平行线的判定定理【精选】
平行线的性质和判定
平行线的性质和判定【知识要点归纳】1.平行线(1)定义:在同一平面内,不相交的两条直线叫做平行线,直线a与直线b互相平行,记作a∥b.(2)平行公理:经过直线外一点,有且只有一条直线与已知直线平行.注:点必须在直线外,而不是在直线上.(3)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即“平行于同一条直线的两条直线平行”.2.两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:(1)相交;(2)平行.注:判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,两直线平行;3.两直线平行的判定方法(1)平行线的定义.(2)平行公理的推论.(3)同位角相等,两直线平行.(4)内错角相等,两直线平行.(5)同旁内角互补,两直线平行.4.平行线的性质(1)两直线平行,同位角相等.(2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.重点讲解:一个定义(平行线),一个位置,五个判定,三个性质.【课堂过关训练】平行线的性质1.选择题:(1)下列说法中,不正确的是()A.同位角相等,两直线平行; B.两直线平行,内错角相等; C.两直线被第三条直线所截,同旁内角互补; D.同旁内角互补,两直线平行(2)如图1所示,AC平分∠BCD,且∠BCA=∠CAD=12∠CAB,∠ABC=75°,则∠BCA等于( • ) A.36° B.35° C.37.5° D.70°(1) (2) (3)(3)如图2所示,AD⊥BC于D,DG∥AB,那么∠B和∠ADG的关系是()A.互余 B.互补 C.相等 D.以上都不对(4)如图3,直线c与直线a、b相交,且a∥b,则下列结论:①∠1=∠2;②∠1=∠3;③∠3=∠2中,正确的个数为()A.0个 B.1个 C.2个 D.3个(5)如图4,若AB∥CD,则()A.∠1=∠2+∠3 B.∠1=∠3-∠2C.∠1+∠2+∠3=180° D.∠1-∠2+∠3=180°(6)如图5,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个 B.2个 C.3个 D.4个(4) (5) (6) (7)(7)已知两个角的两边分别平行,并且这两个角的差是90°,•则这两个角分别等于() A.60°,150° B.20°,110° C.30°,120° D.45°,135°(8)如图6所示,若AB∥EF,用含α、β、γ的式子表示x,应为()A.α+β+γ B.β+γ-αC.180°-α-γ+β D.180°+α+β-γ4.如图所示,已知AD、BC相交于O,∠A=∠D,试说明一定有∠C=∠B.5.如图所示,已知AB∥CD,AD∥BC,BF平分∠ABC,DE平分∠ADC,则一定有DE∥FB,它的根据是什么?6.如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,•MG•平分∠BMF,MG交CD于G,求∠1的度数.平行线的判定1.如图1,已知∠1 = 100°,AB∥CD,则∠2 = ,∠3 = ,∠4 = .2.如图2,直线AB、CD被EF所截,若∠1 =∠2,则∠AEF +∠CFE = .3.如图3所示(1)若EF∥AC,则∠A +∠ = 180°,∠F + ∠ = 180°().(2)若∠2 =∠,则AE∥BF.(3)若∠A +∠ = 180°,则AE∥BF.4.如图4,AB∥CD,∠2 = 2∠1,则∠2 = .5.如图5,AB ∥CD ,EG ⊥AB 于G ,∠1 = 50°,则∠ E = .6.如图6,直线l 1∥l 2,AB ⊥l 1于O ,BC 与l 2交于E ,∠1 = 43°,则∠2 = . 7.如图7,AB ∥CD ,AC ⊥BC ,图中与∠CAB 互余的角有 . 8.如图8,AB ∥EF ∥CD ,EG ∥BD ,则图中与∠1相等的角(不包括∠1)共有 个. 二、解答下列各题9.如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G .10.如图10,DE ∥BC ,∠D ∶∠DBC = 2∶1,∠1 =∠2,求∠DEB 的度数.11.如图11,已知AB ∥CD ,试再添上一个条件,使∠1 =∠2成立.(要求给出两个以上答案,并选择其中一个加以证明)图51 A B C D E F GH 图7 1 2 D A C B l 1l 2 图81 A BFC DE G 图6C D F E B A 图912 ACB FGED图102 1BCED 图1112 ABEFDC12.如图12,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°.求证:(1)AB ∥CD ; (2)∠2 +∠3 = 90°.综合练习:1.若α和β是同位角,且a =30°,则β的度数是( )A .30°B .150°C .30°或150°D .不能确定2.如果一个角的两边分别平行于另一个角的两边,且其中一个角比另一个角的4倍少30°,那么这两个角分别是( )A .30°和150°B .42°和138°C .都等于10°D .42°和138°或都等于10°3.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的,如图所示.从图中可知,小敏画平行线的依据可能有( )①两直线平行,同位角相等;②两直线平行,内错角相等; ③同位角相等,两直线平行;④内错角相等,两直线平行.A .①②B .②③C .③④D .①④4.如图所示,AB ∥EF ,EF ∥CD ,EG 平分∠BEF ,∠B +∠BED +∠D=192°,∠B -∠D=24°,则C图1212 3AB DF∠GEF=__________.5.在同一平面内有2002条直线a1,a2,…,a2002,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a2002的位置关系是__________.6.如图所示,AB∥CD,∠1=∠2,∠3=∠4,试说明:AD∥BE.8.已知,如图所示,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB ∥DC.9.如图所示,已知∠DBF=∠CAF,CE⊥FE.垂足为E,∠BDA+∠ECA=180°,求证:DA⊥EF10.已知,如图所示,∠1+∠2=180°,∠1+∠EFD=180°,∠3=∠B,试判断∠AED与∠C的关系,并证明你的结论.11.已知,如图所示,AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.。
平行线的判定5种方法
1.同位角相等,两条线平行。
2.内错角相等,两条线平行。
3.同旁内角互补,两条线平行。
4.经过直线外一点,有且只有一条直线与已知直线平行。
5.如果两条直线都与第三条直线直线平行,那么这两条直线也互相平行。
平行线的判定定理:
(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
(内错角相等,两直线平行)
(2)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
(同旁内角互补,两直线平行)
(3)两直线都与第三条直线平行,那么这两条直线也互相平行。
(若直线a平行于直线b,直线b平行于直线c,那么直线a也平行于直线c)(等量代换)。
证明平行线的判定定理
证明平行线的判定定理平行线判定定理是几何中非常重要的定理,它告诉我们如何判断两条直线是否平行。
在本文中,我们将介绍平行线的判定定理,并详细讨论如何应用它解决几何问题。
首先,让我们明确一下什么是平行线。
平行线是不会相交的直线,它们的方向始终保持一致。
在欧氏几何中,平行线是从公理定义出来的,它们之间的距离是恒定的。
因此,如果我们能够确定两条直线是平行的,我们就能够利用平行线的性质来解决各种几何问题。
现在让我们来看一下平行线的判定定理,它有三种常用的表述方式:第一种表述方式是交角定理,即如果两条直线被一条第三条直线所截,且内角和为180度,则这两条直线是平行的。
这个定理的原理很简单,因为如果两条直线并非平行,那么截它们的第三条直线和它们的交角之和一定是小于180度的。
第二种表述方式是同位角定理,即如果两条直线被一条横穿它们的直线所截,且同位角相等,则这两条直线是平行的。
这个定理的原理是基于同位角的定义,同位角即以平行线为切线,且交于线的同侧的两个角,它们的大小是相等的。
第三种表述方式是平行线之间距离相等定理,即如果两条直线与一条横穿它们的直线之间的距离相等,则这两条直线是平行的。
这个定理基于平行线的定义,因为两条平行线的距离是恒定的,所以如果两条直线与一条横穿它们的直线的距离相等,那么它们也一定是平行的。
如何正确地应用平行线的判定定理呢?首先,在解决几何问题时,我们需要认真观察图形,找到两条或更多的直线之间的关系。
其次,我们需要考虑使用哪种平行线的判定定理,以及如何利用它来确定直线是否平行。
最后,我们需要检查我们的答案是否符合几何性质和实际情况。
总之,平行线的判定定理是几何学中非常重要的一部分。
只有正确地理解和应用它,我们才能够解决各种几何问题,并掌握更高级的几何知识。
几何学平行线与角公式整理
几何学平行线与角公式整理几何学是研究空间、图形和形体之间的关系和性质的学科。
平行线与角是几何学中重要的概念,它们在解决几何问题和证明定理时起到了关键作用。
在本文中,我们将整理并介绍一些与平行线和角相关的重要公式。
一、平行线的性质与公式1. 平行线的定义平行线是指在同一个平面上,永远不会相交的两条直线。
2. 平行线的判定定理● 对偶定理:若两条直线与第三条直线交叉形成的两组对应角(内角和外角)互为等角,则这两条直线平行。
● 同位角定理:若两条平行线被一条横截线相交,则所形成的同位角(即相互对应的内角或外角)相等。
● 内外角定理:若两直线被一条横截线相交,则所形成的内角与该角对应的外角互补。
3. 平行线的性质● 平行线之间的距离相等。
● 平行线与横截线所形成的同位角相等。
● 平行线与横截线所形成的内外角互补。
二、角的性质与公式1. 角的定义角是由两条线段或两条射线共享一个端点形成的图形。
2. 角的分类● 钝角:大于90度小于180度的角。
● 直角:等于90度的角。
● 锐角:小于90度的角。
3. 角的性质● 垂直角性质:互为补角的两个角称为垂直角,它们的度数之和为180度。
● 对顶角性质:由两条交叉直线形成的对顶角(相邻且不重叠的内角)互为相等角。
● 余角公式:给定一个角,其对角度数与90度的差称为余角。
若角A的度数为x,则其余角的度数为90度-x。
● 和角公式:若两个角的度数之和为180度,则它们互为补角。
● 差角公式:若两角的度数之差为180度,则它们互为补角。
三、平行线与角公式的应用1. 平行线与全等三角形当两条平行线被一条横截线相交时,所形成的对应角相等。
利用这个公式,我们可以证明两个三角形全等。
2. 平行线与相似三角形若两条平行线被两条或多条横截线分别切割,所形成的相应角相等,我们可以利用这个性质证明两个三角形相似。
3. 平行线的应用● 平行线的平分线定理:若一条直线与两条平行线相交,则它所形成的两个内角互为相等角。
平行线的判定定理习题答案.doc
平行线的判定定理习题精选1 .平行线的判定定理一:_________________________2.平行线的判定定理二: ________________________3.填空。
如图,VAC1AB, BD1AB (已知).\ZCAB = ZVZCAE=ZDBF (已知)AZBAE=ZA ZCAB=90° , Z =90°4.己知,如图Zl + Z2=180° ,填空。
VZl + Z2=180°又Z2=Z3 (/•Zl + Z3=180°5.如图,填空。
A DB10.如图,已知:ZAOE+ZBEF=180° , ZAOE+ZCDE= 180° ,求证:CD 〃BE 。
(1) ZA 与 互补,贝(2) ZA 与 互补,贝6.下列命题中,不正确的是(A .如果两条直线都和第三条宜线平行,那么两条直线也互相平行B. 两条直线被第三条直线所截,如果同位角相等,那么两直线平C. 两条直线被第三条直线所截,如果内错角互补,那么两直线必平D. 两条直线被第三条直线所截,如果两直线不平行,那么内错伯必不相如图,直线a 、b 被直线c 所截,给出下列条件,①Z1 = Z2,②匕3=匕6,③Z4+Z7=180° + Z8=180°其中能判断a//b 的是(7. A. ①③ B.②④AB 〃8.已知: 如图, Z1 = ZA, Z2= ZC,求证: 9. 如图, 已知: Zl + Z2=180°11.如图,已知:13.已知:如图,14.已知:如图: 求证:GH〃MN。
ZA=Z1, ZC=Z2o 求证:求证:AB〃CD。
AB±BC, Zl + Z2=90° , Z2=Z3o 求证:BE〃DF。
ZAHF+ZFMD=180°, GH 平分ZAHM, MN 平分ZDMHo12.如图,巳知: Zl = ZC+ZEo 求证:ACz/BDoD答案1.内错角相等,两宜线平行2.同旁内角互补,两直线平行3.略4.略5.(1) ZD CD 同旁内角互补两直线平行(2) ZB BC 同旁内角互补,两直线平行6. C7. D8.VZ1 = ZA, Z2=ZC, XZ1 = Z2 (对顶角相等),AZA=ZC (等量代换),AAB/7CD (内错角相等,两直线平行)。
数学中的平行线
数学中的平行线一、导入在导入环节,可以引入一些数学问题或者实际生活中的例子,引发学生们对平行线的兴趣。
二、概念讲解1. 定义平行线:平行线是在同一个平面上不相交的两条直线,它们的方向相同,永远不会相交。
2. 平行线的性质:a) 两条平行线上的任意一点到另一条平行线的距离都相等。
b) 平行线之间没有交点,因此它们无法切割平面。
三、相关定理的讲解1. 互相平行的定理:如果有一条直线与另外两条直线互相平行,那么这两条直线也是平行的。
2. 平行线的判定定理:a) 两条直线斜率相等(且不为无穷大)时,它们是平行线。
b) 两条直线的法线斜率相反数时,它们是平行线。
3. 平行线的性质定理:a) 两条直线平行,则其上的任意一对对应角相等。
b) 两条直线平行,则其上的任意一对同旁内角互补,即其内角和为180度。
c) 两条直线平行,则其上的任意一对同旁外角互补,即其外角和为180度。
四、实例运用通过一些实例问题,让学生运用所学知识解决问题。
例如:问题1:在平面上画出一条直线,使它与已知的两条平行线相交于两点,求这条直线与这两条平行线的夹角。
问题2:设在平面上有一对平行线,一段未知的直线与这对平行线交于两点,求出这段直线与平行线的夹角。
五、拓展延伸进一步引导学生运用已学知识,解决一些拓展问题,拓宽学生对平行线的认识和理解。
六、综合评价通过一些练习题,检验学生对于平行线的理解和掌握程度,并提供解答思路和方法。
七、归纳总结对今天的学习内容进行归纳总结,强调平行线的重要性和应用价值。
鼓励学生思考如何将所学知识应用到实际生活中。
八、课后作业布置一些作业题,要求学生独立完成,巩固所学知识。
九、延伸阅读推荐一些相关的数学书籍或者网上的资源,供学生进一步学习和拓展。
平行线的判定和性质
平行线的判定和性质
1、平行线的判定方法:
同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;
另:平行于同一条直线的两条直线相互平行;垂直于同一条直线的两条直线互相平行。
2、平行线的性质:
两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
3、注意区别平行线的性质和判定方法:
(1)叙述方式不同:尽管叙述平行线的性质与判定方法的文字相同,个数相同,但条件和结论的顺序是不同的;
(2)意义不同:平行线的判定方法是根据三种角(同位角、内错角、同旁内角)的数量关系,来识别两直线是否平行;而平行线的性质,是已知两直线平行,得到三种角的数量关系。
(3)作用不同:一个是作为平行线的识别,一个是平行线的特征。
本文由101教育整理发布。
平行线的判定与性质
平行线的判定与性质在几何学中,平行线是指在同一个平面内,永远不会相交的两条直线。
平行线的判定是几何学中的一个重要概念,也是许多定理的基础。
本文将探讨平行线的判定方法以及它们的性质。
一、平行线的判定方法在几何学中,常用的平行线判定方法有以下几种:1.对应角相等当两条直线被一条横截线所剖分时,如果对应角相等,那么这两条直线就是平行线。
2.同位角相等当两条直线被多条平行线所剖分时,如果同位角相等,那么这两条直线就是平行线。
3.内错角相等当两条直线被一条横截线所剖分时,如果内错角相等,那么这两条直线就是平行线。
4.斜率相等当两条直线的斜率相等时,这两条直线就是平行线。
斜率是描述直线倾斜程度的数值。
以上是常用的平行线判定方法,通过这些方法我们可以方便地判断两条直线是否平行。
二、平行线的性质平行线具有一些独特的性质,下面我们将介绍其中几个常见的性质。
1.平行线的任意两个内错角、外错角和同位角之和都等于180度。
2.当一条直线与两条平行线相交时,位于两平行线之间的对应角相等。
3.平行线与一条横截线相交时,内错角相等,外错角相等。
4.平行线的斜率相等。
这些性质使得平行线在几何学中具有重要的地位。
我们可以通过运用这些性质来解决与平行线相关的问题,比如证明两条直线平行或者计算平行线的角度。
总结通过对平行线的判定方法与性质的介绍,我们可以看到平行线在几何学中的重要性。
判定平行线的方法不仅有助于我们解决各种几何问题,而且能够帮助我们更好地理解几何学中的各种规律与定理。
同时,深入了解平行线的性质也有助于我们在实际生活中运用几何学知识分析和解决问题。
希望通过本文的介绍,读者能够对平行线的判定与性质有更清晰的理解。
初中数学 平行线的判定定理有哪些
初中数学平行线的判定定理有哪些平行线的判定定理是初中数学中的一个重要概念,用于判断两条直线是否平行。
在本文中,我将详细介绍平行线的判定定理,包括定义、相关定理以及实际应用。
同时,我还会提供一些示例和习题,以帮助读者更好地理解和应用这一概念。
1. 同位角定理:如果两条直线被一条横截线所切,且同位角相等,则这两条直线是平行线。
即如果两条直线l和m被一条直线n所切,且∠A=∠B,则l||m。
2. 平行线的性质:如果两条直线l和m都与第三条直线n平行,那么l和m也是平行线。
即如果l||n且m||n,则l||m。
3. 垂直定理的逆定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线相互垂直,则l||m。
即如果l∠n且m∠n,则l||m。
4. 对顶角定理:如果两条直线l和m被一条横截线所切,且对顶角相等,则这两条直线是平行线。
即如果两条直线l和m被一条直线n所切,且∠A=∠C,则l||m。
5. 平行线的传递性:如果直线l||m,且直线m||n,那么直线l||n。
即如果l||m且m||n,则l||n。
6. 锐角等于直角的定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线与另一条直线的某一角度相等,则l||m。
即如果l∠n且∠A=90°,则l||m。
7. 平行线的平行线定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n 的某一角度为锐角,另一条直线与n的某一角度为钝角,则l||m。
8. 平行线的交角定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n的某一角度为锐角,另一条直线与n的某一角度为钝角,则l与m不平行。
9. 平行线的平行截线定理:如果两条直线l和m被同一条直线n所切,且直线l与n的交点A与直线m与n的交点B之间的线段AB与直线n的某一条垂线相交于点C,则直线l和直线m平行。
以上是一些常见的平行线的判定定理,可以根据不同的条件来判断两条直线是否平行。
4平行线的判定定理
判定平行线的常用方法 (1)同位角相等,两直线平行. (2)内错角相等,两直线平行. (3)同旁内角互补,两直线平行. (4)如果两条直线都和第三条直线平行,那么这两条直线平行. (5)在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.
平行线判定的应用 [例2] 一张四边形纸片ABCD,把纸片按如图折叠,点B落在AD边上的点E处,AF是折痕. (1)若∠B=∠D=90°,求证:EF∥CD.
4 平行线的判定定理
平行线的判定 [例1] (2021莱西期中)如图,DE⊥AB,∠1=∠A,∠2+∠3=180°,试判断CF与AB的位置关 系,并说明理由.
解:CF⊥AB.理由如下:因为∠1=∠A, 所以GF∥AC,所以∠2=∠DCF. 因为∠2+∠3=180°, 所以∠DCF+∠3=180°, 所以DE∥CF. 因为DE⊥AB,所以CF⊥AB.
(1)证明:由折叠,知∠AEF=∠B=90°. 因为∠D=90°(已知), 所以∠AEF=∠D(等量代换), 所以EF∥CD(同位角相等,两直线平行).
(2)当∠AFB与∠C有何数量关系时,EF∥CD?请说明理由.
(EF∥CD. 由折叠,知∠AFB=∠AFE, 所以∠BFE=2∠AFB,即∠C=2∠AFB. 故当∠C=2∠AFB时,EF∥CD.
平行线的判定(基础)知识讲解
平行线的判定(基础)知识讲解【要点梳理】要点一、平行线的画法及平行公理1.平行线的画法用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合.②靠:用直尺紧靠三角板一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.④画:沿着这条斜边画一条直线,所画直线与已知直线平行.2.平行公理及推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.要点二、平行线的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、平行公理及推论1.下列说法中正确的有 ( )①一条直线的平行线只有一条;②过一点与已知直线平行的直线只有一条;③因为a∥b,c∥d,所以a∥d;④经过直线外一点有且只有一条直线与已知直线平行.A.1个 B 2个 C.3个 D.4个【答案】 A【解析】一条直线的平行线有无数条,故①错;②中的点在直线外还是在直线上位置不明确,所以②错,③中b与c的位置关系不明确,所以③也是错误的;根据平行公理可知④正确,故选A.【总结升华】本题主要考察的是“平行公理及推论”的内容,要正确理解必须要抓住关键字词及其重要特征,在理解的基础上记忆,在比较中理解.举一反三:【变式】直线a∥b,b∥c,则直线a与c的位置关系是 .【答案】平行类型二、平行线的判定2.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.21GF E D C BA【思路点拨】首先由BE ⊥FD ,得∠1和∠D 互余,再由已知,∠C=∠1,∠2和∠D 互余,所以得∠C=∠2,从而证得AB ∥CD .【答案与解析】证明:∵BE ⊥FD ,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D 互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB ∥CD .【总结升华】此题考查的知识点是平行线的判定,关键是由BE ⊥FD 及三角形内角和定理得出∠1和∠D 互余.举一反三:【变式1】如图,能判定EC ∥AB 的条件是( )A .∠B=∠ACEB .∠A=∠ECDC .∠B=∠ACBD .∠A=∠ACE【答案】D.提示:A 、两个角不是同位角、也不是内错角,故选项错误;B 、两个角不是同位角、也不是内错角,故选项错误;C 、不是EC 和AB 形成的同位角、也不是内错角,故选项错误;D 、正确.【变式2】已知,如图,BE平分∠ABC,CF平分∠BCD,∠1=∠2,求证:AB//CD.【答案】∵∠1=∠2∴ 2∠1=2∠2 ,即∠ABC=∠BCD∴ AB//CD (内错角相等,两直线平行)3.如图所示,由(1)∠1=∠3,(2)∠BAD=∠DCB,可以判定哪两条直线平行.【思路点拨】试着将复杂的图形分解成“基本图形”.【答案与解析】解:(1)由∠1=∠3,可判定AD∥BC(内错角相等,两直线平行);(2)由∠BAD=∠DCB,∠1=∠3得:∠2=∠BAD-∠1=∠DCB-∠3=∠4(等式性质),即∠2=∠4可以判定AB∥CD(内错角相等,两直线平行).综上,由(1)(2)可判定:AD∥BC,AB∥CD.【总结升华】本题探索结论的过程采用了“由因索果”的方法.即在条件下探索由这些条件可推导出哪些结论,再由这些结论推导出新的结论,直到得出结果.4.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?【答案与解析】解:这两条直线平行.理由如下:如图:∵ b⊥a, c⊥a∴∠1=∠2=90°∴ b∥c (同位角相等,两直线平行) .【总结升华】本题的结论可以作为两直线平行的判定方法.举一反三:【变式】已知,如图,EF⊥EG,GM⊥EG,∠1=∠2,AB与CD平行吗?请说明理由.【答案】解:AB∥CD.理由如下:如图:∵ EF⊥EG,GM⊥EG (已知),∴∠FEQ=∠MGE=90°(垂直的定义).又∵∠1=∠2(已知),∴∠FEQ -∠1=∠MGE -∠2 (等式性质),即∠3=∠4.∴ AB∥CD (同位角相等,两直线平行).。
《平行线的判定定理》课件
欢迎来到《平行线的判定定理》的PPT课件!在本课程中,我们将深入探讨两 条直线平行的判定定理,帮助您更好地理解和应用这一重要概念。
平行线的定义
1 什么是平行线?
2 为什么平行线很重要?
平行线是指在同一个平面内永不相交的两条 直线。它们具有相同的斜率,但不会有交点。
平行线在几何学和实际应用中扮演着重要角 色,如测量、建筑设计、电路布局等。
如何利用距离测量判断两条直线 是否平行?
常见错误和易混淆概念
1 错误:角度相等就一定是平行线吗?
不一定。平行线的角度可以相等行线有什么区别?
垂直线是相互交叉、形成直角的线,而平行线在同一个平面内永不相交。
结论及提出问题
通过本课件,您已经掌握了《平行线的判定定理》的重要概念和应用方法。接下来,您可以思考以下问题: 1. 在日常生活中,你能想到哪些使用平行线的例子? 2. 是否存在一个平行线的判定定理三?如果有,请尝试提出一个并推理其正确性。
具体方法
1. 画出所给直线及其上的一点。 2. 过该点作与直线垂直的线段。 3. 判断垂直线段是否与另一直线重合。
实例应用
这一方法在地图制作和导航系统中很常见,用于判断公路或铁路是否平行。
相关例题
例题 1
给定两条直线,如何判定它们是 否平行?
例题 2
如何利用角度测量判断两条直线 是否平行?
例题 3
平行线判定定理一
1
具体步骤
2
1. 画出所给直线。
2. 判断给定角的性质。
3. 如果对应角、内错角或同位角等均相
3
等,则两直线平行。
定理一介绍
通过角的性质判定两条直线是否平行。
实际应用举例
5.4 平行线的性质定理和判定定理
B
C
1
D
平行线的性质定理3:
两条平行线被第三条直线所截,同旁内角互补。
c
d a
已知:如图,a∥b,c∥d, ∠1=73°. 求∠2和∠3的度数.
2
3
1 解:∵a ∥b(已知) ∴∠2=∠1(两直线平行, 内错角相等) ∵∠1=73° (已知) ∴∠2=73°(等量代换) ∵a ∥b (已知) ∴∠2+∠3=180°(两直线平行,同 旁内角互补) ∴∠3=180°-∠ 2 (等式的性质) ∴∠3=180°-73 °=107 °(等量代
b
平行线判定定理1: 两条直线被第三条直
线所截,如果内错角相等,那么这两条直线平
行.(简记为:内错角相等,两直线平行)
请说出这个定理的条件和结论
尝试画出图形,写出已知与求证.
已知:如图,∠1和∠2是直线a,b被 a 直线c截出的内错角,且∠1=∠2. b 求证:a∥b.
c
3 1 2
把你所悟到的 证明:∵ ∠1=∠2 (已知), 证明一个真命题 ∠1=∠3 (对顶角相等). 的方法,步骤,书 ∴∠2=∠3 (等量代换). 写格式以及注意 事项内化为一种 ∴ a∥b(同位角相等,两直线平 方法. 行). 借助“同位角相等,两直线平行”这一公理, 你还能证明哪些熟悉的结论?
已知:如图,直线AB∥CD,AB,CD被直线 E EF所截,∠1和∠2是内错角. 3 A 求证: ∠1 =∠2.
2
B D
分析
C
1
F 证明:∵AB∥CD(已知), ∴∠1 =∠3 (两直线平行, 同位角相等). ∵ ∠2 =∠3(对顶角相等), ∴ ∠1 =∠2(等量代换).
已知:如图,直线AB∥CD,AB,CD被直线 EF所截,∠1和∠2是同旁内角. E 3 求证: ∠1 +∠2 =180°. A
数学平行线的判定
数学平行线的判定
数学平行线的判定是指在平面几何中,如何判断两条直线是否平行。
通常有以下几种方法:
1.同位角法:若两条直线被一条横线所截,且同侧内角和为180度,则这两条直线平行。
2.对顶角法:若两条直线被一条横线所截,且对应角相等,则这两条直线平行。
3.平行线性质法:若两条直线与第三条直线分别相交,使得同侧内角和小于180度,则这两条直线平行。
4.斜率法:若两条直线的斜率相等,则这两条直线平行。
以上是数学平行线的判定方法,可以根据实际情况选择不同的方法来判断。
掌握这些方法可以有效地解决一些平面几何问题。
- 1 -。
平行线的性质与判定
平行线的性质与判定在欧氏几何中,平行线是指在同一个平面内永不相交的两条直线。
平行线的性质和判定是几何学中的重要内容,对于理解和解决空间图形的性质和问题有着重要的作用。
本文将探讨平行线的性质以及如何判定两条直线是否平行。
一、平行线的性质1. 平行线的定义:在同一个平面中,如果两条直线没有任何交点,那么这两条直线就是平行线。
2. 平行线的特点:平行线具有以下性质:a. 永不相交:两条平行线在同一平面中永远不会相交,它们可以无限延伸。
b. 保持距离:两条平行线上任意两点之间的距离是相等的。
c. 平行线的斜率相等:两条直线若平行,则它们的斜率相等。
二、平行线的判定1. 垂直线判定:如果两条直线的斜率之积为-1,则这两条直线是平行线。
例如,直线y = 2x + 1和直线y = -1/2x - 2的斜率之积为(2)*(-1/2) = -1,所以它们是平行线。
2. 使用平行线定理判定:平行线定理是指如果一条直线与两条平行线相交,那么这两条平行线的对应角相等。
例如,直线l与平行线m和n相交,那么∠1 = ∠3,∠2 = ∠4,如图所示:l||m----P-----n||根据平行线定理,如果∠1 = ∠3且∠2 = ∠4,则可以断定m和n 是平行线。
3. 使用平行线的性质判定:根据平行线的特性,可以通过测量线段或角度来判断是否为平行线。
例如,如果测量两个线段所得的长度相等,那么可以推断它们是平行线上的线段,从而证明这两条直线平行。
三、平行线应用举例平行线的性质和判定在实际生活和工作中有广泛的应用。
以下是一些常见的应用场景:1. 道路规划:在城市规划和道路建设中,平行线的性质可以帮助工程师确定道路的走向和设计。
平行的道路可以提供更好的交通流畅性和安全性。
2. 建筑设计:建筑师常常使用平行线的性质来布局建筑物的结构和内部空间,使建筑物看起来更加美观和舒适。
3. 电路设计:在电路设计中,平行线的性质用于布局电路板上的导线,以确保信号的稳定传输和减少电磁干扰。
平行线的判定一
(三)练习
1.请你说明图中用直尺和平移三角尺画出的 两条直线a和b平行的理由。
a
b
根据平行线的判定公理
2.已知:如图,a⊥c,b⊥c。 求证:a∥b。 请你根据括号中推证的根据,在横线处填上推证 的过程。
a 1 b 2 c
a 1
b
2
c
∵a⊥c(已知) ∴∠1=90°(垂直的定义)。 ∵b⊥c(已知) ∠2=90°垂直的定义)。 ∴________( ∠1=∠2 (等量代换)。 ∴________
平行线的判定定理一 两条直线被第三条 直线所截,如果内错角相等,那么两直线 平行(简记为:内错角相等,两直线平行)
(二)做一做 已知:如下图,直线AB,CD被直线EF所截,∠1 和∠2是同旁内角,并且∠1+∠2=180°。 求证:AB∥CD。
E
A C
F12Fra bibliotekBD
E
A
C F
3 2 1
B D
证明:∵∠1+∠2=180° 已知 ( ),
大营镇中学
(一)一起探究 已知:如下图;直线AB,CD被直线EF所截,∠1 和∠2是内错角,并且∠l=∠2. 求证:AB∥CD.
E A
1 2
B
C F
D
E
A
C F
1 2
3
B
D
证明:∵∠1=∠2(已知), ∠1=∠3(对顶角相等), ∴∠2=∠3(等量代换)。
∴AB∥CD(同位角相等,两直线平行)。
a∥b (同位角相等,两直线平行)。 ∴______
谢谢
∠2+∠3=180° 平角的定义 ( ), 等式的性质 ), ∴∠1=180°-∠2 ( ∠3=180°-∠2 (等式的性质 )。 ∴∠l=∠3 ( 等量代换 )。 ∴AB∥CD ( 内错角相等,两直线平行 )。
平行线的性质与判定
平行线的性质与判定平行线是几何学中重要的概念之一,在实际生活和数学推理中都有广泛应用。
理解平行线的性质和判定方法对于几何学的学习和问题解决都具有重要意义。
本文将介绍平行线的性质以及常用的判定方法,帮助读者深入了解这一概念。
一、平行线的性质平行线是指在同一个平面上从未相交的两条直线。
根据平行线的性质,我们可以得出以下几点规律:1. 平行线的斜率相等斜率是直线的一个重要特征,决定了直线的倾斜程度。
对于两条平行线来说,它们的斜率是相等的。
这也是判定两条直线平行的常用方法之一,即根据它们的斜率进行比较。
2. 平行线的内角和相等当一条直线与两条平行线相交时,由这两条平行线与交线所夹的内角和是相等的。
这个性质被广泛应用于三角形的内角和问题以及平行四边形的性质推导中。
3. 平行线的对应角相等当两条平行线被一条直线截断时,所形成的对应角是相等的。
这一性质常用于解决平行线与交叉线的问题,例如用于证明两个三角形相似的场景中。
二、平行线的判定方法在几何学中,我们经常需要根据给定条件判断两条直线是否平行。
以下是常用的平行线判定方法:1. 直线斜率判定法通过计算两条直线的斜率,如果它们的斜率相等,那么这两条直线是平行的。
这是一种简便快捷的判定方法。
例如,对于直线y = 2x + 3和直线y = 2x + 6来说,它们的斜率都为2,因此这两条直线是平行的。
2. 等夹法如果两条直线与一条直线相交,并且形成对应角相等,那么这两条直线是平行的。
这需要通过观察和证明来得到结论,常用于解决平行四边形和三角形的性质问题。
3. 平行线定理平行线定理是一种基于三角形内角和的判定方法。
当一条直线与两条平行线相交时,这两条平行线所夹的内角分别与另外两条直线的对应角相等。
三、应用举例平行线的性质和判定方法在几何学问题中有着广泛应用。
以下是一些例子,展示了平行线在实际场景中的使用:1. 城市规划在城市规划中,经常需要将街道设置为平行线。
通过确保街道之间的直线保持平行关系,可以提高交通的效率和规划的美观性。
证明平行线的判定定理
证明平行线的判定定理引言平行线是几何学中重要的概念之一。
本文将通过证明平行线的判定定理,深入探讨平行线的性质和判定方法。
目录1.定义和性质2.平等角定理3.平行线的判定定理4.证明1.情形一2.情形二5.结论1. 定义和性质在几何学中,我们把在同一个平面上没有交点的两条直线称为平行线。
平行线具有一些重要的性质: - 平行线永不相交,无论延长多远也不会相遇。
- 平行线与同一直线的截线之间的对应角相等。
- 平行线与同一直线的交线之间的内角互补,即互为补角。
2. 平等角定理在证明平行线的判定定理之前,需要先了解平等角定理。
平等角定理可以简单描述为:如果两条直线被切割形成的内角相等,则这两条直线平行。
3. 平行线的判定定理平行线的判定定理给出了几种方法来判断两条直线是否平行。
根据不同的情况,可以使用不同的方法来进行判定。
4. 证明本节将提供两种情况下平行线的判定定理的证明。
4.1. 情形一假设有两条直线AB和CD,我们想要证明这两条直线平行。
首先,我们需要证明其中一组内角相等,然后可以根据平等角定理得出结论。
证明过程: 1. 假设直线AB与CD相交于E点。
2. 延长直线AB至F点,使得AE=EF。
3. 连接CF。
4. 观察△ACF和△CED。
5. 根据三角形内角和定理,△ACF内角和为180°,而△CED内角和也为180°。
6. 由于∠ACF = ∠CED(原因见步骤4),且所对的边等长(AE=EF),根据三角形相似性质可知∆ACF与∆CED全等。
7. 由于已经证明了∆ACF与∆CED全等,根据全等三角形的性质,对应的角相等。
8. 因此,∠CAF = ∠CED。
9. 由于∠CAF与∠CED为内角,根据平等角定理,可以得出AB与CD平行。
4.2. 情形二假设有两条平行线AB和CD,我们需要证明这两条直线上的一组内角相等。
证明过程: 1. 假设直线AB和CD平行,并且相交于点E。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 平行线的有关证明
第四节 平行线的判定定理 (第1课时)
公理 两条直线被第三条直线所截,如 果同位角相等,那么这两条直线平行.
简单说成:同位角相等,两直线平行
公理与其他真命题的最大区别是什么?证明一个 命题是真命题的一般步骤是什么?
a
c 已知:如图,∠1和∠2是直线a、
定理 两条直线被第三条直线所截,如果内错角 相等,那么这两条直线平行. 简单说成:内错角相等,两直线平行
随堂练习:课本P46 第1、2题
已知:如图,已知AB⊥ EF,CD⊥ EF,垂足
分别为M,N
求证:AB // CD
A
C
E
N
F
B
D
达尔文曾经说过:“(蜜蜂)巢房的精巧构造十分符
合需要,如果一个人看到巢房而不倍加赞扬,那他一定是个 糊涂虫.”这些小小的动物,它们用蜂蜡一昼夜可以造出几 千间巢房,而且每间的体积几乎都是0.25立方厘米,壁厚都 精确地保持在0.073±0.002毫米范围内.如果你仔细进行观 察就会发现,每个巢房从正面看去都是正六边形(每个角都 是120°),而它的尖顶形成的底部则都是由三个完全相同 的菱形拼接而成的.十八世纪初,法国学者马拉而琪经过测 量发现,所有的底部菱形的钝角都等于109°28′,而其锐角 都等于70°32′。法国物理学家列奥缪拉由这个有趣的发现 得到一个 启示:蜂房的这一特殊形状,可能是为了保证得
到同样大的容积而所用材料最省.多么令人惊奇,小小的蜜 蜂在人类有史以前就已经解决了的问题,十八世纪的数学家 竟要用高等数学才能解决!
β
β
蜂房的底部由三个全等的
四边形围成,每个四边形的形状 如图所示,其中∠α=109°28′, ∠β=70°32′.
试确定这三个四边形的形
状,并说明你的理由.
D
C
理及已经证明的定理.
定理 两条直线被第三条直线所截,如果 同旁内角互补,那么这两条直线平行.
简单说成:同旁内角互补,两直线平行
a1c b2
∵ ∠1+ ∠2=180o ∴ a∥b
证明一个命题的一般步骤:
(1)弄清题设和结论; (2)根据题意画出相应的图形; (3)根据题设和结论写出已知,求证;
(4)分析证明思路,写出证明过程.
∠ACD.∠1=50°,∠2=40°.
• 求证:AB∥CD.
1、 课本46页 随堂练习1、2
2、思考题:借助“同位角相等, 两直线平行”这一公理,你还能 证明哪些熟悉的结论?
A
B
解: ∵∠A+∠D=180o ∴ AB∥CD
同理可证:AD∥BC ∴ ABCD为平行四边形 即所求三个四边形为平行四边形
蜂房中有很多数 学问题值得我们思考, 有兴趣的同学可读一 读华罗庚著:《谈谈 与蜂房结构有关的数 学问题》(科学出版 社,2002.5)
随堂练习:课本P47 第1、2、3题
证明一个命题的一般步骤: (1)弄清题设和结论; (2)根据题意画出相应的图形; (3)根据题设和结论写出已知,求证; (4)分析证明思路,写出证明过程.
平行线的判定方法
1、同位角相等,两直线平行 2、同旁内角互补,两直线平行 3、内错角相等,两直线平行 4、在同一平面内,垂直于同一直线的两条 直线平行 5、平行于同一直线的两条直线平行
检测反馈
• 1.如图:已知
∠1=∠2,∠2+∠3=180°
• 求证:a∥b,c∥d
• 2.已知:AE平分∠BAC,CE平分
1
b被直线c截出的同旁内角,且∠1
2
与∠2互补.
b
求证:a∥b
3
证明:∵ ∠1与∠2互补(已知)
∴∠1+ ∠2=180o(互补的定义)
∴ ∠1=180o- ∠2(等式的性质)
∵ ∠3+ ∠2=180o(1平角=180o)
∴ ∠3=180o- ∠2(等式的性质)
∴ ∠ 1 = ∠3(等量代换 )
∴ a∥b(同位角相等,两直线平行) 注意:证明的依据只能是有关概念、定义、所规定的公