数轴法:有绝对值的最小值(7年级数学)

合集下载

部编数学七年级上册专题绝对值压轴题(最值与化简)专项讲练重难题型技巧提升专项精练(人教版)含答案

部编数学七年级上册专题绝对值压轴题(最值与化简)专项讲练重难题型技巧提升专项精练(人教版)含答案

专题03 绝对值压轴题(最值与化简)专项讲练专题1. 最值问题最值问题一直都是初中数学中的最难点,但也是高分的必须突破点,需要牢记绝对值中的最值情况规律,解题时能达到事半功倍的效果。

题型1. 两个绝对值的和的最值【解题技巧】b x a x -+-目的是在数轴上找一点x ,使x 到a 和b 的距离和的最小值:分类情况(x 的取值范围)图示b x a x -+-取值情况当a x <时无法确定当b x a ≤≤时b x a x -+-的值为定值,即为b a -当b x >无法确定结论:式子b x a x -+-在b x a ≤≤时,取得最小值为b a -。

例1.(2021·珠海市初三二模)阅读下面材料:数轴是数形结合思想的产物.有了数轴以后,可以用数轴上的点直观地表示实数,这样就建立起了“数”与“形”之间的联系.在数轴上,若点A ,B 分别表示数a ,b ,则A ,B 两点之间的距离为AB a b =-.反之,可以理解式子3x -的几何意义是数轴上表示实数x 与实数3两点之间的距离.则当25x x ++-有最小值时,x 的取值范围是()A .2x <-或5x >B .2x -≤或5x ≥C .25x -<<D .25x -≤≤【答案】D【分析】根据题意将25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,分三种情况分别化简,根据解答即可得到答案.【解析】方法一:代数法(借助零点分类讨论)当x<-2时,25x x ++-=(-2-x )+(5-x )=3-2x ;当25x -≤≤时,25x x ++-=(x+2)+(5-x )=7;当x>5时,25x x ++-=(x+2)+(x-5)=2x-3;∴25x x ++-有最小值,最小值为7,此时25x -≤≤,故选:D.方法二:几何法(根据绝对值的几何意义)25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,通过数轴分析反现当25x -≤≤时,25x x ++-有最小值,最小值为7。

2022年秋七年级数学上册 第1章 有理数 1.2 数轴、相反数与绝对值 1.2.3 绝对值课件 (

2022年秋七年级数学上册 第1章 有理数 1.2 数轴、相反数与绝对值 1.2.3 绝对值课件 (


9、 人的价值,在招收诱惑的一瞬间被决定 。2022/3/12022/3/1Tuesday, March 01, 2022

10、低头要有勇气,抬头要有低气。2022/3/12022/3/12022/3/13/1/2022 8:39:43 AM

11、人总是珍惜为得到。2022/3/12022/3/12022/3/1M ar-221- Mar-22
B.原点或原点左侧
C.原点右侧
D.原点或原点右侧
2. 已知在数轴上,O为原点,A,B两点所表示的数 分别为a,b,利用下列A,B,O三点在数轴上的位置关 系,可以判断|a|<|b|的选项是( B )
A
B
C
D
3. 下列说法中正确的是( C ) A.任何一个有理数的绝对值都是正数 B.负数的绝对值是负数 C.若|a|+|b|=0,则|a|=0且|b|=0 D.若a≠b,则|a|≠|b| 4. 化简:|π-3.14|= π-3.14 , -|-25|= -25 .
【解析】当 a=0 时,A、B、C 说法均不正确,而|a| +1≥1,一定是正数,故 D 项正确.
6. 若|x-3|+|y-2|=0,则|x+y|的值为 5 . 7. a,b 在数轴上位置如图,化简|a|-|b|=-a-b .
1.若|a|=-a,则实数 a 在数轴上的对应点一定在
(B) A.原点左侧
②|-6|= 6 ;|-3.1|= 3.1 ;|-2.7|= 2.7 ; ③|0|= 0 . (2)根据(1)中的规律发现,不论正数、负数和0,它 们的绝对值一定是 非负数 ,即|a|≥0.
(3)根据(2)解决下列问题: ①当x= 0 时,|x|+5有最小值,此时的最小值 是 5; ②当x= 1 时,7-|x-1|有最大值,此时的最大值 是7.

部编数学七年级上册专题03绝对值的几何意义(解析版)含答案

部编数学七年级上册专题03绝对值的几何意义(解析版)含答案

专题03 绝对值的几何意义类型一求两个绝对值和的最小值1.数学实验室:我们知道,在数轴上,|a|表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A、B,分别表示有理数a、b,那么A、B两点之间的距离AB=|a-b|.利用此结论,回答以下问题:(1)数轴上表示1和5的两点之间的距离是______,数轴上表示1和-5的两点之间的距离是______.(1+1分,注意写出最后结果)(2)式子|x+2|可以看做数轴上表示x和______的两点之间的距离.(3)式子|x+2|+|x-3|的最小值是______.(4)当|x+2|+|x-3|取得最小值时,数x的取值范围是______.【答案】(1)4,(2)6;(3)-2;(4)5.(5)-2£x£3.【解析】【分析】根据绝对值的定义进行填空即可.【详解】-=4,数轴上表示1和-5的两点之间的距离是解:(1)数轴上表示1和5的两点的距离是15()6;15--=故答案为4,6;x--,(2)∵|x+2|=()2∴式子|x+2|可以看做数轴上表示x和-2的两点之间的距离;故答案为-2;(3)当x 在数轴上表示-2和3之间时,此时|x +2|+|x -3|的最小值为5;故答案为5.(4) 当x 在数轴上表示-2和3之间时,此时|x +2|+|x -3|的最小值为5;即当|x +2|+|x -3|取得最小值时,数x 的取值范围是-2£x £3.故答案为-2£x £3.2.我们知道,在数轴上,|a|表示数a 到原点的距离,这是绝对值的几 何意义,进一步地,数轴上两个点A 、B ,分别用a 和b 表示,那么A 、B 两点之间的距离为AB =|a ﹣b|利用此结论,回答以下问题:(1)数轴上表示3 和7 的两点之间的距离是,数轴上表示﹣3 和﹣7 的两 点之间的距离是 ,数轴上表示2 和﹣3 的两点之间的距离是 ;(2)数轴上表示x 和﹣5 的两点A 、B 之间的距离是,如果|AB|=3,那 么x 的值为 ;(3)当代数式|x ﹣1|+|x ﹣3|取最小值时,相应的x 的取值范围是多少?最小值是多少?(4)已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a+4|+(b ﹣1)2=0,设点P 在数轴上对应的数是x ,当|PA|﹣|PB|=2时,求x 的值.【答案】(1)4;4;5;(2)5x +;-8或-2;(3)x 的范围是31x -££;最小值是4;(4)x 的值为12-.【解析】【分析】(1)(2)直接根据数轴上A 、B 两点之间的距离|AB |=|a ﹣b |.代入数值运用绝对值即可求任意两点间的距离.(3)根据|x ﹣a |表示数轴上x 与a 之间的距离,因而原式表示:数轴上一点到1和3距离的和,当x 在1和3之间时有最小值.(4)应考虑到A 、B 、P 三点之间的位置关系的多种可能解题.【详解】(1)数轴上表示3和7的两点之间的距离是|7﹣3|=4,数轴上表示﹣3和﹣7的两点之间的距离是|﹣7﹣(﹣3)|=4.数轴上表示2和﹣3的两点之间的距离是|2﹣(﹣3)|=5.(2)数轴上表示x 和﹣5的两点A 和B 之间的距离是|x ﹣(﹣5)|=|x +5|,如果|AB |=3,那么x 为﹣8或﹣2.(3)代数式|x ﹣1|+|x +3|表示在数轴上到1和﹣3两点的距离的和,当x 在﹣3和1之间时,代数式取得最小值,最小值是﹣3和1之间的距离4.故当﹣3≤x ≤1时,代数式取得最小值,最小值是4.(4)①当P 在点A 左侧时,|PA |﹣|PB |=﹣(|PB |﹣|PA |)=﹣|AB |=﹣5≠2.②当P 在点B 右侧时,|PA |﹣|PB |=|AB |=5≠2,∴上述两种情况的点P 不存在.③当P 在A 、B 之间时,|PA |=|x ﹣(﹣4)|=x +4,|PB |=|x ﹣1|=1﹣x .∵|PA |﹣|PB |=2,∴x +4﹣(1﹣x )=2,∴x 12=-,即x 的值为12-.故答案为(1)4;4;5.(2)|x +5|;﹣8或﹣2.(3)x 的范围是﹣3≤x ≤1;最小值是4.(4)x 的值为-12.【点睛】本题综合考查了一元一次方程的应用、数轴、绝对值的有关内容,解题的关键是正确理解题意给出的距离的定义,本题属于基础题型.3.“数形结合”是重要的数学思想.如:()32--表示3与2-差的绝对值,实际上也可以理解为3与2-在数轴上所对应的两个点之间的距离.进一步地,数轴上两个点A ,B ,所对应的数分别用a ,b 表示,那么A ,B 两点之间的距离表示为AB a b =-.利用此结论,回答以下问题:(1)数轴上表示2-和5两点之间的距离是__________.(2)若13x -=,则x =______.(3)若x 表示一个有理数,142x x ++-的最小值为_________.(4)已知数轴上两点A 、B 对应的数分别为2-,8,现在点A 、点B 分别以3个单位长度/秒和2单位长度/秒的速度同时向右运动,当点A 与点B 之间的距离为2个单位长度时,求点A 所对应的数是多少?【答案】(1)7;(2)4或2-;(3)142;(4)22或34.【解析】【分析】(1)利用数轴上两点之间的距离公式:AB a b =-,代入计算即可得到答案;(2)由3=3,± 可得13x -=或13,x -=- 再解方程即可得到答案;(3)先画好数轴,如图,A 表示1,2- B 表示4, 当x 对应的点B 在线段AC 上时,则此时111444,222AC AB BC x x æö=+=++-=--=ç÷èø而且利用两点之间线段最短,可得此时可得最小值;(4)如图,A 向右移动后对应的数为:23,t -+ B 向右移动后对应的数为:8+2,t 再利用两点之间的距离公式表示,AB 再利用2,AB = 建立绝对值方程,解方程可得答案.【详解】解:(1)数轴上表示2-和5两点之间的距离是:()52527,--=+=故答案为:7(2)Q 13x -=13x \-=或13,x -=-解得:4x =或 2.x =-故答案为:4或2-(3)如图,A 表示1,2- B 表示4, 当x 对应的点B 在线段AC 上时,则11,4,22AB x x BC x æö=--=+=-ç÷èø 111444,222AC AB BC x x æö\=+=++-=--=ç÷èø此时:142x x ++-的值最小,为14.2故答案为:14.2(4)如图,A 向右移动后对应的数为:23,t -+ B 向右移动后对应的数为:8+2,t而移动后:2,AB =()8+2232,t t \--+=102,t \-=102t \-=或102,t -=-解得:8t =或12.t =当8t =时,A 向右移动后对应的数为:2322422,t -+=-+=当12t =时,A 向右移动后对应的数为:2323634.t -+=-+=【点睛】本题考查的是数轴上两点之间的距离,绝对值的含义,建立绝对值方程,一元一次方程的解法,掌握数形结合的方法解题是解本题的关键.4.认真阅读下面的材料,完成问题.在学习绝对值时,我们知道绝对值的几何含义为数轴上一点到原点的距离.如|5|意义为表示5的点到原点的距离,实际上可理解为,|5|=|5-0|,即5到0点的距离.又如|5-3|表示5、3在数轴上对应的两点之间的距离;|5-(-3)|表示5、-3在数轴上对应的两点之间的距离,容易知道|5-(-3)|=|5+3|=8.即5与-3相距8个单位长度.一般地,点A 、B 在数轴上分别表示有理数a 、b ,那么A 、B 之间的距离可表示为|a -b |.(1)利用上面的知识回答:点A 、B 在数轴上分别表示有理数-5、1,那么A 到B 的距离可表示为 ,这个距离的计算结果是 ;(2)利用上面的知识回答:若|x -1|=2,则x = ;(3)利用上面的知识回答:|x -2|+|x +1|的最小值是 .【答案】(1)|1-(-5)|,6;(2)-1或3;(3)3.【解析】【分析】(1)根据数轴上两点距离公式表示和计算即可;(2)根据点到1的距离等于2,即可找出x =-1或3即可;(3)根据条件化去绝对值当x ≥2时,|x -2|+|x +1|= 2x -1≥3,-1≤x <2时,|x -2|+|x +1|=3,当x <-1时,|x -2|+|x +1|=1-2x >3即可.【详解】解:(1)|1-(-5)|=|1+5|=6;故答案为:|1-(-5)|,6;(2)∵| 3-1|=2,∴x =3,∵|-1-1|=2,∴x=-1,∴|x -1|=2,x =-1或3,故答案为-1或3;(3)当x ≥2时,|x -2|+|x +1|=x -2+x +1=2x -1≥3,-1≤x <2时,|x -2|+|x +1|=2-x +x +1=3,当x <-1时,|x -2|+|x +1|=2-x -x -1=1-2x >3,|x -2|+|x +1|的最小值是3.故答案为:3.【点睛】本题考查数轴上两个点之间的距离,绝对值的意义,化简绝对值的方法,整式的加减法,同类项,掌握数轴上两个点之间的距离,绝对值的意义,化简绝对值的方法,整式的加减法,同类项是解题关键.5.我们知道,||a 可以理解为|0|a -,它表示:数轴上表示数a 的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点,A B ,分别用数,a b 表示,那么,A B 两点之间的距离为||||AB a b =-,反过来,式子||-a b 的几何意义是:数轴上表示数a 的点和表示数b 的点之间的距离.利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数1-的点和表示数3-的点之间的距离是__________.(2)数轴上点A 用数a 表示,若||5a =,那么a 的值为_________.(3)数轴上点A 用数a 表示:①若|3|5a -=,那么a 的值是________.②当|2||3|5a a ++-=时,数a 的取值范围是________,这样的整数a 有________个.③|3||2017|a a -++有最小值,最小值是___________.【答案】(1)5;2;(2)5或5-;(3)①2-或8;②23a -££,6;③2020.【解析】【分析】(1)根据两点之间的距离公式进一步计算即可;(2)根据绝对值的定义求解即可;(3)①利用绝对值的定义可知35a -=或5-,然后进一步计算即可;②|2||3|5a a ++-=的意义是表示数轴上到表示2-和表示3的点的距离之和是5的点的坐标,据此进一步求解即可;③|3||2017|a a -++是表示数轴上表示3与表示2017-的点的距离之和,然后进一步求解即可.【详解】(1)数轴上表示数8的点和表示数3的点之间的距离是:83=5-;数轴上表示数1-的点和表示数3-的点之间的距离是:()13=2---,故答案为:5,2;(2)若||5a =,则5a =或5-,故答案为:5或5-;(3)①若|3|5a -=,则35a -=或5-,∴8a =或2-,故答案为:2-或8;②∵|2||3|5a a ++-=的意义是表示数轴上到表示2-和表示3的点的距离之和是5的点的坐标,∴23a -££,其中整数有2-、1-、0、1、2、3共6个,故答案为:23a -££,6;③∵|3||2017|a a -++是表示数轴上表示3与表示2017-的点的距离之和,∴当20173a -££时,|3||2017|a a -++有最小值,此时最小值为:3(2017)=2020--,故答案为:2020.【点睛】本题主要考查了绝对值意义的综合运用,熟练掌握相关概念是解题关键.类型二 求多个绝对值和的最小值6.我们知道,a 表示数a 对应的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A 、B 分别表示数a 、b ,那么AB a b =-.利用此结论,回答下列问题:(1)数轴上表示2和5的两点之间的距离是_____,数轴上表示2-和5-的两点之间的距离是_____,数轴上表示1和3-的两点之间的距离是____;(2)数轴上表示x 和-1的两点A 、B 之间的距离是____,如果AB =2,那么x 的值为_____;(3)写出13x x +++表示的几何意义:_____,该式的最小值为______;(4)123x x x +++++的最小值_____.【答案】(1)3,3,4;(2)1x +,1或-3;(3)点x 到1-的距离与点x 到3-的距离之和,2;(4)2【解析】【分析】(1)结合题意,根据数轴和绝对值的性质计算,即可得到答案;(2)根据数轴、绝对值的性质计算,即可得到答案;(3)根据数轴、绝对值的性质,对x 的取值分类计算,即可完成求解;(4)结合(3)的结论,根据数轴和绝对值的性质计算,即可得到答案.【详解】(1)数轴上表示2和5的两点之间的距离是:2533-=-=;数轴上表示2-和5-的两点之间的距离是:()()25253---=-+=;数轴上表示1和3-的两点之间的距离是:()13134--=+=;故答案是:3,3,4;(2)数轴上表示x 和-1的两点A 、B 之间的距离是:()11--=+x x ;∵AB =2∴()112x x --=+=∴1x =或3-故答案为:1x +,1或-3(3)13x x +++表示的几何意义:点x 到1-的距离与点x 到3-的距离之和;当3x <-时,132x x +++>当31x -££-时,13132x x x x +++=--++=当1x >-时,132x x +++>∴13x x +++的最小值为:2故答案为:点x 到1-的距离与点x 到3-的距离之和,2;(4)结合(3)的结论,当31x -££-时, 13x x +++的最小值为:2∴12322x x x x +++++=++当2x =-时,2x +取最小值,即20x +=∴123202x x x +++++=+=∴123x x x +++++的最小值为:2故答案为:2.【点睛】本题考查了数轴、绝对值的知识;解题的关键是熟练掌握数轴、绝对值的性质,从而完成求解.7.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.我们知道|4||40|=-,它的几何意义是数轴上表示4的点与原点(即表示0的点)之间的距离,又如式子|73|-,它的几何意义是数轴上表示数7的点与表示数3的点之间的距离.也就是说,在数轴上,如果点A 表示的数记为a ,点B 表示的数记为b ,则A ,B 两点间的距离就可记作||-a b .回答下列问题:(1)几何意义是数轴上表示数2的点与数3-的点之间的距离的式子是________;式子|5|+a 的几何意义是_______________________;(2)根据绝对值的几何意义,当|2|3-=m 时,m =________;(3)探究:|1||9|++-m m 的最小值为_________,此时m 满足的条件是________;(4)|1||9||16|++-+-m m m 的最小值为________,此时m 满足的条件是__________.【答案】(1)23+或2(3)--;数轴上表示数a 的点与数2的点之间的距离.(2)1-或5(3)10,19m -££(4)17,9m =【解析】【分析】(1)根据距离公式及定义表示即可;(2)分点在2表示的数的点的左边和右边两种情形求解;(3)利用数形结合思想,画数轴求解即可;(4)利用数形结合思想,画数轴求解即可.(1)解:①在数轴上的意义是表示数2的点与表示数3-的点之间的距离的式子是()23-- ,故答案为:()2323--=+;②∵5a +=|a -(-5)|,∴5a +在数轴上的意义是表示数a 的点与表示数-5的点之间的距离.故答案为:表示数a 的点与表示数-5的点之间的距离.(2)解:∵2m -表示数m 到2的距离,画数轴如下:当数在2的右边时,右数3个单个单位长,得到对应数是5,符合题意;当数在2的左边时,左数3个单个单位长,得到对应数是-1,符合题意;故答案为:-1或5;(3)解:∵19m m ++-表示数m 与-1,9的距离之和,画数轴如下:根据两点之间线段最短,-1表示点与9表示点的最短距离为9-(-1)=10,此时动点m 在-1表示点与9表示点构成的线段上,∴19m -££ ;故答案为:10、19m -££;(4)解:根据题意,画图如下,根据两点之间线段最短,-1表示点与16表示点的最短距离为16-(-1)=17,此时动点m 在-1表示点与16表示点构成的线段上,且到9表示的点的距离为0,∴9m = ;故答案为:17、 9m =.【点睛】本题考查了数轴上两点间的距离计算公式,线段最短原理,数轴的意义,解题的关键是利用数形结合思想,分类思想,结合数轴,运用数学思想解题.8.我们知道,在数轴上,|a |表示数a 到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A 、B ,分别用a ,b 表示,那么A 、B 两点之间的距离为:AB =|a ﹣b |.利用此结论,回答以下问题:(1)数轴上表示﹣20和﹣5的两点之间的距离是 .(2)数轴上表示x 和﹣1的两点A ,B 之间的距离是 .(3)式子|x +1|+|x ﹣2|+|x ﹣3|的最小值是 .(4)结合数轴求|1||||2||4|x x x x -++++-的最小值为,此时符合条件的整数x 为 .(5)结合数轴求4|1|||3|2|2|4|x x x x -++++-的最小值为,此时符合条件的整数x为 .(6)结合数轴求|1||3|x x ---的最小值为 ,最大值为 .【答案】(1)15;(2)|x +1|;(3)4;(4)7;0,1;(5)16;1;(6)-2;2.【解析】【分析】(1)利用两点距离公式-5-(-20)计算即可;(2)利用两点距离公式|x -(-1)|计算即可;(3)分当x ≤-1当-1<x ≤2,当2<x ≤3,当x ≥3区间化去绝对值,合并同类项即可;(4)分当x ≤-2,当-2≤x ≤0, 当0≤x ≤1, 当1≤x ≤4, 当x ≥4区间化去绝对值,合并同类项,再确定区间的代数式最小值即可;(5)分当x ≤-2,当-2≤x ≤0, 当0≤x ≤1, 当1≤x ≤4, 当x ≥4区间化去绝对值,合并同类项,再确定区间的代数式最小值即可;(6)分区间化去绝对值当x ≤1,|1||3|2x x ---=-,当1≤x ≤3,|1||3|242x x x ---=-³- ,当x ≥3,|1||3|2x x ---=即可.【详解】解:(1)-5-(-20)=-5+20=15,故答案为15;(2)|x -(-1)|=|x +1|,故答案为:|x +1|;(3)当x ≤-1,|x +1|+|x ﹣2|+|x ﹣3|=- x -1 –x +2- x +3=-3x +4≥7,当-1<x ≤2,|x +1|+|x ﹣2|+|x ﹣3|= x +1–x +2- x +3=- x +6≥4,当2<x ≤3,|x +1|+|x ﹣2|+|x ﹣3|= x +1+x -2- x +3= x +2>4,当x >3,|x +1|+|x ﹣2|+|x ﹣3|= x +1+x -2+ x -3=3 x -4>5,式子|x +1|+|x ﹣2|+|x ﹣3|的最小值是4,故答案为4;(4)当x ≤-2,|1||||2||4|1243411x x x x x x x x x -++++-=----+-=-³,当-2≤x ≤0,|1||||2||4|124727x x x x x x x x x -++++-=--+++-=-³当0≤x ≤1,|1||||2||4|1247x x x x x x x x -++++-=-++++-=当1≤x ≤4,|1||||2||4|124527x x x x x x x x x -++++-=-++++-=+³当x ≥4,||1||||2||4|1244313x x x x x x x x x -++++-=-++++-=-³∴|1||||2||4|x x x x -++++-的最小值为7,符合条件的整数x 为0,1,故答案为:7;0,1;(5)当x ≤-2,4|1|||3|2|2|4|44368261026x x x x x x x x x -++++-=----+-=-³,当-2≤x ≤0,4|1|||3|2|2|4|44368218418x x x x x x x x x -++++-=--+++-=-³当0≤x ≤1,4|1|||3|2|2|4|44368218218x x x x x x x x x -++++-=-++++-=-³当1≤x ≤4,4|1|||3|2|2|4|44368210616x x x x x x x x x -++++-=-++++-=+³当x ≥4,|4|1|||3|2|2|4|44362810636x x x x x x x x x -++++-=-++++-=-³∴|1||||2||4|x x x x -++++-的最小值为16,符合条件的整数x 为1,故答案为16;1;(6)当x ≤1,()|1||3|132x x x x ---=---=-,当1≤x ≤3,()|1||3|13242x x x x x ---=---=-³- ,当x ≥3,()|1||3|132x x x x ---=---=,|1||3|x x ---的最小值为-2,最大值为2.故答案为-2;2.【点睛】本题考查数轴上两点距离,绝对值化简,最值,掌握数轴上两点距离,分区间绝对值化简方法是解题关键.9.阅读理解;我们知道,若A 、B 在数轴上分别表示有理数a 、b ,A 、B 两点间的距离表示为AB ,则AB a b =-.所以2x -的几何意义是数轴上表示X 的点与表示2的点之间的距离.根据上述材料,解答下列问题:(1)若点A 表示-2,点B 表示3,则AB = .(2)若35x -=,则x 的值是 .(3)如果数轴上表示数a 的点位于-4和2之间,求42a a ++-的值;(4)点a 取何值时,42a a ++-取最小值,最小值是多少?请说明理由;(5)直接回答:当式子-129a a a +-+¼+-取最小值时,相应a 的取值范围是多少?最小值是多少?【答案】(1)5;(2)2-或8;(3)6;(4)当42a -££时,最小值为6;(5)当5a =时,最小值为20【解析】【分析】(1)根据题目中的方法确定出AB 的长即可;(2)原式利用绝对值的代数意义化简即可求出x 的值;(3)根据数轴上两点间的距离的求法,化简42a a ++-即可;(4)根据线段中点到各点的距离的和最小,可得答案;(5)根据线段中点到各点的距离的和最小,可得答案.【详解】解:(1)235AB =--=,则5AB =;(2)∵35x -=,∴35x -=±,故2x =-或8,故答案为:2-或8;(3)∵数轴上表示数a 的点位于-4和2之间,∴42426a a a a ++-=++-=;(4)∵42a a ++-,代表点a 到4-和到2之间的距离之和,当42a -££时,42a a ++-取得最小值,最小值为6;(5)当5a =时,-129a a a +-+¼+-有最小值,最小值为=123456789a a a a a a a a a-+-+-+-+-+-+-+-+-=15a +=515+=20.【点睛】本题考查了绝对值,数轴两点间的距离,利用了两点间的距离公式,注意线段上的点与线段两端点的距离的和最小.10.我们知道,|a|表示数a 到原点的距离,这是绝对值的几何义.进一步地,数轴上两个点A 、B ,分别用a ,b 表示,那么AB=|a-b|.(思考一下,为什么?),利用此结论,回答以下问题:(1)数轴上表示2和5 的两点之间的距离是______,数轴上表示-2和-5的两点之间的距离是_____,数轴上表示1和-3的两点之间的距离是_______;(2)数轴上表示x 和-1的两点A 、B 之间的距离是_______,如果|AB|=2,那么x 的值为_______;(3)当x 取何值时,式子|x -1|+|x -2|+|x -3|+ |x -4|+|x -5|的值最小,并求出这个最小值.【答案】(1)3,3,4;(2)|x+1|,1或-3;(3)x=3,最小值为6【解析】【分析】(1)根据两点间的距离的求法列式计算即可得解;(2)根据绝对值的几何意义列式计算即可得解;(3)根据数轴上两点间的距离公式得到式子|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的意义,从而分析出x=3时,式子|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的值最小.【详解】解:(1)表示2和5 的两点之间的距离是|2-5|=3,表示-2和-5的两点之间的距离是|-2-(-5)|=3,表示1和-3的两点之间的距离是|1-(-3)|=4;(2)表示x 和-1的两点A 、B 之间的距离是|x+1|,∵|AB|=2,∴|x+1|=2,∴x+1=2或x+1=-2,解得x=1或-3;(3)式子|x-1|+|x-2|+|x-3|+|x-4|+|x-5|表示x 到数轴上1,2,3,4,5五个数的距离之和,∴当x 与3重合时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|有最小值,最小值为6,此时x=3.【点睛】本题主要考查了数轴以及数轴上两点间的距离公式的综合应用,解决问题的关键是掌握:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.解题时注意:数轴上任意两点分别表示的数是a 、b ,则这两点间的距离可表示为|a-b|.11.我们知道,a 表示数a 对应的点到原点的距离,这是绝对值的几何意义,进一步地,如果数轴上两个点,A B 分别表示数,a b ,那么,A B 两点之间的距离为a b -.利用此结论,回答下列问题:(1)数轴上表示3和-3的两点之间的距离是 ;(2)数轴上表示x 和-1的两点之间的距离为2,那么x 的值为 ;(3)直接写出24x x ++-的最小值为 ;(4)直接写出+21+4x x x +--的最小值为 ;(5)简要求出12399x x x x -+-+-++-…的最小值.【答案】(1)6;(2)-3或1;(3)6;(4)6;(5)2450【解析】【分析】(1)根据两点间的距离公式求解可得;(2)根据绝对值的定义可得;(3)得出24x x ++-的几何意义,从而得到最小值;(4)得出+21+4x x x +--的几何意义,从而得到最小值;(5)根据绝对值的几何意义可知:当x=50时值最小,然后去掉绝对值符号,再利用求和公式列式计算即可得解.【详解】解:(1)数轴上表示3和-3的两点之间的距离是()336--=,故答案为:6;(2)由题意可得:()12x --=,则x 的值为:-3或1;(3)∵24x x ++-表示数轴上表示点x 到-2和4两点的距离和,∴当x 在-2到4之间时,24x x ++-有最小值,最小值为6;(4)+21+4x x x +--表示数轴上表示点x 到-2和1和4三点的距离和,∴当x 与1重合时,+21+4x x x +--的值最小,最小值为6;(5)12399x x x x -+-+-++-…的中间一项是|x-50|,当x=50时,12399x x x x -+-+-++-…有最小值,∴12399x x x x -+-+-++-…=5015025035099-+-+-++-…=49+48+47+…+1+0+1+2+…+49=2×(1+2+ (49)=2450.【点睛】本题主要考查的是绝对值的意义的应用,理解并应用绝对值的定义及两点间的距离公式是解题的关键.类型三 利用绝对值的几何意义解方程12.阅读理解;我们知道」x 丨的几何意义是在数轴上数x 对应的点与原点的距离,即丨x 丨=丨x -0丨,也就是说丨x |表示在数轴上数x 与数0对应点之间的距离;这个结论可以推广为:丨x -y 丨表示在数轴上数x 、y 对应点之间的距离.在解题中,我们常常运用绝对值的几何意义.①解方程|x | = 2,容易看出,在数轴上与原点距离为2的点对应的数为±2,即该方程的解为 x =±2.②在方程丨x -1丨=2中,x 的值就是数轴上到1的距离为2的点对应的数,所以该方程的解是x = 3或x = -1.知识运用:根据上面的阅读材料,求下列方程的解(1)方程|x |= 5的解(2)方程| x -2|= 3的解【答案】(1)5x =±;(2)5x =或1-【解析】【分析】(1)由阅读材料中的方法求出x 的值即可;(2)由阅读材料中的方法求出x 的值即可;【详解】(1)∵在数轴上与原点距离为5的点对应的数为5±∴方程5x =的解是5x =±(2)∵在方程23x -=中,数轴上到2的距离为3的点对应的数.∴方程23x -=的解是5x =或1-.【点睛】本题考查了数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示方法是解题的关键.13.阅读下列材料:我们知道x 表示的是在数轴上数x 对应的点与原点的距离,即0x x =-,也就是说,x 对表示在数轴上数x 与数0对应点之间的距离.这个结论可以推广为12x x -表示在数轴上数1x ,2x 对应点之间的距离.例1解方程6x =.解:∵06x x =-=,∴在数轴上与原点距离为6的点对应的数为6±,即该方程的解为6x =±.例2解不等式12x ->.解:如图,首先在数轴上找出12x -=的解,即到1的距离为2的点对应的数为1-,3,则12x ->的解集为到1的距离大于2的点对应的所有数,所以原不等式的解集为1x <-或3x >.参考阅读材料,解答下列问题:(1)方程53x -=的解为______;(2)解不等式2219x ++<;(3)若123x x -++=,则x 的取值范围是_______;(4)若12y x x =--+,则y 的取值范围是_______.【答案】(1)128,2x x ==(2)62x -<<(3)21x -£<(4)33y -££【解析】【分析】(1)利用绝对值的性质,直接化简进而求出即可;(2)将原式化解为24x +<,首先在数轴上找出+24x =的解,即2x =或6x =-,则24x +<的解集为到-2的距离小于4的点对应的所有数,写出解集即可;(3)表示到1的点与到-2的点距离和为3,-2与1之间的距离为3,据此可得出答案;(4)1x -表示数x 到1的距离,2x +表示数x 到-2的距离,12y x x =--+表示数到1的距离减去数x 到-2的距离,然后分三者情况讨论y 的取值即可.【详解】解:(1)53x -=Q ,53x \-=±,解得:128,2x x ==,故答案为:128,2x x ==;(2)2219x ++<228x +<24x +<,首先找2=4x +的解,即到-2距离为4的点对应的数为-6和2,24x +<表示到-2的距离小于4的点对应的所有数,\不等式解集为62x -<<;(3)123x x -++=,表示到1的点与到-2的点距离和为3,Q -2与1之间的距离为3,21x \-£<;故答案为:21x -£<;(4)12y x x =--+,1x -表示数x 到1的距离,2x +表示数x 到-2的距离,12y x x =--+表示数x 到1的距离减去数x 到-2的距离,当x 在点1右边时,3y =-,当x 在点-2左边时,3y =,当x 在-2到1之间时,33y -££,33y \-££;故答案为:33y -££.【点睛】本条考查含有绝对值的方程和不等式的解法,正确对x的范围进行讨论,转化为一般的不等式是关键.14.我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为:|x﹣y|表示在数轴上数x、y对应点之间的距离;在解题中,我们常常运用绝对值的几何意义.①解方程|x|=2,容易看出,在数轴上与原点距离为2的点对应的数为±2,即该方程的解为x=±2.②在方程|x﹣1|=2中,x的值就是数轴上到1的距离为2的点对应的数,显然x=3或x=﹣1.③在方程|x﹣1|+|x+2|=5中,显然该方程表示数轴上与1和﹣2的距离之和为5 的点对应的x值,在数轴上1和﹣2的距离为3,满足方程的x的对应点在1的右边或﹣2的左边.若x的对应点在1的右边,由图示可知,x=2;同理,若x的对应点在﹣2的左边,可得x=﹣3,所以原方程的解是x=2或x=﹣3.根据上面的阅读材料,解答下列问题:(1)方程|x|=5的解是_______________.(2)方程|x﹣2|=3的解是_________________.(3)画出图示,解方程|x﹣3|+|x+2|=9.【答案】(1)x=5或-5;(2)x=5或-1;(3)x=5或-4.【解析】【详解】试题分析:(1)由于|x|=5表示在数轴上数x与数0对应点之间的距离,所以x=±5;(2)由于|x-2|=3中,x的值就是数轴上到2的距离为3的点对应的数,显然x=5或-1;(3)方程|x-3|+|x+2|=9表示数轴上与3和-2的距离之和为9的点对应的x值,在数轴上3和-2的距离为5,满足方程的x的对应点在3的右边或-2的左边,画图即可解答.试题解析:(1)∵在数轴上与原点距离为5的点对应的数为±5,∴方程|x|=5的解为x=±5;(2)∵在方程|x-2|=3中,x 的值是数轴上到2的距离为3的点对应的数,∴方程|x-2|=3的解是x=5或-1;(3)∵在数轴上3和-2的距离为5,5<9,∴满足方程|x-3|+|x+2|=9的x 的对应点在3的右边或-2的左边.若x 的对应点在3的右边,由图示可知,x=5;若x 的对应点在-2的左边,由图示可知,x=-4,所以原方程的解是x=5或x=-4.点睛:本题考查了绝对值的定义,解答此类问题时要用分类讨论及数形结合的思想,同时考查了学生的阅读理解能力.15.阅读材料:我们知道||x 的几何意义是在数轴上数x 对应的点与原点的距离,即|0|x x =-,也就是说||x 表示在数轴上数x 与数0对应的点之间的距离,这个结论可以推广为12||x x -表示数轴上1x 与2x 对应点之间的距离.例1:已知||2x =,求x 的值.解:容易看出,在数轴上与原点距离为2的点的对应数为2-和2,即x 的值为2-和2.例2:已知|1|2x -=,求x 的值.解:在数轴上与1的距离为2的点的对应数为3和1-,即x 的值为3和1-.仿照阅读材料的解法,求下列各式中的值.(1)||3x =(2)|2|4x +=(3)由以上探索猜想:对于任何有理数,36x x x -+-是否有最小值?如果有,写出最小值;如果没有,请说明理由.【答案】(1)-3和3;(2)-6和2;(3)有最小值,最小值为3【解析】【分析】(1)由阅读材料中的方法求出x 的值即可;(2)由阅读材料中的方法求出x 的值即可;(3)根据题意得出原式最小时x 的范围,并求出最小值即可.【详解】(1)3x =,在数轴上与原点距离为3的点的对应数为-3和3,即x 的值为-3和3;(2)24x +=,在数轴上与-2距离为4的点的对应数为-6和2,即x 的值为-6和2;(3)有最小值,最小值为3,理由是:∵36x x -+-理解为:在数轴上表示x 到3和6的距离之和,∴当x 在3与6之间的线段上(即36x ££)时:即36x x -+-的值有最小值,最小值为633-=.【点睛】本题考查了数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示方法是解题的关键.类型四 利用绝对值的几何意义解不等式16.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为________.(2)解不等式|x -3|+|x +4|≥9;(3)若|x -3|+|x +4|≥a 对任意的x 都成立,求a 的取值范围.【答案】(1) 1和-7;(2) x ≥4或x ≤-5(3) a ≤7【解析】【分析】(1)根据已知条件可以得到绝对值方程,可以转化为数轴上,到某个点的距离的问题,即可求解;(2)不等式|x -3|+|x +4|≥9表示到3与-4两点距离的和,大于或等于9个单位长度的点所表示的数;(3)|x -3|+|x +4|≥a 对任意的x 都成立,即求到3与-4两点距离的和最小的数值.【详解】(1)方程|x +3|=4的解就是在数轴上到-3这一点,距离是4个单位长度的点所表示的数,是1和-7.故解是1和-7;(2)由绝对值的几何意义知,该方程表示求在数轴上与3和-4的距离之和为大于或等于9的点对应的x 的值.在数轴上,3和-4的距离为7,满足方程的x 对应点在3的右边或-4的左边,若x 对应点在3的右边,由图可以看出x ≥4;同理,若x 对应点在-4的左边,可得x ≤-5,即可求得x ≥4或x ≤-5.(3)|x -3|+|x +4|即表示x 的点到数轴上与3和-4的距离之和,当表示对应x 的点在数轴上3与-4之间时,距离的和最小,是7.故a ≤7.【点睛】此题主要考察不等式的应用,熟知不等式与数轴的关系是解题的关键.17.阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2x =±.例2解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.。

7年级-第3讲-绝对值-解析版(作业分层)

7年级-第3讲-绝对值-解析版(作业分层)

VIP 课堂辅导讲义学员姓名: 科目: 数学 年级: 7年级 学科老师: 授课日期: 授课时段: 授课时长: 3 家长签字: 课 题 绝对值教学目标1.掌握一个数的绝对值的求法和性质;2.进一步学习使用数轴,借助数轴理解绝对值的几何意义;3.会求一个数的绝对值,并会用绝对值比较两个负有理数的大小;4. 理解并会熟练运用绝对值的非负性进行解题.重点、难点绝对值的几何意义和非负性考点及考试要求绝对值教学内容【要点梳理】知识点1 绝对值的定义一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a |.【题型 绝对值的定义】【例1】求下列各数的绝对值.112-,-0.3,0,132⎛⎫-- ⎪⎝⎭【思路点拨】112,-0.3,0,132⎛⎫-- ⎪⎝⎭在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解.【变式1-1】(2020秋•郯城县期中)下列说法错误的个数是( )①一个数的绝对值的相反数一定是负数;①只有负数的绝对值是它的相反数;①正数和零的绝对值都等于它本身;①互为相反数的两个数的绝对值相等.A.3个B.2个C.1个D.0个【分析】①一个数的绝对值的相反数一定是负数.反例:当这个数是0时,结果还是0不是负数,所以错误;①只有负数的绝对值是它的相反数.反例:当这个数是0时,结果还是0也是0的相反数,所以错误;①正数和零的绝对值都等于它本身.由绝对值性质可知,正确;①互为相反数的两个数的绝对值相等.正确.所以错误的有2个.【解答】解:根据绝对值的性质和相反数的概念,得①,①错误;①,①正确.故选:B.【点评】主要考查了绝对值,相反数的性质和定义.本题中要特别注意一些特殊的数字,如0,有时该数是最后的反例.【变式1-2】(2020秋•吴江区期中)若|x|=﹣(﹣8),则x=.【分析】根据绝对值的性质解答可得.【解答】解:①|x|=﹣(﹣8),①x=±8.故答案为:±8.【点评】本题主要考查绝对值,掌握绝对值的性质是解题的关键.【变式1-3】(2020秋•长安区校级月考)已知|a|=2,|b|=3,且b<a,试求a、b的值.【分析】根据题意可以求得a、b的值.【解答】解:①|a|=2,|b|=3,①a=±2,b=±3,又①b<a,①a=2,b=﹣3或a=﹣2,b=﹣3.【点评】本题考查绝对值,解题的关键是明确绝对值的意义.【变式1-4】求绝对值不大于3的所有整数.【答案】绝对值不大于3的所有整数有-3、-2、-1、0、1、2、3.【变式1-5】数轴上的点A到原点的距离是6,则点A表示的数为.【答案】6或-6知识点2 有理数的大小比较1. 数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小.如:a 与b 在数轴上的位置如图所示,则a <b .2. 法则比较法:两个数比较大小,按数的性质符号分类,情况如下:两数同号同为正号:绝对值大的数大同为负号:绝对值大的反而小两数异号正数大于负数 -数为0正数与0:正数大于0 负数与0:负数小于0要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a -b >0,则a >b ;若a -b =0,则a =b ;若a -b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于0,那么倒数大的反而小.【例2】比较下列有理数大小:(1)-1和0; (2)-2和|-3| ;(3)13⎛⎫-- ⎪⎝⎭和12-;(4)1--______0.1-- 【答案】(1)0大于负数,即-1<0;(2)先化简|-3|=3,负数小于正数,所以-2<3,即-2<|-3|;(3)先化简1133⎛⎫--= ⎪⎝⎭,1122-=,1123>,即1132⎛⎫--<- ⎪⎝⎭. (4)先化简11--=-,0.10.1--=-,这是两个负数比较大小:因为11-=,0.10.1-=,而10.1>, 所以10.1-<-,即1--<0.1--【解析】(2)、(3)、(4)先化简,再运用有理数大小比较法则.【点评】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断.【变式1】比大小:653-______763- ; -|-3.2|______-(+3.2); 0.0001______-1000; 1.38-______-1.384; -π______-3.14.【答案】>;=;>;>;<【变式2】下列各数中,比-1小的数是( )A .0B .1C .-2D .2【答案】C【变式3】数a 在数轴上对应点的位置如图所示,则a ,-a ,-1的大小关系是( ).A .-a <a <-1B .-1<-a <aC .a <-1<-aD .a <-a <-1【答案】C知识点3 绝对值的性质一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【题型 绝对值的化简求值】【例3】(2021•成都校级期中)化简|π﹣4|+|3﹣π|= .【分析】因为π≈3.414,所以π﹣4<0,3﹣π<0,然后根据绝对值定义即可化简|π﹣4|+|3﹣π|.【解答】解:①π≈3.414,①π﹣4<0,3﹣π<0,①|π﹣4|+|3﹣π|=4﹣π+π﹣3=1.故答案为1.【点评】本题主要考查了实数的绝对值的化简,解题关键是掌握绝对值的规律,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,比较简单.【变式3-1】(2020秋•澧县校级期中)若﹣1<x <4,化简|x +1|+|4﹣x |.【分析】利用绝对值的非负性解答即可.【解答】解:①﹣1<x<4,①|x+1|+|4﹣x|=1+x+4﹣x=5.【点评】本题考查了整式的混合运算的应用,利用绝对值的非负性去掉绝对值符号是解此题的关键.【变式3-2】(2020秋•邗江区校级月考)在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如:|6+7|=6+7;|6﹣7|=7﹣6;|7﹣6|=7﹣6;|﹣6﹣7|=6+7;根据上面的规律,把下列各式写成去掉绝对值符号的形式:(1)|7﹣21|=;(2)|−12+0.8|=;(3)|717−718|=;(4)用合理的方法计算:|15−12014|+|12014−12|﹣|−12|+11007.【分析】根据绝对值的性质:正数绝对值等于它本身,负数绝对值等于它的相反数,进行计算即可.【解答】解:(1)由题意得:|7﹣21|=21﹣7,故答案为:21﹣7;(2)|−12+0.8|=0.8−12,故答案为:0.8−12;(3)|717−718|=717−718,故答案为:717−718;(4)原式=15−12014+12−12014−12+11007=15.【点评】此题主要考查了绝对值,关键是掌握绝对值的性质.知识点4 绝对值的非负性根据绝对值的非负性“若几个非负数的和为0,则每一个非负数必为0”,即若|a|+|a|=a,则|a|=0且|a|=0.【题型绝对值的非负性】【例4】已知|2-m|+|n-3|=0,试求m-2n的值.【思路点拨】由|a|≥0即绝对值的非负性可知,|2-m|≥0,|n-3|≥0,而它们的和为0.所以|2-m|=0,|n-3|=0.因此,2-m=0,n-3=0,所以m=2,n=3.【答案与解析】因为|2-m|+|n-3|=0且|2-m|≥0,|n-3|≥0所以|2-m|=0,|n-3|=0即2-m=0,n-3=0所以m=2,n=3故m-2n=2-2×3=-4.【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则a=b=…=m=0.【变式4-1】(2020秋•江岸区校级月考)若|2x﹣4|与|y﹣3|互为相反数,求3x﹣y的值.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,|2x﹣4|+|y﹣3|=0,所以,2x﹣4=0,y﹣3=0,解得x=2,y=3,则3x﹣y=3×2﹣3=3.【点评】本题考查了非负数的性质,掌握有限个非负数的和为零,那么每一个加数也必为零是解题的关键.【变式4-2】(2020秋•灞桥区校级月考)已知|a-3|+|b﹣5|=0,x,y互为相反数,求3(x+y)﹣a+2b的值.【分析】根据非负数的性质得出a,b的值,再代入计算即可.【解答】解:①|a-3|≥0,|b﹣5|≥0且|a-3|+|b﹣5|=0,①|a-3|=0,|b﹣5|=0即:a-3=0,b﹣5=0,①a=3,b=5又①x、y互为相反数,①x+y=0,①原式=3×0﹣3+2×5=7.【点评】本题考查了非负数的性质,掌握互为相反数的两数之和为0,是解题的关键.【变式4-3】(2020秋•青羊区校级月考)当a=时,|1﹣a|+2会有最小值,且最小值是.【分析】先根据非负数的性质求出a的值,进而可得出结论.【解答】解:①|1﹣a|≥0,①当1﹣a=0时,|1﹣a|+2会有最小值,①当a=1时,|1﹣a|+2会有最小值,且最小值是2.故答案为:1,2.【点评】本题考查的是非负数的性质,熟知任何数的绝对值都是非负数是解答此题的关键.【题型绝对值在实际问题中的应用】【例5】(2020秋•海淀区校级期末)厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是.【分析】根据绝对值最小的最接近标准,可得答案.【解答】解:|+1.5|=1.5,|﹣0.6|=0.6,|+0.7|=0.7,|﹣0.23|=23,0.6<23<0.7<1.5,故最接近标准质量的足球是乙.故答案为:乙.【点评】本题考查了正数和负数,利用绝对值的意义是解题关键.【变式5-1】(2020秋•河源校级月考)一条直线流水线上依次有5个机器人,它们站的位置在数轴上依次用点A1,A2,A3,A4,A5表示,如图:(1)站在点上的机器人表示的数的绝对值最大,站在点和点、和上的机器人表示的数到原点距离相等;(2)怎样将点A3移动,使它先到达A2点,再到达A5点,请用文字语言说明.(3)若原点是零件供应点,那5个机器人分别到达供应点取货的总路程是多少?【分析】(1)比较各个机器人站的位置所表示的数的绝对值的大小即可;(2)根据数轴的概念和性质进行移动即可;(3)求出各个机器人站的位置所表示的数的绝对值的和即可.【解答】解:(1)①|﹣4|最大,①站在点A1上的机器人表示的数的绝对值最大,①|﹣3|=|3|,|﹣1|=|1|,①站在点A2和A5、A3和A4上的机器人表示的数到原点距离相等;故答案为:A1;A2和A5;A3和A4;(2)点A3向左移动2个单位到达A2点,再向右移动6个单位到达A5点;(3)|﹣4|+|﹣3|+|﹣1|+|1|+|3|=12.答:5个机器人分别到达供应点取货的总路程是12.【点评】本题考查的是绝对值的概念和性质、数轴的概念,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.【题型绝对值的几何意义】【例6】(2020秋•随州校级月考)同学们都知道,|3﹣(﹣1)|表示3与﹣1之差的绝对值,实际上也可理解为3与﹣1两数在数轴上所对的两点之间的距离.试探索:(1)求|3﹣(﹣1)|=.(2)找出所有符合条件的整数x,使得|x﹣3|+|x﹣(﹣1)|=4,这样的整数是.【分析】(1)3与﹣1两数在数轴上所对的两点之间的距离为3﹣(﹣1)=4;(2)利用数轴解决:把|x﹣3|+|x﹣(﹣1)|=4理解为:在数轴上,某点到3所对应的点的距离和到﹣1所对应的点的距离之和为4,然后根据数轴可写出满足条件的整数x.【解答】解:(1)|3﹣(﹣1)|=4;(2)式子|x﹣3|+|x﹣(﹣1)|=4可理解为:在数轴上,某点到3所对应的点的距离和到﹣1所对应的点的距离之和为4,所以满足条件的整数x可为﹣1,0,1,2,3.故答案为4;﹣1,0,1,2,3.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.也考查了数轴.【变式6-1】(2020秋•抚顺县期中)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x=;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是,最小距离是.(4)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|=.【分析】(1)根据数轴,观察两点之间的距离即可解决;(2)根据绝对值可得:x+1=±3,即可解答;(3)根据绝对值分别求出a,b的值,再分别讨论,即可解答;(4)根据|a+4|+|a﹣2|表示数a的点到﹣4与2两点的距离的和即可求解.【解答】解:(1)数轴上表示4和1的两点之间的距离是:4﹣1=3;表示﹣3和2两点之间的距离是:2﹣(﹣3)=5,故答案为:3,5;(2)|x+1|=3,x+1=3或x+1=﹣3,x=2或x=﹣4.故答案为:2或﹣4;(3)①|a﹣3|=2,|b+2|=1,①a=5或1,b=﹣1或b=﹣3,当a=5,b=﹣3时,则A、B两点间的最大距离是8,当a=1,b=﹣1时,则A、B两点间的最小距离是2,则A、B两点间的最大距离是8,最小距离是2;故答案为:8,2;(4)若数轴上表示数a的点位于﹣4与2之间,|a+4|+|a﹣2|=(a+4)+(2﹣a)=6.故答案为:6.【点评】此题考查数轴上两点之间的距离的算法:数轴上两点之间的距离等于相应两数差的绝对值,应牢记且会灵活应用.【变式6-2】(2020秋•思明区校级期末)同学们都知道|5﹣(﹣2)|表示5与(﹣2)之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|=.(2)找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7成立的整数是.(3)由以上探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.【分析】(1)直接去括号,再按照去绝对值的方法去绝对值就可以了.(2)要x的整数值可以进行分段计算,令x+5=0或x﹣2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.【解答】解:(1)原式=|5+2|=7故答案为:7;(2)令x+5=0或x﹣2=0时,则x=﹣5或x=2当x<﹣5时,①﹣(x+5)﹣(x﹣2)=7,﹣x﹣5﹣x+2=7,x=5(范围内不成立)当﹣5<x<2时,①(x+5)﹣(x﹣2)=7,x+5﹣x+2=7,7=7,①x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,①(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(范围内不成立)①综上所述,符合条件的整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)的探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|有最小值为3.【点评】本题主要考查了去绝对值和数轴相联系的综合试题以及去绝对值的方法和去绝对值在数轴上的运用,难度较大,去绝对值的关键是确定绝对值里面的数的正负性.【巩固练习】一、选择题1.(2020.常州)-3的绝对值是().A.3B.-3C.13D.13-2.下列判断中,正确的是( ).A. 如果两个数的绝对值相等,那么这两个数相等;B. 如果两个数相等,那么这两个数的绝对值相等;C.任何数的绝对值都是正数;D.如果一个数的绝对值是它本身,那么这个数是正数. 3.下列各式错误的是( ).A.115533+=B.|8.1|8.1-=C.2233-=-D.1122--=-4.2010年12月某日我国部分城市的平均气温情况如下表(记温度零上为正,单位①)城市温州上海北京哈尔滨广州平均气温60-9-1515则其中当天平均气温最低的城市是( ).A.广州B.哈尔滨C.北京D.上海5.下列各式中正确的是( ).A.13<-B.1134->-C.-3.7<-5.2 D.0>-26.若两个有理数a、b在数轴上表示的点如图所示,则下列各式中正确的是( ).A.a>b B.|a|>|b| C.-a<-b D.-a<|b|7.若|a| + a=0,则a是( ).A. 正数B. 负数C.正数或0D.负数或0二、填空题8. |﹣6.18|= .9. 若m ,n 互为相反数,则| m |________| n |;| m |=| n |,则m ,n 的关系是________.10.已知| x |=2,| y |=5,且x >y ,则x =________,y =________.11.满足3.5≤| x | <6的x 的整数值是___________.12. 式子|2x -1|+2取最小值时,x 等于 .13.数a 在数轴上的位置如图所示.则|a -2|=__________.14. 若a a =,则a 0;若a a =-,则a 0;若1a a=-,则a 0;若a a ≥,则a ; 若11a a -=-,则a 的取值范围是 .15. 在数轴上,与-1表示的点距离为2的点对应的数是 .三、解答题16.比较3a -2与2a +1的大小.17.(2020秋•天水期末)如图,数轴上的三点A 、B 、C 分别表示有理数a 、b 、c .则:a ﹣b 0,a +c 0,b ﹣c 0.(用<或>或=号填空)你能把|a ﹣b |﹣|a +c |+|b ﹣c |化简吗?能的话,求出最后结果.17.【解析】解:由数轴得,a ﹣b <0,a +c <0,b ﹣c <0,①|a ﹣b |﹣|a +c |+|b ﹣c |=﹣(a ﹣b )﹣[﹣(a +c )]+[﹣(b ﹣c )]=﹣a +b +a +c ﹣b +c=2c .18.某工厂生产某种圆形零件,从中抽出5件进行检验,比规定直径长的毫米数记作正数,比规定直径短的毫米数记作负数,检查结果记录如下:零件 1 2 3 4 5误差-0.2-0.3+0.2-0.1+0.3根据你所学的知识说明什么样的零件的质量好,什么样的零件的质量差,这5件中质量最好的是哪一件?【答案与解析】一、选择题1.【答案】A2.【答案】B【解析】A错误,因为两个数的绝对值相等,这两个数可能互为相反数;B正确;C错误,因为0的绝对值是0,而0不是正数;D错误,因为一个数的绝对值是它本身的数除了正数还有0.3.【答案】C【解析】因为一个数的绝对值是非负数,不可能是负数.所以C是错误的.4. 【答案】B【解析】因为-15<-9<0<6<15,所以当天平均气温最低的城市是哈尔滨.5. 【答案】D【解析】0大于负数.6.【答案】B【解析】离原点越远的数的绝对值越大.7.【答案】D【解析】若a为正数,则不满足|a| + a=0;若a为负数,则满足|a| + a=0;若a为0,也满足|a| + a=0. 所以a≤0,即a为负数或0.二、填空题8.【答案】6.189.【答案】=;m=±n【解析】若m,n互为相反数,则它们到原点的距离相等,即绝对值相等;但反过来,m,n绝对值相等,则它们相等或互为相反数.10. 【答案】±2,-5【解析】| x |=2,则x=±2;| y |=5,y=±5.但由于x>y,所以x=±2,y=-511. 【答案】±4, ±5【解析】画出数轴,从数轴上可以看出:在原点右侧,有4,5满足到原点的距离大于等于3.5,且小于6;在原点左侧有-4,-5满足到原点的距离大于等于3.5,且小于6.12.【答案】1 2【解析】绝对值最小的数是0,所以当2x-1=0,即x=12时,|2x-1|取到最小值0,同时|2x-1|+2也取到最小值.13. 【答案】a-2【解析】由图可知:a≥2,所以|a-2|=a-2.14. 【答案】≥;≤;<;任意有理数;a≤115. 【答案】-3,1三、解答题16.【解析】解:(3a-2)-(2a+1)=3a-2-2a-1=a-3当a>3时,3a-2>2a+1;当a=3时,3a-2=2a+1;当a<3时,3a-2<2a+1.17.【解析】解:根据:负数小于正数,两个负数相比较,绝对值大的反而小.所以从小到大的顺序为:-7.3%,-5.3%,-3.4%,-0.9%,2.8%,7.0%.18.【解析】解:零件的直径与规定直径的偏差可以用绝对值表示,绝对值小表示偏差小,绝对值大表示偏差大.哪个零件的直径偏差越小,哪个零件的质量越好,哪个零件的直径偏差越大,哪个零件的质量越差,所以这5件中质量最好的是第4件.【提升练习】一、选择题1. -6的绝对值是( ).A .-6B .6C .D . 2. 如图(一),数O 是原点,A 、B 、C 三点所表示的数分别为a 、b 、c .根据图中各点的位置,下列各数的绝对值的比较何者正确?A .|b |<|c |B .|b |>|c |C .|a |<|b |D .|a |>|c |3.满足|x |=-x 的数有( ).A .1个B .2个C .3个D .无数个4.(2020•黄石模拟)若|x ﹣5|=5﹣x ,下列不等式成立的是( )A . x ﹣5>0B . x ﹣5<0C . x ﹣5≥0D . x ﹣5≤05.a 、b 为有理数,且a >0、b <0,|b |>a ,则a 、b 、-a 、-b 的大小顺序是( ).A .b <-a <a <-bB .-a <b <a <-bC .-b <a <-a <bD .-a <a <-b <b6.下列推理:①若a =b ,则|a |=|b |;①若|a |=|b |,则a =b ;①若a ≠b ,则|a |≠|b |;①若|a |≠|b |,则a ≠b .其中正确的个数为( ).A .4个B .3个C .2个D .1个7.设a 是最小的正整数,b 是最大的负整数的相反数,c 是绝对值最小的有理数,则a 、b 、c 的大小关系是( ). A .a <b <c B .a =b >c C .a =b =c D .a >b >c二、填空题8.写出一个比-1小的数是______.9. (2020•杭州模拟)已知|x |=|﹣3|,则x 的值为 .10. 绝对值不大于11的整数有 个.11. 已知a 、b 都是有理数,且|a |=a ,|b |=-b 、,则ab 是 .12. 式子|2x -1|+2取最小值时,x 等于 .13.数a 在数轴上的位置如图所示,则|a -2|=__________.14.若1a a=-,则a 0;若a a ≥,则a . 三、解答题6161-15.将2526-,259260-,25992600-按从小到大的顺序排列起来. 16.正式的足球比赛对所用足球的质量都有严格的规定,标准质量为400克.下面是5个足球的质量检测结果(超过规定质量的克数记为正数,不足规定质量的克数记为负数):-25,+10,-20,+30,+15.(1)写出每个足球的质量;(2)请指出哪个足球的质量好一些,并用绝对值的知识进行说明.17. 定义:数轴上表示数a 和数b 的两点A 和B 之间的距离是|a ﹣b |.完成下列问题:(1)数轴上表示x 和﹣4的两点A 和B 之间的距离是 ;如果|AB |=2,那么x 为 ;(2)利用数轴以及已知中的定义,可得式子|x ﹣1|+|x ﹣2|+|x ﹣3|的最小值是 .(3)拓展:当x = 时,式子|x ﹣1|+|x ﹣2|+|x ﹣3|+…+|x ﹣2011|的值最小,最小值是 .【答案与解析】一、选择题1. 【答案】B2. 【答案】A【解析】由图(一)可知,距离原点最远的是点C ,其次是点A ,最近的是点B ,所以他们对应的数的绝对值的大小为:c a b >>或b a c <<,所以A 正确.3.【答案】D【解析】x 为负数或零时都能满足|x |=-x ,故有无数个.4.【答案】D5.【答案】A【解析】画数轴,数形结合.6.【答案】C【解析】①正确;①错误,如|-2|=|2|,但是-2≠2;①错误,如-2≠2,但是|-2|=|2|;①正确.故选C .7.【答案】B【解析】a =1,b =-(-1)=1,c =0,故a =b >c .二、填空题8. 【答案】-2(答案不唯一)9.【答案】±310.【答案】23【解析】要注意考虑负数.绝对值不大于11的数有:-11 、-10……0 、1 ……11共23个.11.【答案】负数或零(或非正数均对)【解析】非负性是绝对值的重要性质.由题意可知≥0,≤0 .12.【答案】1 2【解析】因为|2x-1|≥0,所以当2x-1=0,即x=12时,|2x-1|取到最小值0,同时|2x-1|+2也取到最小值2.13.【答案】-a+2【解析】由图可知:a≤2,所以|a-2|=-(a-2)=-a+2.14.【答案】<;任意数三、解答题15.【解析】解:因为2525250026262600-==,25925925902602602600-==,2599259926002600-=,因为250025902599260026002600<<,即259925925260026026->->-,所以259925925 260026026 -<-<-.16. 【解析】解:(1)每个足球的质量分别为375克,410克,380克,430克,415克;(2)质量为410克(即质量超过+10克)的足球的质量好一些.理由:将检测结果求绝对值,再比较绝对值大小,绝对值最小的质量最好.17.【解析】解:(1)数轴上表示x和﹣4的两点A和B之间的距离是|x﹣(﹣4)|;如果|AB|=2,那么|x﹣(﹣4)|=2,x+4=±2,解得x=﹣2或﹣6;(2)x=2有最小值,最小值=|2﹣1|+|2﹣2|+|2﹣3|=1+0+1=2;(3)1~2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=1011030.故答案为|x﹣(﹣4)|;﹣2或﹣6;2;1006;1011030.。

2024七年级数学上册第1章有理数1.2数轴相反数和绝对值第3课时绝对值课件新版沪科版

2024七年级数学上册第1章有理数1.2数轴相反数和绝对值第3课时绝对值课件新版沪科版
因为数 a 在数轴上的对应点在原点左边,所以 a <0.
又因为| a |=4,所以 a =-4.
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
8. 若| a |=- a ,则在下列选项中, a 不可能是(
D
)



A. -2
B.
C. 0
D. 5
【点拨】
因为| a |=- a ,
所以 a ≤0,
所以 a 不可能是正数.
数中最小的数是0.
(1)当 x =
时,| x -2 026|有最小值,这个最
2 026
小值是
0
(2)当 x =
1
大值是


时,2 026-| x -1|有最大值,这个最
.
2 026

返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
易错点
忽略0也是绝对值等于其相反数的数而致错
11. [新考法 逆向思维法]如果| x -2|=2- x ,那么 x 的取
12
13
14
15
14. [新考向 知识情境化]一条直线流水线上依次有5个机器
人,它们站的位置在数轴上依次用点 A1, A2, A3,
A4, A5表示,如图.
在点
上的机器人表示的数的绝对值最大,站
A1
(1)站在点
A2
和点
A5
,点
和点
A3
A4

绝对值的最小值”探究教学

绝对值的最小值”探究教学

绝对值的最小值”探究教学【提要】在“绝对值”教学中,很多同学往往只掌握到会求如“|2x-3|的最小值”这类问题的程度。

把若干个绝对值放在一起求和,并求它的最小值的时候很多同学都会无从下手,本文旨在引导学生利用数轴探究得出“求|x-a1|+|x-a2|+|x-a3|+…|x-an|的最小值问题”的一般方法,激发学生的探索精神和实践能力。

中图分类号:G623.2文献标识码:A文章编号:ISSN1672-2051 (2018)12-073-02“绝对值”是七年级学生进入中学以来学习到的第一个比较抽象的概念,很多同学对这个知识点掌握的不是很好,特别是把若干个绝对值放在一起求和,并求它的最小值的时候很多同学都会无从下手。

比如:求|x-1|+|x- 2|+|x-3|的最小值是多少。

我们知道一个数a的绝对值表示的是在数轴上a所对应的点到原点的距离,因此|a|≥0,也就是|a|的最小值是0。

部分同学能运用这点解决如:“求|2x-3|的最小值”这样问题已经算是不错的了,但对于学有余力的同学来说仅掌握到这个程度还不够,让学生进一步理解绝对值的几何意义,并运用绝对值的几何意义来解决“求|x-a1|+|x-a2|+|x-a3|+…|x-an|的最小值问题”对发展学生的数学思维有着积极的作用,为此,我引导学生从下面一些步骤由浅入深的逐步探索,最终发现其规律。

一、牢固掌握绝对值的概念在数轴上,一个数所对应的点到原点的距离叫做这个数的绝对值。

例如: |-2|的绝对值表示的是:在数轴上-2对应的点到原点的距离,所以|-2|= 2 。

因为点到点的距离总是大于等于零的,由此,我们可以概括:|a|≥0。

那么什么数的绝对值最小呢?为什么?二、准确理解绝对值的几何意义|a|的几何意义:在数轴上数a对应的点到原点的距离。

|a-b|的几何意义:在数轴上a、 b两数所对应的点之间的距离。

例如:数轴上1和4之间的距离可以写成:|1-4| 或|4-1|。

七年级数学上册-数轴、相反数与绝对值压轴题十四种模型全攻略(解析版)

七年级数学上册-数轴、相反数与绝对值压轴题十四种模型全攻略(解析版)

专题02数轴、相反数与绝对值压轴题十四种模型全攻略【考点导航】目录【典型例题】 (1)【考点一数轴的三要素及其画法】 (1)【考点二用数轴上的点表示有理数】 (3)【考点三数轴上两点之间的距离】 (4)【考点四根据点在数轴的位置判断式子的正负】 (5)【考点五数轴上的动点问题】 (7)【考点六求一个数的相反数】 (8)【考点七化简多重符号】 (9)【考点八判断是否互为相反数】 (10)【考点九利用相反数的性质,求参数的值】 (11)【考点十绝对值的意义】 (12)【考点十一化简绝对值】 (13)【考点十二绝对值非负性的应用】 (15)【考点十三利用绝对值比较负有理数的大小】 (16)【考点十四求解绝对值方程】 (17)【过关检测】 (20)【典型例题】【考点一数轴的三要素及其画法】例题:(2023·全国·七年级假期作业)以下是四位同学画的数轴,其中正确的是()A.B.C.D.【答案】D【分析】根据数轴的三要素:原点,单位长度和正方向,进行判断即可.【详解】解:∵数轴要有三要素:单位长度,原点,正方向,并且数轴上表示的数从左到右增大,∴四个选项中只有选项D符合题意,故选:D.【点睛】本题考查数轴的定义.熟练掌握数轴的三要素:原点,单位长度和正方向,是解题的关键.【变式训练】1.(2023·江苏·七年级假期作业)在下列选项中数轴画法正确的是()A.B.C.D.【答案】C【分析】分析各选项图形是否是直线、是否有方向、单位长度是否统一,即可解答题目.【详解】解:A.各单位长度之间的距离不统一,故此选项错误,不符合题意;B.数轴为直线,可以无限延伸,故此选项错误,不符合题意;C.规定了原点、单位长度、正方向,故此选项正确,符合题意;D.没有规定正方向,故此选项错误,不符合题意;故选:C.【点睛】本题主要考查了数轴,熟练掌握数轴是一条规定了正方向、原点、单位长度的直线是解题的关键.2.(2023秋·吉林延边·七年级统考期末)下面是四位同学画的数轴,其中正确的是()A.B.C.D.【答案】C【分析】根据数轴的三要素:原点,正方向,单位长度判断所给出的四个数轴哪个正确.【详解】解:A、没有原点,故此选项错误,不符合题意;B、单位长度不统一,故此选项错误,不符合题意;C、符合数轴的概念,故此选项正确,符合题意.D、没有正方向,故此选项错误,不符合题意;故选:C.【点睛】本题主要考查了数轴的概念:规定了原点、正方向和单位长度的直线叫数轴.特别注意数轴的三要素缺一不可.【考点二用数轴上的点表示有理数】12 1.514-<-<<由数轴可得12 1.5142-<-<<.【变式训练】由数轴可得:1310 2.52-<-<<<.【点睛】本题考查了有理数与数轴上点的关系,任何一个有理数都可以用数轴上的点表示,在数轴上,原______<______<______<______.按从小到大的顺序排列为:1212 3.5 2-<-<<.1【考点三数轴上两点之间的距离】【变式训练】1.(2023·江苏·七年级假期作业)数轴上数5-和14-的两点间的距离是______,与5-相距9个单位的点是______.【答案】94和14-【分析】直接根据数轴作答即可.【详解】数轴上数5-和14-的两点间的距离是()5149---=,与5-相距9个单位的点是594-+=和5914--=-,故答案为:9;4和14-.【点睛】此题考查数轴上两点之间的距离的求法,两点间的距离=右边的点表示的数-左边的点表示的数;或者两点间的距离=两数差的绝对值.2.(2023秋·河南洛阳·七年级统考期末)点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为4-、1,若2BC =,则AC 等于______.【答案】3或7/7或3【分析】根据题意求出AB ,分点C 在点B 的右侧和点C 在点B 的左侧两种情况计算.【详解】∵点A 、B 表示的数分别为4-、1,∴5AB =,第一种情况:点C 在AB 外,如图,527AC =+=;第二种情况:点C 在AB 内,如图,523AC =-=;故答案为:3或7.【点睛】本题考查了数轴的知识,灵活运用分情况讨论思想,掌握在数轴上表示两点之间的距离是解题的关键.【考点四根据点在数轴的位置判断式子的正负】例题:(2023·陕西咸阳·统考二模)如图,数轴上A B 、两点所表示的数分别为a b ,,则a b +______0.(填“>”“=”或“<”)【答案】<【分析】根据数轴先判断出a b ,的大小,再根据有理数的加法法则计算即可解决问题.【详解】解:根据数轴可得:1b <-,01a <<,∴+<,a b故答案为:<.【点睛】本题主要考查了实数与数轴的对应关系,数轴上的数右边的数总是大于左边的数,以及有理数的加法法则.【变式训练】【答案】<>【考点五数轴上的动点问题】【变式训练】1.(2023·江苏·七年级假期作业)点A表示数轴上的一个点,将点A向右移动3个单位,再向左移动5个单位,终点恰好是原点,则点A表示的数是_______.【答案】2【分析】由原点向右移动5个单位,再向左移动3个单位,即可得出点A的坐标.+-=.【详解】解:0532故点A表示的数是2.故答案为:2.【点睛】此题考查数轴,掌握点在数轴上平移的规律和对应的数的大小变化是解决问题的关键.2.(2023秋·广东佛山·七年级校考期末)如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示1-的点重合,再将圆沿着数轴向右滚动,则圆周上表示数字___的点与数轴上表示2023的点重合.【答案】0【分析】圆周上的0点与1-重合,滚动到2023,圆滚动了2024个单位长度,用2024除以4,余数即为重合点.【详解】解:圆周上的0点与1-重合,+=,202312024÷=,20244506圆滚动了506周到2023,圆周上的0与数轴上的2023重合,故答案为:0.【点睛】本题考查了数轴,找出圆运动的规律与数轴上的数字的对应关系是解决此类题目的关键.【考点六求一个数的相反数】【考点七化简多重符号】【考点八判断是否互为相反数】【考点九利用相反数的性质,求参数的值】例题:(2023·浙江·七年级假期作业)已知23x +与5-互为相反数,则x 等于______.【答案】1【分析】根据互为相反数的两个数的和为0列式计算即可.【详解】∵23x +与5-互为相反数,∴()2350x ++-=解得1x =.故答案为:1.【点睛】本题考查了相反数的性质,熟练掌握互为相反数的两个数的和为0是解题的关键.【变式训练】1.(2023秋·湖南湘西·七年级统考期末)已知4a +与2互为相反数,那么=a ___________.【答案】6-【分析】根据相反数的定义求解即可.【详解】解:∵4a +与2互为相反数,∴420a ++=,∴6a =-,故答案为:6-.【点睛】本题主要考查了相反数的定义,熟知互为相反数的两个数和为零是解题的关键.2.(2023秋·全国·七年级专题练习)若a 、b 互为相反数,则a +b +2的值为______.【答案】2【分析】根据相反数的定义:只有符号不同的两个数,互为相反数,可知0a b +=,将其代入即可求得结果.【详解】解:∵a 、b 互为相反数,∴0a b +=,∴2022a b ++=+=,故答案为:2.【点睛】本题主要考查的是相反数的定义,整体进行代入求值是本题的主要思路.【考点十绝对值的意义】A .aB .bA.点A与点B之间【考点十一化简绝对值】++--化简:a a b b c【答案】22b c+(1)填空:A ,B 之间的距离为______【考点十二绝对值非负性的应用】【考点十三利用绝对值比较负有理数的大小】【考点十四求解绝对值方程】【过关检测】一、选择题1.(2023·河南信阳·校考三模)5=3-()A.53B.53-C.53±D.35【答案】A【分析】根据绝对值的性质即可得.【详解】解:∵50 3-<,∴55 33 -=,故选:A.【点睛】本题考查了绝对值,熟练掌握绝对值的性质是解题关键.注意,负数的绝对值等于它的相反数,正数和0的绝对值都等于它本身.2.(2023春·海南海口·九年级海口市义龙中学校考阶段练习)实数4-的相反数是()A.4B.4-C.14D.14-【答案】A【分析】根据相反数的定义作出选择即可.【详解】解:实数4-的相反数是4,故选:A.【点睛】本题考查了相反数的定义,熟知只有符号不同的两个数叫做互为相反数是解答本题的关键.3.(2023·江苏·七年级假期作业)下列图形表示数轴正确的是()A.B.C.D.【答案】B【分析】根据数轴的三要素原点、单位长度、正方向,来进行判断即可.【详解】解:A.从左向右的点所表示的数是依次增大,故A错误;B.符合数轴的三要素,故B正确;A .0a b +=B .0a b -=【点睛】本题主要考查了根据数轴上点的位置判定式子的符号,解题的关键在于能够熟练掌握数轴与数轴上点的关系.二、填空题【答案】0【分析】点B在数轴上表示的数为点【详解】解:根据题意可得:---【答案】2b a c【点睛】本题主要考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.三、解答题(1)求a b c a b c++=_______(1)观察数轴,填空:。

2024-2025学年初中数学七年级上册(人教版)同步讲练第04讲绝对值(原卷版)

2024-2025学年初中数学七年级上册(人教版)同步讲练第04讲绝对值(原卷版)

第04讲 绝对值知识点01 绝对值的定义与求法1. 绝对值的定义:一般地,数轴上表示数a 的点到 的距离就是数a 的绝对值。

数a 的绝对值记作 ,读作 。

2. 绝对值的求法:(1)求一个数的绝对值:由绝对值的定义可知,一个正数的绝对值是 ,一个负数的绝对值是 ,0的绝对值是 。

1.﹣的绝对值是()A.B.C.D.【即学即练2】2.数轴上有A、B、C、D四个点,其中绝对值等于2的点是()A.点A B.点B C.点C D.点D【即学即练3】3.已知a=﹣2,b=1,则|a|+|﹣b|的值为()A.3B.1C.0D.﹣1知识点02 绝对值的性质1.绝对值的非负性:由定义可知,绝对值表示到原点的距离,所以不能为。

所以绝对值是一个,所以绝对值具有。

即若|a| 0。

几个非负数的和等于0,这几个非负数一定分别等于0。

即:若|a|+|b|+...+|m|=0,则一定有。

题型考点:根据绝对值的非负性求值。

【即学即练1】4.已知|x﹣2|+|y﹣1|=0,则x﹣y的相反数为()A.﹣1B.1C.3D.﹣3【即学即练2】5.若|a|+|b|=0,则a与b的大小关系是()A.a=b=0B.a与b互为倒数C.a与b异号D.a与b不相等知识点03 绝对值与数轴1.绝对值与数轴:在数轴上,一个数离原点越近,绝对值就,一个数离原点越远,绝对值。

题型考点:根据绝对值与数轴进行求解判断。

6.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越 .【即学即练2】7.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n +q =0,则m ,n ,p ,q 四个有理数中,绝对值最小的一个是( )A .pB .qC .mD .n知识点04 绝对值与相反数1. 绝对值与相反数:①数轴上互为相反数的两个数在原点的两侧,且到原点的距离相等,所以互为相反数的两个数他们的绝对值 。

即若a 与b 互为相反数,则|a | |b |。

初一上册 重难点——探索多个绝对值和的最值问题及x的取值专题

初一上册 重难点——探索多个绝对值和的最值问题及x的取值专题

当1≤x≤4时, ∣x-1∣ + ∣x-4∣有最小值为3. 当2≤x≤3时, ∣x-2∣ + ∣x-3∣有最小值为1.
二者同时取最小值的条件是2≤x≤3
因此,当2≤x≤3时, ∣x-1∣+ ∣x-2∣+ ∣x-3∣+ ∣x-4∣ 有最小值,最小值是4
探索五
问题:当x满足 最小值是多少?
时, ∣x-1∣+ ∣x-2∣+ ∣x-3∣+ ∣x-4∣+ ∣x-5∣有最小值,
当3≤x≤4时, ∣x-3∣ + ∣x-4∣有最小值为1.
三者同时取最小值的条件是3≤x≤4
因此,当3≤x≤4时, ∣x-1∣+ ∣x-2∣+ ∣x-3∣+ ∣x-4∣ + ∣x-5∣ + ∣x-6∣ 有最小值,最小值是9
探索与发现
由上述几个探究你发现了什么规律?每个探索的规律一样吗?
规律
问题:当x满足
思维点拨: 1、∣x-1∣表示的意义是什么?
2、∣x-2∣表示的意义是什么?
3、∣x-1∣ + ∣x-2∣表示的意义又是什么?
问题解决
解:设A:1,B:2,M:x
A:1;B:2???
M AMB M
则AM=∣x-1∣,BM= ∣x-2∣ AM +BM = ∣x-1∣+ ∣x-2∣
若x>2 AM+BM=AB+2BM>AB
时, ∣x-a1∣+ ∣x-a2∣+ ∣x-a3∣+ ...+ ∣x-an-1∣ + ∣x-an∣
有最小值?已知a1≤a2≤a3≤a4≤... ≤an-1≤an
结论: ⑴当n为奇数时

部编数学七年级上册专题1.2绝对值(压轴题专项讲练)(人教版)(解析版)含答案

部编数学七年级上册专题1.2绝对值(压轴题专项讲练)(人教版)(解析版)含答案

专题1.2 绝对值【典例1】结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 ;表示﹣3和2两点之间的距离是 ;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x= ;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是 ,最小距离是 .(4)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|= .(1)根据数轴,观察两点之间的距离即可解决;(2)根据绝对值可得:x+1=±3,即可解答;(3)根据绝对值分别求出a,b的值,再分别讨论,即可解答;(4)根据|a+4|+|a﹣2|表示数a的点到﹣4与2两点的距离的和即可求解.解:(1)数轴上表示4和1的两点之间的距离是:4﹣1=3;表示﹣3和2两点之间的距离是:2﹣(﹣3)=5,故答案为:3,5;(2)|x+1|=3,x+1=3或x+1=﹣3,x=2或x=﹣4.故答案为:2或﹣4;(3)∵|a﹣3|=2,|b+2|=1,∴a=5或1,b=﹣1或b=﹣3,当a=5,b=﹣3时,则A、B两点间的最大距离是8,当a=1,b=﹣1时,则A、B两点间的最小距离是2,则A、B两点间的最大距离是8,最小距离是2;故答案为:8,2;(4)若数轴上表示数a的点位于﹣4与2之间,|a+4|+|a﹣2|=(a+4)+(2﹣a)=6.故答案为:6.1.(2022•高邮市模拟)若|x|+|x﹣4|=8,则x的值为( )A.﹣2B.6C.﹣2或6D.以上都不对【思路点拨】根据绝对值的意义得出,|x|+|x﹣4|=8表示到原点和4的距离和是8的数,分两种情况求出x的值即可.【解题过程】解:∵|x|+|x﹣4|=8,∴当x>4时,x+x﹣4=8,解得x=6,当x<0时,﹣x+4﹣x=8,解得x=﹣2,故选:C.2.(2021秋•西峡县期末)|x+8|+|x+1|+|x﹣3|+|x﹣5|的最小值等于( )A.10B.11C.17D.21【思路点拨】由|x+8|+|x+1|+|x﹣3|+|x﹣5|所表示的意义,得出当﹣1≤x≤3时,这个距离之和最小,再根据数轴表示数的特点进行计算即可.【解题过程】解:|x+8|+|x+1|+|x﹣3|+|x﹣5|表示数轴上表示数x的点,到表示数﹣8,﹣1,3,5的点的距离之和,由数轴表示数的意义可知,当﹣1≤x≤3时,这个距离之和最小,最小值为|5﹣(﹣8)|+|3﹣(﹣1)|=13+4=17,故选:C.3.如果有理数a,b,c满足|a﹣b|=1,|b+c|=2,|a+c|=3,那么|a+2b+3c|等于( )A.5B.6C.7D.8【思路点拨】通过对式子|a+c|=3的变形,确定已知之间的关系,再进行分类讨论,结合对所求式子的变形,找到已知所求之间的关系,再进行求解.【解答过程】解:|a+c|=|a﹣b+b+c|=3,∵|a﹣b|=1,|b+c|=2,∴a﹣b=1,b+c=2或a﹣b=﹣1,b+c=﹣2,分两种情况讨论:①若a﹣b=1,b+c=2,则两式相加,得a+c=3,∴|a+2b+3c|=|a+c+2(b+c)|=|3+2×2|=7;②若a﹣b=﹣1,b+c=﹣2,则两式相加,得a+c=﹣3,∴|a+2b+3c|=|a+c+2(b+c)|=|﹣3+2×(﹣2)|=7.故选:C.4.(2021秋•洛川县校级期末)已知:m=|a b|c+2|b c|a+3|c a|b,且abc>0,a+b+c=0.则m共有x个不同的值,若在这些不同的m值中,最大的值为y,则x+y=( )A.4B.3C.2D.1【思路点拨】根据绝对值的意义分情况说明即可求解.【解题过程】解:∵abc>0,a+b+c=0,∴a、b、c为两个负数,一个正数,a+b=﹣c,b+c=﹣a,c+a=﹣b,m=|−c|c+2|−a|a+3|−b|b∴分三种情况说明:当a<0,b<0,c>0时,m=1﹣2﹣3=﹣4,当a<0,c<0,b>0时,m=﹣1﹣2+3=0,当a>0,b<0,c<0时,m=﹣1+2﹣3=﹣2,∴m共有3个不同的值,﹣4,0,﹣2,最大的值为0.∴x=3,y=0,∴x+y=3.故选:B.5.我们知道|x|=x,(x>0)0,(x=0)−x,(x<0),所以当x>0时,x|x|=xx=1;当x<0时,x|x|=x−x=−1.下列结论序号正确的是( )①已知a,b是有理数,当ab≠0时,a|a|+b|b|的值为0或±2;②已知a,b是不为0的有理数,当|ab|=﹣ab时,则2a|a|+b|b|的值为±1;③已知a,b,c是有理数,a+b+c=0,abc<0,则b c|a|+a c|b|+a b|c|=−1或3;④已知a,b,c是非零的有理数,且|abc|abc=−1,则|a|a+|b|b+|c|c的值为1或﹣3;⑤已知a,b,c是非零的有理数,a+b+c=0,则a|a|+b|b|+c|c|+abc|abc|的所有可能的值为0.A.①③④B.②③⑤C.①②④⑤D.①②④【思路点拨】关于绝对值化简的问题,就要严格利用绝对值的定义来化简,要考虑全面,有时可以用特殊值法.【解题过程】解:①因为ab≠0,所以有以下几种情况:a>0,b<0,原式值是0;a>0,b>0,原式值是2;a<0,b>0,原式值是0;a<0,b<0,原式值是﹣2.故①正确;②∵|ab|=﹣ab,a,b是不为0的有理数,∴ab <0,有以下两种情况:a >0,b <0,此时原式值是1;a <0,b >0,此时原式值是﹣1,故②正确;③已知a ,b ,c 是有理数且a +b +c =0,abc <0,则b +c =﹣a ,a +c =﹣b ,b +c =﹣a ,∴原式化为−a |a|+−b |b|+−c |c|a ,b ,c 两正一负,有四种情况:a >0,b >0,c <0,原式值为﹣1;a >0,b <0,c >0,原式值为﹣1;a <0,b >0,c >0,原式值为﹣1;故③错误;④∵|abc|abc=−1,∴abc <0,分四种情况(同③)∴原式值是﹣1和3,故④正确;⑤分两种情况:当一正两负时,a |a|,b |b|.c |c|有一个1,两个﹣1,而abc >0,所以abc |abc|=1,此时和为1+1﹣1﹣1=0;当一负两正时,a |a|,b |b|.c |c|有一个﹣1,两个1,而abc <0,所以abc |abc|=−1,此时和为﹣1+1+1﹣1=0.故⑤正确.故选:C .6.(2021秋•常州期末)已知x =20212022,则|x ﹣2|﹣|x ﹣1|+|x |+|x +1|﹣|x +2|的值是 20212022 .【思路点拨】根据x 的值,判断x ﹣2,x ﹣1,x +1,x +2的符号,再根据绝对值的定义化简后即可得到答案.【解题过程】解:∵x=20212022,即0<x<1,∴x﹣2<0,x﹣1<0,x+1>0,x+2>0,∴|x﹣2|﹣|x﹣1|+|x|+|x+1|﹣|x+2|=2﹣x﹣(1﹣x)+x+x+1﹣x﹣2=2﹣x﹣1+x+x+x+1﹣x﹣2=x=2021 2022,故答案为:2021 2022.7.(2021秋•绵竹市期末)代数式|x+1009|+|x+506|+|x﹣1012|的最小值是 2021 .【思路点拨】利用绝对值的定义,结合数轴可知最小值为1012到﹣1009的距离.【解题过程】解:∵|x+1009|=|x﹣(﹣1009)|,|x+506|=|x﹣(﹣506)|,由绝对值的定义可知:|x+1009|代表x到﹣1009的距离;|x+506|代表x到﹣506的距离;|x﹣1012|代表x到1012的距离;结合数轴可知:当x在﹣1009与1012之间,且x=﹣506时,距离之和最小,∴最小值=1012﹣(﹣1009)=2021,故答案为:2021.8.(2021春•杨浦区校级期末)已知a,b,c为整数,且|a﹣b|2021+|c﹣a|2020=1,则|a﹣b|+|b﹣c|+|c﹣a|= 0或2 .【思路点拨】因为a、b、c都为整数,而且|a﹣b|2021+|c﹣a|2020=1,所以|a﹣b|与|c﹣a|只能是0或者1,于是进行分类讨论即可得出.【解题过程】解:∵a、b、c为整数,且|a﹣b|2021+|c﹣a|2020=1,∴有|a﹣b|=1,|c﹣a|=0或|a﹣b|=0,|c﹣a|=1①若|a﹣b|=1,|c﹣a|=0,则a﹣b=±1,a=c,∴|b﹣c|=|c﹣b|=|a﹣b|=1,∴|a﹣b|+|b﹣c|﹣|c﹣a|=1+1+0=2,②|a﹣b|=0,|c﹣a|=1,则a=b,c﹣a=±1,∴|b﹣c|=|c﹣b|=|c﹣a|=1,∴|a﹣b|+|b﹣c|﹣|c﹣a|=0+1﹣1=0,故答案为:0或2.9.(2021秋•大田县期中)三个整数a,b,c满足a<b<c,且a+b+c=0.若|a|<10,则|a|+|b|+|c|的最大值为 34 .【思路点拨】根据a+b+c=0,a<b<c,可得a<0,c>0,a+b<0,则|a|>|b|,再由|a|<10,a,b,c都是整数,得到|a|≤9,则|b|≤8,根据|a+b|=﹣(b+a)=﹣b﹣a,|b|≥﹣b,|a|≥a,即可得到|c|=|﹣a﹣b|=|a+b|≤|a|+|b|≤17,由此求解即可.【解题过程】解:∵a+b+c=0,a<b<c,∴a<0,c>0,a+b<0,∴|a|>|b|,∵|a|<10,a,b,c都是整数,∴|a|≤9,∴|b|≤8,∵|a+b|=﹣(b+a)=﹣b﹣a,|b|≥﹣b,|a|≥a,∴|c|=|﹣a﹣b|=|a+b|≤|a|+|b|≤17,∴|a|+|b|+|c|的值最大为9+8+17=34,故答案为:34.10.(2021秋•雁塔区校级期中)如果|a+3|+|a﹣2|+|b﹣4|+|b﹣7|=8,则a﹣b的最大值等于 ﹣2 .【思路点拨】根据题意可得|a+3|+|a﹣2|=5,|b﹣4|+|b﹣7|=3,此时﹣3≤a≤2,4≤b≤7,可求得﹣10≤a﹣b≤﹣2,即可求解.【解题过程】解:|a +3|+|a ﹣2|≥5,|b ﹣4|+|b ﹣7|≥3,∴|a +3|+|a ﹣2|+|b ﹣4|+|b ﹣7|≥8,∵|a +3|+|a ﹣2|+|b ﹣4|+|b ﹣7|=8,∴|a +3|+|a ﹣2|=5,|b ﹣4|+|b ﹣7|=3,∴﹣3≤a ≤2,4≤b ≤7,∴﹣10≤a ﹣b ≤﹣2,∴a ﹣b 的最大值等于﹣2,故答案为:﹣2.11.(2021秋•江岸区校级月考)设有理数a ,b ,c 满足a >b >c ,这里ac <0且|c |<|b |<|a |,则|x−a b 2|+|x−b c 2|+|x +a c 2|的最小值为 2a b c 2 .【思路点拨】根据ac <0可知a ,c 异号,再根据a >b >c ,以及|c |<|b |<|a |,即可确定a ,﹣a ,b ,﹣b ,c ,﹣c 在数轴上的位置,而|x −a b 2|+|x −b c 2|+|x +a c 2|表示到 a b 2,b c 2,−a c 2三点的距离的和,根据数轴即可确定.【解题过程】解:∵ac <0,∴a ,c 异号,∵a >b >c ,∴a >0,c <0,又∵|c |<|b |<|a |,∴﹣a <﹣b <c <0<﹣c <b <a ,又∵|x −a b 2|+|x −b c 2|+|x +a c 2|表示到 a b 2,b c 2,−a c 2三点的距离的和,当x 在b c 2时距离最小,即|x −a b 2|+|x −b c 2|+|x +a c 2|最小,最小值是a b 2与−a c 2之间的距离,即2a b c 2.故答案为:2a b c 2.12.(2020秋•海曙区期末)已知a ,b ,c 为3个自然数,满足a +2b +3c =2021,其中a ≤b ≤c ,则|a ﹣b |+|b ﹣c |+|c ﹣a |的最大值是 1346 .【思路点拨】根据绝对值的性质化简式子,再确定a,b,c的值,由此解答即可.【解题过程】解:由题意知b≥a,则|a﹣b|=b﹣a,b≤c,则|b﹣c|=c﹣b,a≤c,则|c﹣a|=c﹣a,故|a﹣b|+|b﹣c|+|c﹣a|=b﹣a+c﹣b+c﹣a=2(c﹣a),上式值最大时,即c最大,且a最小时,(即c﹣a最大时),又a+2b+3c=2021,2021=3×673+2,故c的最大值为673,此时a+2b=2,a≤b,且a,b均为自然数,a=0时,b=1,此时a最小,故2(c﹣a)的最大值即c=673,a=0时的值,即:2×(673﹣0)=1346.故答案为:1346.13.设x是有理数,y=|x﹣1|+|x+1|.有下列四个结论:①y没有最小值;②有无穷多个x的值,使y取到最小值;③有x的值,使y=1.8;④使y=2.5的x有两个值.其中正确的是 (填序号).【思路点拨】依据绝对值的几何意义,|x﹣1|可以看成是x与1的距离,|x+1|可以看出是x与﹣1的距离,这样y可以看成两个距离之和,即在数轴上找一点x,使它到1和﹣1 的距离之和等于y.要从三个情形分析讨论:①x 在﹣1的左侧;②x在﹣1和1之间(包括﹣1,1);③x在1的右侧.【解答过程】解:∵|x﹣1|是数轴上x与1的距离,|x+1是数轴上x与﹣1的距离,∴y=|x﹣1|+|x+1|是数轴上x与1和﹣1的距离之和.∴当x在﹣1和1之间(包括﹣1,1)时,y的值总等于2.如下图:当x在﹣1的左侧时,y的值总大于于2.如下图:当x在1的右侧时,y的值总大于于2.如下图:综上,y有最小值2,且此时﹣1≤x≤1.∴①③不正确,②正确.∵使y=2.5的x有﹣1,25和1,25两个值,∴④正确.故答案为②④.14.有理数a,b满足|a+1|+|2﹣a|=6﹣|b+2|﹣|b+5|,a2+b2的最大值为 ,最小值为 .【思路点拨】将|a+1|+|2﹣a|以及|b+2|+|b+5|拆分开来看,从而分别得到他们的最值小均为3,而根据已知知道,它们的和为6,从而得到|a+1|+|2﹣a|以及|b+2|+|b+5|的值均为3,从而得到a和b的取值范围,进而可以求出a2+b2的最大值和最小值.【解答过程】解:|a+1|+|2﹣a|=6﹣|b+2|﹣|b+5|,∴|a+1|+|2﹣a|+|b+2|+|b+5|=6,∵|a+1|表示a到﹣1的距离,|2﹣a|表示a到2的距离,∴|a+1|+|2﹣a|≥3,又∵|b+2||表示b到﹣2的距离,|b+5|表示b到﹣5的距离,∴|b+2|+|b+5|≥3,又∵|a+1|+|2﹣a|+|b+2|+|b+5|=6,∴|a+1|+|2﹣a|=3,|b+2|+|b+5|=3,此时﹣1≤a≤2,﹣5≤b≤﹣2,∴a2的最大值为4,最小值为0,b2的最大值为25,最小值为4,∴a2+b2的最大值为29,最小值为4.故答案为:29,4.15.(2021秋•梁子湖区期中)已知|ab ﹣2|与|b ﹣2|互为相反数,求b 1a 1−b 2a−2+b 3a 3的值.【思路点拨】根据绝对值的非负性求出a ,b 的值,代入代数式求值即可.【解题过程】解:根据题意得|ab ﹣2|+|b ﹣2|=0,∵|ab ﹣2|≥0,|b ﹣2|≥0,∴ab ﹣2=0,b ﹣2=0,∴a =1,b =2,∴原式=32−4−1+54=32+4+54=274.16.(2021秋•贡井区期中)如图,数轴上的点A ,B ,C ,D ,E 对应的数分别为a ,b ,c ,d ,e ,且这五个点满足每相邻两个点之间的距离都相等.(1)填空:a ﹣c < 0,b ﹣a > 0,b ﹣d < 0(填“>“,“<“或“=“);(2)化简:|a ﹣c |﹣2|b ﹣a |﹣|b ﹣d |;(3)若|a |=|e |,|b |=3,直接写出b ﹣e 的值.【思路点拨】(1)根据数轴得出a <b <c <d <e ,再比较即可;(2)先去掉绝对值符号,再合并同类项即可;(3)先求出b 、e 的值,再代入求出即可.【解题过程】解:(1)从数轴可知:a <b <c <d <e ,∴a ﹣c <0,b ﹣a >0,b ﹣d <0,故答案为:<,>,<;(2)原式=|a ﹣c |﹣2|b ﹣a |﹣|b ﹣d |=﹣a +c ﹣2(b ﹣a )﹣(d ﹣b )=﹣a+c﹣2b+2a﹣d+b=a﹣b+c﹣d;(3)|a|=|e|,∴a、e互为相反数,∵|b|=3,这五个点满足每相邻两个点之间的距离都相等,∴b=﹣3,e=6,∴b﹣e=﹣3﹣6=﹣9.17.(2021秋•铜山区期中)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离记为d,请回答下列问题:(1)数轴上表示﹣3和1两点之间的距离d为 4 ;(2)数轴上表示x和﹣5两点之间的距离d为 |x+5| ;(3)若x表示一个有理数,且x大于﹣3且小于1,则|x﹣1|+|x+3|= 4 ;(4)若x表示一个有理数,且|x+2|+|x+3|>1,则有理数x的取值范围为 x<﹣2或x>﹣3 .【思路点拨】(1)根据数轴上两点间的距离公式进行计算;(2)根据数轴上两点间距离公式列式;(3)根据绝对值的意义进行化简计算;(4)根据绝对值的意义和数轴上两点间的距离进行分析求解.【解题过程】解:(1)d=1﹣(﹣3)=1+3=4,∴数轴上表示﹣3和1两点之间的距离d为4,故答案为:4;(2)数轴上表示x和﹣5两点之间的距离d=|x﹣(﹣5)|=|x+5|,故答案为:|x+5|;(3)∵﹣3<x<1,∴x﹣1<0,x+3>0,∴|x﹣1|+|x+3|=1﹣x+x+3=4,故答案为:4;(4)|x+2|+|x+3|表示数轴上数x到数﹣2和数﹣3的距离之和,∵﹣2﹣(﹣3)=1,且|x+2|+|x+3|>1,∴x<﹣2或x>﹣3,故答案为:x<﹣3或x>﹣2.18.x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣1997|取最小值,最小值是多少?【思路点拨】利用绝对值的几何意义分析:x为数轴上的一点,|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣1997|表示:点x到数轴上的1997个点(1、2、3、…、1997)的距离之和,进而分析得出最小值为:|999﹣1|+|999﹣2|+|999﹣3|+…|999﹣1997|求出即可.【解题过程】解:在数轴上,要使点x到两定点的距离和最小,则x在两点之间,最小值为两定点为端点的线段长度(否则距离和大于该线段);所以:当1≤x≤1997时,|x﹣1|+|x﹣1997|有最小值1996;当2≤x≤1996时,|x﹣2|+|x﹣1996|有最小值1994;…当x=999时,|x﹣999|有最小值0.综上,当x=999时,|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣1997|能够取到最小值,最小值为:|999﹣1|+|999﹣2|+|999﹣3|+…|999﹣1997|=998+997+996+…+0+1+2+998=(1998)×9982×2=997002.19.(2021秋•金乡县期中)我们知道:在研究和解决数学问题时,当问题所给对象不能进行统一研究时,我们就需要根据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,然后逐类进行研究和解决,最后综合各类结果得到整个问题的解决,这一思想方法,我们称之为“分类讨论的思想”.这一数学思想用处非常广泛,我们经常用这种方法解决问题.例如:我们在讨论|a|的值时,就会对a进行分类讨论,当a≥0时,|a|=a;当a<0时,|a|=﹣a.现在请你利用这一思想解决下列问题:(1)8|8|= 1 .−3|−3|= ﹣1 (2)a|a|= 1或﹣1 (a≠0),a|a|+b|b|= 2或0 (其中a>0,b≠0)(3)若abc≠0,试求a|a|+b|b|+c|c|+abc|abc|的所有可能的值.【思路点拨】(1)根据绝对值的定义即可得到结论;(2)分类讨论:当a>0时,当a<0时,当b>0时,当b<0时,根据绝对值的定义即可得到结论;(3)分类讨论:①当a>0,b>0,c>0时,②当a,b,c三个字母中有一个字母小于0,其它两个字母大于0时,③当a,b,c三个字母中有一个字母大于0,其它两个字母小于0时,④当a<0,b<0,c<0时,根据绝对值的定义即可得到结论.【解题过程】解:(1)8|8|=1,−3|−3|=−1,故答案为:1,﹣1;(2)当a>0时,a|a|=1;当a<0时,a|a|=−1;当b>0时,a|a|+b|b|=1+1=2;当b<0时,a|a|+b|b|=1﹣1=0;故答案为:1或﹣1,2或0;(3)①当a>0,b>0,c>0时,a|a|+b|b|+c|c|+abc|abc|=1+1+1+1=4,②当a,b,c三个字母中有一个字母小于0,其它两个字母大于0时,a|a|+b|b|+c|c|+abc|abc|=−1+1+1﹣1=0,③当a,b,c三个字母中有一个字母大于0,其它两个字母小于0时,a|a|+b|b|+c|c|+abc|abc|=1﹣1﹣1+1=0,④当a<0,b<0,c<0时,a|a|+b|b|+c|c|+abc|abc|=−1﹣1﹣1﹣1=﹣4,综上所述,a|a|+b|b|+c|c|+abc|abc|的所有可能的值为±4,0.20.(2021秋•江岸区期中)阅读下列材料.我们知道|x|=x(x>0)0(x=0)−x(x<0),现在我们可以利用这一结论来化简含有绝对值的代数式.例如:化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1和x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在有理数范围内,零点值x=﹣1和x=2可将全体有理数分成不重复且不遗漏的如下3种情况:x<﹣1;﹣1≤x<2;x≥2.从而在化简|x+1|+|x﹣2|时,可分以下三种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=(x+1)﹣(x﹣2)=3;③当x≥2时,原式=(x+1)+(x﹣2)=2x﹣1.∴|x+1|+|x﹣2|=−2x+1(x<−1)3(−1≤x<2)2x−1(x≥2),通过以上阅读,解决问题:(1)|x﹣3|的零点值是x= 3 (直接填空);(2)化简|x﹣3|+|x+4|;(3)关于x,y的方程|x﹣3|+|x+4|+|y﹣2|+|y+1|=10,直接写出x+y的最小值为 ﹣5 .【思路点拨】(1)根据零点值的概念领x﹣3=0,求解;(2)仿照材料例题分x<﹣4;﹣4≤x<3;x≥3三种情况结合绝对值的意义化简求解;(3)仿照材料例题,分原式为|x﹣3|+|x+4|与|y﹣2|+|y+1|两部分进行分析求其最小值.【解题过程】解:(1)令x﹣3=0,解得:x=3,∴|x﹣3|的零点值是x=3,故答案为:3;(2)令x﹣3=0,x+4=0,解得:x=3,x=﹣4,①当x<﹣4时,原式=3﹣x﹣4﹣x=﹣2x﹣1,②当﹣4≤x<3时,原式=3﹣x+x+4=7,③当x>3时,原式=x﹣3+x+4=2x+1,综上,|x﹣3|+|x+4|=−2x−1(x<−4) 7(−4≤x<3)2x+1(x>3);(3)令x﹣3=0,x+4=0,y﹣2=0,y+1=0,解得:x=3,x=﹣4,y=2,y=﹣1,由(2)可得,当x<﹣4时,|x﹣3|+|x+4|=﹣2x﹣1,又∵x<﹣4,∴﹣2x>8,则﹣2x﹣1>7,当x>3时,|x﹣3|+|x+4|=2x+1,又∵x>3,∴2x>6,则2x+1>7,∴当﹣4≤x<3时,|x﹣3|+|x+4|取得最小值为7,同理,可得当﹣1≤y<2时,|y﹣2|+|y+1|取得最小值为3,∴当|x﹣3|+|x+4|+|y﹣2|+|y+1|=10时,﹣4≤x<3,﹣1≤y<2,∴此时x+y的最小值为﹣4+(﹣1)=﹣5,故答案为:﹣5.。

七年级数学绝对值数形结合(含答案)

七年级数学绝对值数形结合(含答案)

绝对值数形结合【1、数轴与实际问题】例1 5个城市的国际标准时间(单位:时)在数轴上表示如下,那么北京时间2006年6月17日上午9时应是( )A 、伦敦时间2006年6月17日凌晨1时B 、纽约时间2006年6月17日晚上22时C 、多伦多时间2006年6月16日晚上20时D 、首尔时间2006年6月17日上午8时解:观察数轴很容易看出各城市与北京...的时差例2在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所。

已知青少年宫在学校东300米处,商场在学校西200米处,医院在学校东500米处。

将马路近似地看成一条直线,以学校为原点,以正东方向为正方向,用1个单位长度表示100米。

① 在数轴上表示出四家公共场所的位置。

② 计算青少年宫与商场之间的距离。

解:(1)(2)青少年宫与商场相距:3-(-2)=5 个单位长度 所以:青少年宫与商场之间的距离=5×100=500(米) 练习1、如图,数轴上的点P 、O 、Q 、R 、S 表示某城市一条大街上的五个公交车站点,有一辆公交车距P 站点3km ,距Q 站点0.7km ,则这辆公交车的位置在( ) A 、R 站点与S 站点之间 B 、P 站点与O 站点之间 C 、O 站点与Q 站点之间 D 、Q 站点与R 站点之间解:判断公交车在P 点右侧,距离P :(-1.3)+3=1.7(km),即在原点O 右侧1.7处,位于Q 、R 间城市名称 时差 北京时间 当地时间纽约 -5-8=-13 17日上午9时 9-13=-4,24-4=20,17日晚上20时 多伦多 -4-8=-12 17日上午9时 9-12=-3,24-3=21,17日晚上21时伦敦 0-8=-8 17日上午9时 9-8=1,16日凌晨1时 首尔9-8=+117日上午9时9+1=10,16日上午10时国际标准时间(时)98-5-4首尔北京伦敦多伦多纽约x商场医院青少年宫学校而公交车距Q 站点0.7km ,距离Q :0.7+1=1.7(km),验证了,这辆公交车的位置在Q 、R 间2、如图,在一条数轴上有依次排列的5台机床在工作,现要设置一个零件供应站P ,使这5台机床到供应站P 的距离总和最小,点P 建在哪?最小值为多少?解: (此题是实际问题,涉及绝对值表示距离,后面会有更深入的理解) 此题揭示了,问题过于复杂时,要“以退为进”,回到问题 的起点,找出规律。

浙教版(2024)数学七年级上册《绝对值》教案及反思

浙教版(2024)数学七年级上册《绝对值》教案及反思

浙教版(2024)数学七年级上册《绝对值》教案及反思一、教学目标:【知识与技能目标】:1.掌握绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是 0。

2.理解绝对值的概念,会求一个数的绝对值。

3.能够利用绝对值比较两个有理数的大小。

【过程与方法目标】:1.通过数轴上的点到原点的距离,体会绝对值的几何意义,培养学生的数形结合思想。

2.通过具体的数值计算,归纳出绝对值的代数意义,培养学生的归纳推理能力。

3.通过比较两个有理数的绝对值大小来比较它们的大小,培养学生的逻辑思维能力。

【情感价值观目标】:1.在探究绝对值概念和性质的过程中,培养学生积极思考、勇于探索的精神。

2.感受数学的严谨性和逻辑性,体会数学在实际生活中的应用价值。

3.培养学生严谨的治学态度和勇于探索的创新精神。

二、学情分析:七年级的学生已经学习了有理数的概念、数轴等知识,为学习绝对值奠定了基础。

学生对绝对值概念的理解可能存在困难,特别是对于负数的绝对值是它的相反数这一性质,在利用绝对值比较两个有理数的大小时,可能会出现错误。

三、教材分析:《绝对值》是浙教版(2024)数学七年级上册的内容,主要旨在绝对值的概念体现了数形结合的思想方法,对于培养学生的数学思维能力具有重要意义,它是进一步学习有理数的运算和实数的基础。

教材首先通过数轴上表示数的点到原点的距离引出绝对值的概念,然后通过具体的例子让学生掌握求一个数的绝对值的方法,最后介绍了绝对值的性质和利用绝对值比较两个有理数的大小。

四、教学重难点【教学重点】:绝对值的概念和性质,利用绝对值比较两个有理数的大小。

【教学难点】:对绝对值概念的理解,特别是负数的绝对值是它的相反数这一性质。

五、教学方法和策略:【教学方法】:1.讲授法:讲解绝对值的概念、性质和求法。

2.演示法:通过数轴的直观演示,帮助学生理解绝对值的概念。

3.练习法:通过练习,让学生巩固所学知识。

【教学策略】:1.创设情境法:注重知识的形成过程,让学生在体验中学习,激发学生的学习兴趣。

初一数学绝对值知识点与经典例题

初一数学绝对值知识点与经典例题

初一数学绝对值知识点与经典例题绝对值的性质及化简绝对值有几何意义和代数意义。

在数轴上,一个数a的绝对值就是表示数a的点与原点的距离,记作|a|。

而在代数意义上,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.绝对值的运算符号是“| |”,取绝对值就是去掉绝对值符号。

绝对值具有非负性,取绝对值的结果总是正数或0.任何一个有理数都是由符号和绝对值组成,如-5符号是负号,绝对值是5.我们可以通过比较两个负有理数的绝对值的大小来利用绝对值。

两个负数,绝对值大的反而小。

绝对值非负性是|a|≥0.如果若干个非负数的和为0,则这若干个非负数都必为0,如a+b+c=0,则a=b=c=0.除此之外,绝对值还有其他重要性质。

任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a≥|a|,且|a|≥|-a|。

若a=b,则a=±b。

ab=|a|·|b|,a²=|a|²。

||a|-|b||≤|a±b|≤|a|+|b|。

要去掉绝对值符号,我们需要找零点,分区间,定正负,去符号。

解绝对值不等式必须化去式中的绝对值符号,转化为一般代数式类型来解。

证明绝对值不等式主要有两种方法:一是去掉绝对值符号转化为一般的不等式证明,包括换元法、讨论法、平方法;二是利用不等式:|a|-|b|≤|a+b|≤|a|+|b|,对绝对值内的式子进行分拆组合、添项减项,使要证的式子与已知的式子联系起来。

在考试中,我们需要掌握绝对值的必考题型。

例如,已知|x-2|+|y-3|=k,求x+y的值。

由绝对值的非负性可知x-2=±k,y-3=±k。

当x-2=k,y-3=k时,x+y=2k+6;当x-2=-k,y-3=-k 时,x+y=4.因此,x+y的值为2k+6或4.我们还需要掌握相反数等于它本身、倒数等于它本身的是±1,绝对值等于它本身的是非负数等知识点。

初一数学数轴和绝对值

初一数学数轴和绝对值

初一数学数轴和绝对值知识点总结知识点考点一数轴的概念及画法数轴:画一条直线,在直线上取一点表示,这个点叫做;选取某一长度作为;规定直线上的方向为正方向,就得到下面的数轴,如图所示.注意:(1)数轴是一条直线,可以向两边;(2)数轴的三要素:、、,三者缺一不可;(3)“规定”二字,就是说的选定、的选取、大小的确定,都是根据实际需要而“规定”的.数轴的画法:(1)先画一条直线(一般画成水平方向的直线,但不是说必须是水平方向);(2)确定正方向(通常取向右为正方向,实际选取正方向是任意的),用箭头表示出来;(3)在直线上任意取一点为原点(通常取图上适中的位置,若所需的都是正数,则可偏向左边),用0表示出来.(4)选取适当的单位长度(单位长度根据实际情况而定),从原点向左每隔一个单位长度在直线上取一个点,依次表示为-1,-2,-3,…,从原点向右每隔一个单位长度在直线上取一个点,依次表示为1,2,3,….考点二数轴上的点与有理数的关系任何有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数.考点三在数轴上表示有理数的大小数轴上两个点表示的数,右边的总比左边的 .比较法则:正数 0,负数 0,正数负数.考点四相反数的概念及意义相反数的代数定义:如果两个数只有不同,那么称其中一个数为另一个数的,也称这两个数 .特别地,0的相反数是 .注意:(1)相反数总是成对出现,不能单独存在.(2)对于“两个数只有符号不同”中的“只有”指的是除了符号不同外,其他完全相同.例如:-1和+2,符号不同,但它们相反数.(3)相反数等于它本身的数个,是 .(4)如果a,b互为相反数,那么a+b=;反之,也成立.相反数的几何意义:在数轴上,位于原点的,且到原点的距离的两个点所表示的数互为相反数.相反数的表示法:在一个数前面添上一个“”号就表示这个数的 .一般地,数a 的相反数是 .这里的a是任意的有理数,可以是正数、负数或零.考点五绝对值的意义定义:在数轴上,一个数所对应的点与原点之间的叫做这个数的绝对值.数a的绝对值记作“”,读作“”.从几何意义上看,一个数的绝对值是,所以绝对值为负数.一个数的绝对值与这个数的关系:正数的绝对值是;负数的绝对值是;0的绝对值是 .总结:(1)若|a|=a,则a 0;若|a|=−a,则a 0.(2)任何一个有理数的绝对值都是一个数.(3)绝对值等于一个正数的数有个,这两个数 .(4)互为相反数的两个数的绝对值 .考点六绝对值的非负性任何一个数的绝对值为负数,即|a| 0.这里的a可以是,也可以是,还可以是 .绝对值最小的有理数是 .考点七两个负数大小的比较法则因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数的,所以,两个负数比较大小,绝对值大的反而 .比较两个负数的大小的步骤是:(1)先分别求出两个负数的;(2)比较两个 ;(3)根据“ ”作出正确的判断.题型一 数轴的画法【例1】在下图中,表示数轴正确的是( )【过关练习】1.下列各图中,所画数轴正确的是( )2.下列说法中,错误的是( )A.在数轴上,原点位置的确定是任意的B.在数轴上,正方向可以是从原点向右,也可以是从原点向左C.在数轴上,确定单位长度时可根据需要任意选取D.数轴是规定了原点、正方向、单位长度的直线题型二 有理数与数轴上的点【例1】下列语句: 数轴上的点只能表示整数; 数轴是一条线段;●数轴上的一个点只能表示一个数;❍数轴上找不到既不表示正数,又不表示负数的点;⏹数轴上的点所表示的数都是有理数.其中正确的有( )A.1个B.2个C.3个D.4个【例2】画一条数轴,并在数轴上表示下列各数:-3,-1.5,-0.5,0,1,212,4,−223.【例3】点A 表示的数为-2,当点A 沿数轴移动4个单位长度时,它表示的数是( )A.2B.2或-6C.-6D.不同于以上答案【例4】如图,已知数轴上的点A ,B ,C ,D 分别表示数-2,1,2,3,则表示3−223的点P 应落在线段( )A.AO 上B.OB 上C.BC 上D.CD 上【过关练习】1. 画一条数轴,并在数轴上表示下列各数:-3.5,-2,-0.5,0,1.5,223,4,−212.2.如图,分别用数轴上的点A ,B ,C ,D 表示数,正确的是( )A.点D 表示-2.5B.点C 表示-1.25C.点B 表示1.5D.点A 表示1.253. 在数轴上,一点从原点开始,先向右移动2个单位长度,再向左移动3个单位长度后到达终点,这个终点表示的数是( )A.5B.1C.-1D.-5 4. 如图,在数轴上一动点A 先向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C ,若点C 表示的数为1,则点A 表示的数为( )A.7B.3C.-3D.-25. 在数轴上一点A 表示数-2.(1)若数轴上的原点改在表示数-1的点的位置,那么点A 应表示什么数?(2)现在改变了数轴的单位长度,原来的一个单位长度表示10个单位长度,A 点又表示什么数?题型三求相反数【例1】 (1)分别写出−412,334的相反数.(2)指出-3.1和-p各是什么数的相反数.【例2】如图,所表示的数互为相反数的点是()A.点A与点CB.点B与点DC.点B与点CD.点A与点D【过关练习】1. 下列说法: m与-m互为相反数,因此它们一定不相等; 相反数等于它本身的数只有0;●正数和负数互为相反数;❍负数的相反数是正数;⏹ a的相反数一定是负数.其中正确的个数是()A.1B.2C.3D.42. 设a是有理数,则-a与|a|的和为()A.可能是负数B.不可能是负数C.只可能是负数D.只能是03. (1)写出下列各数的相反数,并将这些数连同它们的相反数在数轴上表示出来;(2)说明各对数在数轴上的位置特点.+2,−3,0,−(−1),−312,−(+2)题型四求绝对值【例1】如图,点A所表示的有理数的绝对值是()A.-1B.1C.±1D.以上都不对【例2】已知数轴上的点A为-2,那么在数轴上到A点的距离是3的点所表示的数是()【例3】已知|a |=-a ,则a 的值是( )A.正数B.负数C.非正数D.非负数【例4】已知|x −5|+|3−y |=0,求x ,y 的值.【过关练习】1.下列说法中: 一个数的绝对值越大,这个数越大; 一个正数的绝对值越大,这个数越大;●一个数的绝对值越小,这个数越大;❍一个负数的绝对值越小,这个数越大.其中正确的是( )A.1B.2C.3D.42. (1)绝对值不大于π的整数有 .(2)已知|x −28|=0,则x = .3. a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a ,b ,c 三数之和是 .4. 若|a −1|=a −1,则a 的取值范围是 .5. 已知|a −3|+|2b −8|+|c −2|=0,求a +3b −c 的值.题型五 利用数轴和绝对值比较有理数大小【例1】在数轴上表示下列各数,并用“<”将这些数连接起来:-3,−23,1,0,+4.5,-1.5,113.【例2】在数-3,2,0,3中,大小在-1和2之间的数是( )【例3】利用绝对值比较下列每组数的大小:(1)−1011与−1112(2)−19与−0.7(3)−12,−13,14【例4】已知a为正数,b为负数,且|a|<|b|,比较a,b,−a,−b的大小.【过关练习】1.有理数a,b在数轴上对应点的位置如图所示,则a b(填“>”“<”“=”).2. 以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是()A.-3℃B.15℃C.-10℃D.-1℃3.把下列各数在数轴上表示出来,再按从大到小的顺序用“>”把数连接起来.-0.5,-2,0,4,324. 已知有理数a,b在数轴上的位置如图,下列结论错误的是()A.|a|<1<|b|B.1<−a<bC. 1<|a|<bD.−b<a<−15. 数轴上有四个点A,B,C,D,它们与原点的距离分别为1,2,3,4个单位长度,且点A,C在原点左边,点B,D在原点右边.(1)请写出点A,B,C,D分别表示的数;(2)比较四个数的大小,并用“>”连接.题型六解决实际问题【例1】将长度为2个单位的木棒放在数轴上,最多能覆盖个表示整数的点,最少能覆盖个表示整数的点.【例2】超市、书店、玩具店依次坐落在一条东西走向的大街上,超市在书店西边20米处,玩具店位于书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、玩具店的位置,以及小明最后的位置.【例3】某天出租车司机小王驾车在南北走向的公路上行驶,从某一地点出发,若规定向南为正,向北为负,他这天上午的行程记录如下(单位:km)+2,-6,+4,-7,+12,+8,-9,-10,+5.若汽车每行驶1km 耗油0.8L,请你计算一下小王驾驶的汽车这天上午共耗油多少升?【过关练习】个单位长度的线段,则此线段在数轴上最多能覆盖住的整数点的个数为1. 在数轴上任取一条长为201613()A.2017B.2016C.2015D.20142.检验4个工件,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的工件是()A.-2B.-3C.3D.53. 某同学在做数学作业时,不小心将墨水洒在所画的数轴上,如图,被墨水污染部分的整数有个.4. 小明、小兵、小颖三人的家和学校在同一条东西走向的大街上,星期天老师到这三家进行家访,从学校出发先向东走250m到小明家,后又向东走350m到小兵家,再向西行800m到小颖家,最后又回到学校.(1)以学校为原点,画出数轴并在数轴上分别表示出小明家、小兵家、小颖家的位置.(2)小明家距离小颖家多远?(3)这次家访,老师共行了多少千米的路程?5.足球比赛中,对所用的足球有严格的规定,下表是5个足球的质量检测结果(用正数表示超过标准质量的克数,用负数表示不足标准质量的克数)..课后练习【补救练习】1.-15的相反数是()A.15B.-15C.±15D.1152. 在-4,2,-1,3这四个数中,比-2小的数是()A.-4B.2C.-1D.33.数a ,b ,c ,d 在数轴上的对应点的位置如图所示,在这四个数中,绝对值最大的是( )A.aB.bC.cD.d4. 数轴上的点A 对应的数是-2,点B 对应的数是3,则A ,B 两点之间的距离是 .5.把下列各数用“>”连接起来:−|412|,32,0.7,−0.7,23,|−5|,−4.2,0.6.比较下列各组数的大小.(1)-6,-2; (2)-2.5,1; (3)−13,−14; (4)-10,0;(5)-7,2,-2;(6)1.8,-3.1,-5.6.7.由图回答问题: (1)A ,C 两点间的距离是多少?C ,D 两点间的距离是多少?(2)若数轴取B 点为原点,其他条件不变,则点A ,C ,D 表示的数各是什么?8. a ,b ,c 在数轴上的位置如图所示,下列说法正确的是( )A.a ,b ,c 都表示正数B.a ,b ,c 都表示负数C.a,b表示正数,c表示负数D.a,b表示负数,c表示正数9.a,b,c三个数在数轴上的位置如图所示,又|a|=3,|b|=4,|c|=3.求a,b,c.4【巩固练习】1.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是12. 在数轴上,A点和B点所表示的数分别是-1和1,若使A点表示的数是B点表示的数的2倍,则点A ()A.向左移动3个单位长度B.向右移动3个单位长度C.向左移动5个单位长度D.向右移动5个单位长度3. 在数轴上表示数-1和2014的两点分别为A和B,则A,B两点之间的距离为()A.2013B.2014C.2015D.20164.数轴上,点A表示的数是-1,把点A向右移动3个单位长度,再向左移动5个单位长度得到点B,则点B表示的数是 .5.如图,四个有理数在数轴上的对应点为M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示到原点的距离最小的点是()A.点MB.点NC.点PD.点Q6.已知|15−a|+|b−12|=0,求2a−b+7的值.7. 如图所示,在数轴上有三个点A、B、C,怎样移动其中的两个点,才能使三个点表示的数相同?8.老师不小心把墨水洒在了如图所示的数轴上,你能帮助他把这条数轴补充完整吗?并在补好的数轴上标出你喜欢的一个正整数、一个正分数、一个负整数、一个负分数.9.某供电站工作人员乘车检修供电线路,向南记为正,向北记为负.某天自供电站出发,他的行程记录如下(单位:km):+12,-5,+3,-3,-7,+11,-2,+9,+4,-8.若汽车每千米耗油0.09L,问共耗油多少升?10.如图所示,已知在纸面上有一数轴.操作一:(1)折叠纸面,使表示1的点与表示-1的点重合,则表示-2的点与表示的点重合.操作二:(2)折叠纸面,使表示-1的点与表示3的点重合,回答以下问题:表示5的点与表示的点重合;若数轴上A,B两点之间的距离为9(A在B的左侧),且A,B两点折叠后重合,求A,B两点表示的数.11.一条直线流水线上依次有5个机器人,它们站的位置在数轴上依次用点A1,A2,A3,A4,A5表示,如图所示.(1)怎样将点A3移动,使它先到达点A2再到达点A5,请用文字语言说明.(2)若原点是零件供应点,那5个机器人分别到达供应点取货的总路程是多少?(3)将零件的供应点设在何处,才能使5个机器人分别到达供应点取货的总路程最短?【拔高练习】1.数轴上A点表示的数为-5,B点表示的数的绝对值为7,C点表示的数与A点表示的数互为相反数,则点B与点C之间的距离是 .2.(1)式子|m−3|+6的值随m的变化而变化,当m为何值时,|m−3|+6有最小值?(2)当a为何值时,式子8−|2a−3|有最大值?最大值是多少?(3)当a为何值时,|1−a|+2的有最小值?并求这个最小值.(4)当a为何值时,2−|4−a|有最大值?并求这个最大值.3.已知数轴上有两点M、N,它们分别表示互为相反数的两个数m、n(其中m>n),并且M、N两点间的距离为10,求m、n两数.4.如图是一个正方体纸盒的展开图,若在其中3个正方形A,B,C内分别填入适当的数,使得它折成正方体后相对的面上的两个数互为相反数,则填入正方形A,B,C的三个数是多少?5. 探究:(1) 当a>0时,a−a;当a=0时,a−a;当a<0时,a−a.的大小关系.(2)请仿照(1)方法比较a和1a。

新人教版七年级数学(上)——数轴、相反数、绝对值

新人教版七年级数学(上)——数轴、相反数、绝对值

数轴、相反数、绝对值第一部分:知识精讲知识点一、数轴1、数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴.2、数轴三要素:原点、正方向、单位长度3、数轴的画法:①在平面内画一条直线;②标出原点;③用一定的长度作为单位长度,左边和右边标出数字4、数轴上的点的意义:一般地,设a是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示-a的点在原点的左边,与原点的距离是a个单位长度。

注意:任何一个有理数都可以用数轴上的点来表示。

知识点二、相反数1、相反数的代数概念:只有符号不同的两个数称互为相反数。

0的相反数是0.2、相反数的几何意义:在数轴上,表示互为相反数的两个数分别位于原点两侧,且与原点的距离相等。

说明:(1)相反数是指只有符号不同的两个数;(2)相反数是成对出现的,不能单独存在,因而不能说“-6是相反数”。

特别强调的是0的相反数为0,因为0既不是正数,也不是负数,它到原点的距离就是0,这是相反数等于本身的唯一的数。

规定:在任何一个数的前面添上一个"+"号,表示这个数本身;添上一个"-"号,就表示这个数的相反数.一般地,数a的相反数是-a,其中a可是正数和负数和0.注意:a 不一定是正数,同样-a 也不一定是负数。

3、“-”号的三种主要意义:① 性质符号:写在一个数值的前面,表示这个数是负数. 比如,-5表示“负5”这个负数,在这里的“-”号就是表示负数的一种符号,它表明“-5”的性质是负数.② 相反数符号:表示一个数的相反数时,我们常在这个数的前面添上“-”号.③ 运算符号:知识点三、绝对值1、绝对值的定义:我们把在数轴上表示数a 的点与原点的距离叫做数a 的绝对值)。

记作|a|。

2、绝对值的一般规律:① 一个正数的绝对值是它本身;② 0的绝对值是0;③ 一个负数的绝对值是它的相反数。

即:①若a >0,则|a|=a ; ②若a <0,则|a|=–a ; 或写成:)0()0()0(0<=>⎪⎩⎪⎨⎧-=a a a a a a 。

数轴与绝对值(七年级新教材)

数轴与绝对值(七年级新教材)

§1.1数轴与绝对值【老师的话】数轴与绝对值是第一章有理数中两个重要概念,而且在整个初中数学中占有重要地位和作用.为此,我们不但要掌握课本中有关数轴与绝对值的知识,而且还应该掌握与该内容有关的一些拓展方面的知识.为今后数学学习奠定更扎实的基础.【知识要点】1. 数轴的概念:规定了原点、正方向和单位长度的直线叫数轴.2. 数轴上的点与有理数的关系:所有的有理数都可以用数轴上的点表示,反之,却不能说数轴上所有的点都表示有理数.正有理数用原点右边的点表示,负有理数用原点左边的点表示,零用原点表示.3. 利用数轴比较有理数的大小:在数轴上两点所表示的数,左边的数小于右边的数;正数大于一切负数和零;负数小于零;两个负数绝对值大的数反而小. 4.数轴与相反数:在数轴上原点的两旁与原点的距离相等的两个点所表示的两个数只有符号不同,称它们互为相反数;零的相反数是零.5.数轴与绝对值:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零.数a 的绝对值用代数语言表达为:|a|=⎪⎩⎪⎨⎧<-=>)a (a )a ()a (a 0000注意:|a|可视为数a 在数轴上的对应点A 到原点O 的距离.如|-2|可视为-2这点到原点O 的距离;|x-3|可视为数x 对应的点到3的对应点的距离;|x+3|=|x-(-3)|可视为点x 到-3这个点的距离.一般地,可视|x-a|(a 为有理数)为两个数x ,a 在数轴上的对应点X 与a 之间的距离. 【例题点拔】【例1】有理数a ,b ,c 在数轴上的位置如图所示:若m=|a+b|-|b-1|-|a-c|-|1-c|,则100m= .【点拔】从有理数a ,b ,c 在数轴上的位置,判断出:它们谁是正数,谁是负数,取值范围及大小关系,从而利用绝对值定义去掉绝对值符号,加以计算. 解:由图可知,a<0,b<0,⇒a+b<0⇒|a+b|=-(a+b);b<0⇒b-1<0⇒|b-1|=-(b-1) a<0<c ⇒a-c<0⇒|a-c|=-(a-c),0<c<1⇒1-c>0⇒|1-c|=1-c. 所以m=-(a+b )-[-(b-1)]-[-(a-c )]-(1-c ) =-(a+b )+(b-1)+(a-c )-(1-c ) =-a-b+b-1+a-c-1+c=-2代入1000m=1000×(-2)=-2000.【例2】化简:|2x-1|-|x-2|【点拔】此题因为没有给出x 的范围,故2x-1和x-2的正负需分情况来讨论. 显然,2x-1=0是2x-1取正、负值的分界线,即x=21是2x-1取正、负值的分界点.同理x=2是x-2取正、负值的分界点.这两点将数轴分成了三个部分(如图),x<21,21≤x<2, x ≥2x 可由上述三个范围讨论化简,这种方法叫”零点分段法”.解 令2x-1-0,x=21;x-2=0,x=2(1)当x<21时,原式=-(2x-1)-[-(x-2)]=1-2x+x-2=-x-1(2)当21≤x<2时,原式=(2x-1)-[-(x-2)]=2x-1+x-2=3x-3.(3)当x ≥2时,原式=(2x-1)-(x-2)=2x-1-x+2=x+1. 【例3】若a,b,c 均为非零的有理数,求|c |c |b |b |a |a ++的值.【点拔】根据a,b,c 的符号,全面地进行讨论,化去绝对值符号,方可求值. 解 (1)当a,b,c 都是正数时,原式=3c c b b a a =++. (2)当a,b,c 都是负数时,原式=3c c b b aa -=-+-+-.(3)当a,b,c 有两个负数一个正数时,(不仿设a,b为负,c为正),原式=1cc bb a a -=+-+-.(4)当a ,b ,c 有两个正数,一个负数时,(不仿设a ,b 为正,c 为负),原式=1cc b b aa =-++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档