层次分析法详解

合集下载

层次分析法(详解)

层次分析法(详解)

第六章层次分析法决策是人们选择或进行判断的一种思维活动,在人们的实践活动中,常常要对某些系统的重要性作出恰当的评价,以便列出它们的轻重缓急,从而集中解决重要的问题。

有些决策是简单易断的,而有些决策则是复杂困难的,因此常常先把复杂问题分解成因素,然后把这些因素按支配关系分组形成有序的递阶层次结构,并衡量各方面的影响,最后综合人的判断,以决定决策诸因素相对重要性的先后优劣次序,这就是层次分析法的基本思路。

层次分析法的(Analytic Hierarchy Process 简记为AHP)是美国著名的运筹学家T.L.Saaty 教授于70年代初首先提出的一种定性与定量分析相结合的多准则决策方法。

该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用。

6.1 层次分析法的基本原理层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理。

下面分别予以介绍。

1.递阶层次结构原理。

一个复杂的结构问题可分解为它的组成部分或因素,即目标、准则、方案等。

每一个因素称为元素。

按照属性的不同把这些元素分组形成互不相交的层次,上一层次的元素对相邻的下一层次的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系。

具有这种性质的层次称为递阶层次。

例如,选拔队员参加数学建模比赛的层次结构如下图6.1所示:图6.1 队员参赛的层次结构图其中Y1:接受能力;Y2:反映能力;Y3:自愿程度;Y4:计算机应用能力;Y5:写作能力;Y11:掌握新知识的能力;Y12:建模能力;Y21:想象能力;Y22:洞察能力;Y31:建模兴趣;Y32:主动程度;Y33:对建模的认识Y41:使用数学软件的能力;Y41:计算机语言编程能力;Y51:中文写作能力;Y52:英文表达能力至于复杂系统的层次结构图,请参看有关的文献。

2.测度原理。

决策就是要从一组已知方案中选择理想的方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的。

层次分析法介绍

层次分析法介绍

层次分析法介绍我顶!一.层次分析法的基本原理1.引言层次分析法(Analytia1 Hierarchy Process,简称AHP)是美国匹兹堡大学教授A.L.Saaty于20世纪70年代提出的一种系统分析方法。

AHP是一种能将定性分析与定量分析相结合的系统分析方法。

AHP是分析多目标、多准则的复杂大系统的有力工具。

它具有思路清晰、方法简便、适用面广、系统性强等特点,便于普及推广,可成为人们工作和生活中思考问题、解决问题的一种方法。

将AHP引入决策,是决策科学化的一大进步。

它最适宜于解决那些难以完全用定量方法进行分析的决策问题,因此,它是复杂的社会经济系统实现科学决策的有力工具。

应用AHP解决问题的思路是:首先,把要解决的问题分层系列化,即根据问题的性质和要达到的目标,将问题分解为不同的组成因素,按照因素之间的相互影响和隶属关系将其分层聚类组合,形成一个递阶的、有序的层次结构模型。

然后,对模型中每一层次因素的相对重要性,依据人们对客观现实的判断给予定量表示,再利用数学方法确定每一层次全部因素相对重要性次序的权值。

最后,通过综合计算各层因素相对重要性的权值,得到最低层(方案层)相对于最高层(总目标)的相对重要性次序的组合权值,以此作为评价和选择方案的依据。

2.基本原理我们可以分析下面这个简单的例子,来说明AHP的基本原理。

二.层次分析法的步骤用AHP分析问题大体要经过以下五个步骤:(1)建立层次结构模型;(2)构造判断矩阵;(3)层次单排序;(4)层次总排序;(5)一致性检验。

其中后三个步骤在整个过程中需要逐层地进行。

1.建立层次结构模型运用AHP进行系统分析,首先要将所包含的因素分组,每一组作为一个层次,按照最高层、若干有关的中间层和最低层的形式排列起来。

对于决策问题,通常可以将其划分成层次结构模型。

其中:最高层:表示解决问题的目的,即应用AHP所要达到的目标。

中间层:它表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等。

层次分析法步骤及案例分析

层次分析法步骤及案例分析

层次分析法步骤及案例分析层次分析法(AHP)是一种通过对比判断不同因素的重要性来进行决策的方法。

它由匹兹堡大学的数学家托马斯·萨蒙在20世纪70年代初提出,并逐渐应用于各个领域。

本文将介绍层次分析法的步骤,并通过一个实际案例来进行分析。

一、层次分析法的步骤层次分析法主要包括以下几个步骤:1. 确定层次结构:首先,需要明确决策问题的层次结构。

将问题划分为若干个层次,从总目标到具体的子目标,形成一棵树状结构。

例如,在一个购车的决策问题中,总目标可以是“选择一辆适合自己的车”,下面的子目标可以包括“价格”、“外观”、“安全性”等因素。

2. 构造判断矩阵:在每个层次中,需要对不同因素之间的两两比较进行判断。

判断可以基于专家经验、问卷调查或实际数据。

对于两两比较,通常采用一个1到9的比较尺度,其中1表示相等,3表示略微重要,5表示中等重要,7表示强烈重要,9表示绝对重要。

如果因素A相对于因素B的重要性大于1,则B相对于A的重要性是1/A。

3. 计算权重向量:根据判断矩阵中的比较结果,可以计算出每个层次中各个因素的权重向量。

通过对判断矩阵的特征值和特征向量进行计算,可以得到各个因素的权重。

4. 一致性检验:在进行层次分析时,需要检验判断矩阵的一致性。

一致性是指在两两比较中的逻辑关系的一致性。

通常使用一致性指数和一致性比率来判断判断矩阵的一致性程度。

5. 综合评价:通过将各层次中因素的权重向量进行乘积运算,并将结果汇总得到最后的评价结果。

在这一步骤中,可以对不同的决策方案进行排序或进行多目标决策。

二、案例分析为了更好地了解层次分析法的应用,我们来看一个实际案例。

假设某公司需要选择新的供应商,供应商选择的主要考虑因素包括产品质量、交货周期和价格。

我们可以按照以下步骤进行决策:1. 确定层次结构:总目标是选择合适的供应商,下面的子目标是产品质量、交货周期和价格。

2. 构造判断矩阵:对于每个子目标,可以进行两两比较。

层次分析法详解

层次分析法详解

构建风险层次结构通过选取的指标可以看出这是一个多目标的且问题涉及到许多因素,各种因素的作用相互,情况复杂。

依据层次分析法处理这类复杂的问题就需要对所涉及的因素指标进行分析:哪些是需相互比较的;哪些是需相互影响的。

把那些需相互比较的因素归成同一类,构造出一个各因素类之间相互联结的层次结构模型。

各因素类的层次级别由其与目标的关系而定:第一层是目标层,也就是国家风险的评价排序第二层是准则层,这一层中是国家风险排序所涉及的国家风险类型,即政治风险、经济风险、社会风险。

第三层是子准则层,这一层是评价衡量准则层中各要素的影响因素及评价指标,即政权凝聚力、腐败状况、相关法律政策、国际关系、官僚主义、经济政策、汇率稳定性、金融环境、内部冲突、外部冲突、民族差异等。

第四层也就是我们要选择的方案即所要选择的并购方案国家。

图5.1风险层次结构模型Fig.5.1 The hierarchical structure model of country risk为了方便计算以及模型的理解,层次结构中各层次均用字母代替,目标层为iA ,准则层为B i ,子准则层为C i ,方案层为D i 。

5.2.2 重要性程度描述为了将上述复杂的多因素综合比较问题转化为简单的两因素相对比较问题。

首先找出所有两两比较的结果,并且把它们定量化;然后再运用适当的数学方法从所有两两相对比较的结果之中求出多因素综合比较的结果。

进行定性的成对比较时,我们将比较结果分为5种等级:相同、稍强、强、明显强、绝对强并将我们所做出的比较结果应用1~9个数字尺度来进行定量化,比较具体含义及相应数字对应如下表:表5.2 AHP重要程度描述表Table 5.2 Described table of AHP important degree 定性比较结果数字定量因素1相较于因素2具有相同的重要性 1因素1与因素2相比,前者重要性稍强 3因素1与因素2相比,前者重要性强 5因素1与因素2相比,前者重要性明显强7因素1与因素2相比,前者重要性绝对强9因素1与因素2相比,相对重要性处于上述等级之间2、4、6、8(续表5.2)定性比较结果数字定量因素1与因素2相比,后者的重要性要稍强、强、明显强、绝对强于前者1/3、1/5、1/7、1/9例如:在准则层中有三个因素政治风险B1、经济风险B2以及社会风险B3,假设如果政治风险B1相较于经济风险B2在风险中的重要性稍强那么就是B1:B2=3:1也就是3。

层次分析法

层次分析法

bn1
bn2 ……
bnn
bij是对于Ak而言,Bi对Bj的相对重要性的数值表示。
Bij通常取1、3、5、7、9及其他们的倒数,其含义为:
尺度
1 3 5 7 9
含义
第i个因素与第j个因素的影响相同 第i个因素比第j个因素的影响稍强 第i个因素比第j个因素的影响强 第i个因素比第j个因素的影响明强 第i个因素比第j个因素的影响绝对地强
层次分析法
一 问题的提出
例1 购物 买钢笔,一般要依据质量、颜色、实用性、价格、
外形等方面的因素选择某一支钢笔。 下馆子,则要依据馆子的饭菜质量、区位条件、档
次、饭菜价格、服务质量等方面因素来选择。
例2 旅游 假期旅游,是去风光秀丽的苏州,还是去迷人的
北戴河,或者是去山水甲天下的桂林,一般会依据景 色、费用、食宿条件、旅途等因素选择去哪个地方。
课题D2
课题可行性B3

研财

究政

周支

期持
c3
c4
c5
课题D3
层次分解时注意事项:
如果所选的要素不合理,其含义混淆不清,或 要素间的关系不正确,都会降低AHP法的结果质量, 甚至导致AHP法决策失败。 为保证递阶层次结构的合理性,需注意以下问题: 1、要对问题的影响因素有充分的理解,必要的时 候可以咨询相关的专家; 2、分解简化问题时把握主要因素,不漏不多 3、注意相比较元素之间的强度关系,相差太悬殊 的要素不能在同一层次比较。 4、以上均为完全层次
层次总排序的一致性检验
(1)
(2)
(3)
在(1)式中,CI为层次总排序的一致性指标,CIj为与aj对应 的B层次中判断矩阵的一致性指标;在(2)式中,RI为层次总排 序的随机一致性指标,RIj为与aj对应的B层次中判断矩阵的随 机一致性指标;在(3)式中,CR为层次总排序的随机一致性比例。

层次分析法(AHP)解析

层次分析法(AHP)解析

层次分析法(AHP)对于草地农业生态系统这个涉及复杂的社会、经济、生态问题的系统,过去的系统分析与设计常常凭经验,靠主观判断进行,缺乏应有的科学性,因而往往造成重大失误。

层次分析法是一种新的定性分析与定量分析相结合的系统分析方法,是将人的主观判断用数量形式表达和处理的方法,简称AHP(The Analytic Hierarchy Process)法。

近年来,层次分析法在草地农业生态系统的系统分析、设计与决策中日益受到重视。

1层次分析法的基本方法和步骤层次分析法是把复杂问题分解成各个组成因素,又将这些因素按支配关系分组形成递阶层次结构。

通过两两比较的方式确定各个因素相对重要性,然后综合决策者的判断,确定决策方案相对重要性的总排序。

运用层次分析法进行系统分析、设计、决策时,可分为4个步骤进行;(1)分析系统中各因素之间的关系,建立系统的递阶层次结构;(2)对同一层次的各元素关于上一层中某一准则的重要性进行两两比较,构造两两比较的判断矩阵;(3)由判断矩阵计算被比较元素对于该准则的相对权重;(4)计算各层元素对系统目标的合成权重,并进行排序,2递阶层次结构的建立首先把系统问题条理化、层次化,构造出一个层次分析的结构模型。

在模型中,复杂问题被分解,分解后各组成部分称为元素,这些元素又按属性分成若干组,形成不同层次。

同一层次的元素作为准则对下一层的某些元素起支配作用,同时它又受上面层次元素的支配。

层次可分为三类;(1)最高层:这一层次中只有一个元素,它是问题的预定目标或理想结果,因此也叫目标层;(2)中间层:这一层次包括要实现目标所涉及的中间环节中需要考虑的准则。

该层可由若干层次组成,因而有准则和子准则之分,这一层也叫准则层;(3)最底层:这一层次包括为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。

上层元素对下层元素的支配关系所形成的层次结构被称为递阶层次结构。

当然,上一层元素可以支配下层的所有元素,但也可只支配其中部分元素。

层次分析法

层次分析法

层次分析法1. 简介层次分析法(Analytic Hierarchy Process,AHP)是一种常用的定性与定量相结合的多标准决策分析方法。

它由美国学者托马斯·L·萨亨于1970年提出,被广泛应用于各种决策问题中。

2. 原理层次分析法的基本思想是将复杂的决策问题分解为一系列具有层次结构的子问题,然后通过对这些子问题的比较与权重评估,最终得出整体问题的决策结果。

2.1 层次结构在层次分析法中,决策问题被组织成一个层次结构。

层次结构通常包括三个层次:目标层、准则层和方案层。

•目标层:表示决策问题的最终目标,通常只有一个。

•准则层:用于评价方案的一组准则,通常包括两个或更多的准则。

•方案层:表示可选择的方案,每个方案都和准则层有关联。

每个层次下面还可以有更多的子层次,形成一个完整的层次结构。

2.2 权重评估层次分析法通过对准则层的权重评估,来确定各个准则的重要性。

权重评估通常采用两两比较的方式,即对准则层中的两个准则进行比较,判断它们的相对重要性。

对两个准则的比较通常使用1至9的九分比较法,其中1表示相同重要性,3表示轻微重要性差异,5表示中等重要性差异,7表示强烈重要性差异,9表示极端重要性差异。

通过两两比较得到的比较矩阵可以利用特征向量法计算权重向量,从而确定准则层的权重。

2.3 方案评估在确定了准则层的权重后,可以利用这些权重对方案进行评估和排序。

通常使用两两比较法将方案与准则进行比较,得到方案层的比较矩阵。

然后,利用准则层的权重和方案层的比较矩阵计算加权矩阵,最终得到方案层的权重。

3. 应用场景层次分析法在各个领域中都有广泛的应用,尤其适用于以下情况:•多准则决策问题:当决策问题涉及到多个准则时,层次分析法可以帮助决策者合理权衡各个准则的重要性,从而做出最佳决策。

•项目评估与选择:当需要评估和选择多个候选项目时,层次分析法可以通过对项目的多个准则进行比较和权重评估,为项目选择提供科学依据。

层次分析法

层次分析法

e1
1 4.511
0.778
0.172
,
3 0.665
0.4 6 7 e2 Ae1 0.565, e2 3.014,
1.9 9 1
01.55 0.471 e2 0.184, e3 0.559, e3 3.018,
0.661 1.988
0.156 0.473 e3 0.185, e4 0.561,
(4)定义未知参数 在这种问题中,运用层次分析法建立表达式 来表达未曾定义过的量。典型的例子是价值 工程,产品的价值V被定义为
VF C
其中F,C分别为产品的功能系数与成本系数, 它们可以用层次分析来定义。下面是一个 经济学例子。
例5 弹性系数的确定 经济学中有名的Cobb-Douglas生产函 数是
e (1,2,,n )T ,则权系数可取: wi i ,i 1,2,, n
在具体计算中,当
ek 与ek 1
接近到一定程度时,就取 e ek
例1 评价影视作品的水平, 用以下三个变量作评价指标 :
x1 教育性,x2 艺术性,x3 娱乐性
设有一名专家赋值:
x2 1, x3 5, x3 3
w1, w2 ,, wn
这 n 个常数便是权系数, 层次分析法给出了确定它们 的量化方法,其过程如下:
1.成对比较
从x1, x2,, xn中任取xi , xj ,比较它们
对y贡献的大小,给xi xj 赋值如下:
xi
xj
1,当认为“xi与x
贡献程度相同”时
j
xi
xj
3,当认为“xi比x
的贡献略大”时
x1
的概率估值为0.134+0.219+0.026=0.379,

层次分析法

层次分析法

层次分析法层次分析法是一种应用广泛的决策分析方法,它通过构建层次结构和比较矩阵,来对不同因素进行排序和权重分配,帮助决策者做出合理的决策。

本文将介绍层次分析法的基本原理、应用领域以及一些实际案例。

一、层次分析法的基本原理层次分析法由美国运筹学家托马斯·L·塞蒂提出,它是一种定性和定量相结合的分析方法,能够综合考虑多个因素的重要性和相互关系。

它的基本原理如下:1. 层次结构:将决策问题分解成多个层次,从上至下逐级细化。

顶层是目标层,中间层是准则层,最底层是方案层。

2. 比较矩阵:在每个层次内,通过构建比较矩阵来判断各因素之间的重要性。

比较矩阵是一个n×n的正互反矩阵,其中n是该层次因素的个数。

通过对各因素进行两两比较,得出相对重要性的判断。

3. 加权优先向量:通过对比较矩阵进行特征向量的计算,可以得到各个因素的权重。

特征向量是对比较矩阵的主特征值对应的特征向量,也称为特征向量法。

4. 一致性检验:通过一致性指标和一致性比率的计算,判断构建的比较矩阵是否合理。

一致性指标表示了矩阵的内部一致性程度,一致性比率则是对一致性指标进行归一化,判断是否满足一致性。

5. 综合评价:通过计算得出的权重,进行乘积运算和累加运算,得到方案的综合评价值。

综合评价值越高,方案越优。

二、层次分析法的应用领域层次分析法在许多领域都有广泛的应用,包括经济学、管理学、环境科学、社会科学等。

下面是一些常见的应用领域:1. 投资决策:在投资决策中,可以将不同的投资方案作为方案层,通过比较各个方案的风险性、收益性等因素,来确定投资方向。

2. 供应链管理:在供应链管理中,可以将供应商的价格、质量、交货周期等因素作为准则层,通过比较不同供应商的重要性,来选择合适的供应商。

3. 项目评估:在项目评估中,可以将项目的成本、时限、风险等因素作为准则层,通过比较各个因素的重要性,来评估项目的可行性和优先级。

4. 人才选拔:在人才选拔中,可以将候选人的学历、工作经验、专业技能等因素作为准则层,通过比较各个因素的重要性,来确定最佳人选。

层次分析法详解(AHP法)

层次分析法详解(AHP法)


3.一个好的层次结构对于解决问题是极为 重要的。层次结构建立在决策者对所面临 的问题具有全面深入的认识基础上,如果 在层次的划分和确定层次之间的支配关系 上举棋不定,最好重新分析问题,弄清问 题各部分相互之间的关系,以确保建立一 个合理的层次结构。
例1. 选择旅游地
目标层
如何在3个目的地中按照景色、 费用、居住条件等因素选择.
由于λ(A的特征根) 连续的依赖于aij ,则λ比n 大的越 多,A 的不一致性越严重。引起的判断误差越大。 因而可以用 λ-n 数值的大小来衡量 A 的不一致程度。
定义一致性指标: CI CI=0,有完全的一致性
n
n 1
CI接近于0,有满意的一致性
CI 越大,不一致越严重
定义一致性比率 : 一般,当一致性比率
因素i与j比较的判断aij,则因素j与i比较的判断aji=1/aij
倒数
对于 n 个元素 A1, …, An 来说,通过两两比 较,得到成对比较(判断)矩阵 A = (aij)nn: 其中判断矩阵具有如下性质: (1)aij > 0; (2)aij = 1/aji; (3)aii = 1。 我们称 A 为正的互反矩阵。 根据性质(2)和(3),事实上,对于 n 阶 判断矩阵仅需对其上(下)三角元素共 n(n-1)/2 个给出判断即可。
层次分析法(AHP法)
Analytic Hierarchy Process
引 言

层次分析法(AHP)是美国运筹学家匹茨
堡大学教授萨蒂(T.L.Saaty)于上世纪70年代 初,为美国国防部研究“根据各个工业部 门对国家福利的贡献大小而进行电力分配” 课题时,应用网络系统理论和多目标综合 评价方法,提出的一种层次权重决策分析 方法。

层次分析法(AHP)

层次分析法(AHP)

aij
n
aij
i 1
i,j 1,2,, n
2 ) 再按行相加得和
n
wi aij j 1
3)再规范化,得权重系数:
wi
wi
n
wi
i 1
方根法
这种方法的步骤是:
1) 按行元素求积,再求1/n次幂,得
n
wi
aij i,j 1,2,, n
j 1
2)规范化,即得权重系数
wi
wi
n
wi
用ANP进行决策的基本步骤
▪ (1) 构造ANP的典型结构: A:首先是构造控制层次.将决策目标界定,将决策准则界 定,这是问题的基本,各个准则决策目标的权重用AHP方法 得到. B:再则是构造网络层次.要归类确定每一个元素,分析其 网络结构和相互影响关系,分析元素之间的关系可用多种 方法进行. 一种是内部独立的递阶层次结构,即层次之间相 互独立;一种是内部独立,元素之间存在者循环的ANP 网络层次结构;另一种是内部依存,即元素内部存在循环 的ANP网络层次结果,这几种情况都是ANP的特例情况。 在实际决策问题中面临的基本都是元素间不存在内部独立, 既有内部依存,又有循环的ANP网络层次结构。
P4:建 图书馆
P5:引进 新设备
C1对p1 p2 p3 p4 p5的权重计算
c1 P1
p2
p3
p4
p5 w
p1 1
3
5
4
7 0.491
p2 1/3 1
3
2
5 o.232
p3 1/5 1/3 1
½
3 0.092
p4 ¼ ½
2
1
3 0.138
p5 1/7 1/5 1/3 1/3 1 0.046

层次分析法

层次分析法

层次分析法(Analytic Hierarchy Process,简称AHP)是将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。

该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

1简介2定义3优缺点▪优点▪缺点4基本步骤5注意事项6应用实例简介编辑层次分析法的特点是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。

尤其适合于对决策结果难于直接准确计量的场合。

在现实世界中,往往会遇到决策的问题,比如如何选择旅游景点的问题,选择升购物层次分析模型学志愿的问题等等。

在决策者作出最后的决定以前,他必须考虑很多方面的因素或者判断准则,最终通过这些准则作出选择。

比如选择一个旅游景点时,你可以从宁波、普陀山、浙西大峡谷、雁荡山和楠溪江中选择一个作为自己的旅游目的地,在进行选择时,你所考虑的因素有旅游的费用、旅游的景色、景点的居住条件和饮食状况以及交通状况等等。

这些因素是相互制约、相互影响的。

我们将这样的复杂系统称为一个决策系统。

这些决策系统中很多因素之间的比较往往无法用定量的方式描述,此时需要将半定性、半定量的问题转化为定量计算问题。

层次分析法是解决这类问题的行之有效的方法。

层次分析法将复杂的决策系统层次化,通过逐层比较各种关联因素的重要性来为分析以及最终的决策提供定量的依据。

定义编辑所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。

层次分析法(详解)

层次分析法(详解)

层次分析法(详解)AHP(AnalyticHierarchyProce)层次分析法是美国运筹学家T。

L。

Saaty教授于二十世纪70年代提出的一种实用的多方案或多目标的决策方法,是一种定性与定量相结合的决策分析方法。

常被运用于多目标、多准则、多要素、多层次的非结构化的复杂决策问题,特别是战略决策问题,具有十分广泛的实用性。

用AHP分析问题大体要经过以下五个步骤:1、建立层次结构模型将决策的目标、考虑的因素(决策准则)和决策对象按它们之间的相互关系分为最高层、中间层和最低层,绘出层次结构图。

2、构造判断矩阵在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因而Saaty等人提出:一致矩阵法,即:不把所有因素放在一起比较,而是两两相互比较。

对比时采用相对尺度,以尽可能减少性质不同因素相互比较的困难,以提高准确度。

3、层次单排序所谓层次单排序是指,对于上一层因素而言,本层次各因素的重要性的排序。

4、判断矩阵的一致性检验所谓一致性是指判断思维的逻辑一致性。

如当甲比丙是强烈重要,而乙比丙是稍微重要时,显然甲一定比乙重要。

这就是判断思维的逻辑一致性,否则判断就会有矛盾。

5、层次总排序确定层所有因素对于总目标相对重要性的排序权值过程,称为层次总排序。

这一过程是从最高层到最底层依次进行的。

对于最高层而言,其层次单排序的结果也就是总排序的结果。

系统性,将对象视作系统,按照分解、比较、判断、综合的思维方式进行决策,系统分析(与机理分析、测试分析并列);实用性,定性与定量相结合,能处理传统的优化方法不能解决的问题;简洁性,计算简便,结果明确,便于决策者直接了解和掌握。

AHP指南-层次分析法详解

AHP指南-层次分析法详解
接受的;否则就调整成对比较矩阵 A,直到达到满意的一致性为止。 例如对例 2 的矩阵
计算得到
,查得 RI=1.12,

这说明 A 不是一致阵,但 A 具有满意的一致性,A 的不一致程度是可接受的。 此时 A 的最大特征值对应的特征向量为 U=(-0.8409,-0.4658,-0.0951,-0.1733,-0.1920)。 这个向量也 是问题所需要的。通常要将该向量标准化:使得它的各分量都大于零,各分量之和等于 1。该特征向 量标准化后变成 U = (0.4759,0.2636,0.0538,0.0981,0.1087)Z。经过标准化后这个向量称为权向量。这里它 反映了决策者选拔干部时,视品德条件最重要,其次是才能,再次是群众关系,年龄因素,最后才是 资历。各因素的相对重要性由权向量 U 的各分量所确定。 求 A 的特征值的方法,可以用 MATLAB 语句求 A 的特征值:〔Y,D〕=eig(A),Y 为成对比较阵 的 特征值,D 的列为相应特征向量。 在实践中,可采用下述方法计算对成对比较阵 A=(a_{ij})的最大特征值 λmax(A)和相应特征向量的近 似值。 定义
建立层次结构模型
将问题包含的因素分层:最高层(解决问题的目的);中间层(实现总目标而采取的各种措施、必 须考虑的准则等。也可称策略层、约束层、准则层等);最低层(用于解决问题的各种措施、方案等)。 把各种所要考虑的因素放在适当的层次内。用层次结构图清晰地表达这些因素的关系。
〔例 1〕 购物模型 某一个顾客选购电视机时,对市场正在出售的四种电视机考虑了八项准则作为评估依据,建立层 次分析模型如下:
4、计算组合权向量并做组合一致性检验。计算最下层对目标的组合权向量,并根据公式做组合一 致性检验,若检验通过,则可按照组合权向量表示的结果进行决策,否则需要重新考虑模型或重新构 造那些一致性比率较大的成对比较阵。

层次分析法

层次分析法

层次分析法简介层次分析法(Analytic Hierarchy Process,AHP)这是一种定性和定量相结合的、系统的、层次化的分析方法。

这种方法的特点就是在对复杂决策问题的本质、影响因素及其内在关系等进行深入研究的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。

是对难以完全定量的复杂系统做出决策的模型和方法。

层次分析法的原理:层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同的层次聚集组合,形成一个多层次的分析结构模型,从而最终使问题归结为最低层(供决策的方案、措施等)相对于最高层(总目标)的相对重要权值的确定或相对优劣次序的排定。

层次分析法的步骤,运用层次分析法构造系统模型时,大体可以分为以下四个步骤:(1)建立层次结构模型:将决策的目标、考虑的因素(决策准则)和决策对象按他们之间的相互关系分成最高层、中间层和最低层,绘制层次结构图。

最高层(目标层):决策的目的、要解决的问题;中间层(准则层或指标层):考虑的因素、决策的准则;最低层(方案层):决策时的备选方案;(2)构造判断(成对比较)矩阵;表指标之间比较量化值规定因素i比因素j量化值同等重要 1.00稍微重要 3.00较强重要 5.00强烈重要7.00极端重要9.00稍微不重要0.33较强不重要0.20强烈不重要0.14极端不重要0.11两相邻判断的中间值2、4、6、8(3)层次单排序及其一致性检验;(4)层次总排序及其一致性检验;举例:某市中心有一座商场,由于街道狭窄,人员车流量过大,经常造成交通堵塞。

市政府决定解决这个问题,经过有关专家会商研究,制订三个可行方案:a1:在商场附近修建一座环形天桥;a2:在商场附近修建地下人行通道;a3:搬迁商场决策的总目标是改善市中心交通环境,根据当地具体条件和情况,专家组织拟定五个目标作为对可行方案的评价准则:C1:通车能力;C2:方便群众;C3:基建费用不宜过高;C4:交通安全;C5:市容美观。

层次分析法步骤及案例分析

层次分析法步骤及案例分析

层次分析法步骤及案例分析层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于解决决策问题的定性与定量相结合的方法。

该方法通过建立分层结构模型,对各个因素进行比较和权重分配,从而帮助决策者做出较为科学的决策。

本文将介绍层次分析法的步骤,并通过一个实际案例进行分析。

一、层次分析法的步骤层次分析法的步骤主要包括问题定义、建立层次结构模型、构建判断矩阵、计算权重和一致性检验等。

下面将详细介绍每个步骤。

1. 问题定义在使用层次分析法前,首先需要明确要解决的问题。

通过明确问题的目标和约束条件,可以确定出适合使用层次分析法的决策问题。

2. 建立层次结构模型在问题定义的基础上,需要建立层次结构模型,将整个问题分解为若干层次,并确定各个层次之间的关系。

通常,层次结构包括目标层、准则层和方案层。

目标层表示要达到的最终目标,准则层表示实现目标所需的评价因素,方案层表示可供选择的备选方案。

3. 构建判断矩阵构建判断矩阵是层次分析法的核心步骤。

判断矩阵用于比较和评价不同层次的因素,确定它们之间的重要性。

通过专家判断或问卷调查等方式,将各个因素两两进行比较,并赋予相应的重要性权值。

根据专家判断或调查结果,可以构建出一个全排列的判断矩阵。

4. 计算权重通过计算判断矩阵,可以获取各个因素的权重值。

常用的计算方法包括特征向量法、层次递推法和最大特征值法等。

根据计算结果,可以得到每个因素的相对权重值,从而进行比较和排序。

5. 一致性检验为了确保判断矩阵的一致性,需要进行一致性检验。

一致性指标主要包括一致性比率和一致性指数。

一致性比率用于评估判断矩阵的不一致程度,一致性指数用于判断判断矩阵是否满足一致性要求。

如果一致性比率超过一定阈值,表明判断矩阵存在较大的不一致性,需要重新调整判断矩阵。

二、案例分析为了更好地理解层次分析法的应用,下面以选择旅游目的地为例进行案例分析。

假设你准备进行一次旅行,有三个备选目的地:A、B和C。

层次分析法讲解

层次分析法讲解

第八章 层次分析法层次分析法(Analytic Hierarchy Process ,简称AHP )是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。

它是美国运筹学家T. L. Saaty 教授于70年代初期提出的一种简便、灵活而又实用的多准则决策方法。

§1 层次分析法的基本原理与步骤人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。

层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。

运用层次分析法建模,大体上可按下面四个步骤进行:(i )建立递阶层次结构模型;(ii )构造出各层次中的所有判断矩阵;(iii )层次单排序及一致性检验;(iv )层次总排序及一致性检验。

下面分别说明这四个步骤的实现过程。

1.1 递阶层次结构的建立与特点应用AHP 分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。

在这个模型下,复杂问题被分解为元素的组成部分。

这些元素又按其属性及关系形成若干层次。

上一层次的元素作为准则对下一层次有关元素起支配作用。

这些层次可以分为三类:(i )最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。

(ii )中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。

(iii )最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。

递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。

每一层次中各元素所支配的元素一般不要超过9个。

这是因为支配的元素过多会给两两比较判断带来困难。

下面结合一个实例来说明递阶层次结构的建立。

例1 假期旅游有1P 、2P 、3P 3个旅游胜地供你选择,试确定一个最佳地点。

层次分析法简介

层次分析法简介

三、层次分析法的用途举例

例如,某人准备选购一台电冰箱,他对市场上的
6种不同类型的电冰箱进行了解后,在决定买那一款式
是,往往不是直接进行比较,因为存在许多不可比的
因素,而是选取一些中间指标进行考察。例如电冰箱
的容量、制冷级别、价格、型式、耗电量、外界信誉、
售后服务等。然后再考虑各种型号冰箱在上述各中间
层次分析法(AHP)应用简介
• 一、层次分析法概述 • 二、层次分析法的基本思路 • 三、层次分析法的用途举例 • 四、层次分析法应用的程序 • 五、应用层次分析法的注意事项 • 六、层次分析法应用实例
一、层次分析法概述
• 层次分析法是美国运筹学家Saaty教授于二 十世纪80年代提出的一种实用的多方案或多目 标的决策方法。其主要特征是,它合理地将定 性与定量的决策结合起来,按照思维、心理的 规律把决策过程层次化、数量化。问题该方法 自1982年被介绍到我国以来,以其定性与定量 相结合地处理各种决策因素的特点,以及其系 统灵活简洁的优点,迅速地在我国社会经济各 个领域内,如能源系统分析、城市规划、经济 管理、科研评价等,得到了广泛的重视和应用。
• RI为平均随机一致性指标,是足够多个 根据随机发生的判断矩阵计算的一致性 指标的平均值。 n为判断矩阵的阶数。
• 1—10阶矩阵的RI取值见下表:
• 矩阵阶数n 1 2 3 4 5
• RI
0 0 0.58 0.90 1.12
• 矩阵阶数n 6 7 8 9 10
• RI
1.24 1.32 1.41 1.45 1.49
• 一般而言CR愈小,判断矩阵的 一致性愈好,通常认为CR0.1时, 判断矩阵具有满意的一致性。
• 1、建立国民素质评价系统的递阶层次结构;

层次分析法原理及计算过程详解

层次分析法原理及计算过程详解

层次分析法原理及计算过程详解写在前面:层次分析法是一个很早的决策算法了,它能够处理多目标多准则的决策问题,思维方式却很简单。

由于其系统性等优点,后续很多算法都有借鉴,所以这里写一写。

网上关于该方法的讲解很多也很详细,所以本篇都是在前辈的基础上进行整理加工。

文章尽量详细,然后加上一些我自己的理解,希望后面看到的人能够读起来更轻松,更容易接受。

注意:文中说的判断矩阵,又称成对比较阵目录:1.层次分析法概论1.2什么是决策1.3 决策分析法原理2.层次分析法的基本步骤2.1 层次分析法步骤2.2 建立层次结构模型2.3 构造判断矩阵2.4 计算单层权向量并做一致性检验2.5 计算组合权向量(层次总排序)并做一致性检验2.6 层次分析法基本步骤归纳3. 层次分析法的优缺点3.1 层次分析法的优点4.注意事项5.可应用的领域6. 完整例子分析6.1 旅游问题6.2 干部选择问题1.层次分析法概论1.1 什么是层次分析法层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代初期由美国匹兹堡大学运筹学家托马斯·塞蒂(T.L. Saaty)在为美国国防部研究“根据各个工业部门对国家福利的贡献大小而进行电力分配”的课题时提出。

它是一种应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。

是对社会、经济以及管理领域的问题进行系统分析时,面临的经常是一个由相互关联、相互制约的众多因素构成的复杂系统。

层次分析法则为研究这类复杂的系统,提供了一种新的、简洁的、实用的决策方法。

是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。

该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

构建风险层次结构
通过选取的指标可以看出这是一个多目标的且问题涉及到许多因素,各种因素
的作用相互,情况复杂。

依据层次分析法处理这类复杂的问题就需要对所涉及的因素指标进行分析:哪些是需相互比较的;哪些是需相互影响的。

把那些需相互比较的因素归成同一类,构造出一个各因素类之间相互联结的层次结构模型。

各因素类的层次级别由其与目标的关系而定:
第一层是目标层,也就是国家风险的评价排序
第二层是准则层,这一层中是国家风险排序所涉及的国家风险类型,即政治风险、经济风险、社会风险。

第三层是子准则层,这一层是评价衡量准则层中各要素的影响因素及评价指标,即政权凝聚力、腐败状况、相关法律政策、国际关系、官僚主义、经济政策、汇率稳定性、金融环境、内部冲突、外部冲突、民族差异等。

第四层也就是我们要选择的方案即所要选择的并购方案国家。

图5.1风险层次结构模型
Fig.5.1 The hierarchical structure model of country risk
为了方便计算以及模型的理解,层次结构中各层次均用字母代替,目标层为i
A ,
准则层为B i ,子准则层为C i ,方案层为D i 。

5.2.2 重要性程度描述
为了将上述复杂的多因素综合比较问题转化为简单的两因素相对比较问题。

首先找出所有两两比较的结果,并且把它们定量化;然后再运用适当的数学方法从所有两两相对比较的结果之中求出多因素综合比较的结果。

进行定性的成对比较时,我们将比较结果分为5种等级:相同、稍强、强、明显强、绝对强并将我们所做出的比较结果应用1~9个数字尺度来进行定量化,比较具体含义及相应数字对应如下表:
表5.2 AHP重要程度描述表
Table 5.2 Described table of AHP important degree 定性比较结果数字定量
因素1相较于因素2具有相同的重要性 1
因素1与因素2相比,前者重要性稍强 3
因素1与因素2相比,前者重要性强 5
因素1与因素2相比,前者重要性明显强7
因素1与因素2相比,前者重要性绝对强9
因素1与因素2相比,相对重要性处于上述等级之间2、4、6、8
(续表5.2)定性比较结果数字定量
因素1与因素2相比,后者的重要性要稍强、强、明显强、绝对强于前者1/3、1/5、1/7、1/9
例如:在准则层中有三个因素政治风险B1、经济风险B2以及社会风险B3,假设如果政治风险B1相较于经济风险B2在风险中的重要性稍强那么就是B1:B2=3:1也就是3。

假设社会风险B3与经济风险B2相比,社会风险的重要性要强于经济风险B2但是是弱于政治风险,那么B3:B2=2:1也就是数字2,相反如果假设经济风险B2的重要性要强于政治风险B1那么B1:B2=1:3也就是1/3。

5.2.3层次单排序
由层次模型可以看出含有层。

为了进行有效的判断,依据层次分析法的方法我们要分别对不同的层次进行层次单排序,现在我们就拿准则层为例,在准则层,有3个因素指标分别为B1,B2,B3,相关的上一层因素为A,则可针对因素A,对
所有因素B1,B2,B3进行两两比较,每次取两个因素Bi 与Bj 进行两两比较,用b ij 表示Bi 与Bj 对A 的影响之比,b ij 为比较结果,比较依据表5.2所示。

全部比较结果即可构成一个3⨯3的比较矩阵,即因素指标B1,B2,B3相应于上一层因素A 的判断矩阵:
⎪⎭⎪⎬
⎫⎪⎩⎪⎨⎧333231232221131211,,,,,,321321b b b b b b b b b B B B B B B A
(5.1)
同理,按照相同的方法,可以依次构造子准则层到准则层、方案层到子准则层的判断矩阵以及子准则层到方案层的判断矩阵。

在层次分析法中求判断矩阵中的各种要素的排序有两种方法,一是将矩阵的横行各要素进行相加后得出一个重要性向量(以准则层为例):
⎪⎭



⎪⎩⎪⎨⎧++++++∝⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==333231232221131211321b b b b b b b b b w w w W a
(5.2)
但是由于这种方法只具有唯一性、互反性但是不具备一致性,因此我们不与应用,也不做细致解释。

第二种方法就是求出判断矩阵的标准化特征向量W=(w1,…wn)T 以及最大特征值n ,理论上已经证明这个特征值也是判断矩阵的唯一最大特征值,我们所求的特征向量W=(w1,…wn)T 也就是得到重要性向量排序结果。

由于判断矩阵会存在误差,为了判断误差的大小以及最后得到的结果是否合理我们就需要进行一致性的检验。

对于具有一致性的比较矩阵,最大特征值为n ;如果一个比较矩阵的最大特征值为n ,则一定具有一致性。

估计误差的存在破坏了一致性,必然导致特征向量及特征值也有偏差。

我们用n ’表示带有偏差的最大特征值,则n ’与n 之差的大小反映了不一致的程度。

考虑到因素个数的影响Saaty 将CI=(n ’-n)/(n-1)定义为一致性指标,当CI=0时比较矩阵完全一致,否则就存在不一致;CI 值越大,不一致的程度也就越大。

为了确定不一致程度的允许范围,Saaty 又定义了一个一致性比率CR 当CR=CI/RI<01时认为其不一致性可以被接受,不会影响排序的定性结果,具体RI 值如下表:
表5.3一致性指标RI 的数值
Table 5.3 Values of Random consistency index RI n 1 2 3 4 5 6 7 8 9 10 11
RI
0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51
注:任意一、二阶判断矩阵是完全一致的。

下面将进行各个层次的单排序,以及排序结果的字母表示:
(1)在准则层,国家风险的3个因素指标两两比较,得到一个3×3的判断矩阵,求出判断矩阵的最大特征值,进而计算出相应的标准化的特征向量a ,则a 中的变量为准则层的政治风险、经济风险、社会风险3个因素指标对于目标层国家风险的相对重要性排序结果。

(2)在子准则层,以准则层的“政治风险”为例,其在子准则层有5个因素,此5个因素同样依据上述方法进行两两比较,得5×5的判断矩阵,求出此矩阵的最大特征值,以及对应这个特征值的标准化特征向量b 1则为“政治风险”在子准则层的5个因素对于“政治风险”的相对重要性排序结果。

类似的,可求得经济风险、社会风险对子准则层的标准化特征向量b 2、b 3。

(3)在方案层,相对于子准则层的每个因素,有国家D1、D2、D3三国。

以子准则层“政权凝聚力”为例,D1、D2、D3三国进行相互比较,得到3×3的判断矩阵,同样计算该矩阵的最大特征值,和对应的标准化特征向量c l ,为D1、D2、D3三国对于“政权凝聚力”的相对重要性排序结果。

同理,可得到D1、D2、D3三国对于C2、C3、…C11几个指标的相对重要性排序结果,分别定义为c 2、c 3、…c 11。

在进行上述步骤的同时也都会进行一致性检验的步骤。

5.2.4总排序
进行完层次单排序之后,就要最后确定方案层对于目标层的总排序,本文中的含义就是方案层中的三个国家对于目标层国家风险评价排序的总排序,即三国的国家风险评定排序。

总排序的步骤:
(1)方案层对准则层的排序
c 1,c 2,c 3,c 4,c 5分别为D1、D2、D3三国对应有政权凝聚力、腐败状况、与并购相关的法律政策、国际关系、官僚主义的相对重要性排序结果。

将c l ,c 2,c 3,c 4,c 5按列组成一个3×5矩阵E1,又b 1为政治风险在子准则层的5个因素对于政治风
险的相对重要性排序结果为5×1矩阵。

根据层次分析法相对权数计算的层位传递原理,通过计算E1×b 1得到一个3×1的矩阵F1,F1即为方案层三国对准则层政治风险的排序。

同理可求得F2为方案层对准则层经济风险的排序,F3为方案层对准则层社会风险的排序。

(2)方案层对目标层国家风险的排序
F1、F2、F3分别是方案层对应准则层政治风险、经济风险、社会风险的排序结果向量。

将F1、F2、F3按列组成一个3×3的矩阵G 。

而a 为准则层对于目标层的相对重要性排序结果。

同样根据层次分析法相对权数计算的层位传递原理,通过计算G ×a ,得到一个3×1的矩阵H ,则H 的分量为方案层对目标层国家风险的排序。

将H 的分量进行比较,数值最高者为D1、D2、D3三国中国家风险最大的国家。

(3)子准则层的总排序
同样的道理,我们也可以计算子准则层各要素之间的相对重要性排序结果: 单排序中目标层相对于准则层的排序结果有a 假设为a=(a 1,a 2,a 3)T 下一层包含有三个因素B1、B2、B3、他们得排序结果为:
b 1=(b 11,b 12,b 13,b 14,b 15)T 1; b 2=(b 26,b 27,b 28)T ; b 3=(b 39,b 310,b 311)T (5.3) 我们可以将b 1、b 2、b 3按列组成一个11×3的矩阵J(当子准则层与准则层与无联系时用0表示,例如b 2中元素前五行就可用0表示),同样根据层次分析法相对权数计算的层位传递原理,通过计算J ×a 既可以得到一个11×1的矩阵K ,向量K 中的向量排序结果即为子准则层中的总排序结果。

1注:公式中
b 11,b 12,b 13等是相对于子准则层中的排序结果非(5.1)中比较结果b 11,b 12,b 13等。

相关文档
最新文档