1-1 排列与组合

合集下载

排列与组合讲义-2025届高三数学一轮复习

排列与组合讲义-2025届高三数学一轮复习

2025届高考数学一轮复习讲义计数原理、概率、随机变量及其分布之排列与组合一、知识点讲解及规律方法结论总结1.排列、组合的定义名称定义排列从n个不同元素中取出m(m≤n)个元素并按照①一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.组合作为一组,叫做从n个不同元素中取出m个元素的一个组合.注意排列有序,组合无序.2.排列数、组合数的定义、公式及性质(n,m∈N*,且m≤n)排列数组合数定义从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,用符号②A n m表示.从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,用符号③C n m表示.公式A n m=n(n-1)(n-2)…(n-m+1)=n!(n-m)!.规定0!=1.C n m=A n mA m m=n(n-1)(n-2)…(n-m+1)m!=④n!m!(n-m)!.规定C n0=1.性质A n n=n!=n×(n-1)×(n-2)×…×2×1;A n m=(n-m+1)A n m-1=n An-1m-1.C n m=C n n-m;C n+1m=Cnm+Cnm-1.说明C n m=C n n-m的应用主要是两个方面:一是简化运算,当m>n2时,通常将计算C n m转化为计算C n n-m;二是列等式,由C n x=C n y可得x=y或x+y=n.二、基础题练习1.5个相同的球,放入8个不同的盒子中,每个盒里至多放一个球,则不同的放法有(B)A.A85种B.C85种C.58种D.85种解析由于球都相同,盒子不同,每个盒里至多放一个球,所以只要选出5个不同的盒子即可.故共有C85种不同的放法.2.[教材改编]从4本不同的课外读物中,买3本送给3名同学,每人各1本,则不同的送法种数是(B)A.12B.24C.64D.81 解析 4本不同的课外读物选3本分给3位同学,每人1本,则不同的分配方法种数为A 43=24. 3.[教材改编]某班举行了“弘扬中华文化”演讲比赛,有6人参加,并决出第1名到第6名的名次(没有并列名次).甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军.”对乙说:“你当然不会是最差的.”从回答分析,6人的名次排列情况可能有( D )A.216种B.240种C.288种D.384种解析 由题可知,甲和乙都不是冠军,所以冠军有4种可能性,乙不是最后一名,所以最后一名有4种可能性,所以6人的名次排列情况可能有4×4×A 44=384(种).4.[多选]下列说法正确的是 ( BD )A.所有元素完全相同的两个排列为相同排列B.两个组合相同的充要条件是其中的元素完全相同C.若C n x =C n m ,则x =mD.A n+1m =A n m +m A n m -15.[易错题]计算C 73+C 74+C 85+C 96的值为 210 .(用数字作答)解析 原式=C 84+C 85+C 96=C 95+C 96=C 106=210.6.若C n+13=C n 3+C n 4,则n = 6 .解析 ∵C n+13=C n 3+C n 4=C n+14,∴n +1=3+4,解得n =6.三、知识点例题讲解及方法技巧总结命题点1 排列问题例1 有3名男生、4名女生.(1)若排成前、后两排,前排3人,后排4人,则不同的排列方法总数为 5 040 .(2)若全体排成一排,女生必须站在一起,则不同的排列方法总数为 576 .(3)若全体排成一排,男生互不相邻,则不同的排列方法总数为 1 440 .(4)若全体排成一排,其中甲不站最左边,也不站最右边,则不同的排列方法总数为 3 600 .(5)若全体排成一排,其中甲不站最左边,乙不站最右边,则不同的排列方法总数为 3 720 .(6)若全体排成一排,其中甲、乙、丙三人从左到右顺序一定,则不同的排列方法总数为 840 .解析 (1)分两步完成,先选3人站前排,有A 73种方法,余下4人站后排,有A 44种方法,共有A 73·A 44=5 040(种).(2)将女生看作一个整体与3名男生一起全排列,有A44种方法,再将女生全排列,有A44种方法,共有A44·A44=576(种).(3)先排女生,有A44种方法,然后在女生之间及首尾共5个空位中任选3个空位安排男生,有A53种方法,共有A44·A53=1 440(种).(4)解法一先排甲,有5种方法,其余6人有A66种排列方法,共有5×A66=3 600(种).解法二左、右两边位置可安排除甲外其余6人中的2人,有A62种排法,剩下的5人有A55种排法,共有A62A55=3 600(种).(5)解法一甲在最右边时,其他人可全排列,有A66种方法;甲不在最右边时,因为甲也不在最左边,所以可从余下的5个位置中任选1个,有C51种,而乙可从除去最右边的位置后剩下的5个位置中任选1个,有C51种,其余人全排列,有A55种不同排法,共有A66+C51C51A55=3 720(种).解法二7人全排列,有A77种方法,其中甲在最左边时,有A66种方法,乙在最右边时,有A66种方法,其中都包含了甲在最左边且乙在最右边的情形(A55种方法),故共有A77-2A66+A55=3 720(种).(6)7人全排列,有A77种方法,由于甲、乙、丙的顺序一定,则不同的排列方法总数为A77A33=840.方法技巧求解排列问题的常用方法直接法把符合条件的排列数直接列式计算.优先法优先安排特殊元素或特殊位置.捆绑法相邻问题捆绑处理,即可以把相邻元素看作一个整体与其他元素进行排列,同时注意捆绑元素的内部排列.插空法不相邻问题插空处理,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素的排列空位中.定序问题除法处理定序问题,可先不考虑顺序限制进行排列,再除以定序元素的全排列.间接法正难则反,等价转化处理.训练1 (1)[2022新高考卷Ⅱ]甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同的排列方式共有(B)A.12种B.24种C.36种D.48种解析先将丙和丁捆在一起,有A22种排列方式,然后将其与乙、戊排列,有A33种排列方式,最后将甲插入中间两空,有2种排列方式,所以不同的排列方式共有2A22A33=24(种),故选B.(2)[2023济南市统考]由3个2,1个0,2个3组成的六位数中,满足有相邻4位恰好是2 023的六位数的个数为(B)A.3B.6C.9D.24解析 2 023用了2个2,1个0,1个3,还余下1个2,1个3,故将2 023视作一个整体与余下的1个2,1个3全排列,有A33=6(种)不同的排法.故选B.命题点2组合问题例2 (1)[多选]从6名男生和4名女生中选出4人去参加一项创新大赛,则下列说法正确的有(CD)A.若4人全部为男生,则有30种不同的选法B.若4人中男生、女生各有2人,则有30种不同的选法C.若男生中的甲和女生中的乙被选,则有28种不同的选法D.若男生中的甲和女生中的乙至少有1人被选,则有140种不同的选法解析4人全部为男生,选法有C64=15(种),故A错误;如果4人中男生、女生各有2人,男生的选法有C62=15(种),女生的选法有C42=6(种),则4人中男生、女生各有2人的选法有15×6=90(种),B错误;如果男生中的甲和女生中的乙被选,在剩下的8人中再选2人即可,有C82=28(种)不同的选法,故C正确;在10人中任选4人,有C104=210(种)不同的选法,甲、乙都不在其中的选法有C84=70(种),故男生中的甲和女生中的乙至少要有1人被选的选法有210-70=140(种),故D正确.(2)[2023新高考卷Ⅰ]某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有64种(用数字作答).解析解法一由题意,可分三类:第一类,体育类选修课和艺术类选修课各选修1门,有C41C41种方案;第二类,在体育类选修课中选修1门,在艺术类选修课中选修2门,有C41C42种方案;第三类,在体育类选修课中选修2门,在艺术类选修课中选修1门,有C42C41种方案.综上,不同的选课方案共有C41C41+C41C42+C42C41=64(种).解法二若学生从这8门课中选修2门课,则有C82-C42-C42=16(种)选课方案;若学生从这8门课中选修3门课,则有C83-C43-C43=48(种)选课方案.综上,不同的选课方案共有16+48=64(种).方法技巧组合问题常见的两类题型(1)“含”与“不含”的问题:“含”,则先将这些元素取出,再由剩下的元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中选取.(2)“至少”与“最多”的问题:解这类题的关键是理解“至少”与“最多”这两个词的含义,通常用直接法或间接法处理,分类复杂时,用间接法更容易处理.训练2 (1)[2023福州5月质检]“赛龙舟”是端午节重要的民俗活动之一,龙舟比赛的划手分划左桨和划右桨.某训练小组有6名划手,其中有2名只会划左桨,2名只会划右桨,2名既会划左桨又会划右桨.现从这6名划手中选派4名参加比赛,其中2名划左桨,2名划右桨,则不同的选派方法共有(C)A.15种B.18种C.19种D.36种解析按照从全能者(既会划左桨又会划右桨)中选多少人参与划左桨分类:①2名全能者中选2人划左桨,有C22C22=1(种)不同的选派方法;②2名全能者中选1人划左桨,有C21C21C32=12(种)不同的选派方法;③2名全能者中选0人划左桨,有C22C42=6(种)不同的选派方法.所以共有1+12+6=19(种)不同的选派方法.故选C.(2)[2023南京市、盐城市二模]编号为1,2,3,4的四位同学,就座于编号为1,2,3,4的四个座位上,每个座位恰好坐一位同学,则恰有两位同学的编号和座位编号一致的坐法种数为6.解析先选择两位同学坐对编号,有C42种方法,余下的两位同学只能交叉坐,只有1种方法,故共有C42×1=6(种)不同坐法.命题点3排列与组合的综合应用角度1有限制条件的排列、组合问题例3 (1)[2023沈阳市质监]甲、乙、丙、丁、戊、己6人站成一排拍合照,要求甲必须站在最中间两个位置之一,且乙、丙2人相邻,则不同的排队方法共有(C)A.24种B.36种C.72种D.96种解析如图所示,当甲在3的位置时,乙、丙可能排在(1,2),(4,5),(5,6),先从这三种中选出一种安排乙、丙,然后在剩下的3个位置安排余下的3人,所以不同的排队方法有C31A22A33=36(种);当甲在4的位置时,由对称性可知不同的排队方法也有36种.所以不同的排队方法共有36×2=72(种),故选C.123456(2)[2023重庆市名校联考]某校从8名教师中选派4名教师去4个偏远地区支教,每地1人,其中甲和乙不能同去,甲与丙同去或者同不去,则不同的选派方案的种数是600.(用数字作答)解析分为两步,第一步,先选4名教师,第一步又分两类,第一类,甲去,则丙一定去,乙一定不去,有C52=10(种)不同的选法;第二类,甲不去,则丙一定不去,乙可能去也可能不去,有C64=15(种)不同的选法.所以选4名教师,不同的选法有10+15=25(种).第二步,4名教师去4个偏远地区支教,有A44=24(种)分配方法.所以不同的选派方案的种数是25×24=600.方法技巧有限制条件的排列、组合问题的解题策略(1)先分析每个限制条件,然后考虑是分类还是分步,对于分类过多的问题可以采用间接法;(2)采用特殊元素(位置)优先原则,即先满足有限制条件的元素(位置),再考虑其他元素(位置).角度2 分组、分配问题例4 (1)有5个大学保送名额,计划分到3个班级,每班至少一个名额,有 6 种不同的分法.解析 一共有5个保送名额,分到3个班级,每个班级至少1个名额,即将名额分成3份,每份至少1个,(定份数)将5个名额排成一列,中间有4个空,(定空位)即只需在中间4个空中插入2个隔板,不同的方法共有C 42=6(种).(插隔板)(2)若将6名教师分到3所中学任教,其中一所1名,一所2名,一所3名,则有 360 种不同的分法.解析 先将6名教师分组,共有C 61C 52C 33=60(种)分法.再将这3组教师分配到3所中学,有A 33=6(种)分法.故不同的分法共有60×6=360(种).(3)将6本不同的书分给甲、乙、丙、丁4个人,每人至少1本的不同分法共有 1 560 种.(用数字作答)解析 把6本不同的书分成4组,故有“3,1,1,1”和“2,2,1,1”两种不同的分组方法.若按“3,1,1,1”的分组方法,则不同的分法共有C 63C 31C 21C 11A 33=20(种).(有三组元素个数相同,因与顺序无关,故需除去重复情况)若按“2,2,1,1”的分组方法,则不同的分法共有C 62C 42A 22·C 21C 11A 22=45(种).(四组元素中,分别有两组元素个数相同,分别为“2,2”和“1,1”,因与顺序无关,故需除去重复情况)所以不同的分组方法共有20+45=65(种).然后把分好的4组书分给4个人,分法共有A 44=24(种),所以不同的分法共有65×24=1 560(种).方法技巧分组、分配问题的解题思路是先分组后分配.1.常见的分组整体均匀分组 分组后一定要除以A n n (n 为均分的组数),避免重复计数.部分均匀分组 若有m 组元素个数相等,则分组时应除以m !.不等分组 分组时任何组中元素的个数都不相等.注意 关于分组问题,应注意无论分成几组,只要其中某些组中的元素个数相等,就存在均分现象.2.常见的分配(1)相同元素的分配问题,常用“隔板法”求解.(2)不同元素的分配问题,利用分步乘法计数原理,先分组,后分配.(3)有限制条件的分配问题,采用分类讨论法或间接法求解.训练3 (1)[多选/2023重庆八中模拟]将甲、乙、丙、丁4名志愿者分别安排到A ,B ,C 3个社区进行暑期社会实践活动,要求每个社区至少安排1名志愿者,每名志愿者只能被安排到1个社区,则下列选项正确的是( BD )A.共有72种安排方法B.若甲、乙被安排在同一个社区,则有6种安排方法C.若A 社区需要2名志愿者,则有24种安排方法D.若甲被安排在A 社区,则有12种安排方法解析 对于A 选项,将4名志愿者先分为3组,再分配到3个社区,所以安排方法种数为C 42C 21C 11A 22×A 33=36,所以A 选项不正确.对于B 选项,甲、乙被安排在同一个社区,先从3个社区中选1个安排甲与乙,再把剩余2个社区进行全排列,所以安排方法种数为C 31A 22=6,所以B 选项正确.对于C 选项,A 社区需要2名志愿者,所以先从4名志愿者中选择2名安排到A 社区,再把剩余2名志愿者进行全排列,所以安排方法种数为C 42A 22=12,C 选项不正确.对于D 选项,甲被安排在A 社区,分为两种情况,(对甲安排在A 社区进行分类讨论,讨论A 社区是甲单独一人还是甲与另外一人)第一种为A 社区安排了2名志愿者,则从剩余3名志愿者中再选择1名,分到A 社区,然后把剩余2名志愿者进行全排列,安排方法共有C 31A 22种;第二种是A 社区只安排了甲志愿者,此时剩余3名志愿者分为2组,再分配到剩余的2个社区中,此时安排方法有C 32A 22种.(这两组是不均匀分组,故不需除以任何数)所以安排方法种数一共为C 31A 22+C 32A 22=12,D 选项正确.故选BD.(2)将9名大学生志愿者安排在星期五、星期六及星期日3天参加社区公益活动,每天分别安排3人,每人参加一次,则不同的安排方案共有 1 680 种.(用数字作答)解析 先选出3人,有C 93种选法,再从剩下的6人中选出3人,有C 63种选法,最后剩下的3人为一组,有C 33种选法.由分步乘法计数原理以及整体均匀分组方法,可知不同的安排方案共有C 93C 63C 33A 33·A 33=1 680(种).四、命题点习题讲解1.[命题点1/2023大同学情调研]现有高中数学新教材必修一、二,选择性必修一、二、三,共5本书,把这5本书放在书架上排成一排,必修一、必修二不相邻的排列方法种数是(A)A.72B.144C.48D.36解析解法一先将选择性必修一、二、三这3本书排成一排,有A33=6(种)排列方法,再将必修一、必修二这2本书插入两端或3本书间的两个空隙中,有A42=12(种)排列方法,由分步乘法计数原理得,把这5本书放在书架上排成一排,必修一、必修二不相邻的排列方法种数是6×12=72.解法二5本书放在书架上排成一排的排列方法共有A55种,其中必修一、必修二相邻的排列方法有A22A44种,所以把这5本书放在书架上排成一排,必修一、必修二不相邻的排列方法种数为A55-A22A44=72.2.[命题点2/2023合肥市二检]某高中学校在新学期增设了“传统文化”“数学文化”“综合实践”“科学技术”和“劳动技术”5门校本课程.小明和小华两位同学商量每人选报2门校本课程.若小明必须选报“数学文化”课程,两位同学所选的课程至多有一门相同,则不同的选课方案有(B)A.24种B.36种C.48种D.52种解析解法一当小明和小华两位同学所选的课程恰有一门相同时,若相同的课程为“数学文化”,则不同的选课方案有C41C31=12(种);若相同的课程不是“数学文化”,则不同的选课方案有C41C31=12(种).所以小明和小华两位同学所选的课程恰有一门相同时,共有12+12=24(种)选课方案.当小明和小华两位同学所选的课程都不相同时,不同的选课方案有C41C32=12(种).所以不同的选课方案有24+12=36(种),故选B.解法二小明在“数学文化”课程外任选一门课程,小华任选2门课程时,不同的选课方案有C41C52=40(种),其中小明和小华2门课程都相同时,选课方案有C41=4(种),故两位同学所选的课程至多有一门相同时,不同的选课方案有40-4=36(种),故选B.3.[命题点3角度1]某旅游景区有如图所示A至H共8个停车位,现有两辆不同的白色车和两辆不同的黑色车,要求相同颜色的车不停在同一行也不停在同一列,则不同的停车方法总数为(B)A B C DE F G HA.288B.336C.576D.1 680解析由题意知,每行停放一辆白色车和一辆黑色车.第一步:取一辆白色车和一辆黑色车停放到第一行,共有C21C21C42A22=48(种)方法.第二步:把剩下的两辆车停放到第二行.若白色车与第一行的黑色车在同一列,此时黑色车有3种停放方法;若白色车与第一行的黑色车不在同一列,则白色车有2种停放方法,黑色车也有2种停放方法,所以共有2×2=4(种)停放方法.所以把剩下的两辆车停放到第二行共有3+4=7(种)方法.由分步乘法计数原理可知,满足题意的停车方法总数为48×7=336.4.[命题点3角度2/2021全国卷乙]将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有(C)A.60种B.120种C.240种D.480种解析根据题设中的要求,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,可分两步进行安排:第一步,将5名志愿者分成4组,其中1组2人,其余每组1人,共有C52种分法;第二步,将分好的4组安排到4个项目中,有A44种安排方法.故满足题意的分配方案共有C52×A44=240(种).5.[命题点3/2023福建适应性测试]中国救援力量在国际自然灾害中为拯救生命做出了重要贡献,很好地展示了国家形象,增进了国际友谊,多次为祖国赢得了荣誉.现有5支救援队前往A,B,C 3个受灾点执行救援任务,若每支救援队只能去其中的一个受灾点,且每个受灾点至少安排一支救援队,其中甲救援队只能去B,C 2个受灾点中的一个,则不同的安排方法种数是(D)A.72B.84C.88D.100解析解法一(间接法)将5支救援队分成3组,有两种分法:3∶1∶1和2∶2∶1,再×A33=150将这3组分配到A,B,C 3个受灾点,有A33种分配方法,故共有C53A33+C52C32C11A22(种)安排方法,其中含有甲救援队去A受灾点的情形.当甲救援队去A受灾点时,变为余下4支救援队随机去A,B,C 3个受灾点,则A受灾点可以再去0支或1支或2支救援队,B,C受灾点均至少去1支救援队,当A受灾点再去0支救援队时,余下4支救援队分成两组(3∶1或2∶2)去B,C 2个受灾点,不同的安排方法种数为C43A22+C42;当A受灾点再去1支救援队时,余下3支救援队只能按2∶1分组去B,C 2个受灾点,不同的安排方法种数为C41C32A22;当A受灾点再去2支救援队时,余下2支救援队只能1支去B受灾点,1支去C受灾点,不同的安排方法种数为C42A22.故满足题意的不同的安排方法种数为150-(C43A22+C42+C41C32A22+C42A22)=100.故选D.解法二(直接法)将5支救援队分成3组,有两种分法:3∶1∶1和2∶2∶1,再将这3组分配到A,B,C 3个受灾点.①按3∶1∶1分组,若甲救援队单独一组,且甲救援队去B,C 2个受灾点中的一个,则有C21C43A22种不同的安排方法;若甲救援队不单独一组,则甲救援队所在的组还需2支救援队,有C42种选法,甲救援队所在的组去B,C 2个受灾点中的一个,有C21种方法,余下的2支救援队分成两组各去一个受灾点,有A22种方法,故有C42C21A22种不同的安排方法.②按2∶2∶1分组,若甲救援队单独一组,且甲去B ,C 2个受灾点中的1个,则有C 21×C 42C 22A 22×A 22种不同的安排方法;若甲救援队不单独一组,则甲救援队所在的组还需1支救援队,有C 41种选法,甲救援队所在的组去B ,C 2个受灾点中的1个,有C 21种方法,余下的3支救援队按2∶1分成两组各去一个受灾点,有C 32A 22种方法,故有C 41C 21C 32A 22种不同的安排方法.故满足题意的不同的安排方法种数为C 21C 43A 22+C 42C 21A 22+C 21×C 42C 22A 22×A 22+C 41C 21C 32A 22=16+24+12+48=100.故选D.五、习题实战演练1.[新高考卷Ⅰ]6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( C )A.120种B.90种C.60种D.30种解析 第1步,抽1名志愿者安排到甲场馆,有C 61种安排方法;第2步,从剩下的5名志愿者中抽取2名安排到乙场馆,有C 52种安排方法;第3步,将剩下的3名志愿者安排到丙场馆.由分步乘法计数原理得,不同的安排方法共有C 61C 52=60(种),故选C.2.[2024吉林市田家炳高级中学模拟]从A ,B ,C ,D ,E 这5人中选出4人,安排在甲、乙、丙、丁4个岗位上,如果A 不能安排在甲岗位上,则不同的安排方法有( D )A.56种B.64种C.72种D.96种解析 解法一(优先特殊元素) 根据题意可知,按A 是否入选进行分类.若A 入选,则先从乙、丙、丁3个岗位上安排1个岗位给A ,有C 31=3(种)安排方法,再给剩下3个岗位安排人,有A 43=24(种)安排方法,共有3×24=72(种)安排方法. 若A 不入选,则4个人4个岗位,有A 44=24(种)安排方法.综上,共有72+24=96(种)安排方法.故选D.解法二(优先特殊位置) 先安排去甲岗位的,A 不能去,其他4人中选1人,因而有C 41种安排方法,再选3人安排其他岗位,有A 43种安排方法,从而共有C 41A 43=96(种)安排方法.故选D.3.[2024北京市第十二中学模拟]4位同学排成一排准备照相时,又来了2位同学要加入,如果保持原来4位同学的相对顺序不变,则不同的加入方法种数为( D )A.10B.20C.24D.30 解析 解法一 不考虑限制条件,将6位同学排成一排准备照相,共有A 66种排法,如果保持原来4位同学的相对顺序不变,则有A 66A 44=30(种)排法,故选D.解法二 插入2位同学后变成6位同学6个位置,原4位同学占4个位置,但相对顺序没变,因而有C 64种排法,再排新插入的2位同学有A 22种排法,从而共有C 64A 22=30(种)排法,故选D.解法三 6个位置可以先排后加入的2位同学,有A 62=30(种)排法,剩下4个位置原4位同学按原顺序排入即可,只有1种方法,因而共有30种排法,故选D.4.[2024湖南衡阳模拟]2023年春节,在北京工作的五个家庭开车搭伴一起回老家过年,若五辆车分别为A ,B ,C ,D ,E ,五辆车随机排成一列,则A 车与B 车相邻,且A 车与C 车不相邻的排法有( A )A.36种B.42种C.48种D.60种解析 将A 车与B 车捆在一起当成一个元素使用,有A 22种不同的捆法,将其与除C 车外的2个元素全排列,有A 33种排法,将C 车插入,不与A 车相邻,有A 31种插法,故共有A 22×A 33×A 31=36(种)排法.故选A.5.5个小朋友站成一圈,不同的站法一共有( D )A.120种B.60种C.30种D.24种解析 先将5个小朋友编为1~5号,然后让他们按1~5的顺序站成一圈,这样就形成了一个圆排列.分别以1,2,3,4,5号作为开头将这个圆排列打开,就可以得到5种排列:12345,23451,34512,45123,51234.这就是说,这个圆排列对应了5个排列.因此,要求圆排列数,只需要求出全排列数再除以5就可以了,即这些小朋友不同的站法一共有A 555=A 44=24(种),故选D.6.[多选]下列关于排列数与组合数的等式中,正确的是( ABD )A.(n +1)A n m =A n+1m+1B.m C n m =n C n -1m -1C.C n m =A n m n !D.1n -m A n m+1=A n m解析 对于A ,(n +1)A n m =(n +1)n (n -1)…(n -m +1)=A n+1m+1,故A 正确;对于B ,C n -1m -1=(n -1)!(m -1)!(n -m)!,C n m =n !m!(n -m)!=n ·(n -1)!m ·(m -1)!(n -m)!=n m ·(n -1)!(m -1)!(n -m)!=n m ·C n -1m -1,所以m C n m =n Cn -1m -1,故B 正确;对于C ,C n m =A n m A m m =A n m m !,故C 错误;对于D ,1n -m A n m+1=1n -m ·n (n -1)·…·(n -m )=n (n -1)…(n -m +1)=A n m ,故D 正确.故选ABD.7.[多选/2024湖南湘潭联考]从10名男生和8名女生中选出3人去参加创新大赛,则至少有1名女生的选法种数为( AC )A.C 183-C 103B.C 81C 172C.C 81C 102+C 82C 101+C 83D.C 102C 81+C 101C 82解析 对于A ,从18名学生中选取3人,有C 183种不同的选法,从18名学生中选取3人,选的都是男生有C 103种不同的选法,所以至少有1名女生的选法有C 183-C 103=696(种),A正确;对于B ,C 81C 172=1 088≠696,故B 错误;对于C ,至少有1名女生的选法有三种情况:1名女生,2名女生,3名女生,所以至少有1名女生的选法有C 81C 102+C 82C 101+C 83=360+280+56=696(种),C 正确;对于D ,C 102C 81+C 101C 82=360+280=640≠696,故D 错误.8.[2024上海市华东师范大学第二附属中学质检]7个志愿者的名额分给3个班,每班至少一个名额,则有 15 种不同的分配方法(用数字作答).解析 7个志愿者的名额分配给3个班,每班至少一个名额,其实就是在7个志愿者的名额产生的6个空位中插入2个“档板”,共有C 62=15(种)不同的分配方法.9.高考期间,为保证考生能够顺利进入某考点,交管部门将6名交警分配到该考点周边3个不同路口疏导交通,每个路口2人,则不同的分配方法共有 90 种.解析 根据题意,分两步进行分析.第一步,将6名交警分成“2,2,2”的三组,有C 62C 42C 22A 33=15(种)分组方法;第二步,将分好的三组全排列,对应3个路口,有A 33=6(种)情况,则共有15×6=90(种)分配方法.10.某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,工程丁必须在工程丙完成后立即进行,那么安排这6项工程的不同排法种数是 20 (用数字作答).解析 解法一(特殊元素优先法) 丙、丁相邻且顺序固定,故将其视为1个元素,记为丙丁,则6项工程可视为5个元素.分成两步来完成:第一步,从5个位置中选择3个位置排列甲、乙、丙丁这3个特殊元素,又甲、乙、丙丁的相对顺序固定,故不同的排法有C 53=10(种);第二步,将余下的2项工程任意排列到剩下的2个空位置上,不同的排法有A 22=2(种).由分步乘法计数原理,可知不同排法共有10×2=20(种).解法二(插空法) 分成两步来完成:第一步,将相对顺序固定的甲、乙、丙、丁排列好,丙、丁相邻且顺序固定,从而形成3个特殊元素(丙、丁视为1个元素),共有1种排法;第二步,将余下的2项工程逐个插入,排法共有C 41C 51=20(种).根据分步乘法计数原理,安排这6项工程的不同排法共有1×20=20(种).解法三 丙、丁相邻且顺序固定,故将其视为1个元素,记为丙丁,其余4项工程各视为1个元素.对5个元素全排列,共有A 55种排法.其中,甲、乙、丙丁这3个特殊元素的位置共有A 33种不同的排法,而符合要求的甲、乙、丙丁的排法仅有1种,所以安排这6项工程的不同排法共有A 55A 33=20(种).。

组合数学课件-第一章:排列与组合

组合数学课件-第一章:排列与组合

积分性质
若G(x)是母函数,则它的不定积分∫G(x)dx (其中C为常数)也是母函数。
线性性质
若G1(x)和G2(x)是两个母函数,则它们的 线性组合k1*G1(x)+k2*G2(x)(k1和k2是 常数)也是母函数。
微分性质
若G(x)是母函数,则它的导数G'(x)也是母 函数。
乘积性质
若G1(x)和G2(x)是两个母函数,则它们的 乘积G1(x)*G2(x)也是母函数。
对称性
C(n,m) = C(n,n-m),即从n个元素中取出m个元 素的组合数与从n个元素中取出n-m个元素的组 合数相等。
递推关系
C(n,m) = C(n-1,m-1) + C(n-1,m),即当前组合 数等于前一个元素在组合中和不在组合中的两种 情况之和。
边界条件
C(n,0) = C(n,n) = 1,即从n个元素中取出0个或 n个元素的组合数均为1。
典型例题解析
例1
从10个数中任取4个数,求其中最大数为6的组合数。
解析
此问题等价于从6个数(1至6)中取4个数的组合数,即 C(6,4)。
例2
在所有的三位数中,各位数字之和等于10的三位数有 多少个?
解析
此问题可转化为从9个数字(1至9)中取3个数字的组合 数,即C(9,3),然后考虑三个数字的全排列,即3!,因此 总共有C(9,3) × 3!个符合条件的三位数。
组合与排列的关系
组合数可以看作是从n个元素中取出m个元素进行排 列的种数除以m的阶乘,即C(n,m)=A(n,m)/m!。 因此,在计算组合数时也可以利用排列数和容斥原 理来进行计算。
THANKS
隔板法
将n个相同的元素分成r组的方法数可以用母函数表示为 C(n+r-1,r),其中C表示组合数。

高中数学1-2-1-1排列的概念及简单排列问题复习课件

高中数学1-2-1-1排列的概念及简单排列问题复习课件

按树形图写出排列.
【典例训练】
1.由1,2,3,4这四个数字组成的首位数字是1,且恰有三个相
同数字的四位数有( )
(A)9个
(B) 12个
(C) 15个
(D) 18个
2.北京、上海、香港、台北四个民航站之间的直达航线,需要 准备多少种不同的飞机票?将它们列出来.
【解析】1.选B.本题要求首位数字是1,且恰有三个相同的数 字,用树形图表示为:
满足a1>a2的树形图是:
从而得出满足题意的排列:2143,3142,3241,4132,4231,共5个 排列. 答案:5
2.假设A,B,C,D四名同学原来的位子分别为1,2,3,4号,列
出树形图如下: 1 2 3 4 A | D | C B C | D | A D | A | C A | D | B C D | B | A D
2. 判断下列问题是否为排列问题.
(1)选2个小组分别去种树和种菜;
(2)选5个小组分别去种花;
(3)选10人组成一个学习小组; (4)选3个人分别担任班长、学习委员、生活委员.
【解析】1.(1)是.对数值与底数和真数的取值不同有关系,与 顺序有关.同理(2)也是排列问题.(3)是,通信有来往,且为互 发,有顺序.(4)中票价只有三种,虽然机票是不同的,但票价 是一样的,不存在顺序问题,所以不是排列问题 . 答案:(1)(2)(3)
答案:6
对排列定义的理解 (1)定义的两个要素: 一是“取出元素”,二是“将元素按一定顺序排列”,这是排列
的两个要素,也是与后面将要学习的组合的不同.
(2)每一个排列不仅与选取的元素有关,而且还与元素的排列
顺序有关.选取的元素不同或虽元素相同但元素的排列顺序不

二年级排列与组合的区别技巧

二年级排列与组合的区别技巧

二年级排列与组合的区别技巧一、排列与组合的区别1、定义:排列是按一定顺序从元素组中选取几个元素,每个元素只能选取一次;组合是从元素组中任意选取几个元素,同一个元素可以被选取多次。

2、术语:排列是确定、有序排列,组合是不确定、无序排列。

3、数学表达:排列表达实际上就是数学中的n!,其中数学符号表示n个元素从左到右任意排列的结果;而组合表达实际上是数学中的C的n选m的简称,表示从n个元素里选取m个元素的结果。

4、例子:(1)排列:考虑从ABCD四个元素里选取三个元素,要求元素顺序不能改变,排列就可用来描述这种选择,一共有24种结果,即:ABC、ABD、ACD、BAC、BAD、BCD、CAB、CAD、CBD、DAB、DAC、DBC……(2)组合:考虑从ABCD四个元素里任意选取任意三个元素,可以用组合表达,要注意元素顺序不限,一共有4个元素阶乘除以3个元素阶乘的积的结果,即:4*3*2/3!=4种结果,即:ABC、ABD、ACD、BCD四种结果,此处也可以说没有重复元素的组合,即ABC,ACD,ADB,BCD。

二、排列与组合的应用1、排列:排列的应用非常广泛,在密码生成、淘汰赛顺序安排、键位码应用、机器编排等方面都有广泛应用。

2、组合:组合在日常生活中也比较多见,比如从几个零件可以组合出几种商品,做菜时要挑选几样食材搭配制作某种菜肴,电子购物中购买某种品牌商品有多个打包选项等,在许多生活场景下都能用到组合。

三、二年级排列和组合的技巧1、排列:在了解了排列术语的基础上,二年级的学生可以试着想出一些相应的例子,在练习的过程中学习活用n!的计算;2、组合:同样了解了组合术语之后,学生可以多思考实际生活中普遍存在的结果,并对C的n选m简称进行练习;3、开启思路:为了更好地理解排列和组合,可以把相关的计算提问,当自己不知道的时候可以思考数值都可以计算出来,孩子也可以把他因为见过的实际问题引入,从而获得比较直观的认知;4、多练习:练习的过程中,可以多想多练,精练出自己的技巧来,也可以与同学一起分享彼此擅长的技巧,从而获得更大的收获。

排列组合公式排列组合计算公式

排列组合公式排列组合计算公式

排列组合公式/排列组合计算公式2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

N-元素的总个数R参与选择的元素个数!-阶乘 ,如 9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1: 有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合, 我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析 例1 设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法. (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法. 点评 由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种? 解 依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出: ∴ 符合题意的不同排法共有9种. 点评 按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型. 例3 判断下列问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手? (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积? (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法? 分析 (1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析. (1)①是排列问题,共用了封信;②是组合问题,共需握手(次). (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法. (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积. (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法. 例4 证明. 证明 左式 右式. ∴ 等式成立. 点评 这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化. 例5 化简. 解法一 原式 解法二 原式 点评 解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化. 例6 解方程:(1);(2). 解 (1)原方程 解得. (2)原方程可变为 ∵ ,, ∴ 原方程可化为. 即 ,解得第六章 排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明 加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排 列、组合中有关问题提供了理论根据.例1 5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解: 5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的 报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明 排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研 究的对象以及研 究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2 由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的 偶数共有( )A.60个B.48个C.36个D.24个解 因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3 将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解: 将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四 例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明 历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4 从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )A.140种B.84种C.70种D.35种解: 抽出的3台电视机中甲型1台乙型2台的取法有C14·C25种;甲型2台乙型1台的取法有C24·C15种根据加法原理可得总的取法有C24·C25+C24·C15=40+30=70(种 )可知此题应选C.例5 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式?解: 甲公司从8项工程中选出3项工程的方式 C38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C22种.根据乘法原理可得承包方式的种数有C3 8×C15×C24×C22=×1=1680(种).(四)二项式定理、二项展开式的性质说明 二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题.例6 在(x-)10的展开式中,x6的系数是( )A.-27C610B.27C410C.-9C610D.9C410解 设(x-)10的展开式中第γ+1项含x6,因Tγ+1=Cγ10x10-γ(-)γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C410(-)4=9C410故此题应选D.例7 (x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0.(五)综合例题赏析例8 若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为( )A.1B.-1C.0D.2解:A.例9 2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有( )A.6种B.12种C.18种D.24种解 分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。

排列组合公式总结大全(3篇)

排列组合公式总结大全(3篇)

第1篇在数学中,排列组合是研究有限集合中元素的不同排列和组合方式的一种数学分支。

它广泛应用于统计学、概率论、计算机科学、组合数学等领域。

以下是对排列组合中常用公式的总结,以供参考。

一、排列1. 排列的定义:从n个不同的元素中,任取m(m≤n)个不同的元素,按照一定的顺序排成一列,称为从n个不同元素中取出m个元素的一个排列。

2. 排列数公式:A(n, m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × ... × 2 × 1。

3. 排列的运算性质:(1)交换律:A(n, m) = A(n-m, n-m)(2)结合律:A(n, m) × A(m, k) = A(n, k)(3)逆运算:A(n, m) × A(m, n-m) = n!二、组合1. 组合的定义:从n个不同的元素中,任取m(m≤n)个不同的元素,不考虑它们的顺序,这样的取法称为从n个不同元素中取出m个元素的一个组合。

2. 组合数公式:C(n, m) = n! / [m! × (n-m)!]3. 组合的运算性质:(1)交换律:C(n, m) = C(n-m, n-m)(2)结合律:C(n, m) × C(m, k) = C(n, k)(3)逆运算:C(n, m) × C(m, n-m) = C(n, n)三、排列与组合的关系1. 排列与组合的关系:A(n, m) = C(n, m) × m!2. 排列与组合的区别:(1)排列考虑元素的顺序,组合不考虑元素的顺序。

(2)排列的运算性质与组合的运算性质不同。

四、排列组合的应用1. 排列组合在概率论中的应用:计算随机事件发生的概率。

2. 排列组合在计算机科学中的应用:设计算法、密码学、数据结构等。

3. 排列组合在统计学中的应用:抽样调查、数据分析等。

排列数和组合数的计算公式

排列数和组合数的计算公式

排列数和组合数的计算公式1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个宝鸡博瀚教育元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个相同元素中,余因子m(m≤n)个元素并成一组,叫作从n个相同元素中抽出m 个元素的一个女团;从n个相同元素中抽出m(m≤n)个元素的所有女团的个数,叫作从n个相同元素中抽出m个元素的女团数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分为k类,每类的个数分别就是n1,n2,...nk这n个元素的全排序数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排序(pnm(n为负号,m为上标))pnm=n×(n-1)....(n-m+1);pnm=n!/(n-m)!(注:!是阶乘符号);pnn(两个n分别为上标和下标) =n!;0!=1;pn1(n为下标1为上标)=n女团(cnm(n为负号,m为上标))cnm=pnm/pmm ;cnm=n!/m!(n-m)!;cnn(两个n分别为上标和下标) =1 ;cn1(n为下标1为上标)=n;cnm=cnn-m1. 掌控分类计数原理与分步计数原理,并会用它们分析和化解一些直观的应用领域问题。

2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3. 认知女团的意义,掌控女团数计算公式和女团数的性质,并会用它们化解一些直观的应用领域问题。

排列与组合的区别技巧

排列与组合的区别技巧

排列与组合的区别技巧排列和组合是数学中常见的概念,用于计算一定范围内的排列或组合的个数。

尽管这两个概念听起来很相似,但实际上它们有着本质的区别。

在本文中,我们将探讨排列和组合的区别以及如何应用它们。

1. 排列和组合的定义排列是指从n个不同元素中取出m个元素进行排列,其排列数用P(n,m)表示,公式为:P(n,m) = n!/(n-m)!其中n!表示n的阶乘,即n × (n-1) × (n-2) × ... × 1。

P(5,3)就表示从5个元素中取3个元素的排列数,它的计算式为5!/(5-3)! = 5 × 4 × 3 = 60。

C(5,3)表示从5个元素中选出3个元素组成的集合数,它的计算式为5!/(3! × 2!) = 10。

AB AC BA BC CA CB这是因为“AB”和“BA”被视为两种不同的排列方式,因为它们的元素顺序不同。

排列相对于元素的顺序是敏感的。

应用排列与组合的场景非常广泛,例如在密码学、计算机科学、统计学、经济学等多个领域都有着重要的应用。

在密码学中,排列和组合被用于计算密码中可能的排列组合,以及在密码破解时破译密码。

在计算机科学中,排列和组合被用于计算算法的时间复杂度和空间复杂度,以及进行搜索和排序算法等操作。

在经济学中,排列和组合被用于计算市场需求和供应的排列组合,以及进行产业分析和商业决策等操作。

4. 总结与结论排列和组合是数学中常用的概念。

其最大的区别在于元素的顺序是否重要。

排列相对于元素的顺序是敏感的,而组合相对于元素的顺序是不敏感的。

我们可以应用排列和组合计算密码、算法复杂度、统计概率以及进行商业决策等多个领域。

在应用排列和组合时,我们需要根据不同情况选择适当的计算方式。

在实际应用中,我们需要了解排列和组合的特性,并选择适当的计算方式。

下面我们将深入探讨排列和组合的特性及其应用。

1. 排列的特性(1)重复元素:在排列的情况中,如果有重复的元素,其排列数可以用重复因子的方法进行计算。

第十章 第二节 排列与组合1

第十章  第二节  排列与组合1

4 解析:可以分成两类计算,若甲排在第一位,则有A 4 种方案,若甲排
在第二位,则有C 1 A 3 种方案,所以按照要求该台晚会节目演出顺序的 3 3
4 编排方案共有A4+C1A3=42(种). 3 3
答案: B
返回
2.(2012· 苏北四市联考)有3张都标着字母A,6张分别标
着数字1,2,3,4,5,6的卡片,若任取其中5张卡片组成
(3)Cm+Cm-1= Cm+1 n n n n,m∈N*且m≤n
返回
返回
1.(教材习题改编)电视台在直播2012伦敦奥运会时要连 续插播5个广告,其中3个不同的商业广告和2个不同 的奥运宣传广告,要求最后播放的是奥运宣传广告, 且2个奥运宣传广告不能连播.则不同的播放方式有
(
)
B.48 D.18
C.90
D.54 返回
[自主解答]
依题意得,这四项工作中必有一项工作有2人参与,就
司机这项工作的实际参与人数进行分类: 第一类,司机这项工作的实际参与人数恰有1人,满足题意的方法有
1 1 C 3 · 3 · 2 · 1 =108(种)(注:C 3 表示从除甲、乙外的3人中任选1人从事司 C1 C4 C2 1 机工作的方法数;C 3 · 4 表示从除司机工作外的其余3项工作中任选定1 C2 1 项,让该项工作有2人从事的方法数;C 2 表示从余下的2人中选1人从事
6
返回
[巧练模拟]——————(课堂突破保分题,分分必保!) 1.(2012· 金华联考)某台小型晚会由6个节目组成,演出 顺序有如下要求:节目甲必须排在前两位,节目乙不 能排在第一位,节目丙必须排在最后一位,该台晚会
节目演出顺序的编排方案共有
A.36种 C.48种 B.42种 D.54种

1排列与组合 - 拔高难度 - 讲义

1排列与组合 - 拔高难度 - 讲义

排列与组合知识讲解一、基本计数原理1.加法原理分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++种不同的方法.又称加法原理.2.乘法原理分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯种不同的方法.又称乘法原理.3.加法原理与乘法原理的综合运用运用:如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.二、排列与组合1.排列定义:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素)排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A mn 表示.排列数公式:A (1)(2)(1)mn n n n n m =---+,m n +∈N ,,并且m n ≤.全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=.2.组合定义:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C mn 表示. 组合数公式:(1)(2)(1)!C !!()!mn n n n n m n m m n m ---+==-,,m n +∈N ,并且m n ≤. 组合数的两个性质: ①C C m n m n n -=;②11C C C m m m n n n -+=+.(规定0C 1n =)3.排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法。

小学一年级综合算式数字的排列与组合

小学一年级综合算式数字的排列与组合

小学一年级综合算式数字的排列与组合数字的排列与组合是数学中的一种基本概念,对于小学一年级的学生来说,学习数字的排列与组合可以培养他们的逻辑思维和数学能力。

本文将介绍小学一年级综合算式数字的排列与组合的相关知识,并通过实例进行解析,帮助读者更好地理解和掌握这一内容。

数字的排列是指将一组数按照一定顺序进行排列的方式。

在小学一年级的数学教学中,通常使用1-9这九个数字进行排列的训练。

例如,给定数字1、2、3,我们可以有以下六种排列方式:123、132、213、231、312、321。

需要注意的是,这里的每个数字都必须使用且只能使用一次。

数字的组合是指从一组数中选取若干个数字,按照一定顺序进行排列的方式。

与数字的排列不同的是,数字的组合中数字的顺序不考虑。

例如,给定数字1、2、3,我们可以有以下四种组合方式:1、2、3、12、13、23、123。

同样需要注意的是,这里的每个数字也只能使用一次。

在小学一年级的数学教学中,数字的排列与组合通常是通过一些实际问题进行引导与训练的。

下面我们通过两个实例来说明。

例一:小美有1、2、3三个数字,她想写出所有可能的两位数。

请你帮小美列出这些数字。

解析:根据题意,我们需要找出所有可能的两位数,而且每个数字只能使用一次。

根据数字的排列的定义,我们可以得到以下六个两位数:12、13、21、23、31、32。

这六个数字就是小美所有可能的两位数。

例二:小明有2、4、6三个数字,他想写出所有可能的三位数。

请你帮小明列出这些数字。

解析:根据题意,我们需要找出所有可能的三位数,而且每个数字只能使用一次。

根据数字的排列的定义,我们可以得到以下六个三位数:246、264、426、462、624、642。

这六个数字就是小明所有可能的三位数。

通过以上两个实例,我们可以发现数字的排列与组合是数学中非常有趣的一部分。

通过练习排列与组合的题目,小学生可以培养他们的逻辑思维和数学能力,提高他们解决问题的能力。

2024届高考一轮复习数学课件(新教材人教A版强基版):排列与组合

2024届高考一轮复习数学课件(新教材人教A版强基版):排列与组合

跟踪训练1 (1)(2023·武汉模拟)源于探索外太空的渴望,航天事业在 21世纪获得了长足的发展.太空中的环境为某些科学实验提供了有利条件, 宇航员常常在太空旅行中进行科学实验.在某次太空旅行中,宇航员们负 责的科学实验要经过5道程序,其中A,B两道程序既不能放在最前,也 不能放在最后,则该实验不同程序的顺序安排共有
(1)0!= 1 ;Ann=__n_!__. 性质 (2)Cmn =Cnn-m;Cmn+1=_C_mn_+__C__mn _-_1
常用结论
1.排列数、组合数常用公式 (1)Amn =(n-m+1)Amn -1. (2)Amn =nAmn--11. (3)(n+1)!-n!=n·n!. (4)kCkn=nCkn--11. (5)Cmn +Cmn-1+…+Cmm+1+Cmm=Cmn++11.
教材改编题
3.将4名学生分别安排到甲、乙、丙三地参加社会实践活动,每个地方至 少安排一名学生参加,则不同的安排方案共有__3_6__种.
第一步,先从 4 名学生中任取两人组成一组,与剩下 2 人分成三组, 有 C24=6(种)不同的方法;第二步,将分成的三组安排到甲、乙、丙三 地,则有 A33=6(种)不同的方法.故共有 6×6=36(种)不同的安排方案.
常用结论
2.解决排列、组合问题的十种技巧 (1)特殊元素优先安排. (2)合理分类与准确分步. (3)排列、组合混合问题要先选后排. (4)相邻问题捆绑处理. (5)不相邻问题插空处理. (6)定序问题倍缩法处理.
常用结论
(7)分排问题直排处理. (8)“小集团”排列问题先整体后局部. (9)构造模型. (10)正难则反,等价转化.
方法一 从特殊位置入手(直接法) 分三步完成,第一步先填个位,有 A13种填法,第二步再填十万位,有 A14种填法,第三步填其他位,有 A44种填法,故无重复数字的六位奇数 共有 A13A14A44=288(个).

排列组合问题的解题方法总结学生版(1)

排列组合问题的解题方法总结学生版(1)

排列组合问题的解题方法总结一、相邻问题“捆绑法”:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列。

例1:5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?分析此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.练1-1:7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.练1-2:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为练1-3:6个人排成一排,甲、乙二人必须相邻的排法有多少种?二、不相邻问题“插空法”:对元素不相邻问题,可先不考虑限制条件先排其它元素,再将不相邻元素插入已排好元素的空隙中(包括两端)即可。

例2:学校组织老师学生一起看电影,同一排电影票12张。

8个学生,4个老师,要求老师在学生之间,且老师互不相邻,共有多少种不同的坐法?分析此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待.所涉及问题是排列问题.练2-1:一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?练2-2:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为练2-3:用1,2,3,4,5,6,7,8组成没有重复数字的八位数,其中1与2相邻、3与4相邻、5与6相邻、7与8不相邻的八位数共有个.三、特殊元素(或位置)“优先法”:排列组合问题无外乎“元素”与“位置”的关系问题,即某个元素排在什么位置或某个位置上排什么元素的问题.因此,对于有限制条件的排列组合问题,可从限制元素(或位置)入手,优先考虑。

例3:在由数字0、1、2、3、4、5所组成的没有重复数字的四位数中,不能被5整除的数共有( )个.分析根据所求四位数对首末两位置的特殊要求可分三步:第一步:排个位;第二步;排首位;第三步:排中间两位。

组合数学课件--第一章:排列与组合

组合数学课件--第一章:排列与组合

1.3:排列与组合
1、排列的定义:设A={a1,a2,…,an}是n个不 同的元素的集合,任取A中r个元素按顺序排成一 列,称为从A中取r个的一个排列,r满足0≤r≤n。
(1) (2) (3) (…) (r)
从n个不同的球中取一个球放在第一个盒子中, 从余下的n-1个球中取一个球放在第二个盒子中, ………………………………… 从余下的n-(r-1)个球中取一个放在第r个盒子中。 根据乘法法则: 19 P(n,r)=n(n-1)…(n-r+1)=n!/(n-r)!
p2
2 a2
... pm
2 am
C (2a1 1,1) C (2a2 1,1) ... C (2am 1,1)
34
练习题
1.13、有n个不同的整数,从中取出两组来, 要求第1组的最小数大于另一组的最大数。 设取的第一组数有a个,第二组有b个,
要求第一组数中最小数大于第二组中最大的, 即只要取出一组m个数(设m=a+b),从大到小 取a个作为第一组,剩余的为第二组。 此时方案数为C(n,m)。 从m个数中取第一组数共有m-1中取法。 (m-1)C(n,m)
17
1.2 一一对应 1 2 5 任给一个序列B{b1,b2,b3,…,bn-2} 1、从A找到最小的不属于B的元素,设为a1,与b1连 接,从A中去掉a1,从B中去掉b1. 2、重复以上过程只到B为空,A中剩余两个 3、连接剩余的两个顶点。
*
18
树的顶点集合为12345
3 4
这棵树对应序列(2,3,2)
****
2
(4)哪些最优?
选用教材
组合数学
(第四版) 卢开澄 卢华明 著
清华大学出版社

高考数学一轮总复习课件:排列与组合

高考数学一轮总复习课件:排列与组合

其余 6 人有 A66种方法,故共有 5×A66=3 600(种).
方法二:排头与排尾为特殊位置.排头与排尾从非甲的 6 个 人中选 2 个排列,有 A26种方法,中间 5 个位置由余下 4 人和甲进 行全排列,有 A55种方法,共有 A26×A55=3 600(种).
(4)(捆绑法)将女生看成一个整体,与 3 名男生在一起进行全 排列,有 A44种方法,再将 4 名女生进行全排列,也有 A44种方法, 故共有 A44×A44=576(种).
再除以定序元素的全排列 正难则反,等价转化的方法
思考题 1 (1)(2019·上海春季高考题)某校组队参加辩 论赛,从 6 名学生中选出 4 人分别担任一、二、三、四辩,若其 中学生甲必须参赛且不担任四辩,则不同的安排方法种数为 ___1_8_0___(结果用数值表示).
【解析】 先安排甲,有 3 种情况,再从剩下的 5 名学生中选 3 人排列,有 A35种情况,
∴共有 3A35=180 种方法.
(2)在航天员进行的一项太空实验中,要先后实施 6 个程序,
其中程序 A 只能出现在第一或最后一步,程序 B 和 C 在实施时
必须相邻,则实验顺序的编排方法共有( C )
A.34 种
B.48 种
C.96 种
D.144 种
【解析】 程序 A 有 A12=2(种),将程序 B 和 C 看作一个整体 与除 A 外的元素排列,有 A22A44=48(种),所以由分步乘法计数原理, 实验顺序的编排方法共有 2×48=96(种).故选 C.
(5)分三步进行: 第一步:选 1 男 1 女分别担任两个职务为 C17C15种; 第二步:选 2 男 1 女补足 5 人有 C26C14种; 第三步:为这 3 人安排工作有 A33种. 由分步乘法计数原理共有 C17C15C26C14A33=12 600 种选法. 【答案】 (1)120 (2)252 (3)672 (4)596 (5)12 600

第一讲 排列与组合

第一讲   排列与组合

第一讲 排列与组合【基础知识】1)排列:一般地,从n 个不同元素中取出m (m ≤n )个元素,按照一定的顺序(或不同的位置)排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.注意:排列的定义中包含两个基本内容: 一是“取出元素(不重复取)”;二是“选出的元素与顺序有关”2)从n 个不同元素中取出m (m ≤n )个元素所有排列的个数,叫做从n 个不同元素中取出m 个元素的一个排列数. 3) 排列数公式: 4) 全排列5)一般地,从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.6)排列与组合的共同点与不同点共同点:都要“从n 个不同元素中任取m 个元素”不同点:对于所取出的元素,排列要“按照一定的顺序排成一列”,而组合却是“不管怎样的顺序并成一组”.排列与元素的顺序有关,而 7)组合数公式8)组合数的性质【典型例题】一、两个基本原理例1.由数字1,2,3,4(1) 可以组成多少个3位数;(2) 可组成多少个没有重复数字的三位数;(3) 可组成多少个没有重复数字的三位数,且百位数字大于十位数字,十位数字大于个位数字。

例2.用5种不同的颜色给途中A 、B 、C 、D 四个区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,求有多少种不同的涂色方法?),(,*N n m n m A m n ∈≤、记为:)!(!)1()2)(1(n m n m m n n n n A m -=+---= 12)1(n ⋅-= n n A n m n n m n C C -=11-++=m nm n m n C C C 10=n C变式训练1:1. 五名学生报名参加四项体育比赛,每人限报一项,报名方式的种数为多少?五名学生争夺四项比赛的冠军(冠军不并列),获得冠军的可能性有多少种?2. 将3种作物种植在如右图的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一作物,不同的种植方式有多少种?3. 将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方式有多少种?4. 如图,一个环形花坛分成A 、B 、C 、D 四块,现有4种不同的花供选种,要求在每块地里种1种花,且相邻的2块种不同的花,则不同的种法总数为多少种?5. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )(A )72 (B )96 (C ) 108 (D )144二.排列与组合例3.甲、乙、丙、丁四名同学排成一排,分别计算满足下列条件的排列种数.(1) 甲不排在头、乙不在排尾;(2) 甲不在第一位,乙不在第二位,丙不在第三位,丁不在第四位;(3) 甲一定在乙的右端(可以不邻).例4. 由数字0,1,2,3,4,5可组成(各位上的数字不允许重复)(1)多少个6位数;(2)多少个6位偶数;(3)多少个被5整除的五位数.变式训练2:1. 从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览。

第一章排列与组合

第一章排列与组合

在气象学方面。他曾亲自组织人力进行过大气压和天气状况 的观察
1691年,莱布尼茨致信巴本,提出了蒸汽机的基本思想。 1677年,莱布尼茨发表《通向一种普通文字》,以后他长时
期致力于普遍文字思想的研究,对逻辑学、语言学做出了一 定贡献。今天,人们公认他是世界语的先驱
……………………
2020/4/23
一种常见的思路是按轮计场,费事。
另一种思路是淘汰的选手与比赛(按场计)集一一对 应。99场比赛。
2020/4/23
组合数学-上海理工大学
20
例10 设凸n边形的任意三条对角线不共点,求对 角线在多边形内交点的个数。
可以先计算对角线的个数,然后计算交点,但是 存在在多边形内无交点的情形,比较复杂。
可以考虑对应关系:多边形内交点to多边形四个顶 点。
2020/4/23
组合数学-上海理工大学
15
例6 (1) n=73*112*134,求除尽n的数的个数; (2) n=73*142,求除尽n的数的个数;
(1)4×3×5=60;7 i 1 j 1 1 k 0 3 i 3 ,0 j 2 ;0 k 4 (2) 6×3=18
例7 在1000和9999之间有多少每位上的数字均不同 的奇数?
2020/4/23
组合数学-上海理工大学
11
乘法法则:设具有性质A的事件有m个,具有性质B 的事件有n个,则具有性质A和B的事件有mn个。
集合论语言: 若 |A| = m , |B| = n , AB = {(a,b) | aA,bB} , 则
| AB | = mn 。
例3 从A到B有三条道路,从B到C有两条道路,则 从A经B到C有 32 = 6 条道路。
1646.7.1.—1716.11.14.)德国最重要的自然科学家、数学家、 物理学家、历史学家和哲学家,一个举世罕见的科学天才,和 牛顿同为微积分的创建人。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n n! n C (n, r ) C r r !(n r )! r
例14 有5本不同的日文书,7本不同的英文书,10本 不同的中文书。 (1) 取2本不同文字的书; (2) 取2本相同文字的书; (3) 任取两本书。 (1) 5×7+5×10+7×10=155;
(2) C(5,2)+C(7,2)+C(10,2)=10+21+45=76;
解1:标号可产生5!个14个元的全排列。 若设x为所求方案,则 x · 5!=14!。 故 x=14!/5!=726485760。
解2:在14个元的排列中先确定“1”的位置,有 C(14,5)种选择, 再确定车的位置,有9!种选择。 故 C(14,5)· 即为所求。 9!
解3:实际上相当于14个位置中选取9辆汽车的排列, 即为 P(14,9)。
(2) n=73*142,求除尽n的数的个数;
(1) 4×3×5=60; (2) 6×3=18 例7 在1000和9999之间有多少每位上的数字均不同 的奇数? 个位数有5种取法,千位数有8种取法,百位,十 位各有8,7种取法。5×8×8×7=2240。
例8 由a,b,c,d,e这5个字符,从中取6个构成字符串, 要求 (1) 第1,6个字符必为子音字符b,c,d;(2) 每个字符串必有两个母音字符a或e,且两个母音 字符不相邻;(3) 相邻的两个子音字符必不相同。 求满足这样的条件的字符串的个数。 由条件(1),两个母音字符的位置不能在1,6, 又由条件(2),位置只能是(2,4),(2,5)和(3,5)之一。 对每种格式,母音2×2,相邻子音3×2,其他两个 子音3×3。因此答案为 3×(2×2×3×2×3×3)=648。
乘法法则:设具有性质A的事件有m个,具有性质B 的事件有n个,则具有性质A和B的事件有mn个。 集合论语言: 若 |A| = m , |B| = n , AB = {(a,b) | aA,bB} , 则 | AB | = mn 。 例3 从A到B有三条道路,从B到C有两条道路,则 从A经B到C有 32 = 6 条道路。 加法法则:得到事件通过两种不同的方法。 乘法法则:得到事件通过两个步骤。
例4 某种样式的运动服的着色由底色和装饰条纹的 颜色配成。底色可选红、蓝、橙、黄,条纹色可选 黑、白,则共有 42 = 8 种着色方案。
若此例改成底色和条纹都用红、蓝、橙、黄四种颜 色的话,则方案数就不是 4 4 = 16, 而只有 4 3 = 12 种。
例5 (1) 求小于10000的含1的正整数的个数; (2) 求小于10000的含0的正整数的个数。 (1) 小于10000的不含1的正整数可看做4位数,但 0000除外. 故有9×9×9×9-1=6560个。 含1的有:9999-6560=3439个, 另:全部4位数有104个,不含1的四位数有94个, 含1的4位数为两个的差:104-94= 3439个。
20 ×6840=136800。
例12 A单位有7名代表,B单位有3位代表,排成 一列合影要求B单位的3人排在一起,问有多少种 不同的排列方案。 B单位3人按一个元素参加排列,P(8,8)×P(3,3)。 接上例,若A单位的2人排在队伍两端,B单位的3 人不能相邻,问有多少种不同的排列方案? A单位的人排法固定后A*A*A*A*A*A*A,B单位第 一人有6种选择,第二人有5种,第三人有4种,因 此答案为P(7,7)×6×5×4。
(2) C(4,2)×C(7,3)+C(4,3)×C(7,2)+C(4,4)×C(7,1);
(3) C(10,5)+C(9,4),或C (11,5)-C(9,3)。
例16 从[1,300]中取3个不同的数,使这3个数的和 能被3整除,有多少种方案? 将[1,300]分成3类: A={i|i≡1(mod 3)}={1,4,7,…,298}, B={i|i≡2(mod 3)}={2,5,8,…,299}, C={i|i≡3(mod 3)}={3,6,9,…,300}。 要满足条件,有四种情形: 1. 3个数同属于A; 2. 3个数同属于B; 3. 3个数同属于C; 4. A,B,C各取一数。 故共有 3C(100,3)+1003=485100+1000000=1485100。
例9 在64名选手之间进行淘汰赛(即一场的比赛结 果,失败者退出比赛),最后产生一名冠军,问要举 行几场比赛? 一种常见的思路是按轮计场,费事。 另一种思路是淘汰的选手与比赛(按场计)集一一对 应。63场比赛。
例10 设凸n边形的任意三条对角线不共点,求对 角线在多边形内交点的个数。 可以先计算对角线的个数,然后计算交点,但是 存在在多边形内无交点的情形,比较复杂。 可以考虑对应关系:多边形内交点to多边形四个顶 点。 可以证明这是一一映射(映射,单且满)。
例19 一个凸 n 边形,它的任何3条对角线都不交 于同一点,问它的所有对角线在凸 n 边形内部有 多少个交点。 注意到,每个交点只有两个对角线通过,对应了4个 顶点所组成的一个组合,不同的交点对应的组合也 不相同。
故共有C(n,4)个交点。
4. 圆周排列
定义:从 n 个不同的数中不重复的取出取出 r 个沿 一圆周排列,称为一个圆周排列。 所有的r-圆周排列数记为 Q(n,r)。 注意圆周排列与排列的不同之处在于圆周排列首尾 相邻。 如a、b、c、d的4种不同排列 abcd, dabc, cdab, bcda, 在圆周排列中都是一个排列。
例11 由5种颜色的星状物,20种不同的花排列成如 下图案:两边是星状物,中间是3朵花,问共有多少 种这样的图案? 两边是星状物,从五种颜色的星状物中取两个的排 列的排列数是 P(5,2)=20。 20种不同的花取3种排列的排列数是
P(20,3)=20 × 19 × 18=6840。
根据乘法法则得图案数为
从 n 个中取 r 个的圆周排列的排列数为: Q(n,r)=P(n,r)/r , Q(n,n)=(n-1)! 以4个元素为例
1
2 4 2
2≤r≤n
1
4 2
1 4 2 3 3412
1
4
3 1234
3 2341
2. 一一对应
“一一对应”概念是一个在计数中极为基本的概 念。一一对应既是单射又是满射。
如我们说A集合有n个元素 |A|=n,无非是建立了将A 中元与[1,n]元一一对应的关系。 在组合计数时往往借助于一一对应实现模型转换。 比如要对A集合计数,但直接计数有困难,于是可 设法构造一易于计数的B,使得A与B一一对应。
(2)“含0”和“含1”不可直接套用。
0019含1但不含0。
不含0的1位数有9个,2位数有92个,3位数有93个 ,4位数有94个。 不含0小于10000的正整数有
9+9 +9 +9 =(9 -1)/(9-1)=7380
含0小于10000的正整数有 9999-7380=2619.
2
3
4
5
例6 (1) n=73*112*134,求除尽n的数的个数;
例17 假定有a1,a2,a3,a4,a5, a6, a7,a8这8位成员, 两两配对分成4组,试问有多少种方案? 解1:a1选择其同伴有7种可能, 选定后,余下6人中某一人选择其同伴只有5种可能, 余下4人,其中某1人有3种选择可能, 在余下的2人只好配成一对,无法选择, 故共有 N=7×5×3=105。
排列与组合
1.1 排列与组合
1.2 排列组合的生成算法
1.3 组合意义的解释与应用举例
1.1 排列与组合
1. 加法法则和乘法法则 2. 一一对应 3. 排列、组合 4. 圆周排列 5. 可重排列 6. 可重组合
7. 不相邻的组合
1. 加法法则与乘法法则
加法法则:设具有性质A的事件有m个,具有性 质B的事件有n个,则具有性质A或B的事件有 m+n个。
(3) 155+76=231=C(5+7+10,2)。
例15 甲和乙两单位共11个成员,其中甲单位7人, 乙单位4人,拟从中组成一个5人小组: (1) 要求包含乙单位恰好2人; (2) 要求至少包含乙单位2人; (3) 要求乙单位某一人与甲单位特定一人不能同时在 这个小组。 试求各有多少种方案。
(1) C(4,2)×C(7,3);
例13 试求由{1,3,5,7}组成的所有不重复出现的整 数的总和。 这样的整数可以是1位数,2位数,3位数,4位数,若设
Si , i 1, 2,3, 4.
是 i 位数的总和,则
S=S1+S2+S3+S4,
于是我们只需要计算Si即可。 S1=1+3+5+7=16;
S2=3(1+3+5+7)10+3(1+3+5+7)= 480+48=528; S3=6(1+3+5+7)100+6(1+3+5+7)10+6(1+3+5+7) =9600+960+96=106543;6(1+3+5+7)100+6(1+3+5+7)10 +6(1+3+5+7)=96000+9600+960+96=106656; S=16+528+10656+106656=117856。
组合数学
钱 江 jqian104@ 北邮理学院
组合数学就是按照一定的规则来安排一些离散个 体的有关问题。其内容包括: 1、计数与枚举 排列、组合、母函数、递推关系、容斥原理、 Burnside引理、Polya定理 2、容斥原理和鸽巢原理
3、组合设计
4、组合算法和组合优化
相关文档
最新文档