如何上好初三数学中考复习课ppt
合集下载
初三数学复习课课件
总结词:掌握代数方程与不等式的解题技巧。
二次根式与一元二次方程
详细描述:通过解决涉及二次根式和一元二次方程的题 目,学生可以更好地理解两者之间的关联,掌握解题方 法,提高解决复杂代数问题的能力。
几何模拟试题
三角形与四边形
详细描述:通过解决三角形与四边形的题目,学生可以 深入理解三角形与四边形的性质和判定条件,掌握解题 方法,提高解决几何问题的能力。 总结词:掌握圆的基本性质及其应用。
几何重点难点
几何变换
掌握平移、旋转和轴对称的变换性质,理解变换在几何问题中的应用。
函数重点难点
一次函数与反比例函数
01
二次函数
03
02
掌握一次函数和反比例函数的图像和性质, 理解函数图像的平移和对称变换。
04
掌握二次函数的图像和性质,理解二次函 数的顶点和对称轴。
函数的应用
05
06
掌握函数在实际问题中的应用,理解函数 的最大值和最小值的求解方法。
03
复习解题方法
代数解题方法
代数方程求解
总结了代数方程的基本 解法,包括移项、合并 同类项、去括号、解方
程等步骤。
不等式求解
介绍了不等式的基本性 质和解题技巧,包括移 项、合并同类项、去分
母等步骤。
因式分解
总结了因式分解的常用 方法和技巧,包括提公
因式法、公式法等。
分式化简
介绍了分式化简的基本 方法和技巧,包括约分 、通分、分子分母同乘
04
复习易错题解析
代数易错题解析
总结词
代数式运算错误
详细描述
学生在进行代数式运算时,常常因为对运算法则理解不透彻或粗心大意导致运算错误,如括号处理不 当、符号混淆等。
怎样做好初三数学总复习(共30张PPT)
(3)当线段OA被l只分为两部分,且
这两部分的比是1:4时,求h的值。
学会“看”函 数
y
1
B
A
O1
x
-1
专题演练,提高综合能力
第二轮复习的反思:
一、二次函数一般形式与顶点式的转化是我们 学校学生出现的第一个普遍性的困难。
二、利用二次函数一般形式和顶点式去计算x 轴交点坐标、y轴交点坐标、顶点坐标以及对称轴、 并利用二次函数的对称性找出Y轴交点坐标的对称 点坐标,利用这样的几个特殊点,画出二次函数 的图象并分析增减性。
y x2 x2
2、抛物线的顶点坐标是(6,-2),且与 X轴的一个交点的横坐标是8。
y1(x6)221x26x16
2
2
六、二次函数与一元二次方程的关系
一元二次方程ax2+bx+c=0的根 就是 二次函数y=ax2+bx+c图象与x轴交点的横坐标
有两个交点 有两个相异实数根 有一个交点 有两个相等实数根
•
15、最具挑战性的挑战莫过于提升自 我。。2021年8月2021/8/22021/8/22021/8/28/2/2021
•
16、业余生活要有意义,不要越轨。2021/8/22021/8/2August 2, 2021
•
17、一个人即使已登上顶峰,也仍要 自强不 息。2021/8/22021/8/22021/8/22021/8/2
•
9、有时候读书是一种巧妙地避开思考 的方法 。2021/8/22021/8/2M onday, August 02, 2021
•
10、阅读一切好书如同和过去最杰出 的人谈 话。2021/8/22021/8/22021/8/28/2/2021 8:37:06 PM
这两部分的比是1:4时,求h的值。
学会“看”函 数
y
1
B
A
O1
x
-1
专题演练,提高综合能力
第二轮复习的反思:
一、二次函数一般形式与顶点式的转化是我们 学校学生出现的第一个普遍性的困难。
二、利用二次函数一般形式和顶点式去计算x 轴交点坐标、y轴交点坐标、顶点坐标以及对称轴、 并利用二次函数的对称性找出Y轴交点坐标的对称 点坐标,利用这样的几个特殊点,画出二次函数 的图象并分析增减性。
y x2 x2
2、抛物线的顶点坐标是(6,-2),且与 X轴的一个交点的横坐标是8。
y1(x6)221x26x16
2
2
六、二次函数与一元二次方程的关系
一元二次方程ax2+bx+c=0的根 就是 二次函数y=ax2+bx+c图象与x轴交点的横坐标
有两个交点 有两个相异实数根 有一个交点 有两个相等实数根
•
15、最具挑战性的挑战莫过于提升自 我。。2021年8月2021/8/22021/8/22021/8/28/2/2021
•
16、业余生活要有意义,不要越轨。2021/8/22021/8/2August 2, 2021
•
17、一个人即使已登上顶峰,也仍要 自强不 息。2021/8/22021/8/22021/8/22021/8/2
•
9、有时候读书是一种巧妙地避开思考 的方法 。2021/8/22021/8/2M onday, August 02, 2021
•
10、阅读一切好书如同和过去最杰出 的人谈 话。2021/8/22021/8/22021/8/28/2/2021 8:37:06 PM
数学中考复习培训课件
用题的解题能力。
06 中考数学复习资料推荐
教材与教辅推荐
教材
建议使用《初中数学》教材,因 为它是中考数学命题的基础,必 须熟练掌握其中的知识点和例题 。
教辅
推荐使用《中考数学专项突破》 等教辅,这些教辅对中考数学的 重点、难点和易错点进行了详细 解析,有助于考生系统复习。
网络资源推荐
网站
推荐使用学科网、中考数学网等网站 ,这些网站提供了大量的中考数学复 习资料和模拟试题,方便考生下载和 练习。
重点与难点突破
针对重点和难点知识,进 行有针对性的强化训练和 讲解,确保能够熟练掌握 。
整合不同学科知识
将不同学科的知识点进行 整合,以便于在解决综合 性问题时能够灵活运用。
解题技巧的掌握
熟悉各种题型
了解中考数学的常见题型 和考试形式,熟悉各类题 型的解题方法和技巧。
掌握解题思路
在解题过程中,注重培养 解题思路,学会从题目中 提取关键信息,运用所学 知识解决问题。
THANKS 感谢观看
解答题解析
解答题特点
解答题难度较大,涉及多个知 识点的综合运用,要求考生具 有较强的分析问题和解决问题
的能力。
仔细审题
明确题目要求,找出关键信息 。
分步解答
将问题分解为若干个小问题, 逐一解决。
总结答案
在解答过程中注意逻辑连贯性 ,确保答案完整、清晰。
03 中考数学模拟试题及答案解析
模拟试题一及答案解析
在复习过程中,要注重对基础知识的 巩固,确保对基本概念、公式和定理 的理解和掌握。
设定阶段性目标
将整个复习过程划分为若干个阶段, 并为每个阶段设定具体的目标,以便 于跟踪复习进度。
知识点的梳理与整合
06 中考数学复习资料推荐
教材与教辅推荐
教材
建议使用《初中数学》教材,因 为它是中考数学命题的基础,必 须熟练掌握其中的知识点和例题 。
教辅
推荐使用《中考数学专项突破》 等教辅,这些教辅对中考数学的 重点、难点和易错点进行了详细 解析,有助于考生系统复习。
网络资源推荐
网站
推荐使用学科网、中考数学网等网站 ,这些网站提供了大量的中考数学复 习资料和模拟试题,方便考生下载和 练习。
重点与难点突破
针对重点和难点知识,进 行有针对性的强化训练和 讲解,确保能够熟练掌握 。
整合不同学科知识
将不同学科的知识点进行 整合,以便于在解决综合 性问题时能够灵活运用。
解题技巧的掌握
熟悉各种题型
了解中考数学的常见题型 和考试形式,熟悉各类题 型的解题方法和技巧。
掌握解题思路
在解题过程中,注重培养 解题思路,学会从题目中 提取关键信息,运用所学 知识解决问题。
THANKS 感谢观看
解答题解析
解答题特点
解答题难度较大,涉及多个知 识点的综合运用,要求考生具 有较强的分析问题和解决问题
的能力。
仔细审题
明确题目要求,找出关键信息 。
分步解答
将问题分解为若干个小问题, 逐一解决。
总结答案
在解答过程中注意逻辑连贯性 ,确保答案完整、清晰。
03 中考数学模拟试题及答案解析
模拟试题一及答案解析
在复习过程中,要注重对基础知识的 巩固,确保对基本概念、公式和定理 的理解和掌握。
设定阶段性目标
将整个复习过程划分为若干个阶段, 并为每个阶段设定具体的目标,以便 于跟踪复习进度。
知识点的梳理与整合
中考数学复习ppt课件
“中国加油”声中胜利结束,全程11.8千米,11.8千米用科学记数法表
示是
米
(08 南京)2008年5月27日,北京2008年奥运会护具接力传递活动
在南京境内举行,火炬传递路线全程为12 900m,将12 900用科学记
数法表示应为( )
A.0.129×104 B.1.29×104
C.12.9×103
ED
C
F ;A.
B
21
例5(08青岛)2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举 行.观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/ 张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下, 购买A,B两种船票共15张,要求A种船票的数量不少于B种船票数量的一 半.若设购买A种船票张,请你解答下列问题: (1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱?
;.
12
例6(08 南京)计算(ab2)3的结果是( )
(08 无锡)计算
的结(果a 为b () 2 )
A.b
B.a
ab2
C.1
D.
1 【点评】幂的化简、计算是学生的易错点,同时对后续学习又很有作用。 b
;.
13
例7(08 扬州)已知x+y=6,xy=-3,则 x2y+xy2=
例8(08 扬州)课堂上,李老师出了这样一道题,已知x=2008-5 ,求 代数式
D.129×102
;.
8
(08 杭州)北京2008奥运的国家体育场“鸟巢”建筑面积达25.8万平方米,
用科学记数法表示应为( )
Байду номын сангаас
中考数学总复习课件
01
掌握概率、期望、方差等基本 概念。
02
理解并能应用基本的概率模型
和统计方法。
03
概率与统计部分的难点
04
掌握古典概型、几何概型等概
率模型,理解概率的加法公式
、乘法公式等性质。
05
理解并能应用基本的统计方法 ,如回归分析、方差分析等。
06
03
中考数学题型解析
选择题题型解析
• 选择题题型特点:选择题通常包含4个选项,其中 只有一个是正确答案。题目侧重于基础知识的理 解和应用。
将知识点进行分类和整合 ,形成完整的知识体系, 以便于理解和记忆。
强化薄弱环节
针对薄弱知识点,加强复 习和练习,提高理解和运 用能力。
解题技巧的掌握与运用
掌握基本解题技巧
熟悉各种数学题型的解题 方法和步骤,如代数、几 何、概率等。
提高解题速度
通过大量的练习和模拟考 试,提高解题速度和准确 性,以满足考试时间限制 。
05
06
理解并能够应用代数式的恒等变换、因式 分解等技巧。
几何部分的重点与难点
几何部分的重点
理解并能够应用几何的基 本性质和定理。
掌握全等三角形、相似三 角形的性质和判定方法。
掌握基本几何知识,如三 角形、四边形、圆等。
几何部分的难点
理解并能够应用圆的性质 和定理,如切线判定定理
、弦心距定理等。
函数部分的重点与难点
选择题题型解析
解题技巧 • 排除法:通过排除明显错误的选项,缩小选择范围。
• 直接法:根据题意,直接计算或推理出正确答案。
选择题题型解析
• 验证法:代入选项中的答案进行验证,看是否符合题意。
例题:若$a$、$b$为实数,且$a^{2} + b^{2} = 1$,则$a + b$的取 值范围是( )
中考数学复习策略.ppt
则AP 2 2a 4,
∵∠EPH =90°
4-a
∴ ∠1+∠2= 90°
∵∠3+∠2= 90° ∴∠1= ∠3
∵∠A= ∠D= 90°
∴△APE∽△DHP
AEP的周长 PDH的周长
AE PD
a
评析 这种解法用的是设而不求的方法,这也 是解决几何问题的常规解法之一,解题过程中 运用了勾股定理、相似,使解题思路明确,计 算过程简洁。
E
E AF
A
F
B
P 图1
B C
图2 P
C
1.如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C
的坐标为(6,0).抛物线y=- 4 x2+bx+c经过点A、C,与AB
交于点D.
9
(1)求抛物线的函数解析式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上
一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
点B是AD的中点,在直径CD上找一点P,使BP+AP的值最小, 并求BP+AP的最小值.
P
B'
两点之间,线段最短
(3)知识拓展: 如图(c),在Rt△ABC中,AB=10,∠BAC=45°, ∠BAC的平分线交BC于点D,E、F分别是线段AD和 AB上的动点,求BE+EF的最小值,并写出过程.
两点之间,线段最短
专题有:
动手操作,阅读理解,学科渗透,运动与变化,开放 与探索,数形结合思想,分类讨论思想,化归思想.
中考题 如图所示,现有一张边长为4的正方形ABCD纸片,
点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸
片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为
中考数学复习策略课件 (58张PPT)
考试内容删减具体说明
1.删除的主要内容和要求有: ①关于梯形、等腰梯形的相关要求; ②探索并了解圆与圆的位置关系; ③关于视点、视角、盲区等内容; ④圆锥的侧面积。
考试内容新增具体说明
2.新增的主要内容和要求有: ①会利用待定系数法确定一次函数的解析表达式; ②了解并证明圆内接四边形的对角互补; ③了解正多边形的概念及正多边形与圆的关系; ④尺规作图:过一点作已知直线的垂线;已知一直角边 和斜边作直角三角形;作三角形的外接圆、内切圆;作 圆的内接正方形和正六边形。 选学: ①解简单的三元一次方程组; ②了解一元二次方程的根与系数的关系; ③知道给定不共线三点的坐标可以确定一个二次函数; ④探索并证明垂径定理; ⑤探索并证明切线长定理。
1.比例的基本性质 2.相似三角形的性质 :边、角高、中线、 面积、周长 3.平行线分线段成比 例 4.位似 5.相似三角形的判定 定理综合渗透
反 比 例 函 数
课标要求:(1)结合具体情境 体会反比例函数的意义,能根 据已知条件确定反比例函数的 表达式。 (2)能画出反比例函数的图象, 根据图象和表达式 y = (k≠0)探 索并理解k>0和k<0时,图象 的变化情况。 (3)能用反比例函数解决简单 实际问题。
2
2019年中考数学复习策略
1. 提高复习效率的前提 ——研究课标,明晰“考什么” 2. 提高复习效率的基础 ——研究走向,明确“如何考” 3.提高复习效率的保证 ——研究学生,明白“教什么” 4. 提高复习效率的方略 ——研究教法,明确“如何教” 5. 提高复习效率的关键 ——研究学法,知道“如何学”
18
28
学业水平考试
提升得分率
选拔考试 压轴题 10 18
28
关注 区分度
中考数学复习全套课件
【解】a=3b 【方法归纳】此题考查了整式的混合运算的应用,弄清题意是解本题的关键.
因式分解
【分析】(1)因式分解是把一个多项式化为n个整式的积的形式;(2)因式分解的 步骤是“一提二套三检查”. 【解】(1)D (2)A
第三节 分 式
知识点1:分式的有关概念
1.形如
(A、B是整式,且B中含有 字母 ,B≠0)的式子叫做分式,其中A叫做分
子,B叫做分母.
2.分式有意义:在分式中,当 分母B≠0 时,分式有意义;当 分母B=0 时,分式没有意 义.
3.分式的值为零:分式的值为零的条件是分子A=0,而分母B≠0.
4.有理式:整式和分式统称为有理式.
知识点2:分式的性质(约分、通分)
知识点3:分式的运算
1.分式的乘、除法:
———— 2.分式的乘方:
3.因式分解的一般步骤: (1)如果多项式各项有公因式,应先提取公因式;
(2)如果各项没有公因式,可以尝试使用公式法来分解因式;
(3)检查因式分解是否彻底,必须分解到每一个因式不能再分解为止. 以上三步骤可以概括为“一提二套三检查”.
4.整式的乘法和因式分解是互逆变形,它们可以用来相互检验其正确性.
【解】3
科学记数法、近似数
(2013·日照)据新华社报道:在我国南海某海域探明可燃冰储 量约有194亿立方米.194亿用科学记数法表示为( )
实数的计算
计算:
【方法归纳】解答此类问题的关键是熟记特殊角的三角函数值,理解 整数指数幂和立方根的含义,特别要注意零指数幂、负整数指数幕的计 算方法:
第二节 整式与因式分解
中考数学课件
第一篇 知识系统复习
• 第一章 数与式 • 第一节 实数的有关概念和运算 • 第二节 整式与因式分解 • 第三节 分式 • 第四节 数的开方 二次根式 • 重难点突破一 数、式的综合计算题
因式分解
【分析】(1)因式分解是把一个多项式化为n个整式的积的形式;(2)因式分解的 步骤是“一提二套三检查”. 【解】(1)D (2)A
第三节 分 式
知识点1:分式的有关概念
1.形如
(A、B是整式,且B中含有 字母 ,B≠0)的式子叫做分式,其中A叫做分
子,B叫做分母.
2.分式有意义:在分式中,当 分母B≠0 时,分式有意义;当 分母B=0 时,分式没有意 义.
3.分式的值为零:分式的值为零的条件是分子A=0,而分母B≠0.
4.有理式:整式和分式统称为有理式.
知识点2:分式的性质(约分、通分)
知识点3:分式的运算
1.分式的乘、除法:
———— 2.分式的乘方:
3.因式分解的一般步骤: (1)如果多项式各项有公因式,应先提取公因式;
(2)如果各项没有公因式,可以尝试使用公式法来分解因式;
(3)检查因式分解是否彻底,必须分解到每一个因式不能再分解为止. 以上三步骤可以概括为“一提二套三检查”.
4.整式的乘法和因式分解是互逆变形,它们可以用来相互检验其正确性.
【解】3
科学记数法、近似数
(2013·日照)据新华社报道:在我国南海某海域探明可燃冰储 量约有194亿立方米.194亿用科学记数法表示为( )
实数的计算
计算:
【方法归纳】解答此类问题的关键是熟记特殊角的三角函数值,理解 整数指数幂和立方根的含义,特别要注意零指数幂、负整数指数幕的计 算方法:
第二节 整式与因式分解
中考数学课件
第一篇 知识系统复习
• 第一章 数与式 • 第一节 实数的有关概念和运算 • 第二节 整式与因式分解 • 第三节 分式 • 第四节 数的开方 二次根式 • 重难点突破一 数、式的综合计算题
中考数学复习专题知识讲座PPT省名师优质课赛课获奖课件市赛课一等奖课件
二、解题策略与解法精讲
• 选择题解题旳基本原则是:充分利用选择题旳特点,小题 小做,小题巧做,切忌小题大做.
• 解选择题旳基本思想是既要看到各类常规题旳解题思想, 但更应看到选择题旳特殊性,数学选择题旳四个选择支中 有且仅有一种是正确旳,又不要求写出解题过程. 因而, 在解答时应该突出一种“选”字,尽量降低书写解题过程, 要充分利用题干和选择支两方面提供旳信息,根据题目旳 详细特点,灵活、巧妙、迅速地选择解法,以便迅速智取, 这是解选择题旳基本策略. 详细求解时,一是从题干出发 考虑,探求成果;二是题干和选择支联合考虑或从选择支 出发探求是否满足题干条件. 实际上,后者在解答选择题 时更常用、更有效.
• 例3 下列四个点中,在反百分比函数y=− 旳图象上旳是( )
• A.(3,-2) B.(3,2) C.(2,3) D.(-2,-3)
• 思绪分析:根据反百分比函数中k=xy旳特点进行解答即可.
• 解:A、∵3×(-2)=-6,∴此点在反百分比函数旳图象上,故本选项正确; B、∵3×2=6≠-6,∴此点不在反百分比函数旳图象上,故本选项错误; C、∵2×3=6≠-6,∴此点不在反百分比函数旳图象上,故本选项错误; D、∵(-2)×(-3)=6≠-6,∴此点不在反百分比函数旳图象上,故本选项错 误. 故选A.
• 思绪分析:反百分比函数旳图象是中心对称图形, • 则与经过原点旳直线旳两个交点一定有关原点对称. • 解:因为直线y=mx过原点,双曲线 旳两个分支有关原点对称,
所以其交点坐标有关原点对称,一种交点坐标为(3,4),另一种交 点旳坐标为(-3,-4). 故选:C. • 点评:此题考察了函数交点旳对称性,经过数形结合和中心对称旳定 义很轻易处理.
• 一. 一次函数、反百分比函数和二次函数图象旳分析问题
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
◆ ◆ ◆
由这想到了什么?
这是由什么到的?
这一步的依据何在?
二、备课备什么
1. 选题:增加、删减、重点、易错 2. 笔记:增加、删减、重点、易错、关键字词 3. 讲题:障碍点、突破点、易错点、提炼点 一题多解(通性通法)、一题多变 方法的归纳、思想的提炼 4. 流程:整合、组合 5. 标准:《巴川中学总复习课教学评价表》
三、红笔拿来干什么?
1. 改错的
2. 圈注的
3. 记录补充的 4. 复习、消化、过手的内容指向的
四、第一轮复习的结构
1.研读文本结构:基础前测、知识梳理、典型 例题、 后测与反馈之间的逻辑关系
2.时间规划
◆ 基础前测与知识梳理(5——10分钟) ◆ 典型例题中的例1、例2(0——5分钟) ◆ 典型例题中的例3(8——15分钟)
5.高度重视学生知识的过手
关于初三数学复习课的思考
(2017·4·7)
一、回归四个原点
1. 是复习课吗?不是练习课、也不是讲评课 复习课: 要梳理知识,强调重点;
要夯实基础,把握好本课时知识的易错点;
要提升能力:
①知识综合运用能力:ቤተ መጻሕፍቲ ባይዱ识的组合与整合;
②审题的能力:知识的障碍点、突破点;
③举一反三的能力:方法的提炼、思想的归纳;
五、几个问题的强调
1.坚决不准学生往前做,学生自习只能消化、补差、拓展 2.必须查学生的笔记(准确性、完整性) 3.必须留足四个时间
◆ 突破重点题、难题的时间
◆ 学生独立尝试的时间 ◆ 教师讲障碍点、突破点、易错点、提炼点的时间
◆ 学生做笔记的时间
五、几个问题的强调
4.高度重视学生答题的规范性和准确性
一、回归四个原点
2. 是毕业总复习课吗?不是新课、也不是阶段复习课
(详略、温故、知新、新增)
3. 每节课、每个环节、每个题目、每一项设计或处理的
目的何在?达到了应有的价值吗?
如:我为什么要设计这个环节? 我为什么抽这个学生? 我为什么这个题要全讲?
我为什么这个题要求学生只做某一步?
4.是数学课吗?有数学味儿吗? 语 言:准确(术语、符号体系)、简洁 思 维:贯穿始终地追问
由这想到了什么?
这是由什么到的?
这一步的依据何在?
二、备课备什么
1. 选题:增加、删减、重点、易错 2. 笔记:增加、删减、重点、易错、关键字词 3. 讲题:障碍点、突破点、易错点、提炼点 一题多解(通性通法)、一题多变 方法的归纳、思想的提炼 4. 流程:整合、组合 5. 标准:《巴川中学总复习课教学评价表》
三、红笔拿来干什么?
1. 改错的
2. 圈注的
3. 记录补充的 4. 复习、消化、过手的内容指向的
四、第一轮复习的结构
1.研读文本结构:基础前测、知识梳理、典型 例题、 后测与反馈之间的逻辑关系
2.时间规划
◆ 基础前测与知识梳理(5——10分钟) ◆ 典型例题中的例1、例2(0——5分钟) ◆ 典型例题中的例3(8——15分钟)
5.高度重视学生知识的过手
关于初三数学复习课的思考
(2017·4·7)
一、回归四个原点
1. 是复习课吗?不是练习课、也不是讲评课 复习课: 要梳理知识,强调重点;
要夯实基础,把握好本课时知识的易错点;
要提升能力:
①知识综合运用能力:ቤተ መጻሕፍቲ ባይዱ识的组合与整合;
②审题的能力:知识的障碍点、突破点;
③举一反三的能力:方法的提炼、思想的归纳;
五、几个问题的强调
1.坚决不准学生往前做,学生自习只能消化、补差、拓展 2.必须查学生的笔记(准确性、完整性) 3.必须留足四个时间
◆ 突破重点题、难题的时间
◆ 学生独立尝试的时间 ◆ 教师讲障碍点、突破点、易错点、提炼点的时间
◆ 学生做笔记的时间
五、几个问题的强调
4.高度重视学生答题的规范性和准确性
一、回归四个原点
2. 是毕业总复习课吗?不是新课、也不是阶段复习课
(详略、温故、知新、新增)
3. 每节课、每个环节、每个题目、每一项设计或处理的
目的何在?达到了应有的价值吗?
如:我为什么要设计这个环节? 我为什么抽这个学生? 我为什么这个题要全讲?
我为什么这个题要求学生只做某一步?
4.是数学课吗?有数学味儿吗? 语 言:准确(术语、符号体系)、简洁 思 维:贯穿始终地追问