DCF . 又∠BAD +∠DAE =180°,∴∠BAD +∠DCF =180°, 即∠BAD +∠BCD =180° 例2. 已知,如图3-1,∠1=∠2,P 为BN 上一点,且PD ⊥BC 于点D ,AB +BC =2BD . 求证:∠BAP +∠BCP =180°. 分析:与例1相类似,证两个角的和是180°,可把它们移到一起,让它们是邻补角,即证明∠BCP =∠EAP ,因而此题适用“补短”进行全等三角形的构造. 证明:过点P 作PE 垂直BA 的延长线于点E ,如图3-2 ∵∠1=∠2,且PD ⊥BC ,∴PE =PD , 在Rt △BPE 与Rt △BPD 中, ? ? ?==BP BP PD PE ∴Rt △BPE ≌Rt △BPD (HL ),∴BE =BD . ∵AB +BC =2BD ,∴AB +BD +DC =BD +BE ,∴AB +DC =BE 即DC =BE -AB =AE . F E D C B A 图1-2 A B C D P 12 N 图3-1 P 12 N A B C D E 图3-2 A B C D 图1-1

最新倍长中线法(经典例题)

倍长中线法 知识网络详解: 中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线. 所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法. 倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(对顶角) 倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造。 【方法精讲】常用辅助线添加方法——倍长中线 △ABC中 方式1:延长AD到 E,AD是BC边中线 使DE=AD, 连接BE 方式2:间接倍长 作CF⊥AD于F,延长MD到N, 作BE⊥AD的延长线于使DN=MD, 连接BE 连接CN 经典例题讲解: 例1:△ABC中,AB=5,AC=3,求中线AD的取值范围

例2:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE 过D 作DG//AC 例3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF 例4:已知:如图,在ABC ?中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠ B A B F D E C

例5:已知CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE 自检自测: 1、如图,△ABC中,BD=DC=AC,E是DC的中点,求证,AD平分∠BAE. 2、在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F。试探究线段AB与AF、CF之间的数量关系,并证明你的结论. A B F E A B C

(完整版)截长补短法专题

选择第4题图 P D C B A 一、角平分线的性质 一.选择题填空(共10小题) 1.如图,OC 是∠AOB 的平分线,P 是OC 上一点,PD ∠OA 于点D ,PD=6,则点P 到边OB 的距离为( ) A .6 B .5 C .4 D .3 2.到三角形的三边距离相等的点是( ) A .三角形三条高的交点 B .三角形三条内角平分线的交点 C .三角形三条中线的交点 D .三角形三条边的垂直平分线的交点 3.如图,AD 是∠ABC 的角平分线,则AB :AC 等于( ) A .BD :CD B .AD :CD C .BC :A D D .BC :AC 4.如图,在△ABC 中,AD 是∠A 的外角平分线,P 是AD 上异于A 的任意一点,设PB =,PC =,AB =,AC =,则与的大小关系是( ) A 、> B 、< C 、= D 、无法确定 5.如图,在∠ABC 中,CD 平分∠ACB 交AB 于点D ,DE ∠AC 交于点E ,DF ∠BC 于点F ,且BC=4,DE=2,则∠BCD 的面积是 . 7.如图所示,在∠ABC 中,∠A=90°,BD 平分∠ABC ,AD=2cm ,AB+BC=8,S ∠ABC = . 7.如图4,已知AB ∥CD ,O 为∠A 、∠C 的角平分线的交点,OE ⊥AC 于E ,且OE=2,则两平行线间AB 、CD 的距离等于 。 8.如图所示,已知∠ABC 和∠DCE 均是等边三角形,点B 、C 、E 在同一条直线上,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,连接OC 、FG ,则下列结论中:①AE=BD ;②AG=BF ;③FG ∠BE ;④∠BOA=60度,(5)、△AGC ≌△BFC ,(6)△DFC ≌△EGC ,(7)CO 平分∠BOE 正确的是 . 二、截长、补短法的专题 例1、 如图所示,已知AD 为等腰三角形ABC 的底角的平分线,∠C =90°, 求证:AB =AC +CD . m n c b )(n m +)(c b +n m +c b +n m +c b +n m +c b +

经典截长补短法巧解

截长补短法 截长补短法是几何证明题中十分重要的方法。通常来证明几条线段的数量关系。 截长补短法有多种方法。 截长法: (1)过某一点作长边的垂线(2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。…… 补短法 (1)延长短边。 (2)通过旋转等方式使两短边拼合到一起。……例: H P G F B A C D E 在正方形ABCD中,DE=DF,DG⊥CE,交CA于G,GH⊥AF,交AD于P,交CE延长线于H,请问三条粗线DG,GH,CH的数量关系方法一(好想不好证) H P G F B A C D E 方法二(好证不好想) H M P G F B A C D E 例题不详解。

(第2页题目答案见第3、4页) F E D C A B (1)正方形ABCD 中,点E 在CD 上,点F 在BC 上,∠EAF=45o 。 求证:EF=DE+BF (1)变形a E F D C A B 正方形ABCD 中,点E 在CD 延长线上,点F 在BC 延长线上,∠EAF=45o 。 请问现在EF 、DE 、BF 又有什么数量关系? (1)变形b E F D C A B 正方形ABCD 中,点E 在DC 延长线上,点F 在CB 延长线上,∠EAF=45o 。 请问现在EF 、DE 、BF 又有什么数量关系? (1)变形c j F E A B C D 正三角形ABC 中,E 在AB 上,F 在AC 上∠EDF=45o 。DB=DC ,∠BDC=120o 。请问现在EF 、BE 、CF 又有什么数量关系? (1)变形 d F E D C A B 正方形ABCD 中,点E 在CD 上,点F 在BC 上,∠EAD=15o ,∠FAB=30o 。AD=3 求?AEF 的面积 (1)解:(简单思路)

初中数学全等专题倍长中线法(含答案)

初中数学全等专题倍长中线法 1.如图,在△ABC中,AC=5,中线AD=7,则AB边的取值范围是( ) A.2<AB<12 B.4<AB<12 C.9<AB<19 D.10<AB<19 答案:C 解题思路:延长AD至E,使DE=AD,连接CE,可先证明△ABD≌△ECD,则AB=CE,在△ACE中,根据三角形的三边关系,得AE-AC<CE<AE+AC,即9<CE<19.则9<AB<19.故选C. 2.如图,已知CB、CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB,给出下列结论:①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB平分∠DCE,则以上结论正确的是() A.①②④ B.①③④ C.①②③ D.①②③④ 答案:A 解题思路:①正确,延长CD至点F,使得DF=CD,连接AF,可先证明△ADF≌△BDC,再证明△ACF≌△BEC,由这两个三角形全等可以得知②、④正确。由△ACF≌△BEC,得∠ACD=∠E,若要∠ACD=∠BCE,则需∠E=∠BCE,则需BC=BE,显然不成立,故③选项错误 3.如图,点E是BC的中点,∠BAE=∠CDE,延长DE到点F使得EF=DE,连接BF,则下列说法正确的是() ①BF∥CD ②△BFE≌△CDE ③AB=BF ④△ABE为等腰三角形 A.①②③ B.②③④ C.①③④ D.①②③④ 答案:A 解题思路:可以先证明△BEF≌△CED,可以得到②正确,进而得到∠F=∠D,BF∥CD,①正确,又∵∠BAE=∠CDE=∠F,∴AB=BF,③正确。④不正确。 4.如图,在正方形ABCD中,E为AB边的中点,G、F分别为AD,BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()

八年级数学 全等三角形截长补短法专题

A D B C E 图2-1 截长补短法 人教八年级上册课本中,在全等三角形部分介绍了角的平分线的性质,这一性质在许多问题里都有着广泛的应用.而“截长补短法”又是解决这一类问题的一种特殊方法,在无法进行直接证明的情形下,利用此种方法常可使思路豁然开朗.请看几例. 例1. 已知,如图1-1,在四边形ABCD 中,BC >AB ,AD =DC ,BD 平分∠ABC . 求证:∠BAD +∠BCD =180°. 分析:因为平角等于180°,因而应考虑把两个不在一起的通过全等转化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形,可通过“截长补短法”来实现. 证明:过点D 作DE 垂直BA 的延长线于点E ,作DF ⊥BC 于点F ,如图1-2 ∵BD 平分∠ABC ,∴DE =DF , 在Rt △ADE 与Rt △CDF 中, ?? ?==CD AD DF DE ∴Rt △ADE ≌Rt △CDF (HL ),∴∠DAE =∠DCF . 又∠BAD +∠DAE =180°,∴∠BAD +∠DCF =180°, 即∠BAD +∠BCD =180° 例2. 如图2-1,AD ∥BC ,点E 在线段AB 上,∠ADE =∠CDE ,∠DCE =∠ECB . 求证:CD =AD +BC . 分析:结论是CD =AD +BC ,可考虑用“截长补短法”中的“截长”,即在CD 上截取CF =CB ,只要再证DF =DA 即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的. 证明:在CD 上截取CF =BC ,如图2-2 在△FCE 与△BCE 中, ?? ? ??=∠=∠=CE CE BCE FCE CB CF ∴△FCE ≌△BCE (SAS ),∴∠2=∠1. A B C D 图1-1 F E D C B A 图1-2 A D B C E F 1 234 图2-2

截长补短法例题

截长补短法 例1. 已知,如图1-1,在四边形ABCDK BC>AB, AD=DC BD平分/ ABC 求证:/ BAD +/ BCD180° . 分析:因为平角等于180°,因而应考虑把两个不在一起的通过全等转化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形,可通过“截长补短法”来实现. 证明:过点D作DE垂直BA的延长线于点E作DF丄BC于点F,如图1-2 ?/ BD平分/ ABC:DE=DF 在Rt A ADE与Rt A CDF中, DE DF AD CD ??? Rt△ ADE^ Rt A CDF HD,/-Z DAE/ DCF 又/ BAD Z DAE180°,/.Z BAB Z DCI=180 即Z BAD Z BCD180° 例2. 已知,如图3-1 , Z仁Z 2 , P为BN上一点,且POL BC于点D, AB^BC=2BD 求证:Z BAF+ Z BCP180° . 分析:与例1相类似,证两个角的和是180°,可把它们移到一起,让它们是邻补角, 即证明Z BCP Z EAP因而此题适用“补短”进行全等三角形的构造 证明:过点P作PE垂直BA的延长线于点E,如图3-2 ???Z 仁Z 2,且P[丄BC, ?/ PE=PD 在Rt A BPE与Rt A BPD中 , PE PD BP BP ? Rt△ BPE^ Rt A BPD HD,? BE=BD ?/ AB F BC=2BD?/ AB F B&DCB&BE?/ AB F D(=BE即DC=BEAB=AE 图3-1 E 图3-2 D C

在Rt A APE与Rt A CPD 中, PE PD PEA PDC AE DC ??? Rt△ APE^Rt A CPD SAS), ???/ PAE Z PCD 又???/ BAF+Z PAE180 ° ,???/ BAF+Z BCP=180° 例3. 如图2-1 , AD// BC 点E在线段AB上, Z ADE Z CDE Z DCE Z ECB 求证:COABBC 分析:结论是COAD^BC可考虑用“截长补短法”中的“截长”,即在CDh截取CF=CB 只要再证D巨DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的. 证明:在CD上截取CF=BC如图2-2 在厶FCE^ BCE中, CF CB FCE BCE CE CE ? △ FCE^A BCE(SAS , ?Z 2=Z 1. 又??? AD/ BC ???/ ADGZ BCD180°,「 ? Z 2+Z 3=90 ° ,Z 1 + Z 4=90 °,「? Z 在厶FDE与△ ADE 中, FDE ADE DE DE ? △ FDE^A ADE( ASA , ? DF=DA ?/ CD F DF+CF,? CDA[>BC

倍长中线巧解题汇总

倍长中线巧解题 山东 邹殿敏 中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.下面举例说明. 一、证明线段不等 例1 如图1,在△ABC 中,AD 为BC 边上的中线.求证:AB +AC >2AD . 分析:延长AD 至点E ,使DE =AD ,连接CE . 易证△ABD ≌△ECD .所以AB =EC . 在△ACE AB 二、证明线段相等 例2 如图2,在△ABC 中,AB >AC ,E 为BC 边的中点,AD 为∠BAC 的平分线,过E 作AD 的平行线,交AB 于F ,交CA 的延长线于G .求证:BF =CG . 分析:可以把FE 看作△FBC 的一条中线. 延长FE 至点H ,使EH =FE ,连接CH . 则△CEH ≌△BEF .所以CH =BF ,∠H =∠1 . 因为EG //AD ,所以∠1=∠2,∠3=∠G . 又因为∠2=∠3,所以∠1=∠G .所以∠H =∠G . 由此得CH =CG .所以BF =CG . 三、求线段的长 例3 如图3,△ABC 中,∠A =90°,D 为斜边BC 的中点,E ,F 分别为AB ,AC 上的点,且DE ⊥DF ,若BE =3,CF =4,试求EF 的长. 分析:可以把ED 看作△EBC 的一条中线. 延长ED 至点G ,使DG =ED ,连接CG ,FG . 则△CDG ≌△BDE .所以CG =BE =3,∠2=∠B . 因为∠B +∠1=90°,所以∠1+∠2=∠FCG =90°. 因为DF 垂直平分EG ,所以FG =EF . 在Rt △FCG 中,由勾股定理得5FG ===,所以EF =5.

倍长中线法经典例题)

倍长中线法 知识网络详解: 中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线. 所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法. 倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS 证全等(对顶角) 倍长中线最重要的一点,延长中线一倍,完成SAS 全等三角形模型的构造。 【方法精讲】常用辅助线添加方法——倍长中线 △ABC 中 方式1: 延长AD 到E , AD 是BC 边中线 使DE=AD , 连接BE 方式2:间接倍长 作CF ⊥AD 于F , 延长MD 到 N , 作BE ⊥AD 的延长线于E 使DN=MD , 连接BE 连接CN 经典例题讲解: 例1:△ABC 中,AB=5,AC=3,求中线AD 的取值范围 D A B C E D A B C F E D C B A N D C B A M

例2:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE 例3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF 例4:已知:如图,在ABC ?中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠ F E D A B C F E C A B D A B F D E C

几何辅助线之截长补短 总结+例题

截长补短专题 知识导航 “截长补短”是几何证明题中十分重要的方法,通常用来证明几条线段的数量关系,即若题目条件或结论中含有“c b a =+”的条件,需要添加辅助线时可以考虑“截长补短”的方法。 截长法: 在较长的线段上截取一条线段等于较短线段,再设法证明较长线段的剩余线段等于另外的较短线段。 补短法: ①延长较短线段中的一条,使延长出来的线段等于另外的较短线段,然后证明两线段之和等于较长线段。即延长a ,得到b ,证:c b a =+。 ②延长较短线段中的一条,使延长后的线段等于较长线段,然后证明延长出来的部分等于另一条较短线段。即延长a ,得到c ,证:a c b -=。

【核心考点1】角平分线相关截长补短 1. 如图,BP 平分ABC ∠,D 为BP 上一点,E ,F 分别在BA ,BC 上,且满足DE DF =, 若140BED ∠=?,则BFD ∠的度数是( ) A .40? B .50? C .60? D .70? 【分析】 作DG AB ⊥于G ,DH BC ⊥于H ,根据角平分线的性质得到DH DG =,证明 Rt DEG Rt DFH ???,得到DEG DFH ∠=∠,根据互为邻补角的性质得到答案. 【解答】 解:作DG AB ⊥于G ,DH BC ⊥于H , D 是ABC ∠平分线上一点,DG AB ⊥,DH BC ⊥, DH DG ∴=, 在Rt DEG ?和Rt DFH ?中, DG DH DE DF =?? =?, ()Rt DEG Rt DFH HL ∴???, DEG DFH ∴∠=∠,又180DEG BED ∠+∠=?, 180BFD BED ∴∠+∠=?, BFD ∴∠的度数18014040=?-?=?, 故选:A .

1初中数学《几何辅助线秘籍》中点模型的构造1(倍长中线法;构造中位线法)资料

精品文档 学生姓名上课时间 学生年级 辅导老师 学校 科目 教学重点教学目标中点模型的构造(倍长中线法;构造中位线法;构造斜边中线法)系统有序掌握几何求证思路,掌握何时该用何种方法做辅助线 开场:1.行礼;2.晨读;3.检查作业;4.填写表格 新课导入知识点归纳 1.已知任意三角形(或者其他图形)一边上的中点,可以考虑:倍长中线法(构造全等三角形); 2.已知任意三角形两边的中点,可以考虑:连接两中点形成中位线; 3.已知直角三角形斜边中点,可以考虑:构造斜边中线; 4.已知等腰三角形底边中点,可以考虑:连接顶点和底边中点利用“三线合一”性质. 做辅助线思路一:倍长中线法 经典例题1:如图所示,在△ABC中,AB=20,AC=12,求BC边上的中线AD的取值范围. 【课堂训练】 1.如图,已知CB、CD分别是钝△角AEC和锐角△ABC的中线,且AC=AB,给出下列结论: ①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB平分∠DCE,则以上结论正确的是() A.①②④ B.①③④ C.①②③ D.①②③④ 新 课 内 容 第1题图第2题图 2.如图,在正方形A BCD中,E为AB边的中点,G、F分别为AD,BC边上的点,若A G=1, BF=2,∠GEF=90°,则GF的长为() A. 2 B. 3 C. 4 D. 5 3.如图,在△ABC中,点D、E为边BC的三等分点,则下列说法正确的有() ①BD=DE=EC;②AB+AE>2AD;③AD+AC>2AE;④AB+AC>AD+AE。 A. 1个 B. 2个 C. 3个 D. 4个

4.如图,在△ABC中,AB>BC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G,求证:BF=CG. G B A F E D C 5.如图所示,已知在△ABC中,AD是BC边上的中线,F是AD上的一点,连接BE并延长交AC 于点F,AE=EF,求证:AC=BF. A E F B D C 6.如图所示,在△ABC中,分别以AB、AC为直角边向外做等腰直角三角△形ABD和△ACE,F 为BC边上中点,FA的延长线交DE于点G,求证:①DE=2AF;②FG⊥DE. D G E A B F C

初二数学截长补短法精题绝练(超实用版)

因式分解易错点新解 在分解因式时,应注意观察题目本身的特点,灵活选择恰当的方法,正确熟练地进行因式分解,采用“一提二套三查”法,即:首先看它是否有公因式,有公因式的要先提取公因式,再看这个多项式是几项式,若是二项式,就考虑能否运用平方差公式分解因式;若是三项式,就考虑能否运用完全平方公式分解因式,同时,在分解因式时,一定要分解到每一个因式都不能再分解为止。然而同学们在实际运用中总是存在一定的错误,为了更好的帮助同学们理解因式分解,我将从几个易错点入手带领大家走出误区。 易错点一:用提公因式法分解因式时易漏项 易错点导析:运用提公因式法分解因式,当多项式的某一项和公因式相同时,提取公因式后剩余的项为1,而部分初学者却让1“不翼而飞”了。例如:28422(42)a b ab a a ab b -+=-,原多项式中有三项,但提取公因式后另一个因式仅有两项了,这是错误的,正确的是:28422(421)a b ab a a ab b -+=-+,为避免这种错误,可以用整式的乘法进行检验。 【例】分解因式:2212246a b ab ab -+ 错解:22122466(24)12(2)a b ab ab ab a b ab a b -+=-=- 错解分析:此题中的公因式为6ab ,提公因式后,漏掉了为1的项,注意用整式的乘法进行检验,就可避免此类错误。 正解:22122466(241)a b ab ab ab a b -+=-+ 易错点2:运用完全平方公式时漏解出错 易错点导析:我们知道,完全平方公式有两个,两数和的完全平方和两数差的完全平方,二者不能互相代替,有的同学对完全平方公式的特点把握不准,因而在解答相关题目时出现漏解错误,只有正确理解完全平方公式,熟记完全平方公式的结构特点,才能有效避免这类错误。 【例】若 21364y ay ++是完全平方公式,求a 的值。 错解:2221136()642y ay y ay ++=++,所以1262ay y =??,即12662a =??= 错误分析:本题的错误之处是漏掉了a 为负数的情况。

全等三角形问题中常见的辅助线倍长中线法

全等三角形问题中常见的辅助线一一倍长 中线法 △ ABC中,AD是BC边中线 方式1 :直接倍长,(图1):延长AD到E,使DE=AD连接BE 方式2 :间接倍长 1)(图2)作CF丄AD于F,作BE X AD的延长线于E,连接BE 2)(图3)延长MD到N,使DN=MD连接CD 【经典例题】 例1已知,如图△ ABC中,AB=5 AC=3 贝忡线AD的取值范围是___________ . (提示:画出图形,倍长中线AD,利用三角形两边之和大于第三边)例2 :已知在厶ABC中, AB=AC D在AB上, E在AC的延长线上, DE 交BC于F, 且DF=EF. A

例4:已知在厶ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC延 长BE交AC于F,求证:AF=EF 求证:BD=CE.(提示:方法 1 :过D作DG/ AE交BC于G 证明△ DGF^A CEF 方法2 :过E作EG// AB交BC的延长线于G,证明A EFG^A DFB 方法3 :过D作DGL BC于G,过E作EH丄BC的延长线于H,证明A BDG^A ECH 例3、如图,△ ABC中, E、F分别在AB AC上,DEL DF, D是中点,试比较BE+与EF的大小. B 变式:如图,AD为ABC的中线,DE平分BDA交AB于E, DF平分ADC交AC于 F. A求证: (提示:方法1:在DA上截取DG=BD连结EG FQ 证明A BDE^A GDE A4A DGF所以BE=EG EF CF=FG 利用三角形两边之和大于第三边方法2: 倍长ED至H,连结CH FH,证明 FH=EF C D C E E CF B

倍长中线法经典例题

倍长中线法 知识网络详解: 中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线. 所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法. 倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS 证全等(对顶角) 倍长中线最重要的一点,延长中线一倍,完成SAS 全等三角形模型的构造。 【方法精讲】常用辅助线添加方法——倍长中线 △ABC 中 方式1: 延长AD 到E , AD 是BC 边中线 使DE=AD , 连接BE 作CF ⊥AD 于F ,延长MD 到N , 作BE ⊥AD 使DN=MD , 连接BE 连接CN 经典例题讲解: 例1:△ABC 中,AB=5,AC=3,求中线AD 的取值范围 例2:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE 例3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF 例4:已知:如图,在ABC ?中,AC AB ≠ ,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠ 例5:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证: ∠C=∠BAE 自检自测: 1、如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证,AD 平分∠BAE. 2、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论. 3、如图,AD 为ABC ?的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F. 求证:EF CF BE >+ 4、已知:如图,?ABC 中,?C=90?,CM ?AB 于M ,AT 平分?BAC 交CM 于D ,交BC 于T ,过D 作DE A B F D E C

倍长中线法(经典例题)

N 作 BE! AD 的延长线于 倍长中线法 知识网络详解: 中线是三角形中的重要线段之一,在利用中线解决几何问题时, 常常采用“倍长中线法”添加辅助线. 所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全 等三角形,从而运用全等三角形的有关知识来解决问题的方法. 倍长中线法的过程:延长某某到某点,使某某等于某某,使什么 等于什么(延长的那一条),用SAS 证全等(对顶角) 倍长中线最重要的一点,延长中线一倍,完成SAS 全等三角形模 型的构造。 【方法精讲】常用辅助线添加方法 倍长中线 △ ABC 中 式1:延长AD 到E, B --------------- ■ ------------- C D AD 是E BC 使 DE=AD 接BE 方式2:间接倍长 A B 延长 MD 到N, C E

连接CN 经典例题讲解: 例〔:△ ABC 中,AB=5 AC=3求中线 AD 的取值范围 例2:已知在△ ABC 中,AB=AC D 在AB 上,E 在AC 的延长线上,DE 交 BC 于 F ,且 DF=EF 求证:BD=CE 例3:已知在△ ABC 中 , AD 是 BC 边上的中线,E 是AD 上一点,且BE 二 AC 例4:已知:如图,在- ABC 中,AB = AC , D E 在 BC 上 ,且 DE 二EC 过 D 作 DF//BA 交 AE 于 点 F , DF=AC. 例 5:已知 CD=AB Z BDA M BAD AE 是A ABD 的中线,求证:/ C=Z BAE 自检自测: 1、如图,△ ABC 中 , BD=DC=AC,是 DC 的中点,求证,AD 平分/ BAE. 使 DN=M , BE 延长BE 交AC 于F ,求证:AF=EF 求证:AE 平分.BAC D E A E C C F A

倍长中线法经典例题

倍长中线法(加倍法) 知识网络详解: 中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线. 所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法. 倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(对顶角) 倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造。 经典例题讲解: 例1:△ABC中,AB=5,AC=3,求中线AD的取值范围。 例2:已知在△ABC中,AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF, 求证:BD=CE

例3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF 例4:如图,AD 为ABC ?的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F. 求证:EF CF BE >+ 例5:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE 第 14 题图 D F C B E A B

自检自测: 1、如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证,AD 平分∠BAE 。 2、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论. 3、已知:如图,在ABC ?中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠ F E A B C D A B F D E C

初中数学三角形全等—倍长中线法模型专题分类练习大全(含答案)

初中数学三角形全等—倍长中线法模型专题分类练习大全 基础模型:△ABC 中, AD 是BC 边中线 思路1:延长AD 到E,使DE=AD,连接BE 思路2:间接倍长,延长MD 到N,使DN=MD,连接CN 思路3, 作CF⊥AD于F,作BE⊥AD的延长线于E 1.如图,在△AB C 中,AC=5,中线AD=7,则AB 边的取值范围是() A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<19 2.如图,△AB C 中,AB=AC,点D 在AB 上,点E 在AC 的延长线上,DE 交BC 于F,且DF=EF,求证:BD=CE. 3.如图,在△AB C 中,AD 为中线,求证:AB+AC>2AD.

4.小明遇到这样一个问题,如图1,△AB C 中,AB=7,AC=5,点D 为BC 的中点,求AD 的取值范围. 小明发现老师讲过的“倍长中线法”可以解决这个问题,所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长AD 到E,使DE=AD,连接BE,构造△B ED≌△C AD,经过推理和计算使问题得到解决. 请回答:(1)小明证明△B ED≌△C AD用到的判定定理是:(用字母表示) (2)AD的取值范围是 小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形模型的构造. 参考小明思考问题的方法,解决问题: 如图3,在正方形ABCD 中,E 为AB 边的中点,G、F 分别为AD,BC 边上的点,若AG=2,BF=4,∠GEF=90°,求GF 的长. 5.已知:在△AB C 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC,延长BE 交AC 于F,求证:AF=EF. 6.已知:如图,△AB C(AB≠AC)中,D、E 在BC 上,且DE=EC,过D 作DF∥BA交AE 于点F,DF=AC.求证:AE 平分∠BA C. 7-10,换汤不换药(多题一解) 7.如图,D 是△AB C 的BC 边上一点且CD=AB,∠B D A=∠BAD,AE是△AB D 的中线.

初中数学专题讲义:截长补短法

初中数学专题讲义:截长补短法 截长补短法是几何证明题中十分重要的方法。通常来证明几条线段的数量关系。 截长补短法有多种方法。 截长法: (1)过某一点作长边的垂线 (2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。…… 补短法 (1)延长短边。 (2)通过旋转等方式使两短边拼合到一起。…… 例1:在正方形ABCD 中,DE=DF ,DG ⊥CE ,交CA 于G ,GH ⊥AF ,交AD 于P ,交CE 延长线于H ,请问三条粗线DG ,GH ,CH 的数量关系 方法一(好想不好证) 方法二(好证不好想) B A B A M B A

例2、正方形ABCD 中,点E 在CD 上,点F 在BC 上,∠EAF=45o 。求证:EF=DE+BF 变形a 正方形ABCD 中,点E 在CD 延长线上,点F 在BC 延长线上,∠EAF=45o 。请问现在EF 、DE 、BF 又有什么数量关系? 变形b 正方形ABCD 中,点E 在DC 延长线上,点F 在CB 延长线上,∠EAF=45o 。请问现在EF 、DE 、BF 又有什么数量关系? F E

变形c 正三角形ABC 中,E 在AB 上,F 在AC 上∠EDF=45o 。DB=DC ,∠BDC=120o 。请问现在EF 、BE 、CF 又有什么数量关系? 变形d 正方形ABCD 中,点E 在CD 上,点F 在BC 上,∠EAD=15o ,∠FAB=30o 。AD=3,求?AEF 的面 积 例3、正方形ABCD 中,对角线AC 与BD 交于O ,点E 在BD 上,AE 平分∠DAC 。求证:AC/2=AD-EO 加强版 正方形ABCD 中,M 在CD 上,N 在DA 延长线上,CM=AN ,点E 在BD 上,NE 平分∠DNM 。过E 作EF ⊥MN 于F,请问MN 、AD 、EF 有什么数量关系? D F E

相关文档
最新文档