列方程解含有两个未知数的应用题
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《列方程解含有两个未知数的应用题》教案1
教学内容:列方程解含有两个未知数的应用题(例6和做一做,练习二十九的第1~5题。)
教学要求:
1.初步学会分析“已知有两个数的和或差,和两个数的倍数关系,求两数各是多少”的应用题,正确地列出方程解答。
2.指导学生设未知数表示两个数量之间的关系,会解答形如ax±bx=c的应用题,会进行检验。
(4)学生求出x=45后,让学生说一说这道题做完了没有,还要做什么?使学生明确:求出x,只求出了桃树的棵数,题还没做完,还要求杏树的棵数3x得多少。求杏树的方法有两种:3×45或180-45,学生用哪一种都可以。
(5)让学生看课本,说出课本上两个检验式子的含义与作用。教师指出:这样的检验方法比先检查方程,再把x的值代入方程检验,更有效,也更简便。
3.培养学生认真学习的好习惯,渗透不同事物之间既有联系又有区别的观点。
教学重点:用方程解答“和倍”、“差倍”应用题的方法。
教学难点:分析应用题的等量关系,恰当地设未知数。
教学用具:小黑板或投影片若干张。
教学过程
一、激发
1.投影出示复习题:
(1)学校科技组有女同学x人,男同学是女同学的3倍,男同
学有多少人?男女同学一共有多少人?男同学比女同学多多少人?
二、尝试
1.出示例6:果园里有桃树和杏树180棵,杏树的棵树是桃树的3倍。两种树各有多少棵?
(1)指名读题,说出已知条件和问题,学画出线段图。
x
来自百度文库桃树
x x x 180
杏树
(2)根据线段图启发学生思考并回答。
①这道题要求几个未知数?(两个,桃树和梨树的棵数。)
②要求的未知数有两个,根据题目的已知条件应先设哪一个未知数为x?为什么?(设桃树为x棵,因为根据杏树的棵数是桃树的3倍,可知杏树为3x棵。)
生解答出来,并进行检验。
三、应用
1.做一做。
2.练习二十九第1题。
四、体验
列方程解已知两个倍数关系求两个数的应用题时,要注意以下三点:第一,题里有两个未知数,可以先选择一个设为x,另一个未知数用含有x的式子表示,列出方程;第二,解方程,求出x后,再求另一个未知数;第三,通过列式计算,检验两个得数的和及倍数关系是否符合已知条件。
2.教师把例题中的第一个条件改成“果园里的杏树比桃树多90棵”,该怎样列方程?
引导学生分析:改变了一个条件,原来的解答哪些地方可以不动?哪些地方需要改,怎样改?(杏树和桃树的倍数关系没有变,所以还是设桃树的棵数为x,杏树的棵数用3x表示。因为现在题目给的是它们的相差关系,即:杏树的棵数-桃树的棵数=90,所以列出的方程就是3x-x=90。)
(2)育才小学五年级有学生z人,四年级学生的人数是五年级的1.2倍,四年级有学生多少人?四、五年级一共有多少人?
2.复习题:果园里有桃树45棵,杏树的棵数是桃树的3倍,两种树一共有多少棵?
(1)读题,理解题意。
(2)生独立解答,指名讲算式的意义。
45 × 3+45
杏树桃树
两种数的和
3.揭示课题:第1题中的第(2)小题,如果我们知道四、五年级一共有学生99人,要求四、五年级各有多少人,该怎样求呢?这节课我们就来学习列方程解像这样含有两个未知数的应用题的方法。(板书课题:列方程解含有两个未知数的应用题。)
根据学生的回答,教师在线段图上标注x。
(3)引导学生分析题中的已知条件,找出数量间的相等关系,列出方程并求解。板书:
解:设桃树有x棵。
x+3x=180
4x=180
x=180÷4
x=45
如果有学生列出这样的方程:(180-x)÷3=x或(180-x)÷x=3(设桃树为x棵,杏树的棵数为180-x。)可让学生把这几个方程进行比较,使他们看到,设桃树为x棵,杏树的棵数用3x来表示,这样列方程来解比较容易。后面两种解法需要逆思考。
五、作业
练习二十九第2~5题。
教学内容:列方程解含有两个未知数的应用题(例6和做一做,练习二十九的第1~5题。)
教学要求:
1.初步学会分析“已知有两个数的和或差,和两个数的倍数关系,求两数各是多少”的应用题,正确地列出方程解答。
2.指导学生设未知数表示两个数量之间的关系,会解答形如ax±bx=c的应用题,会进行检验。
(4)学生求出x=45后,让学生说一说这道题做完了没有,还要做什么?使学生明确:求出x,只求出了桃树的棵数,题还没做完,还要求杏树的棵数3x得多少。求杏树的方法有两种:3×45或180-45,学生用哪一种都可以。
(5)让学生看课本,说出课本上两个检验式子的含义与作用。教师指出:这样的检验方法比先检查方程,再把x的值代入方程检验,更有效,也更简便。
3.培养学生认真学习的好习惯,渗透不同事物之间既有联系又有区别的观点。
教学重点:用方程解答“和倍”、“差倍”应用题的方法。
教学难点:分析应用题的等量关系,恰当地设未知数。
教学用具:小黑板或投影片若干张。
教学过程
一、激发
1.投影出示复习题:
(1)学校科技组有女同学x人,男同学是女同学的3倍,男同
学有多少人?男女同学一共有多少人?男同学比女同学多多少人?
二、尝试
1.出示例6:果园里有桃树和杏树180棵,杏树的棵树是桃树的3倍。两种树各有多少棵?
(1)指名读题,说出已知条件和问题,学画出线段图。
x
来自百度文库桃树
x x x 180
杏树
(2)根据线段图启发学生思考并回答。
①这道题要求几个未知数?(两个,桃树和梨树的棵数。)
②要求的未知数有两个,根据题目的已知条件应先设哪一个未知数为x?为什么?(设桃树为x棵,因为根据杏树的棵数是桃树的3倍,可知杏树为3x棵。)
生解答出来,并进行检验。
三、应用
1.做一做。
2.练习二十九第1题。
四、体验
列方程解已知两个倍数关系求两个数的应用题时,要注意以下三点:第一,题里有两个未知数,可以先选择一个设为x,另一个未知数用含有x的式子表示,列出方程;第二,解方程,求出x后,再求另一个未知数;第三,通过列式计算,检验两个得数的和及倍数关系是否符合已知条件。
2.教师把例题中的第一个条件改成“果园里的杏树比桃树多90棵”,该怎样列方程?
引导学生分析:改变了一个条件,原来的解答哪些地方可以不动?哪些地方需要改,怎样改?(杏树和桃树的倍数关系没有变,所以还是设桃树的棵数为x,杏树的棵数用3x表示。因为现在题目给的是它们的相差关系,即:杏树的棵数-桃树的棵数=90,所以列出的方程就是3x-x=90。)
(2)育才小学五年级有学生z人,四年级学生的人数是五年级的1.2倍,四年级有学生多少人?四、五年级一共有多少人?
2.复习题:果园里有桃树45棵,杏树的棵数是桃树的3倍,两种树一共有多少棵?
(1)读题,理解题意。
(2)生独立解答,指名讲算式的意义。
45 × 3+45
杏树桃树
两种数的和
3.揭示课题:第1题中的第(2)小题,如果我们知道四、五年级一共有学生99人,要求四、五年级各有多少人,该怎样求呢?这节课我们就来学习列方程解像这样含有两个未知数的应用题的方法。(板书课题:列方程解含有两个未知数的应用题。)
根据学生的回答,教师在线段图上标注x。
(3)引导学生分析题中的已知条件,找出数量间的相等关系,列出方程并求解。板书:
解:设桃树有x棵。
x+3x=180
4x=180
x=180÷4
x=45
如果有学生列出这样的方程:(180-x)÷3=x或(180-x)÷x=3(设桃树为x棵,杏树的棵数为180-x。)可让学生把这几个方程进行比较,使他们看到,设桃树为x棵,杏树的棵数用3x来表示,这样列方程来解比较容易。后面两种解法需要逆思考。
五、作业
练习二十九第2~5题。