离心泵的结构、原理及振动的原因及处理

合集下载

离心泵产生振动的原因及解决方法

离心泵产生振动的原因及解决方法

离心泵产生振动的原因及解决方法一. 机泵轴弯曲机泵轴是带着固定在其上的叶轮或转子旋转,由于叶轮和转子的重量,特别是大机泵,当机泵较长时间停止工作时,使机泵轴在一个方向上受力,造成轴弯曲。

轴弯曲的机泵在运行中就会引起叶轮等传动产生不平衡,致使叶轮与本壳发生摩擦,导致机泵产生振动现象。

解决方法是每8h盘车一次,每次按同一方向将轴转动120度。

二. 轴承问题1.轴承“跑外缘”由于轴承装配质量不良,机泵经过长时间运行后,就会出现轴承“跑外缘”现象,造成轴承温度升高,产生杂音,出现转动。

解决的方法是:(1)将轴承支架焊上一层金属,然后车削到合适的尺寸,重新装配;(2)如轴承间隙较大,可加薄铜皮,使轴承外缘静配合达到规定值。

2.轴承磨损目前从市场上采购的轴承或多或少都存在一些质量问题。

主要是滚珠大小不一、硬度差、间隙大等,很难保证维修质量。

轴承磨损一般伴随有发热和异常声音,严重时发生卡泵。

因此,发现轴承异常时应及时停机更换。

3.轴瓦间隙过大这种情况常出现在采用滑动轴承的大、中型水泵中,若轴瓦间隙过大,就容易使轴松动,因此应及时调整轴瓦间隙。

三. 联轴器问题联轴器的作用主要是把泵和电机连接起来一同旋转并转递扭矩,其问题有以下两点,一是不同心,有些大型泵使用一段时间后,就会发生变化,如果出现不同心现象,只能停机并重新找正;二是联轴器所使用的胶圈、梅花胶皮、等容易损坏,将损坏的胶圈换掉即可恢复正常。

四. 液体通道不畅当机泵运行时,由于液体通道不畅,产生水力冲击而引起机泵振动。

主要原因有以下几点。

1、出口阀门开度太小离心式泵,特别是高扬程、大排量的泵在流量小时容易产生不通程度的振动,当开大阀门流量正常后,振动就会消失。

2、泵吸入端管道进气或有杂物入口端装有底阀和过滤网的输送泵,在试运初期流体过脏或粘度过大,易产生气蚀,同时伴随有振动,严重时水泵不能正常工作。

为了消除这一现象,最好在泵的入口端安装一负压表,以便随时观察负压变化,从而准确判断吸入管路的变化情况,及时清理底阀和过滤器。

离心泵的结构和工作原理

离心泵的结构和工作原理

离心泵的结构和工作原理离心泵是一种流体泵,它基于离心力将液体从入口吸入泵内,经过离心运动,最终从出口处排出。

离心泵的主要工作方式是使用一个旋转的叶轮,通过离心力将液体推向泵的出口。

与其他类型的泵相比,离心泵的结构简单,易于维护和使用,并且在一些特定行业中被广泛应用,如水处理,油田开采,化工和建筑等领域。

下面将对离心泵的结构和工作原理进行详细介绍。

结构离心泵主要由以下几个部分组成:1. 泵轴:泵轴是和泵轴承配对的中心轴,同时也是连接泵壳和电机的组件。

2. 泵壳:泵壳是包裹叶轮和进口的静态部分,根据泵的类型和模型不同,泵壳也有不同的构造设计。

3. 叶轮:叶轮是离心泵的核心组件,其形状和大小取决于泵壳的大小和流量要求。

当叶轮旋转时,离心力会推动液体流向排出口。

4. 前盖和后盖:前盖和后盖是叶轮和泵轴之间的密封件,可以防止液体泄漏。

它们通常位于泵轴的一侧。

5. 轴承:轴承是支撑泵轴的组件,分为前后两个轴承。

前置轴承通常位于前盖与泵轴之间,后置轴承通常位于后盖与泵轴之间。

工作原理当电机启动时,泵轴开始旋转,叶轮随之旋转。

液体通过进口处进入泵壳,进入叶轮,并夹带叶轮的旋转动力。

绕着叶轮旋转的液体产生离心力,液体被推向泵壳的出口处。

在推进液体的时候,离心力会将液体压缩以增加流体压力。

压缩后的液体最终流出泵壳的排放口。

值得注意的是,在使用离心泵的过程中,流量和扬程是最重要的指标。

流量是指泵每单位时间内输送的液体体积,而扬程是指泵能提供的液位高度差。

泵的总扬程等于泵之前的高度差和泵内部的压力差。

总结离心泵是一种常见的机械泵,其结构简单,维护容易,在水处理、油田开采、化工和建筑等领域都有应用。

离心泵的工作原理是基于旋转的叶轮产生的离心力将液体推向泵的出口。

流量和扬程是离心泵运行的两个最重要的指标,对于离心泵的选择和使用至关重要。

离心泵的应用范围很广,适用于各种流体输送场合,如水、废水、油、化工品等。

以下是几个具体的应用场景:1. 水泵系统在自来水厂、工业用水和污水处理等场合,离心泵经常用于输送水或废水。

离心泵振动常见原因分析及预防措施

离心泵振动常见原因分析及预防措施

高速离心泵,尤其需要注意在流量为40到60m 3/h 且扬程低于800m 时需要选用多级泵[1]。

通过速度系数法设计离心泵流程模型,以寻找泵体在流水线上的最优运行方案。

在叶轮方面通过水力损失判断具体的容积效率,从而找到最合理的离心泵比转速。

(2)液体通道结构。

液体通道结构包括出口阀门、液体吸入端口和出口管道,在这三个方面的设计需要保证出口阀门的面积能够有效处理气体的理论数值,确保泵内压强符合生产需要。

液体吸入端要配备滤网等结构,避免发生堵塞,保障端口畅通。

由于离心泵内存在理论的气体残留量,所以在出口管道方面的设计要尽量减少压强波动,将排气部位设置在较为适合空气流通的位置。

(3)轴承与联轴器需要保持相对的稳定,避免在运行时不同心的情况,应当注意到扭矩在电机与泵体之间的传递足够稳定。

防止联轴器发生磨损的部件也要配备到位,确保及时更换,使得其结构设计能够发挥离心泵的功能。

2.2 保障离心泵的工程结构和材料质量离心泵的材料质量尤为关键,离心泵轴的刚性如果不达标,就会发生传动轴与静止物件的碰撞,进而造成离心泵振动。

同样的,如果离心泵轴的材料结构不合理,也会导致离心泵由于轴底结构承压不均匀而发生振动。

在最基础的离心泵泵体架构方面,泵体高速运转中的驱动装置架需要保证其形态的稳定,从基础地脚螺栓到整体离心泵基础,都需要保证其刚性达到离心泵运行需要。

在离心泵的基础以及泵支架方面考虑刚性,能够有效处理离心泵振动情况。

联轴器的结构与材料质量同样影响这离心泵振动情况,为此要调增离心泵联轴器的周向间距,保持轴体的对称性,并且维持联轴器的平衡水平来解决离心泵振动。

离心泵自身运行时如果产生不对称的压强环境也会导致离心泵震动,所以在工程结构上要维持液体流动条件的对称,叶轮结构需防止出口压力不均匀造成液体漩涡,降低液体回流,以一定的叶片倾斜度来处理脉冲压力。

由于石油化工的生产特点,需要针对性地解决液体腐蚀情况,通过加厚离心泵体的密闭层厚度,可以根据相应材料技术的发展为离心泵内的各种隔离部件增添新材料。

离心泵的工作原理及故障判断与解决办法

离心泵的工作原理及故障判断与解决办法

离心泵的工作原理及故障判断与解决办法2020.2.3离心泵离心泵具有体积小、结构简单、操作容易、流量均匀、寿命长、购置费和操作费均较低等突出优点。

一、工作原理:当离心泵启动后,泵轴带动叶轮一起作高速旋转运动,迫使预先充灌在叶片间液体旋转,在惯性离心力的作用下,液体自叶轮中心向外周作径向运动。

液体在流经叶轮的运动过程获得了能量,静压能增高,流速增大。

当液体离开叶轮进入泵壳后,由于壳内流道逐渐扩大而减速,部分动能转化为静压能,最后沿切向流入排出管路。

所以蜗形泵壳不仅是汇集由叶轮流出液体的部件,而且又是一个转能装置。

当液体自叶轮中心甩向外周的同时,叶轮中心形成低压区,在贮槽液面与叶轮中心总势能差的作用下,致使液体被吸进叶轮中心。

依靠叶轮的不断运转,液体便连续地被吸入和排出。

液体在离心泵中获得的机械能量最终表现为静压能的提高。

二、故障及解决方法:1泵不吸水故障分析:•吸入阀有杂物或未打开,或吸入管堵塞•管路系统密封性差•从轴封处吸入空气•灌泵系统故障解决方法:•打开吸入阀,排除杂物,疏通吸入管。

•检察管路,尤其分段试压连接法兰处,堵漏。

•更换轴封,压紧填料密封•检查及维修灌泵系统2泵不能启动故障分析:•原动机发生故障(包括电源);•泵卡住;•填料函压得太紧;•排出阀门未关。

解决方法:•检查电源及原动机情况;•再次盘车确定联轴器情况;•放松填料;•管进出口阀门,再次启动。

3泵不排液故障分析:•灌泵不足(或泵内气体未排净);•泵转向不对;•泵转速太低;•滤网、吸入管堵塞;•吸入高度太高,或吸入口液体供给不足,造成吸入真空。

解决方法:•重新灌泵;•再次确定泵的旋转方向;•检查电机空转转速,检查减速器的减速比,确定泵转速是否符合设计转速;•清洗滤网,疏通吸入管;•调整吸入口管线,高于泵的入口,调整泵的上部供液系统,保证介质供应充分。

4泵排液后中断故障分析:•吸入管路漏气;•灌泵时吸入侧气体未排尽;•吸入侧突然被异物堵住,或吸入口滤器堵塞;•吸入管脱水,大量气体吸入解决方法:•检查吸入侧连接处及填料函的密封情况;•重新灌泵;•停泵,清洗滤芯,疏通吸入管路;•检查吸入管路是否破裂,并联进口管线上的阀门是否打开(不常用的管线)。

离心泵结构和原理

离心泵结构和原理

2. 离心泵主要工作参数: 2.4 功率
单位时间内所做的功。
单位: 1 N m 1 J 1 W
s
s
工程单位:1 kW=1000 W
⑴ 有效功率Ne 单位时间内泵输送出去的液体有效能头。
Ne
QH
1000
KW
⑵ 轴功率N: 泵轴输入的功率。
2. 离心泵主要工作参数: 2.5 效率
用η表示,是衡量泵的经济性的指标。
3. 离心泵结构
3.5.3 滚动轴承的浸油润滑
➢ N>3000rpm时,油位在轴承最 下部滚动体中心以下,但不低于 滚动体下缘。
➢ N=1500~3000rpm时,油位在 轴承最下部滚动体中心以上,但 不得浸没滚动体上缘。
➢ N<1500rpm时,油位在轴承最 下部滚动体的上缘或浸没滚动体。
3. 离心泵结构
1. 离心泵工作原理 1.5.3 离心泵产生汽蚀的原因
1、被输送的介质温度过高; 2、水池液位过低,有气体被吸入; 3、泵的安装高度过高; 4、流速和吸入管路上的阻力太大; 5、吸入管道、压兰(指不带液封的)密封不好,有空气进入。 6、流量过大,也就是说出口阀门开的太大
1. 离心泵工作原理 1.5.4 气蚀的解决方案
体、内外圈滚道及保持器)之间并非都是纯滚动的。由于在 外负荷作用下零件产生弹性变形,除个别点外,接触面上均 有相对滑动。滚动轴承各元件接触面积小,单位面积压力往 往很大,如果润滑不良,元件很容易胶合,或因摩擦升温过 高,引起滚动体回火,使轴承失效,所以轴承时刻都要处于 油膜的涂覆之中。
轴承润滑通常用油槽或油雾进行润滑,为了保证滚动体和 滚道接触面间形成一定厚度的油膜,采用中黏度的涡轮油 (国际标准化组织68级)较适宜。在油槽润滑中,轴承部分浸 在油中,油浸润高度以没过轴承底的50%为宜。如果超过50 %,过量的油涡流会使油温上升,油温升高会加速润滑荆的 氧化,从而降低润滑性能;如果低于50%,则油对轴承的冲 洗作用降低,润滑效果不好。

离心泵的构造及工作原理

离心泵的构造及工作原理

离心泵的构造及工作原理离心泵是一种常见的流体机械,广泛应用于工业生产中。

本文将以离心泵的构造和工作原理为主题,详细介绍离心泵的工作原理和构造特点。

一、离心泵的构造离心泵由泵体、叶轮、轴、轴承和密封装置等部件组成。

1. 泵体:离心泵的泵体通常由铸铁、不锈钢等材料制成,其作用是容纳泵的各个部件,并通过进出口连接管道。

2. 叶轮:叶轮是离心泵的核心部件,通常由叶片和轮盘组成。

叶片的数量和形状决定了泵的性能,一般叶片数目为6-12片。

叶轮通过轴与电机连接,承受电机的驱动力,将电机输出的动能转化为流体的动能。

3. 轴:轴是连接电机和叶轮的部件,通常由不锈钢制成,具有一定的强度和刚性,能够承受叶轮的转动力矩。

4. 轴承:轴承用于支撑和定位轴,减小摩擦和振动,保证泵的正常运转。

常见的轴承有滚动轴承和滑动轴承两种。

5. 密封装置:离心泵的密封装置用于防止泵内的液体泄漏,常见的密封方式有填料密封和机械密封两种。

二、离心泵的工作原理离心泵利用叶轮的旋转产生离心力,将液体从进口抽入泵内,再通过叶轮的推力将液体排出。

1. 进口:当离心泵开始运转时,叶轮旋转产生离心力,使液体沿着进口管道流入泵体。

2. 吸入:液体通过进口管道进入泵体后,受到叶轮的旋转作用产生离心力,使液体沿着叶轮的叶片被吸入叶轮中心。

3. 推出:叶轮旋转后,将液体推出叶轮,产生一定的压力,使液体通过出口管道排出泵体。

4. 压力增加:随着叶轮的旋转速度增加,液体在离心力的作用下,压力逐渐增加,从而形成一定的流体压力。

5. 能量转换:离心泵将电机输出的机械能转化为流体的动能,使液体具有一定的流速和压力,从而实现液体的输送和增压。

离心泵的工作原理基于离心力的作用,通过旋转叶轮将液体吸入并推出,从而实现对液体的输送和增压。

离心泵具有结构简单、效率高、使用方便等特点,广泛应用于工业、建筑、农业和市政等领域。

离心泵喘振的原因及解决方法

离心泵喘振的原因及解决方法

离心泵喘振的原因及解决方法一、离心泵喘振的原因1.轴向不平衡:离心泵的转子轴向不平衡是最常见的原因之一、转子轴向不平衡主要表现为泵的振动频率与叶轮的转速相等,并且振动频率较高。

2.动静脉动的相互作用:当泵的进口流速较低,特别是在小流量和高扬程的工况下,会发生动静脉动的相互作用,从而引起泵腔内的压力变化,导致离心泵喘振。

3.气液两相流过程中的喘振:在一些工况下,如气体液体混输过程中,液体在离心力的作用下往外移动,而气体则往内运动。

当两相流速达到一定值时,会出现气液两相流相互干涉的现象,进而引起离心泵喘振。

4.叶轮与封水系统的不匹配:封水系统对离心泵的运行非常重要,当封水系统的适配性不合理时,如低压封水系统与高压封水系统不匹配,会导致泵体产生振动和喘振。

5.液力喘振:液力喘振是指由于液体在流动过程中产生的涡流紊乱,使得离心泵产生涡旋振动。

液力喘振是一种自激振荡,其频率与泵的工况有关。

二、离心泵喘振的解决方法1.检查并平衡转子轴向:对于转子轴向不平衡,可以使用动平衡仪进行检测和校正。

通过调整转轴位置,使转子在运转过程中保持平衡。

2.优化动静脉动的相互作用:针对动静脉动相互作用引起的喘振问题,可以通过改变进口流道结构、增大进口流速或采用消除泡沫和空气的措施来优化系统的流态,减少动静脉动的相互作用。

3.控制气液两相流:针对气液两相流引起的喘振问题,可以通过调整输送流量和改变流道结构来控制两相流的速度,从而减少喘振的可能性。

4.优化封水系统:封水系统的适配性非常重要,应根据泵的工况选择合适的封水系统,并确保封水系统的压力和流量匹配稳定,避免封水系统不匹配引起的喘振问题。

5.设计合理的阻振器:在离心泵的设计和安装中,可以采用一些阻振措施,如设置阻振器、减振装置等,对泵的振动进行控制。

综上所述,离心泵喘振的原因有很多,涉及到流体力学、结构力学和系统设计等多个方面。

针对不同的原因,需要采取相应的解决方法,以降低离心泵喘振的发生概率,确保泵的正常运行和使用寿命。

离心泵机组振动过大的原因及解决措施

离心泵机组振动过大的原因及解决措施

离心泵机组振动过大的原因及解决措施天津市300450摘要:在管道输送中通常使用离心泵作为原油输送的动力源,是管道输送中的“心脏”。

在离心泵运行过程中会产生一定的振动和噪声,振动是评价泵机组运行可靠性的一个重要指标,影响泵机组的正常运转,同时长期处于超过听力保护标准的环境中听觉疲劳难以恢复,持续累积可使听阈由生理性转变成不可恢复的病理过程。

本文针对探索造成离心泵振动超标的原因有哪些,是否与设计构造、施工安装、工艺操作以及运行维护等方面因素有关,根据原因并找到更好地预防或减少振动超标的方法,从而保障设备的安全。

关键词:离心泵;振动;原因;措施一、离心泵机组振动超标原因分析1、设计制造设计制造环节出现的问题是离心泵振动超标的根本原因,也是最不能忽视的。

叶轮是离心泵最主要的部件,它将机械能传递给液体,使液体获得动能。

叶轮在设计制造过程中质量控制不好,如:加工精度不合格、叶轮口环和泵体口环之间以及级间衬套不合格等原因都会使叶轮偏心,从而造成振动超标。

2、安装施工在安装时如果没有良好的泵基础,就算是安装上也难免会在后期运行时产生较大的振动。

还要保证地脚的螺栓固定良好,因为离心泵会通过地脚的螺栓固定在地上,一旦地脚螺栓固定不稳,就会使泵体得不到良好的固定。

与此同时还要保证垫铁的厚度合适,使泵体在运行时保持平衡。

除此以外,泵的进出口都要与管线对齐,一旦进出口与管线不在同一水平线,管线与泵机组将产生共振现象。

3、同轴度差在安装过程中离心泵的泵体与电机是通过联轴器来联系的,联轴器的安装对泵体和电机之间的同轴度要求很高,如果联轴器不对中,在运行过程中会造成离心泵振动过大。

4、轴弯曲变形轴是离心泵转子中重要的部件,它不仅作为扭矩的传输,而且在轴上有很多的零部件。

在泵轴的运转过程中,有可能会有不平衡量增大的情况发生,造成这一情况的原因主要是泵轴发生弯曲变形。

在泵轴的运输和安装过程中也需要特别注意,尤其是对于某些长度较长的泵轴,极易发生弯曲。

离心泵的工作原理、组成部分、操作规程、 故障排查

离心泵的工作原理、组成部分、操作规程、 故障排查
4.修理或更换电机。
5.拆开清洁叶轮与流道。 6.请与供电部门联系。
七、(自动泵)电机热保护器频繁动作
故障原因
1.电源电压过高或过低。
解决办法
1.请与供电部门联系。
2.电机超功率运行。 3.电容器短路或开路 4.电机轴承故障。 5.叶轮与流道有刮擦。
6.环境温度过高或阳光直射。
2.调整泵的工作点,使其在规 定的范围内运行。 3.修理或更换电容器。
• 泵的吸入管路一端与叶轮中心处相通,另一端则浸没在输送的 液体内,在液面压力(常为大气压)与泵内压力(负压)的压 差作用下,液体经吸入管路进入泵内,只要叶轮的转动不停, 离心泵便不断地吸入和排出液体。
• 由此可见离心泵主要是依靠高速旋转的叶轮所产生的离心力来 输送液体,故名离心泵。
二、离心泵的一般特点
送液体,主要目的是提高扬程,增加输送距离。
汽蚀
• 1. 汽蚀的定义
• 由离心泵的工作原理可知,在离心泵叶轮中心(叶片入口)附近 形成低压区。
• 离心泵的安装位置越高,叶片入口处压强愈低,当泵的安装高度 高至一定位置,叶片入口附近的压强可能降至被输送液体的饱和 蒸汽压,引起液体的部分汽化并产生汽泡。
1增加进水管长度,阻止空气 进入水泵。

2进水管路接头处漏水,漏气。
2重新安装,填堵漏气漏水部 位。
3.输水高度过高
4.口环及叶轮磨损太多
5.闸阀开得太小或底阀有障碍物堵 塞。
3降低输水高度或换泵。 4更换叶轮。 5适当打开阀门,清除障碍物。
6、机械密封漏气。
6检查或更换机械密封。
三、有杂音和振动
吸入口径为3英寸(76.2mm)。
• 字母B表示单吸悬臂式,33表示泵的扬程33m,最后的字母A表示

离心泵产生振动的原因及解决方法

离心泵产生振动的原因及解决方法

离心泵产生振动的原因及解决方法发表时间:2019-10-28T10:25:37.057Z 来源:《文化时代》2019年16期作者:陈国文[导读] 离心泵在实际在工业生产领域发挥出了重要的作用,但是在其实际运过程中经常会产生各种故障问题,对工业生产形成巨大的影响,如果不能对故障的原因以及具体状况进行即使处理和精确评估就会对离心泵的正常运行产生影响。

本文主要针对离心泵运行中的振动原因以及具体解决措施进行了分析。

陈国文中国石油运输有限公司新疆塔里木运输分公司新疆阿克苏地区 842000摘要:离心泵在实际在工业生产领域发挥出了重要的作用,但是在其实际运过程中经常会产生各种故障问题,对工业生产形成巨大的影响,如果不能对故障的原因以及具体状况进行即使处理和精确评估就会对离心泵的正常运行产生影响。

本文主要针对离心泵运行中的振动原因以及具体解决措施进行了分析。

关键词:离心泵;振动;原因;处理措施引言目前在工业生产领域离心泵的应用十分广泛,为工业生产做出了巨大的贡献,在面对离心泵故障的时候如果不能实现正确的处理,必然会导致影响离心泵的正常运行,因此必须要对离心泵的故障维修进行以及振动等进行精确分析。

1 机泵轴弯曲机泵轴的主要作用是带动叶轮以及转子进行旋转,由于离心泵的转子以及叶轮本身的重量比较重,如果在经历长时间的运行之后会导致机泵在开机运行的过程中产生一个较大的轴向力,这样就会导致机泵轴产生完全的现象,由此会进一步导致机泵在运行过程中出现严重的不平衡现象,进而会引发机泵与壳体之间的严重摩擦现象,这样就会导致机泵出现严重的振动现象。

主要的解决措施为针对离心泵的叶轮以及机泵的壳体进行8小时一次的盘机,按照相同的方向降泵轴旋转120度左右[1]。

2 轴承问题2.1轴承“跑外缘“轴承如果在装配的过程中出现安装质量差的问题,就会导致机泵在长时间的运行过程中产生轴承“跑外缘“的现象,进而使得轴承的温度进一步升高,甚至产生较大的杂音,并进一步引发离心泵的振动现象。

离心泵结构介绍及振动过大解决措施

离心泵结构介绍及振动过大解决措施

故障维修—212—离心泵结构介绍及振动过大解决措施王启航(中海石油(中国)有限公司天津分公司,天津 300450)1、离心泵介绍1.1泵的定义及用途泵是输送流体或使流体增压的机械。

它将原动机的机械能或其他外部能量传送给液体,使液体能量增加。

泵主要用来输送水、油、酸碱液、乳化液、悬乳液和液态金属等液体,也可输送液、气混合物及含悬浮固体物的液体。

在海洋石油生产中,泵主要用于原油输送、注水、采油、供水、排污、计量等各工艺过程中。

1.2 离心泵的结构离心泵是一种将机械能主要转变为液体压力能的叶片式水力机械。

离心泵主要由叶轮、泵轴、泵壳等组成。

叶轮上带有若干个叶片,通常为6~12片,大多不超过9片。

叶轮与泵轴固装在一起,动力机通过联轴器带动泵轴旋转,从而带动叶轮一起旋转。

1.2.1 叶轮是离心泵的核心部分,离心泵的叶轮是使液体产生离心力并获得能量的主要部件。

如图1所示,叶轮形式有闭式、半开式、开式和双吸叶轮四种,通常为铸造件。

闭式叶轮由前盖板、后盖板、叶片及轮毂等组成;液体一般从内孔直径较大的一端,沿轴向吸入,从内孔直径较小的一端,沿径向排出。

半开式叶轮无前盖板,开式叶轮无前、后盖板。

双吸叶轮相当于两个闭式叶轮叠加在一起,液体可从两个方向吸入。

有两叶轮中的叶片有圆柱形(单向弯曲)和扭曲形(双向弯曲)之分。

1-闭式叶轮;2-半开式叶轮;3-开式叶轮;4-双吸叶轮图1 离心泵叶轮形式1.2.2 泵壳是离心泵中收集液体并把液体导出的零件,铸造而成。

泵壳一般有涡壳形和圆柱形两种结构形式。

泵壳一般由有吸入管、吸入室、壳体、压出室、排出管等部分组成。

吸入室的作用是将吸入管中的液体均匀地吸入叶轮,力求流动损失最少。

吸入室有3种:锥形吸入室、环形吸入室和螺旋形吸入室。

1.2.3 泵轴的作用是借联轴器和电动机相连接,将电动机的转矩传给叶轮,所以它是传递机械能的主要部件。

1.2.4 滑动轴承使用的是透明油作润滑剂的,加油到油位线。

离心泵振动原因分析和解决方案

离心泵振动原因分析和解决方案

离心泵振动原因分析和解决方案作者:张永哲来源:《科学与财富》2018年第24期摘要:在炼油化工生产装置中,较为常用的一项设备就是离心泵,其发挥着运输流体的作用。

但是在运行过程中常常会出现振动故障,为此,本文首先对离心泵振动的原因进行分析,并在此基础上探讨其有效的解决方案,希望能对广大同行有所助益。

关键词:离心泵;振动;原因;解决;方案一、离心泵振动的原因分析(一)机械方面原因第一,转子质量分布不均。

转子质量分布不均极易导致轴承不平衡,一旦启动离心泵,如若轴承受力不对称就会出现小幅振动,而一旦转速不断加大,直至其大过规定限额后,其振幅便会大大增加。

一些离心泵,因为使用时间过长,部分轴承转动零件以及叶轮出现严重老化,或是离心泵其内部产生腐蚀或磨损,而导致该类现象出现的原因归根究底在于转子质量不对称,进而导致离心泵出现震动故障。

由于该问题引发的振动故障往往具有较大的破坏性,所以一旦出现该类故障则需要立即将转子更换,且校验校正下一步的平衡性,进而将振动源彻底消除。

第二,离心泵机组中心不正。

在离心泵中,一个重要动力构件就是其机组,如若机组中心不正,则必定会导致在转动时机组振动的产生,且符合不断增加,随之而造成的振动频率与幅度也会不断变大。

归纳来说,导致该问题出现原因主要在于以下几点:一是离心泵质量不达标,一些机组做工质量低劣,在实际安装时没能正确校正位置;二是前后轴瓦不对称或轴承磨损。

由于机组中心不正而导致的振动,需要对离心泵的运行参数进行细致检测,且合理调配离心泵的性能,防止出现振动情况。

三是联轴器不对正。

在离心泵中一个关键部位就是联轴器,在安装离心泵时,如若连接螺栓相应精度不准或是联轴器不同心均会导致离心泵轴承与原动机轴承不在相同水平线上。

一旦启动离心泵,便会产生振动故障。

如若是联轴器不对正,则会在刚开始运行离心泵时产生较小振动,而通过较常时间运行,就会由于基础下沉或地脚螺栓松动垫板移动而导致泵中心偏移,进而引发振动。

浅谈离心泵的结构、原理及振动的原因及处理

浅谈离心泵的结构、原理及振动的原因及处理

浅谈离心泵的结构、原理及振动的原因及处理【摘要】目前,油田注水所用的注水泵机组分为离心泵和往复泵机组,其中离心泵使用广泛,流量在5-30000立方米每小时,扬程在8-4000米的范围内。

离心泵液体是连续流动的,所以离心泵排量均匀,压力平稳。

维修工作量少,特别是离心泵的排量可用出口闸门来调节,比往复泵相比方便很多,正是由于这些优点,所以离心泵在油田开发生产中得到广泛发展和应用。

为了确保生产任务的顺利完成,延长设备的使用寿命,我们注水泵工必须了解离心泵的结构、原理及出现故障的处理方法,以便更好的服务生产。

【关键词】离心泵振动处理1 多级离心泵的工作原理泵内灌满液体后,在原动机的带动下,叶轮高速的旋转,叶轮带动液体高速旋转。

产生离心力,液体受离心力的作用高速甩出,高速甩出的液体经过泵壳流道,增大压力,降低速度,最后进入排出管,当液体甩出的同时,中轮的中心形成低压或真空,与外界形成夺差,在大罐液柱压力的作用下,液体被压入叶轮的进口,于是旋转着的叶轮就连续不断地吸入和排出液体。

2 多级离心泵的组成离心泵的结构形式很多,作用原理都是相同的,所以主要零部件的形状是相近的,离心泵有六大部分组成:转动部分、泵壳部分、密封部分、轴承部分、传动部分、平衡部分。

下面对各部分的作用、构造及材质作一简单介绍。

2.1 转动部分包括:叶轮,叶轮是离心泵的最重要的零件,由前盖板、后盖板,轮鼓叶片组成。

它是把泵轴的机械能传给液体使其变成液体的压能和动能,泵的流量、扬程、效率都和叶轮的形状、尺寸的大小及表面粗糙度有着直接密切的关系,一般叶轮的外径越大,流道越窄产生的压力就越高,流道越粗糙流经叶轮时产生的水力损失就越大,所以对叶轮要进行流道加工,清除表面残渣。

轴套:一般是圆柱形。

是用来保护泵轴的,使泵轴不致于应腐蚀和磨损而影响其机械强度,它主要是与密封件配合使用,工作时,密封件静止,轴套旋转,防止泵同介质外漏,所以轴套是易磨损件。

泵轴:传递动力的部件,两端靠轴承支撑,中间装有叶轮,导叶,平衡盘,在泵中作高速回转,因而泵轴要承载能力大,耐磨,耐腐蚀一般采用45号钢制造,并进行调质处理。

离心泵振动原因分析和解决方案

离心泵振动原因分析和解决方案

离心泵振动原因分析和解决方案篇一:浅谈离心泵的结构、原理及振动的原因及处理浅谈离心泵的结构、原理及振动的原因及处理【摘要】目前,油田注水所用的注水泵机组分为离心泵和往复泵机组,其中离心泵使用广泛,流量在5-30000立方米每小时,扬程在8-4000米的范围内。

离心泵液体是连续流动的,所以离心泵排量均匀,压力平稳。

维修工作量少,特别是离心泵的排量可用出口闸门来调节,比往复泵相比方便很多,正是由于这些优点,所以离心泵在油田开发生产中得到广泛发展和应用。

为了确保生产任务的顺利完成,延长设备的使用寿命,我们注水泵工必须了解离心泵的结构、原理及出现故障的处理方法,以便更好的服务生产。

【关键词】离心泵振动处理1 多级离心泵的工作原理泵内灌满液体后,在原动机的带动下,叶轮高速的旋转,叶轮带动液体高速旋转。

产生离心力,液体受离心力的作用高速甩出,高速甩出的液体经过泵壳流道,增大压力,降低速度,最后进入排出管,当液体甩出的同时,中轮的中心形成低压或真空,与外界形成夺差,在大罐液柱压力的作用下,液体被压入叶轮的进口,于是旋转着的叶轮就连续不断地吸入和排出液体。

2 多级离心泵的组成离心泵的结构形式很多,作用原理都是相同的,所以主要零部件的形状是相近的,离心泵有六大部分组成:转动部分、泵壳部分、密封部分、轴承部分、传动部分、平衡部分。

下面对各部分的作用、构造及材质作一简单介绍。

转动部分包括:叶轮,叶轮是离心泵的最重要的零件,由前盖板、后盖板,轮鼓叶片组成。

它是把泵轴的机械能传给液体使其变成液体的压能和动能,泵的流量、扬程、效率都和叶轮的形状、尺寸的大小及表面粗糙度有着直接密切的关系,一般叶轮的外径越大,流道越窄产生的压力就越高,流道越粗糙流经叶轮时产生的水力损失就越大,所以对叶轮要进行流道加工,清除表面残渣。

轴套:一般是圆柱形。

是用来保护泵轴的,使泵轴不致于应腐蚀和磨损而影响其机械强度,它主要是与密封件配合使用,工作时,密封件静止,轴套旋转,防止泵同介质外漏,所以轴套是易磨损件。

离心泵振动及噪音大的原因及对策简述

离心泵振动及噪音大的原因及对策简述

离心泵振动及噪音大的原因及对策简述离心泵原理简单的说就是叶轮高速旋转时,带动叶片间的液体旋转,由于离心力的作用,液体从叶轮中心被甩向叶轮外缘,当液体进入泵壳后,由于蜗壳形泵壳中的流道逐渐扩大,液体流速逐渐降低,一部分动能转变为静压能,于是液体以较高的压强沿排出口流出,故称为离心泵。

在处理不当的情况下,叶轮产生的离心力会导致泵出现振动和不正常的噪音。

离心泵使用时发现泵振动及噪音异常,应立即停机作检查。

1、泵基础是否牢靠当发生振动时,首先应检查离心泵的地脚螺栓是否紧固。

若未紧固会造成离心泵震动。

还要考虑地脚基础强度是否够用,有时由于设计原因,基础偏软也能引起震动。

2、联轴器找正很多离心泵是通过联轴器进行驱动,联轴器的种类也很多。

常规的三爪联轴器找正的好坏直接影响到联轴器、轴、轴承、机封等正常运行和使用寿命。

3、找中心中心不正也是引起震动的常见原因,必须严格按照标准将中心调整在规定范围之内。

4、轴承检查轴承安装是否出现问题或是否损坏。

5、转子中心位置调整水泵转子应与定子同心,否则在水泵运行时会产生摩擦,产生震动。

6、动静平衡检测在离心泵拆解后,为了避免开泵时震动,还应将叶轮作静平衡试验。

外部条件对水泵的影响当水泵本身可能有的问题全部排除后,如仍不能解决震动的问题时,还要考虑外部条件对水泵的影响。

滚动轴承在运转中有异声且温度高1、轴承存在质量问题。

检查轴承需注意轴承外观、滚动体是否转动灵活、轴承各部分尺寸间隙等。

2、轴承跑套。

当轴承箱温度高且有异声,振幅时大时小,振动周期不定,解体检查发现轴承外圈的外圆面有磨损痕迹,并且间隙过大,说明轴承以及跑套,可用胶粘、补焊、镶套的方法修复。

跑套严重,不能用上述方法修复需更换。

3、轴承磨损严重或已损坏。

轴承运转响声很大,并且温度高、振幅大,需更换轴承。

4、轴承轴向定位问题。

泵运转时,温度高而振动不大,可能是轴承轴向间隙过大,停车后,用工具轻轻敲击联轴器靠背轮发现有明显的轴向窜动,需重新调整间隙。

离心泵的振动原因及处理措施

离心泵的振动原因及处理措施
应立即停机检查,排除隐患。
二、水泵机组振动的原因很复杂,从引发振动的起 因看主要原因有:
1、电机结构件松动,轴承定位装置松动,铁芯硅钢 片过松,轴承因磨损而导致支撑刚度下降,会引起振 动。
2、驱动装置架与基础之间采用的接触固定形式不 好,基础和电机系统吸收、传递、隔离振动能力差, 导致基础和电机的振动都超标。水泵基础松动,或 者水泵机组在安装过程中形成弹性基础,或者由于 油浸水泡造成基础刚度减弱,从而使水泵振动频率 增加,如果增加的频率与某一外在因素频率接近或
逸出的氧气借助气泡凝结时放出的热量对金属起化 学腐蚀作用。这种泵内反复出现液体的汽化和凝结,
以致对过流部件损坏的现象称为汽蚀现象。汽蚀发
11、叶轮旋转时产生的非对称压力场;吸水池和 进水管涡流;叶轮内部以及蜗壳、导流叶片漩涡 的发生及消失;阀门半开造成漩涡而产生的振动;
由于叶轮叶片数有限而导致的出口压力分布不 均;叶轮内的脱流;喘振;流道内的脉动压力;汽蚀; 水在泵体中流动,对泵体会有摩擦和冲击,比如水 流撞击隔舌和导流叶片的前缘,造成振动;输送高 温水的锅炉给水泵易发生汽蚀振动;泵体内压力 脉动,主要是泵叶轮密封环,泵体密封环的间隙过 大,造成泵体内泄漏损失大,回流严重,进而造成转 子轴向力的不平衡和压力脉动,会增强振动。另 外,对于输送热水的泵,如果启动前泵的预热不均, 或者水泵滑动销轴系统的工作不正常,造成泵组
三、减轻振动要从安装和维护过程着手
1、轴和轴系。安装前检查水泵轴、电机 轴、传动轴有没有弯曲变形、质量偏心 的情况,若有,则必须矫正或者进一步加工。 同时,检查轴的端间隙值,若该值过大,则 表明轴承已磨损,需更换轴承。其次,要检 查轴的几个主要技术指标:直径精度和几 何形状精度、相互位置精度、表面粗糙 度等是否符合设计要求。

离心泵的振动原因及处理措施

离心泵的振动原因及处理措施

要点二
耐腐蚀材料
针对腐蚀性介质,采用耐腐蚀材料,提高离心泵的耐久性 和可靠性,延长设备的使用寿命。
THANKS
谢谢您的观看
02
离心泵振动原因
设计因素
叶轮设计不合理
叶轮设计不符合流体力学原理,导致流体在叶轮中流动不均 匀,产生振动。
轴承设计不当
轴承设计不当或选型不合理,无法有效支撑泵体,导致振动 。
制造因素
零部件加工精度不足
泵的零部件加工精度不足,导致装配后间隙过大或不均匀,引起振动。
材料质量不达标
泵的材料质量不达标,如铸件内部存在气孔、夹渣等缺陷,影响泵的稳定性。
03
离心泵振动处理措施
设计优化
优化叶轮和蜗壳设计
通过改进叶轮和蜗壳的设计参数,降低流体诱导的振动和噪音。
增加刚度与稳定性
提高泵体的刚度和稳定性,以减ห้องสมุดไป่ตู้因结构变形引起的振动。
优化轴承和密封设计
改进轴承和密封的设计,降低摩擦和磨损,从而减少振动。
制造质量控制
01
02
03
严格控制材料质量
选用优质材料,确保泵的 零部件制造精度和稳定性 。
04
离心泵振动案例分析
设计不当案例
总结词
设计参数不合理、结构形式选择不当等原因导致离心泵振动。
详细描述
在设计阶段,未充分考虑离心泵的工作环境和工况,导致设计参数不合理,如叶轮和蜗壳的匹配度不 高、轴承跨距过短等。此外,结构形式选择不当也可能引起振动问题,如未采用合适的减震措施或支 撑结构。
制造缺陷案例
总结词
制造过程中存在的缺陷导致离心泵振动。
详细描述
在制造过程中,可能由于加工精度不足、材料质量不达标等原因,导致离心泵内部零件存在制造缺陷,如叶轮不 平衡、轴承间隙过大等。这些缺陷在运行过程中会引发振动。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈离心泵的结构、原理及振动的原因及处理
【摘要】目前,油田注水所用的注水泵机组分为离心泵和往复泵机组,其中离心泵使用广泛,流量在5-30000立方米每小时,扬程在8-4000米的范围内。

离心泵液体是连续流动的,所以离心泵排量均匀,压力平稳。

维修工作量少,特别是离心泵的排量可用出口闸门来调节,比往复泵相比方便很多,正是由于这些优点,所以离心泵在油田开发生产中得到广泛发展和应用。

为了确保生产任务的顺利完成,延长设备的使用寿命,我们注水泵工必须了解离心泵的结构、原理及出现故障的处理方法,以便更好的服务生产。

【关键词】离心泵振动处理
1 多级离心泵的工作原理
泵内灌满液体后,在原动机的带动下,叶轮高速的旋转,叶轮带动液体高速旋转。

产生离心力,液体受离心力的作用高速甩出,高速甩出的液体经过泵壳流道,增大压力,降低速度,最后进入排出管,当液体甩出的同时,中轮的中心形成低压或真空,与外界形成夺差,在大罐液柱压力的作用下,液体被压入叶轮的进口,于是旋转着的叶轮就连续不断地吸入和排出液体。

2 多级离心泵的组成
离心泵的结构形式很多,作用原理都是相同的,所以主要零部件的形状是相近的,离心泵有六大部分组成:转动部分、泵壳部分、密封部分、轴承部分、传动部分、平衡部分。

下面对各部分的作用、构造及材质作一简单介绍。

2.1 转动部分
包括:叶轮,叶轮是离心泵的最重要的零件,由前盖板、后盖板,轮鼓叶片组成。

它是把泵轴的机械能传给液体使其变成液体的压能和动能,泵的流量、扬程、效率都和叶轮的形状、尺寸的大小及表面粗糙度有着直接密切的关系,一般叶轮的外径越大,流道越窄产生的压力就越高,流道越粗糙流经叶轮时产生的水力损失就越大,所以对叶轮要进行流道加工,清除表面残渣。

轴套:一般是圆柱形。

是用来保护泵轴的,使泵轴不致于应腐蚀和磨损而影响其机械强度,它主要是与密封件配合使用,工作时,密封件静止,轴套旋转,防止泵同介质外漏,所以轴套是易磨损件。

泵轴:传递动力的部件,两端靠轴承支撑,中间装有叶轮,导叶,平衡盘,在泵中作高速回转,因而泵轴要承载能力大,耐磨,耐腐蚀一般采用45号钢制造,并进行调质处理。

2.2 泵壳部分
单级泵,蜗形泵壳,它是水泵的主体,起到支撑固定的作用,并与安装轴承的托架相连接,从叶轮甩出液体,由于泵壳流道截面积逐渐增大和方向的改变,流速平缓的降低,动能转变为压能。

多级泵包括吸入段、中段、压出段、和导叶。

2.3 密封部分
有两个密封装置,叶轮密封环,叶轮与泵壳之是应有一定的间隙,如果间隙过大,叶轮甩出来的部分液体就会从间隙返回到叶轮的入口,造成泵效下降,如果间隙过小会使泵壳和叶轮磨损。

安装密封环起到一个承受磨损,和防止漏失的作用。

轴端密封:在泵轴伸出泵体处,旋转的泵轴和固定泵体之间有轴封机构,我们叫它轴端密封,它的作用是防止泵中压力高时,液体泄漏,泵内压力低时时,空气进入泵内,机械密封,它是通过动静密封环两个端面紧密贴合摩擦从而达到密封的,它反映了机械密封的特点,所以机械密封又称为端面密封。

2.4 轴承部分
轴承部分主要用来支撑泵轴并减少泵轴旋转时的摩擦阻力,在离
心泵中通常采用滚动轴承,滑动轴承平衡径向负荷。

滚动轴承由外圈,内圈,滚珠和保持架四部分组成。

滚动轴承它是标准件,其外圈与轴承座孔采用基轴制,内圈与轴采用基孔制,轴承一般采用润滑脂和润滑油润滑。

滑动轴承,俗称轴瓦,主要是由轴瓦和轴承座组成。

它是易损件,轴瓦一般用在大型,多级、高压轴向力通过平衡盘法平衡的离心泵上。

由于滑动轴承的轴瓦和轴径间的支撑面一般较大,而且用带油环带动润滑,由于油滑油具有吸振能力,所以滑动轴承能承受较大的冲击载荷,因而显示出比滚动轴承更优越的工作性能。

2.5 传动部分
联轴器也称靠背轮。

它起到连接机泵,传递扭矩和旋转运动的作用。

以及自动调整泵与电机中心的作用。

两个靠背轮之间留有一定的间隙,以达到减缓振动。

最常用的有刚性联轴器、弹性联轴器。

弹性联轴器是我们现场最常用的联轴器,用橡胶圈的变形来,缓冲冲击,补偿两轴之间产生的相对位移。

这两种联轴器适用于起动频繁的泵。

2.6 平衡部分
平衡部分主要用来平衡指向叶轮进口端的轴向推力作用。

它包括
平衡盘,平衡板平衡套,平衡管。

那么轴向力是如何产生的呢?
3 离心泵振动的原因及处理方法
离心泵在正常运行时,低强度的机械振动是不可避免的,当泵机组发生振动时,应针对具体情况逐一分析可能造成振动的原因,找出问题的症结后,采取有效的技术措施加以消除,从广义上讲,引起离心泵振动的原因是多方面的,包括离心泵的设计,制造,安装,运行,等因素,但在作业现场,造成振动增大的原因更集中在表1所示几个方面。

参考文献
[1] 王兰芳.浅谈液压传动系统的噪声和振动[j].煤炭技术,2003,(06)
[2] 李文华,郭仁宁,王玉学.离心泵故障诊断方法[j].辽宁工程技术大学学报(自然科学版),2002,(02)。

相关文档
最新文档