酶第8章(1)上海交大生化课件

合集下载

酶的课件ppt

酶的课件ppt
生命活动不可或缺的物质。
酶的分类
根据酶促反应的性质,酶可以 分为氧化还原酶类、水解酶类 、转移酶类、裂合酶类和合成 酶类等。
根据酶的来源,酶可以分为动 物酶、植物酶和微生物酶等。
根据酶的结构,酶可以分为单 体酶、寡聚酶和多聚酶等。
酶的结构与功能
酶的结构是由氨基酸组成的多肽链, 具有特定的空间构象,决定了酶的专 一性和活性。
酶的活性受温度、pH值、抑制剂和激 活剂等因素的影响,这些因素可以通 过影响酶的结构来改变酶的活性。
酶的活性中心是酶分子中与底物结合 的区域,是酶发挥催化作用的部位。
02
酶的生物合成与调控
酶的生物合成
酶的生物合成是指酶分子的形成 过程,包括转录和翻译两个阶段

在转录阶段,DNA中的信息被转 录成RNA,成为酶的信使RNA(
总结词
酶的结构与功能研究主要关注酶的化学组成、空间构象以及 与底物结合的机制,以揭示酶如何催化生物体内的化学反应 。
详细描述
通过对酶的氨基酸序列、三维结构以及活性位点的深入研究 ,科学家们逐渐理解了酶如何与底物结合、如何催化化学反 应的机制。这些研究不仅有助于解释酶的生物学功能,也为 酶的改造和利用提供了理论基础。
总结词
酶的活性与动力学研究主要关注酶催化化学反应的效率、反应速度以及反应条件对酶活性的影响。
详细描述
通过研究酶的活性与动力学,可以深入了解酶催化反应的过程和机制,探究影响酶活性的因素,为提 高酶的生产和应用效果提供理论支持。此外,酶的活性与动力学研究还为药物设计和生物工程领域提 供了重要的理论基础和技术手段。
酶抑制物的种类
酶抑制物是指能够抑制酶活性的 物质,根据其作用机理可分为竞 争性抑制、非竞争性抑制和反竞

生物化学生物化学生物化学酶讲课PPT

生物化学生物化学生物化学酶讲课PPT
对同一种酶来讲,比活力愈高则表示酶的纯度越高(含 杂质越少)。
比活力是评价酶纯度高低的一个指标。
问题?
现有1g淀粉酶制剂,用水稀释1000mL,从中吸取0.5mL 测定该酶的活力,得知5分钟分解0.25g淀粉。计算每 克酶制剂所含的淀粉酶活力单位数。
(淀粉酶活力单位规定为:在最适条件下,每小时分 解1g淀粉的酶量为1个火力单位。)
(五)、 Km和Vmax的测定
双倒数作图法,又称为林-贝氏(Lineweaver- Burk)作图法
Vmax[S]
1/V
V= Km+[S]
两边同时取倒数
Km
1/V=
Vmax
1/[S] + 1/Vmax
-1/Km
(林-贝氏方程)
1/Vmax
1/[S]
二、酶浓度对反应速度的影响
V
*当[S]>>[E],反应 速度与酶浓度成正比。
(一) 、不可逆性抑制作用
*概念:
以共价键与酶活性中心的必需基团相结合,使酶失活,
不能用透析、超滤等方法予以除去。
*举例:
有机磷化合物 羟基酶 解毒 -- -- -- 解磷定(PAM)
重金属离子及砷化合物 巯基酶 解毒 -- -- -- 二巯基丙醇(BAL)
RO X
P + E OH R'O O 有机磷化合物 羟基酶
四、酶的分类
1、氧化还原酶类(oxidoreductases) 2、转移酶类 (transferases ) 3、水解酶类 (hydrolases) 4、裂解酶类 (lyases) 5、异构酶类( isomerases) 6、合成酶类 (ligases,synthetases)
五、酶的活性和活性单位

生物化学之酶ppt课件

生物化学之酶ppt课件
非竞争性抑制剂
与酶活性中心以外的部位结合,改变酶的空间构象,使酶活性降低或 丧失,如磺胺类药物对二氢叶酸合成酶的抑制。
酶抑制剂的应用
医学领域
用于治疗疾病,如酶抑制剂作为抗病毒药 物、抗肿瘤药物和抗菌药物等。
生物工程领域
用于改造和优化生物催化剂的性能,提高 生物催化过程的效率和选择性。
农业领域
用于研发新型农药和除草剂,提高农作物 产量和品质。
来调节细胞内酶的含量。
酶抑制剂的分类与作用
不可逆抑制剂
与酶共价结合,使酶永久失活,如有机磷农药对乙酰胆碱酯酶的抑制 。
可逆抑制剂
与酶非共价结合,可通过物理或化学方法去除抑制剂而恢复酶活性, 包括竞争性抑制剂、非竞争性抑制剂和反竞争性抑制剂。
竞争性抑制剂
与底物竞争酶的活性中心,降低酶对底物的亲和力,如丙二酸对琥珀 酸脱氢酶的抑制。
环境领域
用于治理环境污染,如利用酶抑制剂降解 有毒有害物质。
04
酶在生物体内的代谢
酶与生物氧化
酶催化生物氧化反应
生物氧化是在生物体内进行的氧化反 应,酶作为生物催化剂能够加速这些 反应的进行。
酶与抗氧化系统
生物体内存在抗氧化系统以抵抗氧化 应激,酶如超氧化物歧化酶(SOD) 等在此系统中发挥重要作用。
酶的结构与功能
结构
酶分子通常具有复杂的四级结构,包括一级结构(氨基酸序列)、二级结构( α-螺旋、β-折叠等)、三级结构(整体折叠形态)和四级结构(亚基组成)。
功能
酶通过降低化学反应的活化能来加速反应速率,具有高效性、专一性和可调节 性等特点。此外,酶还能参与信号传导、物质运输和能量转换等生物过程。
酶抑制剂筛选方法
基于活性的筛选

生物化学PPT课件 酶

生物化学PPT课件 酶

2、非竞争性抑制
3、反竞争性抑制
七、酶活性测定:
难以测定,常用的衡量方式:
酶在最适条件下,单位时间内,单位体积中底 物的减少量或产物的生成量。
酶的活性单位: 国际单位(IU):每分钟转化1μmol底物所需的酶 量为一个国际单位(1IU),即1μmol/min
Kat单位:每秒钟转化1mol底物所需的酶量 1 Kat=1mol/sec 1 IU=16.67×10-9Kat
(2)酶的储存形式
(二) 别构调节
催化部位(活 性中心)
EE
(激活或抑制) 酶活性改变
酶结构改变
调节部位
别构效应剂
(三)酶促化学修饰调节
类型:
(1)磷酸化与脱磷酸(最常见) (2)乙酰化与脱乙酰 (3)甲基化与去甲基 (4)腺苷化与脱腺苷 (5)SH与-S-S互变
2ATP
2ADP
磷酸化酶b激酶
P
磷酸化酶 b(二聚体)
无活性
磷酸化酶a磷酸酶
P
磷酸化酶 a(二聚体)
高活性
2Pi
2H2O
磷酸化酶的活性调节
cAMP信号与糖原降解
二、酶蛋白含量的调节
1. 酶蛋白合成的诱导与阻遏 (1)诱导剂、诱导作用 (2)阻遏剂、阻遏作用
2. 酶蛋白的降解 (1)溶酶体蛋白酶降解途径 (2)泛素参与的降解途径
六、抑制剂(inhibitor, I)
——使酶活性下降但又不使酶蛋白变性的物质 与酶的必须基团结合,抑制酶的催化活性。去除 后,酶表现原有活性。
(一)不可逆抑制作用
• 概念:抑制剂与酶活性中心必需基团共价 结合,不能用透析、超滤等物理方法将其 除去恢复酶活性。
• 常见抑制剂:
巯基酶抑制剂(如某些重金属离子、路易士气等) ——解毒:二巯基丙醇

酶(生物化学)PPT课件

酶(生物化学)PPT课件
详细描述
酶的活性中心是酶分子中具有特定空间结构的区域,能够与底物特异结合,并 通过催化反应将其转化为产物。活性中心的氨基酸残基通常是高度保守的,对 酶的催化活性至关重要。
酶的专一性
总结词
酶的专一性是指一种酶只能催化一种或一类化学反应的性质 。
详细描述
酶的专一性是酶的重要特性之一,它决定了酶在生物体内的 功能。一种酶通常只能催化一种或一类化学反应,这是因为 酶的活性中心具有特定的空间结构和化学环境,只能够与特 定的底物结合并催化相应的反应。
食品保鲜
酶可用于食品保鲜,如抑制果蔬 中酶的活性,延缓成熟和腐烂过 程;也可用于食品中农药残留的
降解。
功能性食品开发
酶可用于开发功能性食品,如通 过酶促反应生产低糖、低脂或高
纤维食品。
酶在环保领域的应用
有毒有害物质降解
酶可用于降解有毒有害物质,如重金属离子、有机溶剂和农药等, 降低其对环境和生物体的危害。
的诊断。
药物生产
酶可用于药物的生产和制造过程中, 如抗生素、激素和蛋白质药物等, 通过酶促反应提高生产效率和纯度。
生物治疗
酶在某些生物治疗过程中起到关键 作用,如基因疗法和细胞疗法中, 酶可促进特定基因的表达或改变细 胞代谢。
酶在食品工业中的应用
食品加工
酶在食品加工过程中起到重要作 用,如淀粉的改性、蛋白质的水 解和油脂的加工等,可改善食品 的口感、营养价值和加工性能。
计算机辅助设计
计算机辅助设计是一种利用计算 机模拟技术来预测和优化酶性能
的方法。
通过计算机模拟,可以预测酶的 催化机制、反应路径和动力学行
为,从而指导酶的优化设计。
计算机辅助设计与其他技术结合, 如量子化学计算和分子动力学模 拟,可进一步提高酶优化效率。

酶(生物化学课件)

酶(生物化学课件)

胆碱 + 乙酸
胆碱能神经过度兴奋↑
中毒
(心跳变慢、瞳孔缩小、流涎、多汗、呼吸困难)
25
抑制剂:重金属离子:Ag+、Hg2+、砷剂(As3+)等
巯基酶
失活的酶分子
Cu2+: 是唾液淀粉酶的抑制剂
26
(二)可逆性抑制作用
i 与E或ES以非共价键结合,从而抑制酶活性。 这种抑制剂可用透析、超滤等方法除去。

E2
应 速
E1

酶浓度
19
激活剂对酶促反应速度的影响
• 凡能提高酶活性的物质,统称为酶的激活剂。 (大部分是离子或简单的有机化合物)
• 必需激活剂
• 非必需激活剂
如,Cl-是唾液淀粉酶的激活剂
20
抑制剂对酶促反应速度的影响
抑制剂:凡能使酶活性下降或丧失,而不引起变性。
抑制作用
不可逆抑制 可逆性抑制
43
酶活性中心的必需基团(essential group)
1. 结合基团:结合S,形成 [ES]; 2. 催化基团:催化S转变为P。
常见的必需基团:半胱氨酸的巯基、组氨酸的咪唑基、 丝氨酸的羟基、谷氨酸γ-羧基等。
44
活性中心以外 的必需基团
结合基团
底 催化基团 活性中心
45
酶原与酶原激活※
非竞争性抑制作用特点
1. i与S结构不相似; 2. i与S互不干扰同时与 酶 结合; 3. 抑制程度只取决于[i]的浓度; 4. ↑[S],不能去除抑制作用。
33
三、温度对酶促反应速度的影响
在一定温度范围内, • T↑ → 酶活性 ↑, • T↓ → 酶活性↓; • T↑↑ 超过一定范围时,酶变性失活; 最适温度

酶学习课件学习.pptx

酶学习课件学习.pptx

第9页/共86页
3. 二者的功能
酶蛋白
辅助因子
决定反应的专一性 决定反应的类型
种类多
种类少
如:乳酸脱氢酶 乳酸脱氢、NAD+ 苹果酸脱氢酶 第1苹0页/果共86酸页 脱氢、NAD+
二、酶的活性中心 (active center) 1.必需基团
第11页/共86页
第12页/共86页
2.活性中心概念: 酶分子上必需基团在空间结构上彼此靠近,
③ 动力学特征 斜率不变、Vm减小、Km减小
第61页/共86页
各种可逆性抑制作用的比较
作用特征 无抑制剂 竞争性抑制 非竞争性抑制 反竞争性抑制
与I结合的组分
动力学参数 表观Km 最大速度
林-贝氏作图 斜率 纵轴截距 横轴截距
Km Vmax
Km/Vmax 1/Vmax -1/Km
E
增大 不变
增大 不变 增大
第3页/共86页
一、酶的分子组成 蛋白质部分+非蛋白质部分=结合酶 酶蛋白 + 辅助因子 = 全 酶
第4页/共86页
1. 全酶的概念 酶蛋白与辅助因子结合形成的复合物,
只有全酶才有催化活性。
第5页/共86页
2. 辅助因子(cofactor)
二者结合程度
辅基: 结合紧密 辅酶: 结合疏松
金属离子:维持构象、传递e、E和S
第15页/共86页
一、酶促反应的特点 酶与一般催化剂共同点
❖反应前后没有质、量的改变 ❖用量少,催化效率高 ❖不改变化学反应的平衡点
第16页/共86页
㈠ 高催化效率
活化分子:达到或超过反应能阈的分子 活化能:使低能分子达到活化状态所 需要的能量
第17页/共86页
能 量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. The Michaelis-Menten Model Accounts for the Kinetic Properties of Many Enzymes -动力学
5. Enzymes Can Be Inhibited by Specific Molecules -抑制作用
OUTLINES
are called substrates 底物.
A+B C+D
Substrates
Products
An enzyme usually catalyzes a single chemical
reaction or a set of closely related reactions.
Side reactions 副反应 leading to the wasteful formation of by-products 副产物 are rare in enzyme-catalyzed reactions, in contrast with uncatalyzed ones.
A + B C + D + D’ Substrates Products by-products
Proteolytic enzymes: in vivo体内vs in vitro体外 Proteolytic enzymes 蛋白水解酶 catalyze proteolysis, the hydrolysis of a peptide bond 肽键 in vivo.
determine the patterns of chemical transformations.
Enzymes mediate the transformation of one form of energy into another. 参与能量转化
Catalytic diversity 催化多样性
- trypsin: a proteolytic enzyme secreted by the pancreas. 2. Most enzymes are named for their substrates and for the
reactions that they catalyze, with the suffix "ase" added. - ATPase: an enzyme that breaks down ATP, - ATP synthase: an enzyme that synthesizes ATP.
Proteins as a class of macromolecules are highly effective catalysts for an enormous diversity of chemical reactions because of their capacity to specifically bind a very wide range of molecules. 主要六大类催化反应
4. The Michaelis-Menten Model Accounts for the Kinetic Properties of Many Enzymes -动力学
5. Enzymes Can Be Inhibited by Specific Molecules -抑制作用
Enzymes Are Powerful
By selectively stabilizing a transition state, an enzyme determines which one of several potential chemical reactions actually takes place.
OUTLINES
1. Enzymes Are Powerful and Highly Specific Catalysts - 概论
Proteolytic enzymes differ markedly in their degree of substrate specc enzymes: (A) Trypsin 胰蛋白酶:cleaves on the
carboxyl side of Arg and Lys residues; (B) Thrombin 凝血酶: cleaves ArgGly bonds in particular sequences only. (C) Papain 木瓜蛋白酶:from papaya
Products
The transfer of CO2 from the tissues (组织) into the blood (血液) and then to the alveolar (肺泡的) air would
be less complete in the absence of this enzyme. This catalyzed reaction is 107 times as fast as the uncatalyzed
The most striking characteristics:特点 - Catalytic power (催化高效性) - Specificity (选择性)
Chemical nature: - Proteins 蛋白质 (Nearly all known enzymes are
proteins, but proteins are not an absolute monopoly on catalysis); - Catalytically active RNA molecules : a biocatalyst early in evolution (Section 2.2.2).
2. Free Energy Is a Useful Thermodynamic Function for Understanding Enzymes -热力学
3. Enzymes Accelerate Reactions by Facilitating the Formation of the Transition State -化学
Active site 活性中心
Active site 活性中心: Catalysis takes place at a particular site on the enzyme.
By untilizing the full repertoire of intermolecular forces 分子间作用力, enzymes bring substrates together in an optimal orientation定位, the prelude to making and breaking chemical bonds. They catalyze reactions by stabilizing transition states过渡态, the highest-energy species高能物质 in reaction pathways.
Enzymes accelerate reactions by factors of as much as a million or more.
Indeed, most reactions in biological systems do not take place at perceptible rates in the absence of enzymes.
1. Enzymes Are Powerful and Highly Specific Catalysts
2. Free Energy Is a Useful Thermodynamic Function for Understanding Enzymes -热力学
3. Enzymes Accelerate Reactions by Facilitating the Formation of the Transition State -化学
体 内
Most proteolytic enzymes also catalyze a different but related reaction in vitro namely, the hydrolysis of an ester bond 酯键.
体 外
useful in experimental investigations of these enzymes.
designated 2.7.4. 4. The final number designates the acceptor more precisely. In
regard to NMP kinase, a nucleoside monophosphate is the acceptor, and the enzyme's designation is EC 2.7.4.4.
Chapter 8: Enzymes: Basic Concepts and Kinetics
酶:基本概念及动力学
Berg • Tymoczko • Stryer
Biochemistry Sixth Edition
INTRODUCTION
Enzymes(酶): The catalysts of biological systems 生物催化剂 They are remarkable molecular devices that
Nomenclature for enzymes:in 1964,Enzyme Commission of the International Union of Biochemistry(国际生化联盟) •Reactions were divided into six major groups. These groups were subdivided and further subdivided, so that a four-digit number preceded by the letters EC for Enzyme Commission could precisely identify all enzymes.
相关文档
最新文档