山东省济宁市兖州区第十五中学2019-2020学年度第二学期期末模拟考试八年级语文试题(含参考答案)

合集下载

山东省济宁市2019-2020学年八年级第二学期期末复习检测物理试题含解析

山东省济宁市2019-2020学年八年级第二学期期末复习检测物理试题含解析

山东省济宁市2019-2020学年八年级第二学期期末复习检测物理试题一、选择题(本题包括10个小题)1.如下图,两个相同容器都盛满水,甲中有一个体积为50cm3,密度为0.5×103 kg/m3的木块漂浮在水面.下列有关说法正确的是A.木块漂浮时浮力等于自身重力并有1/3体积露出水面B.木块缓慢下压至浸没的过程中受到的浮力不变C.木块全部压入水中两容器底部受水的压力和压强都相等D.取出木块后两容器对水平桌面的压力和压强都相等2.用弹簧测力计拉着木块在水平桌面上做匀速直线运动,弹簧测力计示数为10 N,现使木块的速度变为原来的2倍,但仍做匀速直线运动,弹簧测力计的示数为.A.20 N B.10 N C.5 N D.条件不够,无法确定3.下列做法属于减小摩擦的是A.冬天,在结冰的马路上撒一些细砂以方便路人行走B.在生锈的自行车轴上滴一些油,骑车就会感觉轻松一些C.当汽车后轮陷入泥坑打滑时,司机会就近寻找石块等物体垫在车轮下D.体操运动员进行双杠表演前,在手上涂抹滑石粉以防止从杠上滑落4.根据如图所示的入射光线和出射光线,在虚框中填上一个适当的光学元件A.凹透镜B.凸透镜C.平面镜D.凹面镜5.在水平桌面上,有两个相同的圆柱形容器,内盛相同深度的盐水.将同一个鸡蛋分别放入其中,鸡蛋静止时如图所示.鸡蛋在甲、乙两杯中所受浮力分别为F1和F2,盐水对容器底部压强分别为p1和p2,则,A.F1>F2,p1>p2B.F1=F2,p1>p2C.F1<F2,p1=p2D.F1=F2,p1<p26.如图所示,一根弹簧一端挂在墙上,用490N 的力拉另一端,弹簧伸长了20cm.如果改为两个人分别拉弹簧的两端,把它也拉长了20cm,则每个人分别用为A.490N 0NB.0N 490NC.980N 980ND.490N 490N7.下列物体中具有弹性势能的是()A.被拉开的弹弓B.在空中来回摆动的秋千C.悬挂在天花板上的吊灯D.没有发生形变的弹簧8.两次水平拉动同一物体在同一水平面上做匀速直线运动,两次物体运动的路程(s)一时间(t)图象如图所示,根据图象,下列判断正确的是()A.两次物体运动的速度:v1<v2B.两次物体所受的拉力:F1>F2C.0﹣6s两次拉力对物体所做的功:W1>W2D.0﹣6s两次拉力对物体做功的功率:P1<P29.在下列现象中,发生的不是弹性形变的是()A.橡皮筋被拉长B.钢尺子被压弯了C.跳板被跳水运动员压弯D.橡皮泥上留下漂亮的指印10.以下关于惯性的说法中正确的是()A.运动越快的物体惯性越大B.静止的物体没有惯性C.只有固体物体才有惯性D.汽车配置中的安全带和安全气囊是为了防范惯性带来的危害二、填空题(本题包括9个小题)11.我国自主研发的63A式水陆两栖坦克的前部和后部各装有一个浮控箱,当坦克在水面上浮渡时,其排水量是24t,它受到的浮力是______N,底部在水下1.5m处受到水的压强是______ Pa。

济宁市兖州区八年级下学期语文期末考试试卷

济宁市兖州区八年级下学期语文期末考试试卷

济宁市兖州区八年级下学期语文期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)下列词语中加横线的字,每对读音完全相同的一项是()A . 遗骸/惊骇旨意/苦心孤诣前仆后继/赴汤蹈火B . 模式/模拟诟病/藏污纳垢忧心忡忡/气冲斗牛C . 折本/折扣谦逊/名落孙山目不暇接/白玉微瑕D . 收讫/迄今亵渎/广袤无垠不言而喻/不可逾越2. (2分)下列有错别字的一项是()A . 天衣无缝如法炮制一马当先顾名思义B . 目空一切叹为观止大彻大悟佁然自乐C . 难以置信销声匿迹草长莺飞无人问津D . 虚无缥缈人情世故周而复始世外桃源3. (2分)下面这段话中,词语使用不恰当的一项是﹙﹚A . 细节来自观察,真知出于实践,语感源于积累。

唯有深入细致地观察,苦心孤诣地实践,持之以恒B . 细节来自观察,真知出于实践,语感源于积累。

唯有深入细致地观察,苦心孤诣地积累,才能妙笔生花C . 细节来自观察,真知出于实践,语感源于积累。

唯有深入细致地观察,苦心孤诣、才能用少数几个句子把人物描写得栩栩如生D . 细节来自观察,真知出于实践,语感源于积累。

唯有深入细致地观察,苦心孤诣、活灵活现。

4. (2分) (2016八上·深圳期中) 下列句子没有语病的一项是()A . 屋里陈设着各式各样的鲁迅过去所使用的东西和书籍。

B . 过去在墨西哥和智利,流行性感冒是致命的疾病,此类病例别国也不少。

C . 在适当的阶段对所学知识进行及时的总结,是陈晨同学取得优异成绩的一条成功经验。

D . 谁也不能否认家长的这种做法不能说是对孩子的关爱,但结果也许适得其反。

5. (2分)(2018·盐城) 下列句子顺序排列最恰当的一项是()①“智能高铁”列车具备工作状态自感知、运行故障自诊断、导向安全自决策等功能。

②“智能高铁”是近两年来突然兴起的一个概念,是未来中国高铁发展的主要方向之一。

山东省济宁市2020年八年级第二学期期末达标测试数学试题含解析

山东省济宁市2020年八年级第二学期期末达标测试数学试题含解析

山东省济宁市2020年八年级第二学期期末达标测试数学试题一、选择题(每题只有一个答案正确)1.使二次根式的有意义的x 的取值范围是( ) A . B . C . D .2.如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于35”为一次运算.若运算进行了3次才停止,则x 的取值范围是( )A .7<x≤11B .7≤x <11C .7<x <11D .7≤x≤113.在平面直角坐标系中,点()2,3A -)平移后能与原来的位置关于y 轴对称,则应把点A () A .向右平移2个单位 B .向左平移2个单位C .向右平移4个单位D .向左平移4个单位4.直线y =﹣x+1不经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.若234a b c ==,则a bb c +-的值为( )A .5B .15 C .5- D .15-6.在平面直角坐标系中,点P (a-2,a)在第三象限内,则a 的取值范围是( )A .2a <B .0a <C .2a >D .0a >7.下列命题中的假命题是( )A .一组邻边相等的平行四边形是菱形B .一组邻边相等的矩形是正方形C .一组对边平行且相等的四边形是平行四边形D .一组对边相等且有一个角是直角的四边形是矩形8.将某个图形的各个顶点的横坐标都减去2,纵坐标保持不变,可将该图形( )A .向左平移2个单位B .向右平移2个单位C .向上平移2个单位D .向下平移2个单位9.如果式子1x -有意义,那么x 的范围在数轴上表示为( )A .B .C .D .10.将点A(-2,-3)向左平移3个单位,再向上平移2个单位得到点B,则B的坐标是()A.(1,-3)B.(-2,1)C.(-5,-1)D.(-5,-5)二、填空题11.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为kg12.已知等腰三角形的两条中位线的长分别为2和3,则此等腰三角形的周长为_____.13.如图,点,A B关于原点中心对称,且点B在反比例函数2yx=-的图象上,BC x⊥轴,连接,AC AB,则ABC△的面积为______.14.点A(a,﹣5)和(3,b)关于x轴对称,则ab=_____.15.已知α、β是一元二次方程x2﹣2019x+1=0的两实根,则代数式(α﹣2019)(β﹣2019)=_____.16.如图,正比例函数y=ax的图象与反比例函数y=的图象相交于点A,B,若点A的坐标为(-2,3),则点B的坐标为_________.17.如图,已知∠1=100°,∠2=140°,那么∠3=_____度.三、解答题18.(11 12282(2)当3131x y =+=-,时,求代数式22x y xy -+的值19.(6分)计算(1)512﹣913+1482 (2)(2+5)2﹣25.20.(6分)如图,矩形OABC 放置在平面直角坐标系上,点,A C 分别在x 轴,y 轴的正半轴上,点B 的坐标是()4,m ,其中4m >,反比例函数y= 16x()0x >的图象交AB 交于点D .(1)BD =_____(用m 的代数式表示)(2)设点P 为该反比例函数图象上的动点,且它的横坐标恰好等于m ,连结,PB PD .①若PBD ∆的面积比矩形OABC 面积多8,求m 的值。

2024届山东省济宁市兖州区数学八年级第二学期期末联考试题含解析

2024届山东省济宁市兖州区数学八年级第二学期期末联考试题含解析

2024届山东省济宁市兖州区数学八年级第二学期期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每题4分,共48分)1.下列图案中,不是中心对称图形的是( )A .B .C .D .2.无论取什么数,总有意义的分式是( ) A .B .C .D .3.要使二次根式2x -有意义,x 必须满足( ) A .x≤2B .x≥2C .x <2D .x >24.如图,在边长为4的正方形ABCD 中,点M 为对角线BD 上一动点,ME BC ⊥于,E MF CD ⊥于F ,则EF 的最小值为( )A .42B .22C .2D .15.在同一平面直角坐标系内,将函数2y 2x 4x 1=++的图象沿x 轴方向向右平移2个单位长度后再沿y 轴向下平移1个单位长度,得到图象的顶点坐标是( ) A .(,1)B .(1,)C .(2,)D .(1,)6.△ABC 中,若AC=4,3,AB=2,则下列判断正确的是( ) A .∠A=60°B .∠B=45°C .∠C=90°D .∠A=30°7.如图,一次函数1y ax b 和2y bx a =-+(0a ≠,0b ≠)在同一坐标系的图像,则12y ax b y bx a =+⎧⎨=-+⎩的解x my n =⎧⎨=⎩中( )A .0,0m n >>B .0,0m n ><C .0,0m nD .0,0m n <<8.2018年体育中考中,我班一学习小组6名学生的体育成绩如下表,则这组学生的体育成绩的众数,中位数依次为( ) 成绩(分) 47 48 50 人数 231A .48,48B .48,47.5C .3,2.5D .3,29.如图,点A ,B ,C ,D 在一次函数2y x m =-+的图象上,它们的横坐标分别是-1,0,3,7,分别过这些点作x 轴、y 轴的垂线,得到三个矩形,那么这三个矩形的周长和为( )A .614m -B .52C .48D .872m -10.边长为3cm 的菱形的周长是( ) A .15cmB .12cmC .9cmD .3cm11.一个不透明的袋子中装有21个红球和若干个白球,这些球除了颜色外都相同,若小英每次从袋子中随机摸出一个球,记下颜色后再放回,经过多次重复试验,小英发现摸到红球的频率逐渐稳定于1.4,则小英估计袋子中白球的个数约为( ) A .51B .31C .12D .812.下列命题中,逆命题是真命题的是( ) A .直角三角形的两锐角互余 B .对顶角相等C .若两直线垂直,则两直线有交点D .若x=1,则x 2=1二、填空题(每题4分,共24分)13.如图,两张等宽的纸条交叉叠放在一起,在重叠部分构成的四边形ABCD 中,若AB =10,AC =12,则BD 的长为_____.14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的通话次数的频率是_____.15.如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得,关于y ax by kx =+⎧⎨=⎩的二元一次方程组的解是_____.16.在平面直角坐标系中,直线l :1y x =-与x 轴交于点1A ,如图所示依次作正方形111A B C O 、正方形2221A B C C 、…、正方形1n n n n A B C C -,使得点123A A A 、、、 …在直线l 上,点123C C C 、、、 …在y 轴正半轴上,则点n B 的横坐标是__________________。

2019-2020学年济宁市名校八年级第二学期期末达标测试数学试题含解析

2019-2020学年济宁市名校八年级第二学期期末达标测试数学试题含解析

2019-2020学年济宁市名校八年级第二学期期末达标测试数学试题一、选择题(每题只有一个答案正确)1.如图,ABC ∆中,点D 在AB 边上,点E 在AC 边上,且123∠=∠=∠,则与ADE ∆相似的三角形的个数为( )A .4个B .3个C .2个D .1个2.如图,四边形ABCD 是菱形,圆O 经过点A 、C 、D ,与BC 相交于点E ,连接AC 、AE .若78D ∠=,则EAC ∠=( )A .51B .27C .24D .753.如图,在Rt ABC ∆中,90ACB ∠=︒,CD ,CE 分别是斜边上的高和中线,30B ∠=︒,4CE =,则CD 的长为( )A .25B .4C .23D .54.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,ED ⊥AB 于D . 如果∠A =30°,EC =2,则下列结论不正确...的是( )A .ED =2B .AE=4C .BC =3D .AB =85.如图,在▱ABCD 中,已知AD=12cm ,AB=8cm ,AE 平分∠BAD 交BC 边于点E ,则CE 的长等于( )A .8cmB .6cmC .4cmD .2cm6.已知一次函数y=kx+b (k≠0),若k+b=0,则该函数的图像可能是A .B .C .D .7.如图是一次函数y =kx+b 的图象,则k 、b 的符号是( )A .k >0,b <0B .k <0,b >0C .k <0,b <0D .k >0,b >08.如图,把两块全等的45的直角三角板Rt ABC ∆、Rt DEF ∆重叠在一起,90A D ∠=∠=,AB 中点为P ,斜边BC 中点为Q ,固定Rt DEF ∆不动,然后把Rt ABC ∆围绕下面哪个点旋转一定角度可以使得旋转后的三角形与原三角形正好合成一个矩形(三角板厚度不计)( )A .顶点AB .顶点BC .中点PD .中点Q9.如图,在矩形ABCD 中,对角线AC BD ,相交于点O AOB 60AC 6cm ∠==,,,则AB 的长是()A.3cm B.6cm C.10cm D.12cm10.函数y=mx+n与y=nx的大致图象是()A.B.C.D.二、填空题11.将一个有80个数据的一组数分成四组,绘出频数分布直方图,已知各小长方形的高的比为3:4:2:1,则第二小组的频数为______.12.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为1,5,1,1.则最大的正方形E的面积是___.13.若关于若关于x的分式方程的解为正数,那么字母a的取值范围是___.14.使1x+有意义的x的取值范围是.15.如图,是根据四边形的不稳定性制作的边长均为25cm的可活动菱形衣架,若墙上钉子间的距离==,则1AB BC25cm∠=______度.16.直线y=2x﹣4与x轴的交点坐标是_____.17.如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O旋转到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A在丙位置中的对应点的坐标为______.三、解答题18.如图,已知反比例函数y=kx的图像经过点A(-1,a),过点A作AB⊥x轴,垂足为点B,△AOB的面积为32.(1)求a、k的值;(2)若一次函数y=mx+n图像经过点A和反比例函数图像上另一点3,C t⎛⎫-⎪⎪⎝⎭,且与x轴交于M点,求AM的值:(3)在(2)的条件下,如果以线段AM为一边作等边△AMN,顶点N在一次数函数y=bx上,则b= ______. 19.(6分)如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.20.(6分)某班开展勤俭节约的活动,对每个同学的一天的消费情况进行调查,得到统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出消费金额的中位数;(3)该班这一天平均每人消费多少元?∆是边长为x的等边三角形.21.(6分)如图,ABC(1)求BC边上的高h与x之间的函数关系式。

2019-2020学年山东省济宁市初二下期末复习检测数学试题含解析

2019-2020学年山东省济宁市初二下期末复习检测数学试题含解析
(1)是否存在某一时刻t,使得PQ∥BD?若存在,求出t值;若不存在,说明理由
(2)设△PQC的面积为s(cm2),求s与t之间的函数关系式;
(3)如图2,连接AC,与线段PQ相交于点M,是否存在某一时刻t,S△QCM:S△PCM=3:5?若存在,求出t值;若不存在,说明理由.
21.(6分)如图,点D是△ABC内一点,点E,F,G,H分别是AB,AC,CD,BD的中点。
14.计算(4 + )÷3 的结果是_____.
15.2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a,较长直角边为b,那么(a+b)2的值为_____.
(2)解方程 ;
24.(10分)如图,函数 y=2x 与 y=ax+5 的图象相交于点 A(m,4).
(1)求 A 点坐标及一次函数 y=ax+5 的解析式;
(2)设直线 y=ax+5 与 x 轴交于点 B,求△AOB 的面积;
(3)求不等式 2x<ax+5 的解集.
25.(10分)解不等式组 并求其整数解的和.
3.若顺次连接四边形ABCD各边的中点所得四边形是菱形.则四边形ABCD一定是( )
A.菱形B.对角线互相垂直的四边形
C.矩形D.对角线相等的四边形
4.如图1反映的过程是:矩形ABCD中,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,S△ABP=y.则矩形ABCD的周长是( )
A. B. C. D.
7.以下列各组线段为边,能构成直角三角形的是( )

山东省济宁市兖州区2019-2020学年八年级下学期期末考试物理试题

山东省济宁市兖州区2019-2020学年八年级下学期期末考试物理试题

2019-2020学年度第二学期期末质量检测八年级物理试题注:请将试题答案填写在答题纸上一、选择题(每小题2分,共20分)题号 1 2 3 4 5 6 7 8 9 10 答案1.下列有关惯性的说法正确的是A.拍打衣服灰尘脱落,是由于灰尘有惯性B.小明没有推动静止的汽车,是由于汽车没有惯性C.跳远运动员要助跑后起跳,是为了增大惯性D.高速飞行的子弹穿入木头后静止,它的惯性就消失了2.如图1所示,小车被人推开后向前运动,最终停下了。

对这一过程的分析正确的是A.人对小车的推力越来越小B.离开人手后的小车不受力的作用C.小车在运动过程中在水平方向受到平衡力的作用D.小车在地面摩擦力的作用下最终停下了3.如图2所示的事例中,属于增大压强的是:4.关于压强和浮力知识的应用,下列说法中正确的是A.潜入水中的潜水艇,潜水越深,所受浮力和压强越大B.用密度计测量不同液体的密度时,它所受到的浮力是不同的C.轮船从江河驶入大海,排水量减少D.水坝的下部总要比上部建的宽些,以便承受更大的水压5.王伟老师经常引导学生利用身边的生活用品做实验,通过动手动脑,学习物理知识,揭示物理规律.如图3的实验中不是揭示流体压强与流速关系的实验是6.如图4所示,以下简单机械使用时,省距离的是7.如图5所示,是体能测试中掷出的实心球运动的情景,下列说法正确的是A.实心球离开手后继续前进,是由于受到惯性的作用B.实心球在b点时,处于平衡状态C.在实心球从b点运动到c点的过程中,动能转化为重力势能D.实心球从a点运动到c点的过程中,重力做了功8.学习了功率的知识后,小明和几位同学准备开展“比一比谁的功率大”的活动,他们设计了三套方案:①测量出各自的体重、爬楼用的时间和爬楼的高度,算出爬楼的功率并进行比较;②控制爬楼的时间相同,测量出各自的体重、爬楼的高度,算出爬楼做的功并进行比较;③控制爬楼的高度相同,测量出各自的体重、爬楼的时间,算出体重和时间的比值并进行比较,可行的是:A.①②③都可以B.只有①②C.只有②③D.只有①9.如图6所示,小丽分别用甲、乙两滑轮把同一桶沙从一楼地面提到二楼地面,用甲滑轮所做的总功为W1,机械效率为η1;用乙滑轮所做的总功为W2,机械效率为η2,若不计滑轮的摩擦和绳重,则A. W1=W2 η1=η2B. W1=W2 η1=η2C. W1=W2 η1=η2D. W1=W2 η1=η210.国家质检总局2012年12月25日公布的《中国烟草控制规划(2012-2015年)》提出,研究制定全国性公共场所禁烟法律规定,全面推行公共场所禁烟。

2019-2020学年山东省济宁市兖州区八年级下学期期末数学试卷 (解析版)

2019-2020学年山东省济宁市兖州区八年级下学期期末数学试卷 (解析版)

2019-2020学年山东济宁市兖州区八年级第二学期期末数学试卷一、选择题(共10小题).1.二次根式在实数范围内有意义,则x应满足的条件是()A.x≥5B.x≤5C.x>5D.x<52.如图,点D、E分别是△ABC边BA、BC的中点,AC=3,则DE的长为()A.2B.C.3D.3.一次函数y=kx+b中,y随x的增大而减小,b>0,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.12位参加歌唱比赛的同学的成绩各不相同,按成绩取前6名进入决赛,如果小粉知道了自己的成绩后,要判断能否进入决赛,小粉需要知道这12位同学的成绩的()A.平均数B.中位数C.众数D.方差5.如图,这是用面积为24的四个全等的直角三角形△ABE,△BCF,△CDG和△DAH拼成的“赵爽弦图”,如果AB=10,那么正方形EFGH的边长为()A.1B.2C.3D.46.下列算式:(1)(2)(3)(4)其中正确的是()A.(1)和(3)B.(2)和(4)C.(3)和(4)D.1)和(4)7.如图是某一天北京与上海的气温T(单位:℃)随时间t(单位:时)变化的图象.根据图中信息,下列说法错误的是()A.12时北京与上海的气温相同B.从8时到11时,北京比上海的气温高C.从4时到14时,北京、上海两地的气温逐渐升高D.这一天中上海气温达到4℃的时间大约在上午10时8.如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF的长等于()A.B.C.D.9.在《科学》课上,老师讲到温度计的使用方法及液体的沸点时,好奇的王红同学准备测量食用油的沸点,已知食用油的沸点温度高于水的沸点温度(100℃),王红家只有刻度不超过100℃的温度计,她的方法是在锅中倒入一些食用油,用煤气灶均匀加热,并每隔10s测量一次锅中油温,测量得到的数据如下表:时间t/s010203040油温y/℃1030507090王红发现,烧了110s时,油沸腾了,则下列说法不正确的是()A.没有加热时,油的温度是10℃B.加热50s,油的温度是110℃C.估计这种食用油的沸点温度约是230℃D.每加热10s,油的温度升高30℃10.如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN 的最小值为()A.6B.8C.12D.10二、填空题:本大题共5道小题,每小题3分,共15分,要求只写出最后结果.11.若8,a,17是一组勾股数,则a=.12.甲、乙两地6月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气温的方差大小关系为S甲2S乙2(填>或<)13.如图,将两条宽度都为3的纸条重叠在一起,使∠ABC=60°,则四边形ABCD的面积为.14.春耕期间,某农资门市部连续8天调进一批化肥进行销售,在开始调进化肥的第7天开始销售.若进货期间每天调入化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个门市部的化肥存量S(单位:t)与时间t(单位:天)之间的函数关系如图所示,则该门市部这次化肥销售活动(从开始进货到销售完毕)所用时间是.15.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,则第2020个正方形的边长为.三、解答题:本大题共7道小题,满分55分,解答应写出文字说明和推理步骤.16.计算:(1﹣π)0+|﹣|﹣+()﹣1.17.如图,在▱ABCD中,点E、F分别在边AD、BC上,且DE=BF,直线EF与BA、DC的延长线分别交于点G,H.求证:(1)△DEH≌△BFG;(2)AG=CH.18.如图,已知AC平分∠BAE,且交BF于点C.(1)求作:∠ABF的平分线BP(要求:尺规作图,保留作图痕迹,不写作法);(2)设BP交AC于点O,交AE于点D,连接CD,当AE∥BF时,求证:四边形ABCD 是菱形.19.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为600米,与公路上另一停靠站B的距离为800米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径400米范围内不得进入.问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁?请通过计算进行说明.20.某商场统计了每个营业员在某月的销售额,绘制了如下统计图.解答下列问题:(1)设营业员的月销售额为x(单位:万元).商场规定:当x<15时为不称职,当15≤x<20时为基本称职,当20≤x<25时为称职,当x≥25时为优秀.试求出基本称职、称职两个层次营业员人数所占百分比,并补全扇形图;(2)根据(1)中规定,所有称职和优秀的营业员月销售额的中位数为,众数为;(3)为了调动营业员的积极性,商场制定月销售额奖励标准,凡达到或超过这个标准的受到奖励.如果要使称职和优秀的营业员半数左右能获奖,奖励标准应定为多少万元?简述理由.21.某商场同时购进甲、乙两种商品共100件,其进价和售价如表:商品名称甲乙进价(元/件)4090售价(元/件)60120设其中甲种商品购进x件,商场售完这批商品的总利润为y元.(1)写出y关于x的函数关系式:(2)该商品计划最多投入8000元用于购买这两种商品,则至少要购进多少件甲商品?若销售完这些商品,则商场可获得的最大利润是多少元?22.如图,在平面直角坐标系中,直线l与x轴交于点A(﹣1,0),与y轴交于点B(0,﹣2),点C是x轴上一点,且满足CA=CB(1)求直线l的解析式;(2)求点C的坐标和△ABC的面积;(3)过点C作y轴的平行线CH,借助△ABC的一边构造与△ABC面积相等的三角形,第三个顶点P在直线CH上,求出符合条件的点P的坐标.参考答案一、选择题(共10小题).1.二次根式在实数范围内有意义,则x应满足的条件是()A.x≥5B.x≤5C.x>5D.x<5【分析】直接利用二次根式的定义分析得出答案.解:二次根式在实数范围内有意义,则x﹣5≥0,解得:x≥5.故选:A.2.如图,点D、E分别是△ABC边BA、BC的中点,AC=3,则DE的长为()A.2B.C.3D.【分析】直接利用中位线的定义得出DE是△ABC的中位线,进而利用中位线的性质得出答案.解:∵点D、E分别是△ABC的边BA、BC的中点,∴DE是△ABC的中位线,∴DE=AC=1.5.故选:D.3.一次函数y=kx+b中,y随x的增大而减小,b>0,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据一次函数的增减性判断出k的符号,再由一次函数的图象与系数的关系即可得出结论.解:∵一次函数y=kx+b中,y随x的增大而减小,∴k<0.∵b>0,∴此函数的图象经过第一、二、四象限,不经过第三象限.故选:C.4.12位参加歌唱比赛的同学的成绩各不相同,按成绩取前6名进入决赛,如果小粉知道了自己的成绩后,要判断能否进入决赛,小粉需要知道这12位同学的成绩的()A.平均数B.中位数C.众数D.方差【分析】参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.解:由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较.故应知道中位数的多少.故选:B.5.如图,这是用面积为24的四个全等的直角三角形△ABE,△BCF,△CDG和△DAH拼成的“赵爽弦图”,如果AB=10,那么正方形EFGH的边长为()A.1B.2C.3D.4【分析】根据正方形EFGH的面积=正方形ABCD的面积﹣4S△ABE=4,求4的算术平方根即可得到结论.解:∵正方形EFGH的面积=正方形ABCD的面积﹣4S△ABE=102﹣4×24=4,∴正方形EFGH的边长=2,故选:B.6.下列算式:(1)(2)(3)(4)其中正确的是()A.(1)和(3)B.(2)和(4)C.(3)和(4)D.1)和(4)【分析】根据二次根式的加法法则对各小题进行逐一分析即可.解:(1)与不是同类项,不能合并,故本小题错误;(2)5﹣2=3,故本小题正确;(3)==≠7,故本小题错误;(4)3+=3+3=6,故本小题正确.故选:B.7.如图是某一天北京与上海的气温T(单位:℃)随时间t(单位:时)变化的图象.根据图中信息,下列说法错误的是()A.12时北京与上海的气温相同B.从8时到11时,北京比上海的气温高C.从4时到14时,北京、上海两地的气温逐渐升高D.这一天中上海气温达到4℃的时间大约在上午10时【分析】利用图中信息即可一一判断.解:观察图象可知:12时北京与上海的气温相同,从8时到11时,北京比上海的气温高,从4时到14时,北京、上海两地的气温逐渐升高,故A、B、C正确,故选:D.8.如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF的长等于()A.B.C.D.【分析】根据折叠的性质得到AE=AB,∠E=∠B=90°,易证Rt△AEF≌Rt△CDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6﹣x,在Rt△CDF 中利用勾股定理得到关于x的方程x2=42+(6﹣x)2,解方程求出x.解:∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,∴AE=AB,∠E=∠B=90°,又∵四边形ABCD为矩形,∴AB=CD,∴AE=DC,而∠AFE=∠DFC,∵在△AEF与△CDF中,,∴△AEF≌△CDF(AAS),∴EF=DF;∵四边形ABCD为矩形,∴AD=BC=6,CD=AB=4,∵Rt△AEF≌Rt△CDF,∴FC=FA,设FA=x,则FC=x,FD=6﹣x,在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6﹣x)2,解得x=,则FD=6﹣x=.故选:B.9.在《科学》课上,老师讲到温度计的使用方法及液体的沸点时,好奇的王红同学准备测量食用油的沸点,已知食用油的沸点温度高于水的沸点温度(100℃),王红家只有刻度不超过100℃的温度计,她的方法是在锅中倒入一些食用油,用煤气灶均匀加热,并每隔10s测量一次锅中油温,测量得到的数据如下表:时间t/s010203040油温y/℃1030507090王红发现,烧了110s时,油沸腾了,则下列说法不正确的是()A.没有加热时,油的温度是10℃B.加热50s,油的温度是110℃C.估计这种食用油的沸点温度约是230℃D.每加热10s,油的温度升高30℃【分析】从表格可知:t=0时,y=10,即没有加热时,油的温度为10℃;每增加10秒,温度上升20℃,则t=50时,油温度y=110;t=110秒时,温度y=230.解:从表格可知:t=0时,y=10,即没有加热时,油的温度为10℃;每增加10秒,温度上升20℃,则50秒时,油温度110℃;110秒时,温度230℃;故选:D.10.如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN 的最小值为()A.6B.8C.12D.10【分析】要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.解:如图,连接BM,∵点B和点D关于直线AC对称,∴NB=ND,则BM就是DN+MN的最小值,∵正方形ABCD的边长是8,DM=2,∴CM=6,∴BM==10,∴DN+MN的最小值是10.故选:D.二、填空题:本大题共5道小题,每小题3分,共15分,要求只写出最后结果.11.若8,a,17是一组勾股数,则a=15.【分析】分a为最长边,17为最长边两种情况讨论,根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.解:①a为最长边,a=,不是正整数,不符合题意;②17为最长边,a==15,三边是整数,能构成勾股数,符合题意.故答案为:15.12.甲、乙两地6月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气温的方差大小关系为S甲2>S乙2(填>或<)【分析】根据气温统计图可知:乙的平均气温比较稳定,波动小,由方差的意义知,波动小者方差小.解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;则乙地的日平均气温的方差小,故S2甲>S2乙.故答案为:>.13.如图,将两条宽度都为3的纸条重叠在一起,使∠ABC=60°,则四边形ABCD的面积为6.【分析】先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3cm与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.解:∵纸条的对边平行,即AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3,∴S四边形ABCD=AB×3=BC×3,∴AB=BC,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60°,∴∠BAE=90°﹣60°=30°,∴AB=2BE,在△ABE中,AB2=BE2+AE2,即AB2=AB2+32,解得AB=2,∴S四边形ABCD=BC•AE=2×3=6.故答案是:6.14.春耕期间,某农资门市部连续8天调进一批化肥进行销售,在开始调进化肥的第7天开始销售.若进货期间每天调入化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个门市部的化肥存量S(单位:t)与时间t(单位:天)之间的函数关系如图所示,则该门市部这次化肥销售活动(从开始进货到销售完毕)所用时间是10天.【分析】通过分析题意和图象可求调入化肥的速度,销售化肥的速度;从而可计算最后销售化肥16吨所花的时间.解:调入化肥的速度是24÷6=4吨/天,当在第6天时,库存物资应该有24吨,在第8天时库存16吨,所以销售化肥的速度是=8(吨/天),所以剩余的16吨完全调出需要16÷8=2(天),故该门市部这次化肥销售活动(从开始进货到销售完毕)所用时间是8+2=10(天).故答案为10天.15.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,则第2020个正方形的边长为()2019.【分析】先求出第一个正方形边长、第二个正方形边长、第三个正方形边长,…探究规律后,即可解决问题.解:第一个正方形的边长为1=()0;第二个正方形的边长为=()1第三个正方形的边长为2=()2,第四个正方形的边长为2=()3,…第n个正方形的边长为()n﹣1,所以第2020个正方形的边长为()2019.故答案为:()2019.三、解答题:本大题共7道小题,满分55分,解答应写出文字说明和推理步骤.16.计算:(1﹣π)0+|﹣|﹣+()﹣1.【分析】根据实数的混合计算解答即可.解:原式=1+.17.如图,在▱ABCD中,点E、F分别在边AD、BC上,且DE=BF,直线EF与BA、DC的延长线分别交于点G,H.求证:(1)△DEH≌△BFG;(2)AG=CH.【分析】(1)依据四边形ABCD是平行四边形,即可得到∠D=∠B,∠H=∠G,DE =BF,进而得出△DEH≌△BFG;(2)依据△DEH≌△BFG,即可得到GB=HD,再根据AB=CD,即可得出AG=CH.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∠B=∠D,AB=CD,∴∠G=∠H,∵∠D=∠B,∠H=∠G,DE=BF,∴△DEH≌△BFG(AAS);(2)∵△DEH≌△BFG,又∵AB=CD,∴GB﹣AB=HD﹣CD,∴AG=CH.18.如图,已知AC平分∠BAE,且交BF于点C.(1)求作:∠ABF的平分线BP(要求:尺规作图,保留作图痕迹,不写作法);(2)设BP交AC于点O,交AE于点D,连接CD,当AE∥BF时,求证:四边形ABCD 是菱形.【分析】(1)根据角平分线的作法即可作∠ABF的平分线BP;(2)根据菱形的判定定理:一组邻边相等的平行四边形是菱形,即可判断四边形ABCD 是菱形.解:(1)如图,BP即为∠ABF的平分线;(2)连接CD∵AE∥BF,∴∠BAE+∠ABF=180°∵BP平分∠ABF,AC平分∠BAE,∴∠ABD=∠ABF,∠BAC=∠BAE,∴∠ABD+∠BAC=∠ABF+∠BAE=(∠ABF+∠BAE)=90°,∴∠ABD+∠BAC=90°,即BD⊥AC,∴∠AOB=∠BOC=90°,∠ABO=∠CBO∴△ABO≌△CBO(ASA),∴AB=CB,AO=CO∵∠AOD=∠BOC=90°,AO=CO,∠DAO=∠BCO∴△ADO≌△CBO(ASA),∴AD=BC,又AD∥BC,∴四边形ABCD是平行四边形,AD=AB∴▱ABCD是菱形.19.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为600米,与公路上另一停靠站B的距离为800米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径400米范围内不得进入.问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁?请通过计算进行说明.【分析】过C作CD⊥AB于D.根据CA⊥CB,得出∠ACB=90°,利用根据勾股定理有AB=1000米.利用S△ABC=AB•CD=BC•AC得到CD=480米.再根据480米>400米可以判断没有危险.解:公路AB不需要暂时封锁.理由如下:如图,过C作CD⊥AB于D.∵CA⊥CB,∴∠ACB=90°,因为BC=800米,AC=600米,所以,根据勾股定理有AB==1000(米).因为S△ABC=AB•CD=BC•AC所以CD===480(米).由于400米<480米,故没有危险,因此AB段公路不需要暂时封锁.20.某商场统计了每个营业员在某月的销售额,绘制了如下统计图.解答下列问题:(1)设营业员的月销售额为x(单位:万元).商场规定:当x<15时为不称职,当15≤x<20时为基本称职,当20≤x<25时为称职,当x≥25时为优秀.试求出基本称职、称职两个层次营业员人数所占百分比,并补全扇形图;(2)根据(1)中规定,所有称职和优秀的营业员月销售额的中位数为22,众数为20;(3)为了调动营业员的积极性,商场制定月销售额奖励标准,凡达到或超过这个标准的受到奖励.如果要使称职和优秀的营业员半数左右能获奖,奖励标准应定为多少万元?简述理由.【分析】(1)根据百分比=,求出基本称职和称职所占的百分比,从而补全扇形图;(2)根据中位数、众数的定义计算即可;(3)根据中位数确定奖励标准即可.解:(1)由图知:共有营业员30人,其中基本称职、称职分别有6人、18人.所占百分比分别为:×100%=20%;×100%=60%,补全扇形图如图所示:(2)把所有称职和优秀的营业员月销售额从小到大排列,则中位数是=22(万元),众数是20万元;故答案为:22,20;(3)奖励标准应定为22万元.理由:根据中位数意义,要使称职和优秀的员工中有半数左右能获奖,应该以这些员工的月销售额中位数为标准.21.某商场同时购进甲、乙两种商品共100件,其进价和售价如表:商品名称甲乙进价(元/件)4090售价(元/件)60120设其中甲种商品购进x件,商场售完这批商品的总利润为y元.(1)写出y关于x的函数关系式:(2)该商品计划最多投入8000元用于购买这两种商品,则至少要购进多少件甲商品?若销售完这些商品,则商场可获得的最大利润是多少元?【分析】(1)根据利润=甲商品的单件利润×数量+乙商品的单件利润×数量,即可得出y关于x的函数解析式;(2)根据总价=甲的单价×购进甲种商品的数量+乙的单价×购进乙种商品的数量,列出关于x的一元一次不等式,解不等式即可得出x的取值范围,再利用一次函数的性质即可解决最值问题;解:(1)已知可得:y=(60﹣40)x+(120﹣90)(100﹣x)=﹣10x+3000(0<x<100).(2)由已知得:40x+90(100﹣x)≤8000,解得:x≥20,∵﹣10<0,∴y随x的增大而减小,∴当x=20时,y有最大值,最大值为﹣10×20+3000=2800.故该商场获得的最大利润为2800元.22.如图,在平面直角坐标系中,直线l与x轴交于点A(﹣1,0),与y轴交于点B(0,﹣2),点C是x轴上一点,且满足CA=CB(1)求直线l的解析式;(2)求点C的坐标和△ABC的面积;(3)过点C作y轴的平行线CH,借助△ABC的一边构造与△ABC面积相等的三角形,第三个顶点P在直线CH上,求出符合条件的点P的坐标.【分析】(1)设直线l的解析式为y=kx+b,把A、B两点坐标代入,解方程组即可.(2)线段AB的垂直平分线与x轴的交点即为点C,求出线段AB的中垂线的解析式即可解决问题.(3)分两种情形讨论即可①过点A作AP1∥BC交直线CH于P1,此时△P1BC与△ABC 面积相等.②过点B作BP2∥AC交直线CH于P2,此时△P2AC与△ABC的面积相等.分别求解即可.解:(1)设直线l的解析式为y=kx+b,把A、B两点坐标代入得到,解得,∴直线l的解析式为y=﹣2x﹣2.(2)∵CA=CB,∴点C在线段AB的垂直平分线上,设线段AB的中垂线的解析式为y=x+b′,∵线段AB的中点为(﹣,﹣1),∴﹣1=﹣+b′,∴b′=﹣,∴线段AB的中垂线的解析式为y=x﹣,令y=0得到x=,∴点C坐标为(,0),∴S△ABC=×(1+)×2=.(3)如图,①过点A作AP1∥BC交直线CH于P1,此时△P1BC与△ABC面积相等,∵B(0,﹣2),C(,0),∴直线BC的解析式为y=x﹣2,∴直线AP1的解析式为y=x+,∴x=时,y=∴P1(,).②过点B作BP2∥AC交直线CH于P2,此时△P2AC与△ABC的面积相等.可得点P2(,﹣2),③根据对称性可得P3(,﹣)或P4(,2)也符合题意.综上所述,满足条件的点P坐标为(,)或(,﹣2)或(,﹣)或(,2).。

济宁市2019-2020学年八年级第二学期期末统考数学试题含解析

济宁市2019-2020学年八年级第二学期期末统考数学试题含解析

济宁市2019-2020学年八年级第二学期期末统考数学试题一、选择题(每题只有一个答案正确)1.如图,四边形ABCD 是矩形,连接BD ,60ABD ∠=,延长BC 到E 使CE=BD ,连接AE ,则AEB ∠的度数为( )A .15B .20C .30D .602.计算:28+=( )A .10B .4C .22D .323.要得到函数y =﹣6x+5的图象,只需将函数y =﹣6x 的图象( )A .向左平移5个单位B .向右平移5个单位C .向上平移5个单位D .向下平移5个单位4.下列函数中y 是x 的一次函数的是( )A .B .C .D .5.下列多项式能用完全平方公式进行分解因式的是( )A .21x +B .224x x ++C .221x x -+D .21x x ++6.如图,直线l 过正方形ABCD 的顶点A ,BE l ⊥于点E ,DF l ⊥于点F ,若2BE =,4DF =,则EF 的长为( )A .22B .25C .6D .87.如图,菱形ABCD 的周长为16,面积为12,P 是对角线BD 上一点,分别作P 点到直线AB ,AD 的垂线段PE ,PF ,则PE +PF 等于( )A .6B .3C .1.5D .0.758.如图,有一个矩形纸片ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 处,已知CE =3,AB =8,则BF 的长为( )A .5B .6C .7D .89.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S (米)与所用的时间t (秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第( )秒A .80B .105C .120D .15010.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( )A .x >-1B .x <-1C .x <-2D .无法确定二、填空题 1135x x --0的解是___.123x x +3的解是_____.13.写出一个你熟悉的既是轴对称又是中心对称的图形名称______.141123_____. 15.点A 在双曲线y=4x上,点B 在双曲线y=k x (k≠0)上,AB ∥x 轴,分别过点A 、B 向x 轴作垂线,垂足分别为D 、C ,若矩形ABCD 的面积是8,则k 的值为 .16.如图,在ABC ∆中,AB AC =,8BC =,DEF ∆的周长是10,AF BC ⊥于F ,BE AC ⊥于E ,且点D 是AB 的中点,则AF 的长是______.17.()()3232+-=______.三、解答题 18.小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热(此过程中水温y (℃)与开机时间x (分)满足一次函数关系),当加热到100℃时自动停止加热,随后水温开始下降(此过程中水温y (℃)与开机时间x (分)成反比例关系),当水温降至20℃时,饮水机又自动开始加热,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x ≤10时,求水温y (℃)与开机时间x (分)的函数关系式;(2)求图中t 的值;(3)若小明在通电开机后即外出散步,请你预测小明散步57分钟回到家时,饮水机内的温度约为多少℃? 19.(6分)为选拔优秀选手参加瑶海区第八届德育文化艺术节“诵经典”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示(1)根据图示填写下表 班级平均数(分) 中位数(分) 众数(分) 九(1)85 85 九(2) 80(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差,并说明哪个班五名选手的成绩较稳定.20.(6分)矩形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.是轴对称图形21.(6分)a,b分别是7-5的整数部分和小数部分.(1)分别写出a,b的值;2a-b的值(2)求222.(8分)为积极响应“弘扬传统文化”的号召,某学校组织全校1200名学生进行经典诗词诵读活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取40名学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表如下:一周诗词诵3首4首5首6首7首8首背数量人数 1 3 5 6 10 15请根据调查的信息分析:(1)求活动启动之初学生“一周诗词诵背数量”的中位数;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,至少从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.23.(8分)八年级(1)班开展了为期一周的“孝敬父母,帮做家务”社会活动,并根据学生帮家长做家务的时间来评价学生在活动中的表现,把结果划分成A,B,C,D,E五个等级.老师通过家长调查了全班50名学生在这次活动中帮父母做家务的时间,制作成如下的频数分布表和扇形统计图.(1)求a,b的值;(2)根据频数分布表估计该班学生在这次社会活动中帮父母做家务的平均时间;(3)该班的小明同学这一周帮父母做家务2小时,他认为自己帮父母做家务的时间比班级里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计量说明理由.24.(10分)在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.(1)这次调查获取的样本容量是.(直接写出结果)(2)这次调查获取的样本数据的众数是,中位数是.(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.25.(10分)某市为鼓励市民节约用水,自来水公司按分段收费标准收费,如图反映的是每月水费y(元)与用水量x(吨)之间的函数关系.(1)当用水量超过10吨时,求y关于x的函数解析式(不必写自变量取值范围);(2)按上述分段收费标准小聪家三、四月份分别交水费38元和27元,问四月份比三月份节约用水多少吨?参考答案一、选择题(每题只有一个答案正确)1.A【解析】【分析】如图,连接AC.只要证明CE=CA,推出∠E=∠CAE,求出∠ACE即可解决问题.【详解】如图,连接AC.∵四边形ABCD是矩形,∴AC=BD.∵EC=BD,∴AC=CE,∴∠AEB=∠CAE,易证∠ACB=∠ADB=30°.∵∠ACB=∠AEB+∠CAE,∴∠AEB=∠CAE=15°.故选A.【点睛】本题考查了矩形的性质、等腰三角形的判定和性质,三角形的外角的性质等知识,解题的关键是学会添加常用辅助线,构造等腰三角形解决问题.2.D【解析】【分析】先利用二次根式的性质化简,再合并同类二次根式得出答案.【详解】2822=2故选:D.此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.3.C【解析】【分析】平移后相当于x不变y增加了5个单位,由此可得出答案.【详解】解:由题意得x值不变y增加5个单位应沿y轴向上平移5个单位.故选C.【点睛】本题考查一次函数图象的几何变换,注意平移k值不变的性质.4.B【解析】【分析】利用一次函数的定义即能找到答案.【详解】选项A:含有分式,故选项A错误;选项B: 满足一次函数的概念,故选项B正确.选项C: 含有分式,故选项C错误.选项D:含有二次项,故选项D错误.故答案为:B.【点睛】此题考查一次函数的定义,解题关键在于掌握其定义.5.C【解析】【分析】利用完全平方公式的结构特征判断即可得到结果.【详解】解:A选项为偶次方和1的和,不能因式分解;B选项不能因式分解;C选项x2-2x+1=(x-1)2,可以因式分解;D选项不能因式分解.【点睛】本题题考查了因式分解一运用公式法,熟练掌握完全平方公式以及因式分解的概念是解本题的关键. 6.C【解析】【分析】通过证明△ABE≌△DAF,得AE=DF,AF=BE,进而求出EF.【详解】解:∵正方形ABCD,∴AD=AB,∠DAB=90°,∵BE⊥l于点E,DF⊥l于点F,∴∠AFD=∠AEB=90°,∴∠FAD+∠FDA=90°,且∠EAB+∠FAD=90°,∴∠FDA=∠EAB,在△ABE和△ADF中,∠AFD=∠AEB,∠FDA=∠EAB,AD=AB,∴△ABE≌△DAF(AAS),BE AF∴==,42==,AE DF∴=+=+=,EF FA AE246故选C.【点睛】本题考查了正方形的性质以及全等三角形的判定和勾股定理等知识,解本题的关键是证明△ABE≌△DAF.7.B【解析】菱形ABCD的周长为16,4,菱形面积为12,BC边上的高为3,∠ABD=∠CBD,P到BC距离等于h=PE,PE+PF=h+PF=3.所以选B.点睛:菱形的面积公式有两个:( 1)知道底和高,按照平行四边形的面积公式计算:S=ah.(2)知道两条对角线的长a和b,面积S=.8.B【解析】【分析】根据矩形的性质得到CD =AB =8,根据勾股定理求出CF ,根据勾股定理列方程计算即可.【详解】∵四边形ABCD 是矩形,∴CD =AB =8,∴DE =CD ﹣CE =5,由折叠的性质可知,EF =DE =5,AF =CD =BC ,在Rt △ECF 中,CF=4,由勾股定理得,AF 2=AB 2+BF 2,即(BF+4)2=82+BF 2,解得,BF =6,故选:B .【点睛】本题考查的是翻转变换的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.9.C【解析】【分析】如图,分别求出OA 、BC 的解析式,然后联立方程,解方程就可以求出第一次相遇时间.【详解】设直线OA 的解析式为y=kx ,代入A (200,800)得800=200k ,解得k=4,故直线OA 的解析式为y=4x ,设BC 的解析式为y 1=k 1x+b ,由题意,得1136060540150k b k b =+⎧⎨=+⎩, 解得:12240k b =⎧⎨=⎩, ∴BC 的解析式为y 1=2x+240,当y=y 1时,4x=2x+240,解得:x=120,则她们第一次相遇的时间是起跑后的第120秒,故选C.【点睛】本题考查了一次函数的运用,一次函数的图象的意义的运用,待定系数法求一次函数的解析式的运用,解答时认真分析求出一次函数图象的数据意义是关键.10.B【解析】【分析】如图,直线l1:y1=k1x+b与直线l2:y2=k2x在同一平面直角坐标系中的图像如图所示,则求关于x的不等式k1x+b >k2x的解集就是求:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围.【详解】解:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围是x<-1.故关于x的不等式k1x+b>k2x的解集为:x<-1.故选B.二、填空题11.x=5.【解析】【分析】把两边都平方,化为整式方程求解,注意结果要检验.【详解】方程两边平方得:(x﹣3)(x﹣5)=0,解得:x1=3,x2=5,经检验,x2=5是方程的解,所以方程的解为:x=5.【点睛】本题考查了无理方程的解法,解含未知数的二次根式只有一个的无理方程时,一般步骤是:①移项,使方程左边只保留含有根号的二次根式,其余各项均移到方程的右边;②两边同时平方,得到一个整式方程;③解整式方程;④验根.12.1【解析】根据转化的思想,把二次根式方程化成整式方程,1,再两边进行平方,得x=1,从而得解.【详解】3两边平方得,x+3=9+x﹣移项合并得,6,1,两边平方得,x=1,经检验:x=1是原方程的解,故答案为1.【点睛】本题考查了学生对开方与平方互为逆运算的理解,利用转化的思想把二次根式方程化为一元一次方程是解题的关键.13.矩形【解析】【分析】根据轴对称图形与中心对称图形的概念求解:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】既是中心对称图形又是轴对称图形的名称:矩形(答案不唯一).故答案为:矩形【点睛】本题考查的是轴对称图形和中心对称图形,掌握好中心对称图形与轴对称图形的概念是解题关键.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.14.2【解析】【分析】根据二次根式乘法法则进行计算.2==.故答案是:2.【点睛】考查了二次根式的乘法,解题关键是运用二次根式的乘法法则进行计算.15.12或4【解析】试题分析:当图形处于同一个象限时,则k=8+4=12;当图形不在同一个象限时,则k=8-4=4. 考点:反比例函数的性质16.【解析】【分析】根据直角三角形斜边上的中线以及等腰三角形的性质即可求出答案.【详解】解:∵AB=AC,AF⊥BC,∴AF是△ABC的中线,∵D是AB的中点,∴DF是△ABC的中位线,设AB=BC=2x,∴DF=x,∵BE⊥AC,点D是AB的中点,点F是BC的中点,∴DE=12AB=x,EF=12BC=4,∵△DEF的周长为10,∴x+x+4=10,∴x=3,∴AC=6,∴由勾股定理可知:AF=故答案为:【点睛】本题考查直角三角形斜边上的中线,解题的关键是熟练运用直角三角形斜边上的中线,等腰三角形的性质以及勾股定理,本题属于中等题型. 17.1 【解析】 【分析】利用平方差公式即可计算. 【详解】原式223927=-=-=. 故答案为:1. 【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式. 三、解答题18.(1)y =8x +20;(2)t =50;(3)饮水机内的温度约为76℃ 【解析】 【分析】(1)利用待定系数法代入函数解析式求出即可; (2)首先求出反比例函数解析式进而得出t 的值; (3)利用已知由x=7代入求出饮水机内的温度即可. 【详解】解:(1)当0≤x≤10时,设水温y (℃)与开机时间x (分)的函数关系为:y=kx+b ,依据题意,得2010100b k b =⎧⎨+=⎩,解得:820k b =⎧⎨=⎩,故此函数解析式为:y=8x+20;(2)在水温下降过程中,设水温y (℃)与开机时间x (分)的函数关系式为:y=m x, 依据题意,得:100=10m , 即m=1000, 故y=1000x, 当y=20时,20=1000t, 解得:t=50;(3)∵57-50=7≤10,∴当x=7时,y=8×7+20=76,答:小明散步57分钟回到家时,饮水机内的温度约为76℃. 【点睛】此题主要考查了一次函数以及反比例函数的应用,根据题意得出正确的函数解析式是解题关键. 19.(1)(2)九(1)班成绩好些;(3)九(1)班五名选手的成绩较稳定. 【解析】 【分析】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;(2)在平均数相同的情况下,中位数高的成绩较好;(3)根据方差公式计算即可:()()()2222121x xx n n S x x x ⎡⎤=--++-⎢⎥⎣+⎦(可简单记忆为“等于差方的平均数”). 【详解】解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100, ∴九(1)的中位数为85,把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100, ∴九(2)的平均数为(70+75+80+100+100)÷5=85, 九(2)班的众数是100;(2)九(1)班成绩好些.因为九(1)班的中位数高,所以九(1)班成绩好些. (3)215S =一班[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70, 21=5S 二班[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=1.∵22S S 一班二班,∴九(1)班五名选手的成绩较稳定. 【点睛】本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式. 20.B 【解析】 【分析】根据矩形的性质解答即可. 【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分, ∴选项A 、C 、D 正确, 故选:B . 【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质:①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等; ⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.21.(1)a=4,3b =(2) 【解析】 【分析】(1-1,再两边都加上7,即可求出a 、b ; (2)把a 、b 的值代入求出即可. 【详解】解:(1) (1)∵23,∴-3<-2,∴4<5,∴a=4,3(2)22224(3-=⨯-=a b 【点睛】本题考查了估算无理数的大小和二次根式的运算,主要考查学生的计算能力. 22. (1)6;(2) 930人;(3) 经典诗词诵背系列活动效果好,理由见解析 【解析】【分析】(1)根据中位数的定义进行解答,即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);(2)用总人数乘以大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数所占的百分比即可; (3)根据活动初的平均数、中位数与活动后的平均数、中位数进行比较,即可得出答案. 【详解】(1)∵把这些数从小到大排列,最中间的数是第20和21个数的平均数,则中位数是6662+=(首); (2)根据题意得:61015120093040++⨯=(人),估计大赛后一个月该校学生一周诗词背6首(含6首)以上的人数为930人.(3)①活动初40名学生平均背诵首数为3546576876885.740⨯+⨯+⨯+⨯+⨯+⨯=(首),活动1个月后40名学生平均背诵首数为314355667108156.6540⨯+⨯+⨯+⨯+⨯+⨯=(首);②活动初学生一周诗词诵背数量中位数为6,活动一个月后学生一周诗词诵背数量中位数为7; 根据以上数据分析,该校经典诗词诵背系列活动效果好. 【点睛】考查条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23. (1)a=20,b=15;(2)该班学生这一周帮助父母做家务时间的平均数约为1.68小时;(3)符合实际,理由见解析. 【解析】 【分析】(1)读图可知:C 等级的频率为40%,总人数为50人,可求出a ,则b 也可得到; (2)借助求出的a b 的值,可估计出该班学生在这次社会活动中帮父母做家务的平均时间; (3)求得中位数后,根据中位数的意义分析. 【详解】(1)a=50×40%=20,b=50-2-10-20-3=15; (2)由“中值法”可知,0.753 1.2515 1.7520 2.251025 2.750x ⨯+⨯+⨯+⨯+⨯==1.68(小时),答:该班学生这一周帮助父母做家务时间的平均数约为1.68小时; (3)符合实际.设中位数为m ,根据题意,m 的取值范围是1.5≤m <2,因为小明帮父母做家务的时间大于中位数.所以他帮父母做家务的时间比班级中一半以上的同学多. 【点睛】本题考查读频数分布直方图、扇形图的能力和利用统计图获取信息的能力,加权平均数的计算以及中位数的应用.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题. 24.(1)40;(2)30,50;(3)50500元 【解析】 【分析】(1)根据条形统计图中的数据可以求得这次调查获取的样本容量;(2)根据条形统计图中的数据可以得到这次调查获取的样本数据的众数和中位数; (3)根据条形统计图中的数据可以得到该校本学期计划购买课外书的总花费. 【详解】解:(1)样本容量是:6+12+10+8+4=40,(2)由统计图可得,这次调查获取的样本数据的众数是30,中位数是50; (3)2063012501080810046121084⨯+⨯+⨯+⨯+⨯++++×1000=50500(元),答:该校本学期计划购买课外书的总花费是50500元. 故答案为(1)40;(2)30,50;(3)50500元. 【点睛】本题考查众数、中位数、加权平均数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.25.(1)410=-y x ;(2)四月份比三月份节约用水3吨. 【解析】 【分析】(1)根据函数图象和函数图象中的数据可以求得当用水量超过10吨时,y 关于x 的函数解析式; (2)根据题意和函数图象可以分别求得三月份和四月份的用水量,从而可以解答本题. 【详解】解:(1)设y 关于x 的解析式为y kx b =+, 把10x =,30y =;20x,70y =,代入y kx b =+中得10302070k b k b +=⎧⎨+=⎩, 解得410k b =⎧⎨=-⎩,y 关于x 的解析式为410=-y x .(2)四月份水费27元小于30元,所以4月份用水量为:()2730109÷÷=(吨)三月份水费为38元超过30元 把38y =代入410=-y x 中, 得38410x =-,12x =1293-=(吨)所以四月份比三月份节约用水3吨. 【点睛】考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,求出相应的函数解析式,利用函数的思想解答.。

2019-2020学年山东省济宁市初二下期末复习检测物理试题含解析

2019-2020学年山东省济宁市初二下期末复习检测物理试题含解析

2019-2020学年山东省济宁市初二下期末复习检测物理试题一、选择题(本题包括10个小题)1.能量的单位是A.焦耳B.牛顿C.瓦特D.帕斯卡2.如图所示的事例中,通过热传递的方式改变物体内能的是()A.冷天搓手取暖B.下滑时臀部发烫C.烧水时水温升高D.空气被压缩时温度升高3.我国歼15战机成功着舰,它在蓝天翱翔时涉及到许多物理知识,下列分析正确的是()A.飞机沿水平方向匀速直线飞行时,一定受到平衡力的作用B.飞机在不同高度飞行时,受到的大气压都相同C.飞机在匀速爬升过程中,动能和重力势能都增大D.飞机的机翼上凸下平,机翼上方空气流速变慢、压强变小,从而获得向上的升力4.甲、乙两个相同的溢水杯分别盛满密度为ρ1、ρ2的液体,若将质量为m的小球A轻放入甲溢水杯,小球A浸没在液体中,从甲杯溢出16g液体。

若将小球A轻放入乙溢水杯,小球A静止时有1/5的体积露出液面,从乙杯溢出20g液体。

若用细线拉住小球A使其分别浸没在两杯液体中,如图所示,细线对小球A的拉力分别为T1,T2,则下列判断正确的是A.T1=0.05N B.T2=0.04NC.ρ1:ρ2=25:16D.ρA:ρ1=5:45.如图所示,利用托里拆利实验装置测量大气压强时,当玻璃管内的水银柱稳定后,在玻璃管的顶部穿一小孔,那么管内的水银液面将A.保持不变B.逐渐下降,最终与管外液面相平C.稍微下降一些D.逐渐上升,最终从小孔中流出6.人造地球卫星在大气层外环绕地球运行,不受空气阻力,只有动能和势能的转化,因此机械能守恒,如图是人造地球卫星的轨道示意图,下列说法正确的是()A.卫星在运动过程中一直保持匀速运动B.卫星在近地点的动能比远地点的动能小C.卫星从近地点向远地点运动时,它的势能増大,动能不变D.卫星从近地点到远地点的过程中,重力势能变大,机械能不变7.某建筑工地要将一个箱子从地面搬上二楼.如果采用如图所示的两种方式进行搬运,则下列说法正确的是()A.F1、F2做的功一定相等B.两种方式的有用功一定相等C.F1、F2的功率一定相等D.两种方式的机械效率一定相等8.下列几种情况中,为增大面积减小压强的是()A.滑雪运动时要穿上滑雪板B.动物的门齿宽而薄C.刀刃磨得很锋利D.针尖做得很尖锐9.近年来,中国科技成就让世人瞩目;探月“嫦娥”、入海“蛟龙”、中国高铁、“天舟一号”、国产大飞机C919,一大批对国民经济和社会发展有重大影响的标志性科技创新成果不断涌现,下列说法不正确的是()A.高铁列车因为质量大所以惯性大B.国产大飞机高度升高时,机舱外的大气压变小C.如果绕月飞行的“嫦娥”卫星所受的力全部消失,将会一直绕月做圆周运动D.“天舟一号”经火箭发射上升的过程中,“天舟一号”的重力势能变大10.在平直公路上匀速行驶的汽车,关于它在水平方向上受到的牵引力和阻力,下列说法正确的是()A.大小相等,方向相反,在同一直线上,是一对平衡力B.大小不相等,不是一对平衡力C.方向相同,不是一对平衡力D.不在同一直线上,不是一对平衡力二、填空题(本题包括9个小题)11.某同学用水桶从井中打水,他对桶所做的功是_________功,对水做的功是_________功。

2019-2020学年济宁市兖州区八年级下学期期末物理试卷(含答案解析)

2019-2020学年济宁市兖州区八年级下学期期末物理试卷(含答案解析)

2019-2020学年济宁市兖州区八年级下学期期末物理试卷一、单选题(本大题共10小题,共20.0分)1.在行驶的车厢的桌面上,放着一小球,若小球突然向列车行驶的正前方滚动,则说明列车正在()A. 转弯B. 加速前进C. 减速前进D. 匀速前进2.按照“江苏省校园足球振兴行动计划”要求,我省将建立1000所足球特色学校.去年12月份我市举行了校园足球训练观摩活动,如图所示.下列说法正确的是()A. 用力踢足球时脚感到疼痛,说明力的作用是相互的B. 足球被踢出后仍能继续运动,是因为脚对球正在做功C. 不踢球时球会慢慢停下来,说明力是维持物体运动的原因D. 脚对球的作用力与球的重力是一对平衡力3.如图所示的事例中,属于增大压强的是()A. 书包的背带做的较宽B.C. 铁轨铺在枕木上D. 车模型轮子大而宽4.如图所示,能够说明流体压强与流速关系的是()A. 马德堡半球实验B. 两纸片靠拢C. 拦河坝设计成下宽上窄D. 玻璃厂用吸盘搬运玻璃5.如下图,取一个瓶口内径略小于乒乓球直径的雪碧瓶,去掉其底部,把一只乒乓球放到瓶口处,然后向瓶里注水,会发现水从瓶口流出,乒乓球不上浮.若用手指堵住瓶口,不久就可观察到乒乓球上浮起来.此实验说明了()A. 大气存在压强B. 液体的压强与液体的密度和深度有关C. 连通器原理D. 浮力产生的原因6.在学习时我们经常使用钢笔这个工具,下列关于钢笔的说法中不正确的是()A. 写字时,钢笔尖与纸之间的摩擦是滑动摩擦B. 吸墨水时,是大气压将墨水压入钢笔的笔管的C. 用钢笔写字时,钢笔是一个费力杠杆D. 用钢笔写字时,人的手对钢笔没有做功7.对下列现象用物理知识解释正确的是()A. 甲图推土机的履带做的和宽,是为了减小压力B. 乙图中未搬起石头的同学对石头没有做功C. 丙图中纸片没有掉落下来,是因为纸片受到了水的压强D. 丁图中向两张自由下垂的纸中间吹气,两纸片间的流体压强大8.小华分别用如图所示的甲、乙两个滑轮组,分别在相同时间内将同一重物匀速提升了不同的高度ℎ1和ℎ2(ℎ1<ℎ2),每个滑轮的重均相等,不计绳重及摩擦.针对这一现象,小明得出了以下4个结论:①F1做的功等于F2做的功;②甲滑轮组的机械效率等于乙滑轮组的机械效率;③使用乙滑轮组比甲滑轮组更加省力;④F1做功的功率大于F2做功的功率,其中正确的结论有()A. 1个B. 2个C. 3个D. 4个9.面积很大的水池.水面上浮着一边长为a、质量为m的正方体均匀木块,开始时木块静止.如图甲.现用力F将木块匀速下压,运动时,F随木块底面深度H变化如图乙,不考虑水面变化,则下列正确的是()A. 正方体木块的密度为水的23B. 在木块匀速下沉过程中,F最大值是mg4C. 木块开始下沉到恰好浸没的过程中,重力对木块做功是mga4D. 木块开始下沉到恰好浸没的过程中,F对木块做功是mga3210.将2个分别装有空气和红棕色二氧化氮气体(ρ二氧化氮>ρ空气)的玻璃瓶口对口对接,中间用玻璃板隔开.抽开隔板后,通过观察瓶内颜色变化推断气体分子是否作无规则运动.对于玻璃瓶的四种放置方法(如图所示),不合理的是()A. B.C. D.二、填空题(本大题共7小题,共34.0分)11.如图所示,小华用一只空牙膏壳做实验,一次将它挤瘪,另一次将它撑开,先后放入同一杯水中。

2019-2020学年山东省济宁市八年级第二学期期末复习检测数学试题含解析

2019-2020学年山东省济宁市八年级第二学期期末复习检测数学试题含解析

2019-2020学年山东省济宁市八年级第二学期期末复习检测数学试题一、选择题(每题只有一个答案正确)1.如图,在平行四边形ABCD 中,AE 平分∠BAD ,交BC 于点E 且AB =AE ,延长AB 与DE 的延长线相交于点F ,连接AC 、CF .下列结论:①△ABC ≌△EAD ;②△ABE 是等边三角形;③BF =AD ;④S △BEF =S △ABC ;⑤S △CEF =S △ABE ;其中正确的有( )A .2个B .3个C .4个D .5个2.点()5,3M 在第( )象限.A .第一象限B .第二象限C .第三象限D .第四象限3.如图所示,两个含有30°角的完全相同的三角板ABC 和DEF 沿直线l 滑动,下列说法错误的是( )A .四边形ACDF 是平行四边形B .当点E 为BC 中点时,四边形ACDF 是矩形C .当点B 与点E 重合时,四边形ACDF 是菱形D .四边形ACDF 不可能是正方形4.下列函数,y 随x 增大而减小的是( )A .B .C .D .5.如图,正方形ABCD 的边长是2,对角线AC 、BD 相交于点O ,点E 、F 分别在边AD 、AB 上,且OE ⊥OF ,则四边形AFOE 的面积是( )A .4B .2C .1D .126.不等式组2232x x x x +>⎧⎨<+⎩的解集是( ) A .x >-2 B .x <1C .-1<x <2D .-2<x <1 7.已知21x y =⎧⎨=⎩是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则2m n -的平方根为( ) A .2 B .4 C .2± D .2±8.下列多项式中能用完全平方公式分解的是( )A .21x x -+B .212x x -+C .212a a ++D .222a b ab -+-9.点E 是正方形ABCD 对角线AC 上,且EC=2AE ,Rt △FEG 的两条直角边EF 、EG 分别交BC 、DC 于M 、N 两点,若正方形ABCD 的边长为a ,则四边形EMCN 的面积( )A .23a 2 B .14a 2 C .59a 2 D .49a 2 10.化简+-的结果为( )A .0B .2C .-2D .2 二、填空题11.式子3x -在实数范围内有意义,则 x 的取值范围是_______ .12.已知关于x 函数224(5)1m y m x m -=-++,若它是一次函数,则m =______.13.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是_____.14.一个不透明的布袋中放有大小、质地都相同四个红球和五个白球,小敏第一次从布袋中摸出一个红球后放回布袋中,接看第二次从布袋中摸球,那么小敏第二次还是摸出红球的可能性为_____. 15.如图,在矩形ABCD 中,AD=5,AB=8,点E 为射线DC 上一个动点,把△ADE 沿直线AE 折叠,当点D 的对应点F 刚好落在线段AB 的垂直平分线上时,则DE 的长为_____.16.不等式4﹣3x >2x ﹣6的非负整数解是_____.17.在菱形ABCD 中,对角线AC 、BD 交于点O ,点F 为BC 中点,过点F 作FE ⊥BC 于点F 交BD 于点E ,连接CE ,若∠BDC =34°,则∠ECA =_____°.三、解答题18.先化简(1-12a -)÷22694a a a -+-,然后a 在-2,0,2,3中选择一个合适的数代入并求值. 19.(6分)如图,ABCD 中,ABC ∠的角平分线BE 交AD 于点E ,ADC ∠的角平分线DF 交BC 于点F ,5AB =,3DE =,ABC ∠=50°.(1)求FDC ∠的度数;(2)求ABCD 的周长.20.(6分)某校为了了解学生孝敬父母的情况(选项:A 为父母洗一次脚;B 帮父母做一次家务;C 给父母买一件礼物;D 其它),在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出): 根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m ,n ,p 的值,并补全条形统计图.(3)该校有1600名学生,估计该校全体学生中选择B 选项的有多少人?21.(6分)已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x 轴、y 轴围成的三角形的面积.22.(8分)先化简再求值22121(1)24x x x x ++-÷+-,其中x =-1. 23.(8分)解不等式组3(21)4213213x x x x ⎧--⎪⎪⎨+⎪>-⎪⎩ ,并写出x 的所有整数解. 24.(10分)某校初中部三个年级共挑选100名学生进行跳绳测试,其中七年级40人,八年级30人,九年级30人,体育老师在测试后对测试成绩进行整理,得到下面统计图表.年级平均成绩 中位数 众数 七年级78.5 m 85 八年级80 78 82 九年级 82 85 84(1)表格中的m 落在 组(填序号);①4050x ≤<; ②5060x ≤<;③6070x ≤<;④7080x ≤<;⑤8090x ≤<;⑥90100x ≤<;⑦100110x ≤<(2)求这名100学生的平均成绩;(3)在本次测试中,八年级与九年级都只有1位学生跳80下,判断这两位学生成绩在自己所在年级参加测试学生中的排名,谁更考前?请简要说明理由.25.(10分)四边形ABCD 是正方形,AC 是对角线,E 是平面内一点,且CE C B <,过点C 作FC CE ⊥,且CF CE =.连接AE 、AF ,M 是AF 的中点,作射线DM 交AE 于点N.(1)如图1,若点E ,F 分别在BC ,CD 边上.求证:①BAE DAF ∠=∠;②DN AE ⊥;(2)如图2,若点E 在四边形ABCD 内,点F 在直线BC 的上方,求EAC ∠与ADN ∠的和的度数.参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】根据平行四边形的性质可得AD//BC ,AD=BC ,根据平行线的性质可得∠BEA=∠EAD ,根据等腰三角形的性质可得∠ABE=∠BEA ,即可证明∠EAD=∠ABE ,利用SAS 可证明△ABC ≌△EAD ;可得①正确;由角平分线的定义可得∠BAE=∠EAD ,即可证明∠ABE=∠BEA=∠BAE ,可得AB =BE =AE ,得出②正确;由S △AEC =S △DEC ,S △ABE =S △CEF 得出⑤正确;题中③和④不正确.综上即可得答案.【详解】∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴∠BEA=∠EAD ,∵AB=AE ,∴∠ABE=∠BEA ,∴∠EAD=∠ABE,在△ABC和△EAD中,AB AEABE EAD BC AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△EAD(SAS);故①正确;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠ABE=∠BEA=∠BAE,∴∠BAE=∠BEA,∴AB=BE=AE,∴△ABE是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;⑤正确.若AD=BF,则BF=BC,题中未限定这一条件,∴③不一定正确;如图,过点E作EH⊥AB于H,过点A作AG⊥BC于G,∵△ABE是等边三角形,∴AG=EH,若S△BEF=S△ABC,则BF=BC,题中未限定这一条件,∴④不一定正确;综上所述:正确的有①②⑤.故选:B.【点睛】本题考查平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质,熟练掌握等底、等高的三角形面积相等的性质是解题关键.2.A【解析】【分析】根据平面直角坐标系中点的坐标特征判断即可.【详解】∵5>0,3>0,∴点()5,3M 在第一象限.故选A.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.3.B【解析】根据平行四边形、矩形、菱形、正方形的判定方法一一判断即可.解:∵∠ACB=∠EFD=30°,∴AC ∥DF ,∵AC=DF ,∴四边形AFDC 是平行四边形,选项A 正确;当E 是BC 中点时,无法证明∠ACD=90°,选项B 错误;B 、E 重合时,易证FA=FD ,∵四边形AFDC 是平行四边形,∴四边形AFDC 是菱形,选项C 正确;当四边相等时,∠AFD=60°,∠FAC=120°,∴四边形AFDC 不可能是正方形,选项D 正确.故选B.点睛:本题考查平行四边形、矩形、菱形、正方形的判定.熟练应用平行四边形、矩形、菱形、正方形的判定方法进行证明是解题的关键.4.D【解析】试题分析:∵中,k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,A选项中,k=1>0,故y的值随着x值的增大而增大;B选项中,k=1>0,故y的值随着x值的增大而增大;C选项中,k=1>0,故y的值随着x值的增大而增大;D选项中,k=-1<0,y的值随着x值的增大而减小;故选D.考点:一次函数的性质.5.C【解析】【分析】根据正方形的性质可得OA=OB,∠OAE=∠OBF=45°,AC⊥BD,再利用ASA证明△AOE≌△BOF,从而可得△AOE的面积=△BOF的面积,进而可得四边形AFOE的面积=14正方形ABCD的面积,问题即得解决.【详解】解:∵四边形ABCD是正方形,∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,∴∠AOB=90°,∵OE⊥OF,∴∠EOF=90°,∴∠AOE=∠BOF,∴△AOE≌△BOF(ASA),∴△AOE的面积=△BOF的面积,∴四边形AFOE的面积=14正方形ABCD的面积=14×22=1;故选C.【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质等知识,熟练掌握正方形的性质,证明三角形全等是解题的关键.6.D【解析】分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.详解:2232x xx x +⎧⎨+⎩>①<②,解①得:x >﹣2,解②得:x <1,则不等式组的解集是:﹣2<x <1.故选D .点睛:本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.找解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.D【解析】【分析】由2x =,1y =是二元一次方程组的解,将2x =,1y =代入方程组求出m 与n 的值,进而求出2m n -的值,利用平方根的定义即可求出2m n -的平方根.【详解】将21x y =⎧⎨=⎩代入方程组81mx ny nx my +=⎧⎨-=⎩中,得:2821m n n m +=⎧⎨-=⎩, 解得:32m n =⎧⎨=⎩, ∴2624m n -=-=,则2m n -的平方根为2±.故选:D .【点睛】此题考查了二元一次方程组的解,以及平方根的定义,解二元一次方程组的方法有两种:加减消元法,代入消元法.8.B【解析】【分析】根据完全平方公式的结构特征判断即可.【详解】选项A 、C 、D 都不能够用完全平方公式分解,选项B 能用完全平方公式分解,即2212(1)x x x -+=-. 故选B .【点睛】本题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.9.D【解析】【分析】根据题意过E 作EK 垂直于直线CD ,垂足为K ,再过E 作EL 垂直于直线BC ,垂足为L ,只要证明ENK ELM ∆≅∆,则可计算EKCL ENCM S S =四边形.【详解】 解:根据题意过E 作EK 垂直于直线CD ,垂足为K ,再过E 作EL 垂直于直线BC ,垂足为L.四边形ABCD 为正方形∴EL=EK,EK CD EL BC ⊥⊥∴90ELM EKN ︒∠=∠=90BCD ︒∠=90KEL ︒∴∠= FEG 为直角三角形90KEM LEM KEM NEK ︒∴∠+∠=∠+∠=LEM NEK ∴∠=∠ENK ELM ∴∆≅∆2224()39EKCL ENCM S Sa a ∴===四边形 故选D.【点睛】本题主要考查正方形的性质,关键在于根据题意做辅助线.10.D【解析】解:原式=.故选D .二、填空题11.x≥1【解析】【分析】直接利用二次根式的有意义的条件得到关于x 的不等式,解不等式即可得答案.【详解】由题意可得:x ﹣1≥0,解得:x≥1,故答案为:x≥1.【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.12. 5-【解析】【分析】根据一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为2,可得答案.【详解】由y =()22451m m x m --++是一次函数,得m 2-24=2且m-2≠0,解得m=-2,故答案为:-2.【点睛】本题主要考查了一次函数的定义,一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为2. 13.(2,-1).【解析】试题分析:如图,根据A (-2,1)和B (-2,-3)确定平面直角坐标系,然后根据点C 在坐标系中的位置确定点C 的坐标为(2,-1).考点:根据点的坐标确定平面直角坐标系.14.16 81.【解析】【分析】小敏第一次从布袋中摸出一个红球的概率为49,第二次从布袋中摸出一个红球的概率为49,据此可得两次摸出的球都是红球的概率.【详解】∵小敏第一次从布袋中摸出一个红球的概率为49,第二次从布袋中摸出一个红球的概率为49,∴两次摸出的球都是红球的概率为:49×49=1681.故答案为:16 81.【点睛】本题主要考查了概率的计算,用到的知识点为:概率=所求情况数与总情况数之比.15.52或10【解析】【分析】【详解】试题分析:根据题意,可分为E点在DC上和E在DC的延长线上,两种情况求解即可:如图①,当点E在DC上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=2,设FE=x,则FE=x,QE=4-x,在Rt△EQF中,(4-x)2+22=x2,所以x=52.(2)如图②,当,所以FQ=点E在DG的延长线上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=8,设DE=x,则FE=x,QE=x-4,在Rt△EQF中,(x-4)2+82=x2,所以x=10,综上所述,DE=52或10.16.0,2【解析】【分析】求出不等式2x+2>3x﹣2的解集,再求其非负整数解.【详解】解:移项得,﹣2x﹣3x>﹣6﹣4,合并同类项得,﹣5x>﹣20,系数化为2得,x<2.故其非负整数解为:0,2.【点睛】本题考查了一元一次不等式的整数解,解答此题不仅要明确不等式的解法,还要知道非负整数的定义.解答时尤其要注意,系数为负数时,要根据不等式的性质3,将不等号的方向改变.17.1.【解析】【分析】根据菱形的性质可求出∠DBC和∠BCA度数,再根据线段垂直平分线的性质可知∠ECB=∠EBC,从而得出∠ECA=∠BCA﹣∠ECB度数.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,∠BDC=∠DBC=34°.∠BCA=∠DCO=90°﹣34°=56°.∵EF垂直平分BC,∴∠ECF=∠DBC=34°.∴∠ECA=56°﹣34°=1°.故答案为1.【点睛】本题考查了菱形的性质及线段垂直平分线的性质,综合运用上述知识进行推导论证是解题的关键.三、解答题18.a2a3+-;当a=0时,原式23-.【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后从-2,0,2,3中选择一个使得原分式有意义值代入化简后的式子即可解答本题.【详解】解:(1-1a 2-)÷22a 6a 9a 4-+- =()()()2a 2a 2a 21a 2a 3+---⋅-- =()2a 3a 21a 3-+⋅- =a 2a 3+-, 当a=0时,原式=022033+=--. 【点睛】本题考查分式的化简求值,解答本题的关键是掌握分式四则运算的法则和运算顺序.19.(1)25︒;(2)1.【解析】【分析】(1)根据平行四边形的对角相等得出∠ADC=∠ABC=50°,再根据角平分线定义即可求出∠FDC 的度数; (2)根据平行四边形的对边平行得出AE ∥BC ,利用平行线的性质以及角平分线定义得出∠ABE=∠AEB ,由等角对等边得出AE=AB=5,那么AD=AE+DE=8,进而得到▱ABCD 的周长.【详解】解:(1)∵▱ABCD 中,∠ABC=50°,∴∠ADC=∠ABC=50°,∵DF 平分∠ADC ,1252FDC ADC ︒∴∠=∠= (2)四边形ABCD 是平行四边形,∴AE ∥BC ,∴∠AEB=∠CBE ,∵BE 平分∠ABC ,∴∠ABE=∠CBE ,∴∠ABE=∠AEB ,∴AE=AB=5,∵DE=3,∴AD=AE+DE=8,∴▱ABCD 的周长=2(AB+AD )=2⨯(5+8)=1.【点睛】本题考查了平行四边形的性质,角平分线定义,等腰三角形的判定与性质,难度适中.20.(5)555;(5)56,96,5.55;(5)555.【解析】试题分析:(5)由选项D 的频数58,频率5.5,根据频数、频率和总量的关系即可求得这次被调查的学生人数.(5)由(5)求得的这次被调查的学生人数,根据频数、频率和总量的关系即可求得表中m ,n ,p 的值,补全条形统计图.(5)应用用样本估计总体计算即可.试题解析:(5)∵480.2240÷=,∴这次被调查的学生有555人.(5)2400.1536,?2400.496,?602400.25m n p =⨯==⨯==÷=. 补全条形统计图如图:(5)∵16000.25400⨯=,∴估计该校全体学生中选择B 选项的有555人.考点:5.频数、频率统计表;5.条形统计图;5.频数、频率和总量的关系;5.用样本估计总体. 21. (1) y=2x+1;(2)不在;(3)0.25.【解析】【分析】(1)用待定系数法求解函数解析式;(2)将点P 坐标代入即可判断;(3)求出函数与x 轴、y 轴的交点坐标,后根据三角形的面积公式即可求解.解答:(1)设一次函数的表达式为y=kx+b ,则-3=-2k+b 、3=k+b ,解得:k=2,b=1.∴函数的解析式为:y=2x+1.(2)将点P (-1,1)代入函数解析式,1≠-2+1,∴点P 不在这个一次函数的图象上.(3)当x=0,y=1,当y=0,x=12-, 此函数与x 轴、y 轴围成的三角形的面积为:11110.25224⨯⨯-== 22.52. 【解析】 原式221(1)2(2)(2)x x x x x +-+=÷++- 21(2)(2)·2(1)x x x x x ++-=++ 21x x -=+. 当3x =-时,原式325312--==-+ 23.5443x -≤<; 1,0,1- 【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】 解:解不等式①,得:54x ≥-.解不等式②,得:43x <.则不等式组的解集为5443x -≤<. ∴不等式组的整数解为:1,0,1-.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.24.(1)④;(2)80;(3)八年级得80分的那位同学名次较靠前,理由详见解析.【解析】(1)根据题意,七年级由40人,则中位数应该在第20和21个人取平均值,即可得到答案; (2)利用加权平均数,即可求出100名学生的平均成绩;(3)由题意,八九年级人数一样,则比较中位数,即可得到答案.【详解】解:根据直方图可知,七年级第20和第21个人都落在7080x ≤<;故答案为:④.(2)这100名学生的平均成绩为:78.5408030823080100x ⨯+⨯+⨯==; (3)八年级得80分的那位同学名次较靠前,理由如下:依题意得:八年级和九年级被挑选的学生人数相同,分别把两个年级的成绩按从高到低排列,由两个年级的中位数可知,八年级跳80下的学生在该年级排名中上,而八年级跳80下的学生在该年级排名中下,八年级得80分的那位同学名次较靠前.【点睛】本题考查了众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.25.(1)①见解析;②见解析;(2)45︒【解析】【分析】(1)根据已知及正方形的性质,全等三角形的判定,全等三角形的性质的计算,可知①∠BAE =∠DAF 是否成立;可知②DN ⊥AE 是否成立;(2)根据已知及正方形的性质,全等三角形的判定,全等三角形的性质的计算,求出∠EAC 与∠ADN 的和的度数.【详解】(1)证明:①在正方形ABCD 中,∴90ABE ADF ︒∠=∠=,AB BC CD AD ===.∵CE CF =,∴BE DF =.∴ABE ADF ∆≅∆.∴BAE DAF ∠=∠.②∵M 是AF 的中点,∴DAF ADN ∠=∠,∠=∠.由①可知BAE DAF∠=∠.∵BAE ADN∵90∠+∠=BAE EAD︒∴90∠+∠=AND EAD︒⊥∴AN DN=,连结FH,CH.(2)解:延长AD至H,使得DH AD⊥,∵AD CD=.∴CA CH在正方形ABCD屮,AC是对角线,∴45︒ACD.∠=∴45∠=∠=.ACH ACD︒∴90ACH ECF︒∠=∠=.∠=∠∴ACE HCF=,又∵CE CF∆≅∆.∴ACE HCF∠=∠∴EAC FHC∵M是AF的中点,D是AH的中点,∥.∴DM FH∠=∠∴ADN AHF∴45∠+∠=∠+∠=∠=ADN EAC AHF FHC AHC︒【点睛】本题主要考查了正方形的性质,全等三角形的判定,全等三角形的性质的应用,解题的关键是熟练掌握正方形的性质,全等三角形的判定,全等三角形的性质的计算.。

2019-2020学年山东省济宁市兖州区八年级下学期期末数学试卷 (含部分答案)

2019-2020学年山东省济宁市兖州区八年级下学期期末数学试卷 (含部分答案)

2019-2020学年山东省济宁市兖州区八年级第二学期期末数学试卷一、选择题(共10小题).1.二次根式在实数范围内有意义,则x应满足的条件是()A.x≥5B.x≤5C.x>5D.x<52.如图,点D、E分别是△ABC边BA、BC的中点,AC=3,则DE的长为()A.2B.C.3D.3.一次函数y=kx+b中,y随x的增大而减小,b>0,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.12位参加歌唱比赛的同学的成绩各不相同,按成绩取前6名进入决赛,如果小明知道了自己的成绩后,要判断能否进入决赛,小明需要知道这12位同学的成绩的()A.平均数B.中位数C.众数D.方差5.如图,这是用面积为24的四个全等的直角三角形△ABE,△BCF,△CDG和△DAH拼成的“赵爽弦图”,如果AB=10,那么正方形EFGH的边长为()A.1B.2C.3D.46.下列算式,其中正确的是()(1)(2)5(3)==7(4)3A.(1)和(3)B.(2)和(4)C.(3)和(4)D.(1)和(4)7.如图是某一天北京与上海的气温T(单位:℃)随时间t(单位:时)变化的图象.根据图中信息,下列说法错误的是()A.12时北京与上海的气温相同B.从8时到11时,北京比上海的气温高C.从4时到14时,北京、上海两地的气温逐渐升高D.这一天中上海气温达到4℃的时间大约在上午10时8.如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF的长等于()A.B.C.D.9.在《科学》课上,教师讲到温度计的使用方法及液体的沸点时,好奇的王红同学准备测量食用油的沸点,已知食用油的沸点温度高于水的沸点温度(100℃),王红家只有刻度不超过100℃的温度计,她的方法是在锅内倒入一些食用油,用煤气灶均匀加热,并每隔10s测量一次锅内油温,测量得到的数据如下表:时间t/s010203040油温y/℃1030507090王红发现,烧了110s时,油沸腾了,则下列说法不正确的是()A.没有加热时,油的温度是10℃B.加热50s,油的温度是110℃C.估计这种食用油的沸点温度约是230℃D.每加热10s,油的温度升高30℃10.如图,正方形ABCD的连长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN 的最小值为()A.6B.8C.10D.12二、填空题:本大题共5道小题,每小题3分,共15分,要求只写出最后结果.11.若8,a,17是一组勾股数,则a=.12.甲、乙两地6月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气温的方差大小关系为S甲2S乙2(填>或<).13.如图,将两条宽度都为3的纸条重叠在一起,使∠ABC=60°,则四边形ABCD的面积为.14.春耕期间,某农资门市部连续8天调进一批化肥进行销售,在开始调进化肥的第7天开始销售.若进货期间每天调入化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个门市部的化肥存量S(单位:t)与时间(单位:天)之间的函数关系如图所示,则该门市部这次化肥销售活动(从开始进货到销售完毕)所用时间是天.15.如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACDEF,再以对角线AE为边作第三个正方形AEGH,如此下去.则第2020个正方形的边长为.三、解答题:本大题共7道小题,满分55分,解答应写出文字说明和推理步骤.16.计算:(1﹣π)0+|﹣|﹣+()﹣1.17.如图,在▱ABCD中,点E、F分别在边AD、BC上,且DE=BF,直线EF与BA、DC的延长线分别交于点G、H.求证:(1)△DEH≌△BFG;(2)AG=CH.18.如图,已知AC平分∠BAE,且交BF于点C.(1)求作:∠ABF的平分线BP(要求:尺规作图,保留作图痕迹,不写作法);(2)设BP交AC于点O,交AE于点D,连接CD.当AE时∥BF,求证:四边形ABCD 是菱形.19.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为600米,与公路上另一停靠站B的距离为800米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径400米范围内不得进入.问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁?请通过计算进行说明.20.某商场统计了每个营业员在某月的销售额,绘制了如下统计图.解答下列问题:(1)设营业员的月销售额为x(单位:万元).商场规定:当:x<15时为不称职,当15≤x<20时为基本称职,当20≤x<25时为称职,当x≥25时为优秀.试分别求出基本称职、称职两个层次营业员人数所占百分比,并补全扇形图;(2)根据(1)中规定,所有称职和优秀的营业员月销售额的中位数为,众数为;(3)为了调动营业员的积极性,商场制定月销售额奖励标准,凡达到或超过这个标准的受到奖励.如果要使称职和优秀的营业员半数左右能获奖,奖励标准应定为多少万元?简述理由.21.某商场同时购进甲、乙两种商品共100件,其进价和售价如表:商品名称甲乙进价(元/件)4090售价(元/件)60120设其中甲种商品购进x件,商场售完这批商品的总利润为y元.(1)写出y关于x的函数关系式;(2)该商场计划最多投入8000元用于购买这两种商品,则至少要购进多少件甲商品?若销售完这些商品,则商场可获得的最大利润是多少元?22.如图,在平面直角坐标系中,直线l与x轴交于点A(﹣1,0),与y轴交于点B(0,﹣2),点C是x轴正半轴上的一点,且满足CA=CB.(1)求直线l的解析式;(2)求点C的坐标和△ABC的面积;(3)过点C作y轴的平行线CH,借助△ABC的一边构造与△ABC面积相等的三角形,第三个顶点P在直线CH上,求出符合条件的点P的坐标.参考答案一、选择题1.A;2.D;3.C;4.B;5.B;6.B;7.D;8.A;9.D;10.C;二、填空题:本大题共5道小题,每小题3分,共15分,要求只写出最后结果. 11.15;12.>;13.6;14.10;。

2020年济宁市八年级第二学期期末检测数学试题含解析

2020年济宁市八年级第二学期期末检测数学试题含解析

2020年济宁市八年级第二学期期末检测数学试题一、选择题(每题只有一个答案正确)1.如图,在▱ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,若BG=42,则△CEF 的面积是( )A .22B .2C .32D .422.使代数式x有意义的x 的取值范围是( ) A .x 0≥B .1x 2≠C .x 0≥且1x 2≠D .一切实数3.下列事件中是必然事件是( ) A .明天太阳从西边升起B .篮球队员在罚球线投篮一次,未投中C .实心铁球投入水中会沉入水底D .抛出一枚硬币,落地后正面向上4.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ) A .众数B .方差C .平均数D .中位数5.已知12x <≤ ,则23(2)x x -+-的值为( ) A .2 x - 5B .—2C .5 - 2 xD .26.如图,在▱ABCD 中,对角线AC 与BD 交于点O ,若增加一个条件,使▱ABCD 成为菱形,下列给出的条件正确的是( )A .AB=ADB .AC=BDC .∠ABC=90°D .∠ABC=∠ADC7.已知一次函数的图象经过点(0,3)和(-2,0),那么直线必经过点( ) A .(-4,-3) B .(4,6)C .(6,9)D .(-6,6)8.如图所示,是半圆的直径,点从点出发,沿的路径运动一周.设为,运动时间为,则下列图形能大致地刻画与之间关系的是( )A.B.C.D.9.如图所示,在平行直角坐标系中,▱OMNP的顶点P坐标是(3,4),顶点M坐标是(4,0)、则顶点N 的坐标是()A.N(7,4)B.N(8,4)C.N(7,3)D.N(8,3)10.如图,直线y=kx+b过A(-1,2),B(-2,0)两点,则0≤kx+b≤-2x的解集为( )A.x≤-2或x≥-1 B.0≤y≤2C.-2≤x≤0D.-2≤x≤-1二、填空题11.化简:(5+2)(5﹣2)=________.12.将正比例函数y=﹣2x的图象向上平移3个单位,则平移后所得图象的解析式是_____.13.已知一组数据4,x,6,9,12的众数为6,则这组数据的中位数为_________.14.如图,四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=23,则CE的长为_______15.若实数a、b满足a2—7a+2=0和b2—7b+2=0,则式子b aa b+的值是____.16.一组数据3,4,6,8,x的中位数是x,且x是满足不等式组x30{5x>0-≥-的整数,则这组数据的平均数是.17.如果多项式22(2)9x k xy y +-+是一个完全平方式,那么k 的值为______. 三、解答题18.一个多边形的内角和比它的外角和的2倍还大180度,求这个多边形的边数. 19.(6分)如图,正方形ABCD 的边长为4,E 是线段AB 延长线上一动点,连结CE .(1)如图1,过点C 作CF ⊥CE 交线段DA 于点F . ①求证:CF=CE ;②若BE=m (0<m <4),用含m 的代数式表示线段EF 的长;(2)在(1)的条件下,设线段EF 的中点为M ,探索线段BM 与AF 的数量关系,并用等式表示. (3)如图2,在线段CE 上取点P 使CP=2,连结AP ,取线段AP 的中点Q ,连结BQ ,求线段BQ 的最小值.20.(6分)王达和李力是八(2)班运动素质最好的两位同学,为了选出一名同学参加全校的体育运动大寒,班主任针对学校要测试的五个项目,对两位同学进行相应的测试(成绩:分),结果如下: 姓名 力量 速度 耐力 柔韧 灵敏 王达 60 75 100 90 75 李力7090808080根据以上测试结果解答下列问题: (1)补充完成下表: 姓名 平均成绩(分) 中位数(分) 众数(分) 方差(分2) 王达 80 75 75 190 李力(2)任选一个角度分析推选哪位同学参加学校的比赛比较合适?并说明理由;(3)若按力量:速度:耐力:柔韧:灵敏=1:2:3:3:1的比例折合成综合分数,推选得分同学参加比赛,请通过计算说明应推选哪位同学去参赛。

山东省济宁市兖州市八年级下期末数学考试卷(解析版)(初二)期末考试.doc

山东省济宁市兖州市八年级下期末数学考试卷(解析版)(初二)期末考试.doc

山东省济宁市兖州市八年级下期末数学考试卷(解析版)(初二)期末考试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】使二次根式有意义的x的取值范围是()A. x≠1B. x>1C. x≤1D. x≥1【答案】D【解析】试题分析:根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.解:由题意得,x﹣1≥0,解得x≥1,故选:D.【题文】一次函数y=6x+1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】D【解析】试题分析:先判断出一次函数y=6x+1中k的符号,再根据一次函数的性质进行解答即可.解:∵一次函数y=6x+1中k=6>0,b=1>0,∴此函数经过一、二、三象限,故选:D.【题文】下列各组线段能构成直角三角形的一组是()A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,6【答案】A【解析】试题分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.解:A、∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;B、∵72+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选A.【题文】如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为()A. 13B. 17C. 20D. 26【答案】B【解析】试题分析:由平行四边形的性质得出OA=OC=3,OB=OD=6,BC=AD=8,即可求出△OBC的周长.解:∵四边形ABCD是平行四边形,∴OA=OC=3,OB=OD=6,BC=AD=8,∴△OBC的周长=OB+OC+AD=3+6+8=17.故选:B.【题文】某校要从四名学生中选拔一名参加市“风华小主播”大赛,选拔赛中每名学生的平均成绩及其方差s2如表所示,如果要选择一名成绩高且发挥稳定的学生参赛,则应选择的学生是()甲乙丙丁8998s2111.21.3A.甲 B.乙 C.丙 D.丁【答案】B【解析】试题分析:从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合两个方面可选出乙.解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙,故选:B.【题文】如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B.+1 C.﹣1 D.+1【答案】D【解析】试题分析:根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=5,在Rt△ADC中,DC===1,∴BC=+1.故选D.【题文】小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分 B.84分 C.84.5分 D.86分【答案】D【解析】试题分析:根据题意列出算式,计算即可得到结果.解:根据题意得:85×+80×+90×=17+24+45=86(分),故选D【题文】如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为()A.4 B.4 C.4 D.28【答案】C【解析】试题分析:首先利用三角形的中位线定理得出AC,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.解:∵E,F分别是AB,BC边上的中点,EF=,∴AC=2EF=2,∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=,OB=BD=2,∴AB==,∴菱形ABCD的周长为4.故选:C.【题文】匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A. B. C. D.【答案】C【解析】试题分析:根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为C.故选C.【题文】如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,0) B.(0,1) C.(0,2) D.(0,3)【答案】D【解析】试题分析:根据轴对称作最短路线得出AE=B′E,进而得出B′O=C′O,即可得出△ABC的周长最小时C点坐标.解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,此时△ABC的周长最小,∵点A、B的坐标分别为(1,4)和(3,0),∴B′点坐标为:(﹣3,0),AE=4,则B′E=4,即B′E=AE,∵C′O∥AE,∴B′O=C′O=3,∴点C′的坐标是(0,3),此时△ABC的周长最小.故选:D.【题文】如图,菱形ABCD中,对角线AC、BD相交于点O,不添加任何辅助线,请添加一个条件,使四边形ABCD是正方形(填一个即可).【答案】∠BAD=90°【解析】试题分析:根据有一个直角的菱形为正方形添加条件.解:∵四边形ABCD为菱形,∴当∠BAD=90°时,四边形ABCD为正方形.故答案为∠BAD=90°.【题文】某射击运动员在一次射击训练中,共射击了6次,所得成绩(单位:环)为:6、8、7、7、8、9,这组数据的中位数是.【答案】7.5【解析】试题分析:根据中位数的概念求解.解:这组数据按照从小到大的顺序排列为:6、7、7、8、8、9,则中位数为:=7.5.故答案为:7.5.【题文】放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是千米/分钟.【答案】0.2【解析】试题分析:根据函数图象的纵坐标,可得路程,根据函数图象的横坐标,可得时间,根据路程与时间的关系,可得答案.解:由纵坐标看出路程是2千米,由横坐标看出时间是10分钟,小明的骑车速度是2÷10=0.2(千米/分钟),故答案为:0.2.【题文】如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=度.【答案】15【解析】试题分析:连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E 度数.解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=30°,即∠E=15°,故答案为:15.【题文】如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B ,点M是直线AB上的一个动点,则PM长的最小值为.【答案】PM=.【解析】试题分析:认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案.解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB==5,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴=,即:,所以可得:PM=.【题文】计算:×(﹣)+|﹣2|+()﹣3﹣(π﹣3.14)0.【答案】7﹣.【解析】试题分析:根据零指数幂、负整数指数幂、绝对值的意义和二次根式的乘法法则得到原式=﹣+2+8﹣1,然后化简后合并即可.解:原式=﹣+2+8﹣1=﹣3+2+7=7﹣.【题文】如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB长2.5米,顶端A在AC上运动,量得滑杆下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑杆顶端A下滑多少米?【答案】滑杆顶端A下滑0.5米.【解析】试题分析:由题意可知滑杆AB与AC、CB正好构成直角三角形,故可用勾股定理进行计算.解:设AE的长为x米,依题意得CE=AC﹣x.∵AB=DE=2.5,BC=1.5,∠C=90°,∴AC===2∵BD=0.5,∴在Rt△ECD中,CE====1.5.∴2﹣x=1.5,x=0.5.即AE=0.5.答:滑杆顶端A下滑0.5米.【题文】在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.【答案】(1)a=7;(2)3【解析】试题分析:(1)利用待定系数法解答解析式即可;(2)得出直线与y轴相交于点D的坐标,再利用三角形面积公式解答即可.解:(1)设直线的解析式为y=kx+b,把A(﹣1,5),B(3,﹣3)代入,可得:,解得:,所以直线解析式为:y=﹣2x+3,把P(﹣2,a)代入y=﹣2x+3中,得:a=7;(2)由(1)得点P的坐标为(﹣2,7),令x=0,则y=3,所以直线与y轴的交点坐标为(0,3),所以△OPD的面积=.【题文】如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.【答案】(1)见解析;(2)四边形BEDF为菱形.见解析【解析】试题分析:(1)分别以B、D为圆心,比BD的一半长为半径画弧,交于两点,确定出垂直平分线即可;(2)连接BE,DF,四边形BEDF为菱形,理由为:由EF垂直平分BD,得到BE=DE,∠DEF=∠BEF,再由AD 与BC平行,得到一对内错角相等,等量代换及等角对等边得到BE=BF,再由BF=DF,等量代换得到四条边相等,即可得证.解:(1)如图所示,EF为所求直线;(2)四边形BEDF为菱形,理由为:证明:∵EF垂直平分BD,∴BE=DE,∠DEF=∠BEF,∵AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,∵BF=DF,∴BE=ED=DF=BF,∴四边形BEDF为菱形.【题文】我市开展“美丽自贡,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;(2)扇形图中的“1.5小时”部分圆心角是多少度?(3)求抽查的学生劳动时间的众数、中位数.【答案】(1)见解析;(2)144°;(3)抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时.【解析】试题分析:(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数,(2)进而求出劳动“1.5小时”的人数,以及占的百分比,乘以360即可得到结果;(3)根据统计图中的数据确定出学生劳动时间的众数与中位数即可.解:(1)根据题意得:30÷30%=100(人),∴学生劳动时间为“1.5小时”的人数为100﹣(12+30+18)=40(人),补全统计图,如图所示:(2)根据题意得:40%×360°=144°,则扇形图中的“1.5小时”部分圆心角是144°;(3)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时.【题文】在“绿满鄂南”行动中,某社区计划对面积为1800m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.【答案】(1)甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)y与x的函数解析式为:y=36﹣2x.(3)安排甲队施工10天,乙队施工16天时,施工总费用最低.【解析】试题分析:(1)设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列方程求解;(2)根据题意得到100x+50y=1800,整理得:y=36﹣2x,即可解答.(3)根据甲乙两队施工的总天数不超过26天,得到x≥10,设施工总费用为w元,根据题意得:w=0.6x+0.25y=0.6x+0.25×(36﹣2x)=0.1x+9,根据一次函数的性质,即可解答.解:(1)设乙工程队每天能完成绿化的面积是xm2,根lw=0.6x+0.25y=0.6x+0.25×(36﹣2x)=0.1x+9,∵k=0.1>0,∴w随x减小而减小,∴当x=10时,w有最小值,最小值为0.1×10+9=10,此时y=26﹣10=16.答:安排甲队施工10天,乙队施工16天时,施工总费用最低.【题文】如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.【答案】(1)y=﹣x+4.(2)若点M,N位于l的异侧,t的取值范围是:4<t<7.(3)当t=1时,落在y轴上,当t=2时,落在x轴上.【解析】试题分析:(1)利用一次函数图象上点的坐标特征,求出一次函数的解析式;(2)分别求出直线l经过点M、点N时的t值,即可得到t的取值范围;(3)找出点M关于直线l在坐标轴上的对称点E、F,如解答图所示.求出点E、F的坐标,然后分别求出ME、MF中点坐标,最后分别求出时间t的值.解:(1)直线y=﹣x+b交y轴于点P(0,b),由题意,得b>0,t≥0,b=1+t.当t=3时,b=4,故y=﹣x+4.(2)当直线y=﹣x+b过点M(3,2)时,2=﹣3+b,解得:b=5,5=1+t,解得t=4.当直线y=﹣x+b过点N(4,4)时,4=﹣4+b,解得:b=8,8=1+t,解得t=7.故若点M,N位于l的异侧,t的取值范围是:4<t<7.(3)如右图,过点M作MF⊥直线l,交y轴于点F,交x轴于点E,则点E、F为点M在坐标轴上的对称点.过点M作MD⊥x轴于点D,则OD=3,MD=2.已知∠MED=∠OEF=45°,则△MDE与△OEF均为等腰直角三角形,∴DE=MD=2,OE=OF=1,∴E(1,0),F(0,﹣1).∵M(3,2),F(0,﹣1),∴线段MF中点坐标为(,).直线y=﹣x+b过点(,),则=﹣+b,解得:b=2,2=1+t,解得t=1.∵M(3,2),E(1,0),∴线段ME中点坐标为(2,1).直线y=﹣x+b过点(2,1),则1=﹣2+b,解得:b=3,3=1+t,解得t=2.故点M关于l的对称点,当t=1时,落在y轴上,当t=2时,落在x轴上.。

2019-2020学年山东省济宁市兖州区八年级(下)期末英语试卷(附答案详解)

2019-2020学年山东省济宁市兖州区八年级(下)期末英语试卷(附答案详解)

2019-2020学年山东省济宁市兖州区八年级(下)期末英语试卷一、阅读理解(本大题共16小题,共32.0分)A1.Who wants to find a pet sitter for his/her dog?______A. Mrs.Green.B. Jerry.C. Mrs.Green's sister.D. Jerry's brother.2.How many hours does the pet sitter work from Saturday to Sunday?______A. 10 hours.B. 15 hours.C. 20 hours.D. 25 hours.3.What is NOT the pet sitter's job?______A. Taking care of the dog.B. Taking a walk with the dog.C. Giving food to the dog.D. Cleaning the dog's house.4.Which of the following is TRUE?______A. Jerry asks for a job as a pet sitter.B. The pet sitter will have to work in his own house.C. Mrs.Green lives far away from Victoria Station.D. Jerry is not good at looking after dogs or cats.BThe cartoon movie Bolt (《闪电狗》)is an interesting movie.All the characters are very lovely.The movie is about a dog and his name is Bolt.Bolt is a dog star.He always thinks he is very strong.He often plays in TV programs.Many people love him.So he is a little proud. One day people take him to New York,but the poor dog is lost there.The place is far from his home town.It's about 2,000 miles away.Bolt wants to return to his world.He has to face all the danger by himself.He begins to go across the USA.On his way he meets Mittens,a lonely cat.Then they meet a mouse.His name is Rhino.He likes watching TV very much.They become friends.They meet many strange animals and people on their way.5.What can we know about Bolt from the passage?______A. Bolt likes watching TV.B. Bolt lives in New York.C. Bolt is a lonely cat.D. Bolt is a dog star.6.Bolt has to go ______ miles to go back to his home town.A. 2,000B. 1,000C. 20,000D. 10,0007.What is Rhino?______A. He is a cat.B. He is a mouse.C. He is a pig.D. He is a rabbit.8.Bolt meets ______ on his way.A. a friendB. a tigerC. a rabbitD. many strange animalsCA young American doctor was sleeping when suddenly his doorbell began to ring.It was already midnight,but what could the doctor do?He had to get up,put on his coat and go downstairs(下楼).When he opened the door,he saw a man standing with a hat in his hand. "How do you do?"said the man."Can you come at once to a place out of town?It's quite far but you have a car and I can show you the way.""Certainly,"said the doctor."I' m quite ready.I can come at once."After a few minutes the car was standing at the front door,the man got into the doctor's car,and they drove off.They drove on for a long time.Then the man said,"Here we are.This is my home.Now I can pay you and you can go back to the town.""I must see who's ill.How can I go back without seeing him?""Nobody is ill," explained the man."I live here,you see,and one must get home from atown.There are no taxis this time of the night,but a doctor often makes night calls,so excuse me.Here is money.Thank you,doctor.Good night."9.What was the doctor doing when the doorbell started to ring ?______A. He was sleeping upstairs.B. He was sleeping downstairs.C. He was working upstairs.D. He was working downstairs.10.The man asked the doctor ______ .A. to go to his houseB. to go downstairsC. to see a patientD. to go to a place out of town11.What the man wanted to do was only ______ .A. to fool the doctorB. to give the doctor moneyC. to get home in the doctor's carD. to play a joke with the doctor12.The doctor must be ______ at last.A. happyB. sadC. angryD. illDAlice Jones was a beautiful girl with a bright smile.She loved to draw,paint,and write.And most of all,she loved her parents.Alice had dreamed of becoming an artist when she grew up,but sadly,when she was only five years old,she had a cancer(癌症).Alice spent the long days in the hospital drawing pictures,which were full of hearts and smiling families.One of her pictures was on full of hearts and smiling families.One of her pictures was on show in a museum,right next to a Picasso painting.As she got worse,she couldn't speak.She began to communicate with her family by writing notes.Alice passed away in 2007,just a year after her diagnosis(诊断).Even though they knew Alice would leave them,her parents Kate and Smith were deeply sad.But they soon discovered that she had left gifts behind for them.Not long after Alice's death,Alice's parents were cleaning her room when they began to find notes that she had written to them. "They would be between CDs or between books on our bookshelf," said Kate.All through her final days,Alice had been writing love notes to her family,and placing them in secret places throughout the house."We started to collect them and they would all say‘I love you Mom,Dad and Grace.'We kept finding them,and still to this day,we keep finding them," Kate told the reporter.13.When she grew up,Alice wanted to be ______ .A. a writerB. a doctorC. a reportedD. an artist14.The underlined word "gifts" in the fourth paragraph refers(指)to ______ .A. love notesB. pretty picturesC. important CDsD. funny books15.Which of the following is TRUE?______A. Alice surely had no sister or brother.B. Alice loved writing stories most of all.C. Alice couldn't speak because of illness.D. Alice hated to talk to her family members.16.We can see from the passage that ______ .A. Alice stayed in hospital until she passed away.B. Alice's notes were only between CDs or books.C. Alice could draw pictures as well as Picasso.D. Alice's parents haven't found all her notes yet.二、任务型阅读-简答(本大题共1小题,共8.0分)17.John was ten years old and he was very lazy.He had to go to school,of course,but he feltbored at school. The boy always tried to do as little work as possible. His father andmother were both doctors and they hoped that he would become one,too,when he grew up.But one day John said to his mother, "When I finish school,I want to become a garbage collector(垃圾清运工).""A garbage collector?" his mother asked .She was very surprised."That's not a pleasant job.Why do you want to become a garbage collector?""Because then I'd only have to work one day a week," John answered."Only one day a week?" his mother said, "What do you mean?""Well," John answered, "I know that the ones who come to our house only work onWednesday,because I only saw them on that day."What did John's parents want him to be when he grew up?______When did the garbage collectors come to John's house?______What do you think of John?______请把画线的句子翻译成汉语。

山东省济宁市兖州区2024届物理八下期末学业水平测试模拟试题含解析

山东省济宁市兖州区2024届物理八下期末学业水平测试模拟试题含解析

山东省济宁市兖州区2024届物理八下期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每题1.5分,共30题,45分)1.如图所示,O为轻质杠杆AB的支点,B点挂一重物G,现分别用F1、F2、F3、F4作用于杠杆,且均能使杠杆保持水平位置平,则其中最小的力是()A.F1B.F2C.F3D.F42.为迎接歌咏比赛,音乐教师将班内的学生分为“高音声部”和“低音声部”进行排练.这里“高”和“低”是指声音的A.音调B.音色C.响度D.振幅3.如图所示,A、B 两物体叠放在水平桌面上受到两个水平拉力而保持静止,已知F1=5N,F2=3N.那么物体B 受物体A 和水平桌面的摩擦力大小应分别为A.5N、3N B.5N、2N C.2N、3N D.3N、5N 4.请观察如图所示的漫画,下列四个观点,正确的是A.甲图人对箱子推力小于箱子受到的重力B.甲图人对箱子推力小于箱子受到的摩擦力C.乙图人对箱子推力等于箱子受到的重力D.乙图人对箱子推力等于箱子受到的摩擦力5.如图中,重为5N的木块A,在水中处于静止状态,此时绳子的拉力为3N,若绳子突然断了,木块A在没有露出水面之前,所受合力的大小和方向是()A.5N,竖直向下B.3N,竖直向上C.2N,竖直向上D.8N,竖直向下6.在木棒的一端缠绕一些铜丝做成简易密度计,将其放入盛有不同液体的烧杯中,它会竖直立在液体中,由观察到的现象可以判断,下列烧杯中的液体密度最大的是()A.A B.B C.C D.D7.两次水平拉动同一物体在同一水平面上做匀速直线运动,两次物体运动的路程(s)一时间(t)图象如下图.根据图象,下列判断正确的是A.两次物体运动的速度:v1<v2B.两次物体所受的拉力:F1>F2C.0-8s两次拉力对物体做功的功率:P1>P2D.0-8s两次拉力对物体所做的功:W1=2W28.如图所示,日用器具中利用连通器原理工作的是A.钢笔吸水B.注射器给病人打针C.船闸D.液体压强计9.为了测量醋的密度,小明设计了如下实验步骤:①用天平测出空量筒的质量m0;②向量筒中倒入适量醋,测出醋的体积V;③用天平测出量筒和醋的总质量m总.对小明的实验设计,下列评价中最合理的是A.实验步骤科学且合理B.对醋的体积测量错误C.测出醋的密度值偏小D.量筒不够稳定易摔碎10.下列各种情况下,物体运动状态没有改变的是()A.小朋友正在荡秋千B.跳伞运动员在空中竖直匀速下落C.骑自行车转弯D.在草地上向前滚动的足球11.在如图所示的四个实例中,目的是为了减小摩擦的是A.遇紧急情况时用力捏闸B.给车轴加润滑油C.自行车的车把上刻有花纹D.自行车脚凳上刻花纹12.李明同学在学习运动和力的知识后有以下理解,其中正确的是A.投球时,手的推力使篮球在空中继续飞行B.静止在草坪上的足球一定受到平衡力的作用C.用力推小车,小车没动,因为推力小于摩擦力D.如果运动的物体不受力,它将慢慢停下来13.有三个相同材料制成的柱体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省济宁市兖州区第十五中学2019-2020学年度第二学期期末模拟考试八年级语文试题(2)时间:120分钟满分:120分一、基础积累运用(共29分)1.阅读下面的文字,给加点字注音,根据拼音写汉字。

(4分)生活是什么?生活是一座山,有屹.()立的山峰也有qū()折的幽谷;生活也像一条路,有平直的坦途也有崎.()岖的小径;生活又如一条河,有奔téng()的激流也有低回的深潭。

一路行过,风光无限。

2.下列词语中没有错别字的一项是()(2分)A.农谚雄辨虔诚吹毛求疵B.颠簸沟壑驰骋名副其实C.舔舐绚丽打嗝相辅相承C.驿道矗立缄墨接踵而至3.依次填入下列句子横线处的词语,最恰当的一项是()(2分)对世界保持微微喜悦的心情,知道在________的生活里也能有丰满的快乐,便宜的食物也有好的味道。

小环境里也有______的梦想——这些卑中之尊、贱中之美、小中之大,________丑中之美、坏中之好,都需要微细的喜悦的心情才能体会。

A.匮乏深远而且B.匮乏远大乃至C.贫困远大何况D.缺憾长远乃至4.下列选项括号中的内容表述有误的一项是()(2分)A.作为我国首次按照国际适航标准研制的150座级干线客机,C919首飞成功标志着我国大型客机项目取得重大突破。

(该句无语病)B.我坚信,在书海耕耘,能让人遇见不同风景,成就人生的品质和高度。

(该句是单句)C.近年来,有不少当代文学作品改编成电视剧,其中有不少出自茅盾文学奖的获奖作品,比如“平凡的世界”“推拿”“红高粱”。

(该句标点符号运用正确)D.《小石潭记》选自《柳河东集》。

作者柳宗元,字子厚,唐代文学家,“唐宋八大家”之一。

(该文学常识表述无误)5.下列句子描述的分别是名著中的哪个人物?(4分)(1)她出身卑微,相貌平平,小时候被舅妈嫌弃,被表哥毒打,但她自尊、自立、自强,后来到了桑菲尔德庄园,最终和罗切斯特结婚,过上了幸福的生活。

()(2)他原是上界的天蓬元帅,因调戏嫦娥被贬下凡尘,后来成为唐僧的徒弟,与孙悟空一同保护唐僧去西天取经,最后被封为净坛使者。

()(3)他豪爽直率,疾恶如仇,却也粗中有细。

他三拳打死镇关西,救了金翠莲父女,为躲官司,出家当了和尚,后与杨志占领二龙山。

()(4)他坚毅勇敢,充满生活热情。

他在荒无人烟的孤岛上生活了28年,在“星期五”的帮助下,最终克服困难,创造出了精彩的人生。

()6.古诗文默写。

(7分)(1)参差荇菜,左右采之。

______________,______________。

(《诗经·关雎》)(2)曲径通幽处,________________。

(常建《题破山寺后禅院》)(3)《茅屋为秋风所破歌》中体现作者博大胸襟和崇高理想的句子是:____________________,________________________!(4)陆游在《卜算子·咏梅》中以梅花的高洁品质来喻示自己孤傲、坚贞自守品格的句子是:____________________,____________________。

7.综合性学习。

(8分)5月18日,中宣部和国家新闻出版广电总局联合召开大会,为新华书店庆祝80岁生日。

新华书店已成为中国的“文化符号”。

近期,新华书店准备开展一次以“传播先进文化,培育读书风尚”为主题的读书活动,请你以志愿者的身份完成下列任务。

【材料1】一个不大的书店,一个安静的角落,一个小小的身影,一脸专注的神情。

从孔子到鲁迅,从散文到诗歌,从连环画到章回体。

在一个个平凡的新华书店里,多少儿童尽享阅读的乐趣,从天真孩童长成热血青年……【材料2】新中国成立之初,新华书店发行的图书为扫除数以亿计的文盲(不识字的人)起着重要的作用;上世纪70年代末,中断了十年的高考刚恢复,新华书店帮助考生走出知识荒漠,改变了他们的命运;今天,新华书店是我们中学生开阔视野、认识世界的窗口。

【材料3】为响应国家“全民阅读”的倡导,新华书店先后开展了新华大讲堂、爱心阅读、征文比赛等各种各样的阅读活动,通过各种公益读书活动,大力推动书香社会建设。

(1)【历史回顾】请探究以上三则材料,概括八十年来新华书店发挥了哪些重要作用?(2分)(2)【读书启智】本次活动准备办一期展板,需要设计几个读书栏目,请你参考示例,再设计一个栏目并说明设计意图。

(3分)示例:栏目一:读世·人间百态设计意图:引导读者阅读社科类作品,加深对社会生活的理解。

栏目二:____________________设计意图:___________________________________________________________________(3)【爱上阅读】书店将开辟一个阅读体验专区,请你写一小段话,鼓励人们到这里进行阅读体验。

(要求:至少运用一种修辞手法)(3分)二、古诗文阅读(共18分)(一)(5分)卜算子·黄州定慧院寓居作①苏轼缺月挂疏桐,漏②断人初静。

谁见幽人独往来,缥缈孤鸿影。

惊起却回头,有恨无人省。

拣尽寒枝不肯栖,寂寞沙洲③冷。

【注】①这首词是苏轼初贬黄州寓居定慧院时所作。

②漏:指漏壶,古代计时的器具。

③沙洲:江河中泥沙淤积而成的小块陆地。

8.词的上阕通过描绘缺月、________、________等景物,渲染________________的氛围。

(3分)9.有人评价这首词“物我交融,含蕴深广”,请结合“拣尽寒枝不肯栖,寂寞沙洲冷”两句作简要赏析。

(2分)(二)(13分)从小丘西行百二十步,隔篁竹,闻水声,如鸣珮环,心乐之。

伐竹取道,下见小潭,水尤清冽。

全石以为底,近岸,卷石底以出,为坻,为屿,为嵁,为岩。

青树翠蔓,蒙络摇缀,参差披拂。

潭中鱼可百许头,皆若空游无所依,日光下澈,影布石上。

佁然不动,俶尔远逝,往来翕忽,似与游者相乐。

潭西南而望,斗折蛇行,明灭可见。

其岸势犬牙差互,不可知其源。

坐潭上,四面竹树环合,寂寥无人,凄神寒骨,悄怆幽邃。

以其境过清,不可久居,乃记之而去。

10.解释下列加点词。

(4分)(1)卷.石底以出__________________________________________________________(2)佁然..不动_____________________________________________________________(3)其岸势犬牙..差互______________________________________________________(4)乃记之而去._______________________________________________________11.用现代汉语翻译下面的句子。

(4分)(1)日光下澈,影布石上。

(2)以其境过清,不可久居。

12.下列对文章内容的理解和分析不当的一项是()(2分)A.“从小丘西行百二十步……伐竹取道,下见小潭”交代了作者的游踪。

B.“全石以为底,近岸,卷石底以出,为坻,为屿,为嵁,为岩”,写出了作者为“石潭”命名的缘由及近岸石头的千态万状。

C.“潭中鱼可百许头,皆若空游无所依”,只写了鱼儿自由游弋的情态。

D.第1、2段分别写了作者发现石潭之乐和观鱼之乐。

13.第4段画线句流露出作者怎样的心情?作者产生这种心情的原因是什么?(3分)三、现代文阅读(一)无人机时代正在到来(12分)①正在到来的第四次工业革命将使人类进入“机器人时代”。

各种类型的机器人纷纷问世,其中会飞的机器人——无人机异军突起,频频出现在公众的视野中。

②无人机,实际上就是具有飞机形状的遥控飞行装置,主要由机身、动力、螺旋桨、录音、摄像、遥控、传输以及感应等部件构成。

③无人机的发展始于军事领域。

20世纪60年代,美国军方率先使用无人机进行运输、侦察、攻击等。

之后,无人机被许多国家运用到军事领域,并且不断创新发展。

目前,我国的军用无人机在技术上已经能够通过遥控准确无误地击中远程目标。

④无人机由军用进入民用领域后,用途十分广泛。

地质勘探、电网巡检、交通流量统计、大气污染检测等,都可以借助无人机的一臂之力。

当地震、洪水、爆炸等灾害发生,无人机可快速飞至救灾人员无法抵达的现场,实施救援。

2013年,四川芦山地震后,在交通中断的情况下,就是通过无人机航拍灾区情况,为救灾提供了第一手资料。

⑤随着生产技术的日趋成熟,无人机的造价大幅降低。

有资料表明,目前迷你无人机的制造成本已降低到三年前的十分之一左右,因此,这类曾经带有神秘色彩的无人机,已经成为集实用与娱乐功能于一体的高端玩具,进入了普通人的生活。

今天,只要你登录知名的电商平台,就可以搜索到各种型号的玩具无人机,其中数千元的就有GPS定位和图传功能,通过手机APP就能操控,航拍图像清晰,深受消费者青睐,具有广阔的市场前景。

⑥科学技术的发展总是双刃剑。

民用无人机的快速发展,也会给公共安全带来隐患。

美国白宫的草坪上,就曾有小型无人机坠落。

自2016年以来,上海、重庆、南京等地的国际机场都遭遇过无人机的干扰,动辄就影响百余次航班起降,经济损失巨大。

我国从2017年6月1日起,已正式对质量在250克以上的民用无人机,实施实名登记注册。

⑦近年来,随着纳米、仿生机器人技术的突飞猛进,出现了外形似鸟或昆虫的微型无人机,如纳米蜻蜓无人机,翼展仅5厘米,可从窗户飞进飞出,一旦飞进普通人的住宅,个人隐私就会受到侵犯。

也许数年之后,停在你书房角落里的一只蜘蛛,飞到你眼前的一只苍蝇,或者落在你窗口歌唱的美丽小鸟,正是一架微型的仿生无人机呢!⑧无人机的时代正在到来,它会走向何方?这不单是政府应该思考的问题,也是所有人应该思考的问题。

14.第①段“异军突起”在文中的意思是__________________________________________。

(2分)15.对第④段内容的理解和分析,正确的一项是()(2分)A.第一句话表明对无人机的介绍由军用转入民用。

B.本段通过大量翔实的事例来介绍无人机的作用。

C.芦山地震的例子说明无人机已能完全替代人的工作。

D.本段的例子是为了说明中国无人机的发展领先世界。

16.第⑤段中加点词“左右”能否删去?请说明理由。

(2分)17.依据文章内容,概括无人机在使用中的利与弊。

(4分)利:(1)________________________________________________________________;(2)________________________________________________________________。

弊:(1)________________________________________________________________;(2)________________________________________________________________。

相关文档
最新文档