不等式的易错点以与典型例题
不等式的解法
复习重点:不等式的解法,主要有一元一次、一元二次、一元高次不等式,分式不等式,无理不等式,指数、对数不等式及含绝对值的不等式的解法;在复习中强调基本方法及易错点。
复习难点:含字母系数的二次型不等式,无理不等式解法,数形结合的方法解不等式,及不等式变形的等价性问题。
(一)各种类型不等式基本解法中的易错点:1.二次型不等式:ax2+bx+c>0(<0)易错点:<1>是否为二次不等式;<2>含字母表示的二根的大小。
2.一元高次不等式:a(x-x1)(x-x2)……(x-x n)>0。
易错点:<1>a>0时,从右上方开始穿线;<2>奇穿偶切,如(x-2)2(x+1)3>0.各因式的幂指数为奇数时穿过ox轴,若幂指数为偶数时,与ox轴相切不穿过;<3>孤立点容易遗漏。
如:(x-3)(x+2)2(x-1)≥0(x-3)(x-1)≥0或x=-2。
3.分式不等式:,易错点:<1>方法的规范,化为(1)的形式;<2>等价性;如(2)。
4.无理不等式<1>易错点:①遗漏情况(2);②不等式组(1),省略f(x)≥0,可简化运算。
<2>注:g(x)=0为孤立点,易遗漏。
5.含绝对值不等式:注意:<1>方法的选择:分段去绝对值号;用等价不等式解或数形结合方法解决。
<2>形如的基本解法:<i>分段讨论;<ii>数形结合。
6.指数不等式及对数不等式基本类型:<1>同底型;<2>a f(x)<b、log a f(x)<b型用定义;<3>换元法解。
易错点:<1>定义域:对数式中底数、真数的限制条件;<2>利用函数单调性,要分成底数大于1还是在0与1之间考虑。
解不等式问题重点注意:i.等价变形;ii.数形结合的方法。
高考数学压轴专题(易错题)备战高考《不等式》技巧及练习题附答案
新高中数学《不等式》专题解析一、选择题1.已知函数()2f x ax bx =+,满足()()241f f -≥≥,()12f -≤,则()2f 的最大值为( ) A .12 B .13C .14D .15【答案】C 【解析】 【分析】根据已知条件可得,a b 满足的不等式2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,作出不等式组所表示的平面区域,又()242f a b =+,利用线性规划即可求出()2f 的最大值.【详解】由已知得2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,可得(),P a b 的表示的平面区域如图:可求出()3,1A ,()2,2B ,()0,2C -, 目标函数()242z f a b ==+,可化为122b a z =-+,当直线过点A 时,max 14z =. 故选:C. 【点睛】本题主要考查求线性约束条件下的最值计算,关键是根据,a b 满足的不等式作出可行域,并将目标函数()242z f a b ==+变形为122b a z =-+进行平移,找到截距的最大值.2.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,若32z x y =-+的最大值为n ,则2n x x ⎛- ⎪⎝⎭的展开式中2x 项的系数为( ) A .60 B .80C .90D .120【答案】B 【解析】 【分析】画出可行域和目标函数,根据平移得到5n =,再利用二项式定理计算得到答案. 【详解】如图所示:画出可行域和目标函数,32z x y =-+,即322zy x =+,故z 表示直线与y 截距的2倍, 根据图像知:当1,1x y =-=时,32z x y =-+的最大值为5,故5n =.52x x ⎛- ⎪⎝⎭展开式的通项为:()()35552155221rr r r r r r r T C x C xx ---+⎛=⋅-=⋅⋅-⋅ ⎪⎝⎭, 取2r =得到2x 项的系数为:()225252180C -⋅⋅-=.故选:B .【点睛】本题考查了线性规划求最值,二项式定理,意在考查学生的计算能力和综合应用能力.3.关于x 的不等式0ax b ->的解集是(1,)+∞,则关于x 的不等式()(3)0ax b x +->的解集是( ) A .(,1)(3,)-∞-+∞U B .(1,3)- C .(1,3) D .(,1)(3,)-∞+∞U【答案】A 【解析】 【分析】由0ax b ->的解集,可知0a >及1ba=,进而可求出方程()()30ax b x +-=的解,从而可求出()()30ax b x +->的解集. 【详解】由0ax b ->的解集为()1,+?,可知0a >且1ba=, 令()()30ax b x +-=,解得11x =-,23x =,因为0a >,所以()()30ax b x +->的解集为()(),13,-∞-+∞U , 故选:A. 【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.4.给出下列五个命题,其中正确命题的个数为( )①命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++<”;②若正整数m 和n 满足m n ≤2n ; ③在ABC ∆中 ,A B >是sin sin A B >的充要条件;④一条光线经过点()1,3P ,射在直线:10l x y ++=上,反射后穿过点()1,1Q ,则入射光线所在直线的方程为5340x y -+=;⑤已知32()f x x mx nx k =+++的三个零点分别为一椭圆、一双曲线、一抛物线的离心率,则m n k ++为定值. A .2 B .3 C .4 D .5【答案】C 【解析】 【分析】①根据特称命题的否定的知识来判断;②根据基本不等式的知识来判断;③根据充要条件的知识来判断;④求得入射光线来判断;⑤利用抛物线的离心率判断. 【详解】①,命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++≥”,故①错误.②,由于正整数m 和n 满足m n ≤,0n m -≥,由基本不等式得()22m n m nm n m +--≤=,当m n m =-即2n m =时等号成立,故②正确. ③,在ABC ∆中,由正弦定理得sin sin A B a b A B >⇔>⇔>,即sin sin A B A B >⇔>,所以A B >是sin sin A B >的充要条件,故③正确.④,设()1,1Q 关于直线10x y ++=的对称点为(),A a b ,则线段AQ 中点为11,22a b ++⎛⎫ ⎪⎝⎭,则1110221121112AQ a b b k a ++⎧++=⎪⎪⎪+⎨-⎪==+⎪-⎪⎩,解得2a b ==-,所以()2,2A --.所以入射光线为直线AP ,即312321y x --=----,化简得5340x y -+=.故④正确. ⑤,由于抛物线的离心率是1,所以(1)0f =,即10m n k +++=,所以1m n k ++=-为定值,所以⑤正确. 故选:C 【点睛】本小题主要考查特称命题的否定,考查基本不等式,考查充要条件,考查直线方程,考查椭圆、双曲线、抛物线的离心率,属于中档题.5.设实数满足条件则的最大值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案. 【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.6.已知点()4,3A ,点B 为不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示平面区域上的任意一点,则AB 的最小值为( )A .5B 45C 5D 25【答案】C 【解析】 【分析】作出不等式组所表示的平面区域,标出点A 的位置,利用图形可观察出使得AB 最小时点B 的位置,利用两点间的距离公式可求得AB 的最小值.【详解】作出不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域如下图所示:联立0260x y x y -=⎧⎨+-=⎩,解得22x y =⎧⎨=⎩,由图知AB 的最小值即为()4,3A 、()2,2B 两点间的距离, 所以AB ()()2242325-+-=故选:C . 【点睛】本题考查目标函数为两点之间的距离的线性规划问题,考查数形结合思想的应用,属中等题.7.已知变量,x y 满足2402400x y x y x +-≥⎧⎪+-≤⎨⎪≥⎩,则24x y --的最小值为( )A 85B .8C 165D .163【答案】D 【解析】 【分析】222424512x y x y ----=+222412x y --+表示点(,)x y 到直线240x y --=的距离,作出可行域,数形结合即可得到答案. 【详解】因为222424512x y x y ----=+,所以24x y --可看作为可行域内的动点到直线240x y --=5点44(,)33A 到直线240x y --=的距离d 最小,此时224424333512d -⨯-==+, 所以24x y --1653d =. 故选:D. 【点睛】本题考查目标函数的含绝对值的线性规划问题,考查学生数形结合与转化与化归的思想,是一道中档题.8.若实数x ,y 满足40,30,0,x y x y y --≤⎧⎪-≥⎨⎪≥⎩,则2x y y +=的最大值为( )A .512B .8C .256D .64【答案】C 【解析】 【分析】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可,根据图像平移得到答案. 【详解】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可, 观察图像可知,当直线x y m +=过点()6,2A 时m 取到最大值8, 故2x yy +=的最大值为256.故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.9.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域的面积为9,若点, 则的最大值为( )A .3B .6C .9D .12【答案】C 【解析】 【分析】 【详解】分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出3a =,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值. 详解:作出不等式组对应的平面区域如图所示:则(,),(,)A a a B a a -,所以平面区域的面积1292S a a =⋅⋅=, 解得3a =,此时(3,3),(3,3)A B -,由图可得当2z x y =+过点(3,3)A 时,2z x y =+取得最大值9,故选C.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.10.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A B 、两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A .320千元 B .360千元C .400千元D .440千元【答案】B 【解析】设生产甲、乙两种产品x 件,y 件时该企业每月利润的最大值,由题意可得约束条件:2348069600,0,x y x y x y x N y N+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈∈⎩, 原问题等价于在上述约束条件下求解目标函数2z x y =+的最大值. 绘制目标函数表示的平面区域如图所示,结合目标函数的几何意义可知: 目标函数在点()150,60B 处取得最大值:max 2215060360z x y =+=⨯+=千元. 本题选择B 选项.点睛:含有实际背景的线性规划问题其解题关键是找到制约求解目标的两个变量,用这两个变量建立可行域和目标函数,在解题时要注意题目中的各种相互制约关系,列出全面的制约条件和正确的目标函数.11.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n+的最小值为( ) A .92B .9C . 6D .3【答案】D 【解析】 【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=,又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=.Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225331212121n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭ ()122152522333n m m n ⎛⎫≥+⨯=+⨯= ⎪ ⎪⎝⎭. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立.12m n ∴+的最小值为3. 故选:D . 【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.12.抛物线的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足23AFB π∠=,设线段AB 的中点M 在l 上的投影为N ,则MN AB 的最大值是( )A .4B .3C .2D 【答案】B 【解析】 【分析】 【详解】试题分析:设,A B 在直线l 上的投影分别是11,A B ,则1AF AA =,1BF BB =,又M是AB 中点,所以111()2MN AA BB =+,则1112MN AA BB AB AB +=⋅2AF BF AB +=,在ABF ∆中222AB AF BF =+22cos3AF BF π-22AF BF AF BF =++2()AF BF AF BF =+-2()AF BF ≥+2()2AF BF +-23()4AF BF =+,所以22()43AF BF AB+≤,即AF BF AB +≤,所以MN AB ≤,故选B .考点:抛物线的性质. 【名师点晴】在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的距离,焦点弦长,抛物线上的点到准线(或与准线平行的直线)的距离时,常常考虑用抛物线的定义进行问题的转化.象本题弦AB 的中点M 到准线的距离首先等于,A B 两点到准线距离之和的一半,然后转化为,A B 两点到焦点F 的距离,从而与弦长AB 之间可通过余弦定理建立关系.13.已知ABC V 外接圆的半径2R =,且2sin 2AA =.则ABC V 周长的取值范围为( )A .B .(4,C .4+D .(4+【答案】C 【解析】 【分析】由2sin 2A A =及倍角公式可得23A π=,2sin a R A ==得2212b c bc =++,再利用基本不等式及三角形两边之和大于第三边求出b c +的取值范围即可得到答案. 【详解】由题意,22cos 112A A -=-,即cos 1A A =-,可化为33A π⎛⎫-= ⎪⎝⎭,即sin 32A π⎛⎫-= ⎪⎝⎭,因为0A π<<,所以33A ππ-=,即23A π=,2sin a R A ==ABC V 的内角A ,B ,C ,的对边分别为a ,b ,c ,由余弦定理得,2212b c bc =++,因为222b c bc +≥(当且仅当b c =时取“=”),所以22123b c bc bc =++≥,即4bc ≤,又因为22212()b c bc b c bc =++=+-,所以2()124bc b c =+-≤,故4b c +≤,则4a b c ++≤+b c a +>,所以2a b c a ++>=4a b c +++≤.故ABC V 周长的取值范围为4+.故选:C 【点睛】本题考查利用余弦定理求三角形周长的取值范围,涉及到辅助角公式、基本不等式求最值,考查学生的运算求解能力,是一道中档题.14.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若s 满足不等式()()222323f s s f s s -+--+„,则s 的取值范围是( )A .13,2⎡⎫--⎪⎢⎣⎭B .[3,2]--C .[2,3)-D .[3,2]-【答案】D 【解析】 【分析】由已知可分析出()f x 在R 上为减函数且()y f x =关于原点对称,所以不等式等价于()()222323f s s f s s -+-+-„,结合单调性可得222323s s s s -+≥-+-,从而可求出s 的取值范围. 【详解】解:因为对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,所以()f x 在R 上为减函数;又(1)=-y f x 的图象关于(1,0)成中心对称,所以()y f x =关于原点对称, 则()()()222232323f s s f s s f s s -+--+=-+-„,所以222323s s s s -+≥-+-,整理得260s s +-≤,解得32s -≤≤. 故选:D. 【点睛】本题考查了函数的单调性,考查了函数的对称性,考查了一元二次不等式的求解.本题的关键是由已知得到函数的单调性和对称性,从而将不等式化简.15.已知函数1()cos 2(2)sin 2f x m x m x =+-,其中12m ≤≤,若函数()f x 的最大值记为()g m ,则()g m 的最小值为( ) A .14-B .1 C.D1【答案】D 【解析】 【分析】2()sin (2)sin 2mf x m x m x =-+-+,令sin [1,1]x t =∈-,则2(2)2my mt m t =-+-+,结合12m ≤≤可得()221122(2)31144t m m m g m y m m m=-+-===+-,再利用基本不等式即可得到答案.【详解】 由已知,221()(12sin )(2)sin sin (2)sin 22m f x m x m x m x m x =-+-=-+-+, 令sin [1,1]x t =∈-,则2(2)2my mt m t =-+-+,因为12m ≤≤, 所以对称轴为2111[0,]222m t m m -==-∈,所以 ()221122(2)3111144t m m m g m y m m m =-+-===+-≥=,当且仅当m =. 故选:D 【点睛】本题考查换元法求正弦型函数的最值问题,涉及到二次函数的最值、基本不等式的应用,考查学生的数学运算能力,是一道中档题.16.过抛物线24x y =的焦点F 作倾斜角为锐角的直线l ,与抛物线相交于A ,B 两点,M 为线段AB 的中点,O 为坐标原点,则直线OM 的斜率的取值范围是( )A.2⎫+∞⎪⎪⎣⎭B .[)1,+∞ C.)+∞D .[)2,+∞【答案】C 【解析】 【分析】假设直线l 方程,代入抛物线方程,利用韦达定理和直线方程求得M 点坐标,利用两点连线斜率公式和基本不等式可求得结果. 【详解】由抛物线方程知:()0,1F ,设直线l 的方程为()10y kx k =+>,代入抛物线方程得:2440x kx --=, 设点()11,A x y ,()22,B x y ,()00,M x y ,则124x x k +=,M Q 为线段AB 的中点,12022x x x k +∴==, M Q 在直线l 上,200121y kx k ∴=+=+,20021122OMy k k k x k k +∴===+≥=k =时取等号), 即直线OM斜率的取值范围为)+∞. 故选:C . 【点睛】本题考查直线与抛物线综合应用问题,涉及到利用基本不等式求解最值的问题;关键是能够结合韦达定理,利用一个变量表示出所求的斜率,进而利用基本不等式求得最值.17.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA =⋅u u u r u u u r,则z 的最大值是( )A .2B .3C .4D .5【答案】C 【解析】 【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可. 【详解】解:由不等式组202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q ()2,1A ,(), P x y∴2z OP OA x y =⋅=+u u u r u u u r,可图知当目标函数图象经过点()1,2B 时,z 取最大值,即24z x y =+=.故选:C. 【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.18.若均不为1的实数a 、b 满足0a b >>,且1ab >,则( ) A .log 3log 3a b > B .336a b +> C .133ab a b ++> D .b a a b >【答案】B 【解析】 【分析】举反例说明A,C,D 不成立,根据基本不等式证明B 成立. 【详解】当9,3a b ==时log 3log 3a b <; 当2,1a b ==时133ab a b ++=; 当4,2a b ==时b a a b =; 因为0a b >>,1ab >,所以23323323236a b a b a b ab++>=>>,综上选B. 【点睛】本题考查比较大小,考查基本分析论证能力,属基本题.19.若集合()(){}130M x x x =+-<,集合{}1N x x =<,则M N ⋂等于( ) A .()1,3 B .(),1-∞-C .()1,1-D .()3,1-【答案】C【解析】 【分析】解一元二次不等式求得M ,然后求两个集合的交集. 【详解】由()()130x x +-<解得13x -<<,故()1,1M N ⋂=-,故选C. 【点睛】本小题主要考查集合交集的概念以及运算,考查一元二次不等式的解法,属于基础题.20.已知不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则实数a 的取值范围是( ) A .(,5]-∞ B .[5,)+∞C .(,4]-∞D .[4,)+∞【答案】C 【解析】若不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则4a x x≤+对于任意的[1,3]x ∈恒成立,∵当[1,3]x ∈时,4[4,5]x x+∈,∴4a ≤,即实数a 的取值范围是(,4]-∞,故选C .【方法点晴】本题主要考查利用导数求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数. 本题是利用方法 ① 求得a 的取值范围的.。
一元一次不等式易错点分析
不等式(组)常见错解剖析河南师大附中 刘晨曦不等式(组)是初中数学的重要内容之一,是以后学习函数等知识的基础,因此学好这部分内容对以后的学习起着非常重要的作用. 但初学者,由于对其定义、性质、解法等理解不透,而导致许多错误.现就平时作业和检测中常出现的错误进行剖析,以提高同学们的解题能力.1 忽视因式为0例1 若a b >,则22____ac bc .错解 因为20c >,且a b >,所以22ac bc >,故填>.剖析 上面的解法错在忽视了0c =.当0c =时,22ac bc =.正解 因为20c ≥,且a b >,所以22ac bc ≥,故应填≥.2 忽视系数0a ≠例2 若(1)20m m x ++>是关于x 的一元一次不等式,则m 的取值是 . 错解 由题意,得1m =,∴1m =±.故填1±.剖析 当1m =-时,10m +=,此时得到不等式2>0. 一元一次不等式应满足的条件是:①只含有一个未知数;②未知数的最高次数是1;③是不等式. 一元一次不等式的一般形式是:000ax b ax b a +>+<≠或(),在解题时切不可忽视0a ≠的条件. 正解 由题意,得1m =,且10m +≠,即1m =±且1m ≠-,∴1m =.故应填1. 3 忽视移项要变号例3 解不等式61431x x +>-.错解 移项,得63114x x +>-+,合并同类项,得 913x >,系数化为1,得 139x >. 剖析 移项是解不等式时的常用步骤,可以说它是不等式性质1的直接推论.但要注意移项必须变号,而上面的解法就错在移项时忘记了变号.正解 移项,得63114x x ->--,合并同类项,得 315x >-,系数化为1,得 5x >-.4 忽视括号前的负号例4 解不等式()53216x x -->-.错解 去括号,得5636x x -->-,解得3x <.剖析 错解在去括号时,没有将括号内的项全改变符号,忽视了括号前的负号.去括号时,当括号前面是“-”时,去掉括号和前面的“-”,括号内的各项都要改变符号. 正解 去括号,得5636x x -+>-,解得9x <.5 忽视分数线的括号作用例5 解不等式125164x x +--≥. 错解 去分母,得2261512x x +--≥,移项,得2612215x x -≥-+,合并同类项,得425x -≥,系数化为1,得 254x ≤-. 剖析 分数线具有“括号”的作用,故在去分母时,分数线上面的多项式应作为一个整体,加上括号.上面的解法就错在忽视分数线的括号作用.正解 去分母,得2(1)3(25)12x x +--≥,去括号,得2261512x x +-+≥,移项,得 2612215x x -≥--,合并同类项,得45x -≥-,系数化为1,得54x ≤. 6 忽视分类讨论例6 代数式1x -与2x -的值符号相同,则x 的取值范围________.错解 由题意,得1020x x ->⎧⎨->⎩,解之,得2x >,故填2x >. 剖析 上面的解法错在忽视了对符号相同的分类讨论.由题意知,符号相同,两代数式可以均是正数,也可以均是负数,应分大于0和小于0进行探究.正解 由题意,得10102020x x x x ->-<⎧⎧⎨⎨->-<⎩⎩或,解之,得21x x ><或, 故应填21x x ><或.7 忽视隐含条件例7 关于x 的不等式组()()()233113224x x x x a <-+⎧⎪⎨+>+⎪⎩有四个整数解,求a 的取值范围. 错解 由(1)得8x >,由(2)得24x a <-,因不等式组有四个整数解,故中的整数解有4个,即9、10、11、12,故2413a -≤,解得114a ≥-. 剖析 上面的解法错在忽视隐含条件2412a ->而致错,当有多个限制条件时,对不等式关系的发掘不全面,会导致未知数范围扩大,因此解决这方面的问题时一定要细心留意隐含条件.正解 由(1)得8x >,由(2)得24x a <-,因不等式组有四个整数解,故中的整数解有4个,即9、10、11、12,故122413a <-≤,解得11542a -≤<-. 8 用数轴表示解集时,忽视虚、实点例8 不等式组()()()523111317222x x x x ->+⎧⎪⎨-≤-⎪⎩,并把它的解集在数轴表示出来. 错解 解不等式(1),得52x >,解不等式(2),得4x ≤, 在同一条数轴上表示不等式(1)、(2)的解集,原不等式组的解集是如图1图1剖析 本题的解集没有错,错在用数轴表示解集时,忽视了虚、实点.不等式的解集在数轴上表示时,没有等号的要画虚点,有等号的要画实点.正解 解不等式(1),得52x >,解不等式(2),得4x ≤,在同一条数轴上表示不等式(1)、(2)的解集,如图2,原不等式组的解集是.图29 忽视题中条件例9 有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数是多少?错解 设宿舍间数为x ,学生人数为420x +,由题意,得()420818x x +--<,解得5x >,∵x 是正整数 ∴ x = 6,7,8……答:至少有6间宿舍.剖析 错解的原因在于对题意不够理解,忽视题中的“一间宿舍不满也不空”这一条件.审清题意是解决这类问题的关键.正解 设宿舍间数为x ,学生人数为420x +,由题意,得()0420818x x <+--<,解得57x <<,∵x 是正整数 ∴6x =.答:有6间宿舍.。
必学五基本不等式的题型与易错点
高考基本不等式专题典题精讲例1(1)已知0<x <31,求函数y=x(1-3x)的最大值; (2)求函数y=x+x1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论.(1)解法一:∵0<x <31,∴1-3x >0. ∴y=x(1-3x)=31·3x(1-3x)≤31[2)31(3x x -+]2=121,当且仅当3x=1-3x ,即x=61时,等号成立.∴x=61时,函数取得最大值121. 解法二:∵0<x <31,∴31-x >0. ∴y=x(1-3x)=3x(31-x)≤3[231x x -+]2=121,当且仅当x=31-x,即x=61时,等号成立. ∴x=61时,函数取得最大值121. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2xx 1•=2,当且仅当x=1时,等号成立. 当x <0时,y=x+x1=-[(-x)+)(1x -]. ∵-x >0,∴(-x)+)(1x -≥2,当且仅当-x=x-1,即x=-1时,等号成立. ∴y=x+x1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备.变式训练1当x >-1时,求f(x)=x+11+x 的最小值. 思路分析:x >-1⇒x+1>0,变x=x+1-1时x+1与11+x 的积为常数. 解:∵x>-1,∴x+1>0. ∴f(x)=x+11+x =x+1+11+x -1≥2)1(1)1(+•+x x -1=1. 当且仅当x+1=11+x ,即x=0时,取得等号. ∴f(x)min =1.变式训练2求函数y=133224+++x x x 的最小值. 思路分析:从函数解析式的结构来看,它与基本不等式结构相差太大,而且利用前面求最值的方法不易求解,事实上,我们可以把分母视作一个整体,用它来表示分子,原式即可展开.解:令t=x 2+1,则t≥1且x 2=t-1.∴y=133224+++x x x =1113)1(3)1(22++=++=+-+-t t t t t t t t . ∵t≥1,∴t+t 1≥2t t 1•=2,当且仅当t=t1,即t=1时,等号成立. ∴当x=0时,函数取得最小值3.例2已知x >0,y >0,且x 1+y 9=1,求x+y 的最小值.思路分析:要求x+y 的最小值,根据极值定理,应构建某个积为定值,这需要对条件进行必要的变形,下面给出三种解法,请仔细体会.解法一:利用“1的代换”, ∵x 1+y 9=1, ∴x+y=(x+y)·(x 1+y 9)=10+yx x y 9+. ∵x>0,y >0,∴y x x y 9+≥2y x x y 9•=6. 当且仅当y x x y 9=,即y=3x 时,取等号. 又x 1+y 9=1,∴x=4,y=12.∴当x=4,y=12时,x+y 取得最小值16. 解法二:由x 1+y 9=1,得x=9-y y . ∵x>0,y >0,∴y>9. x+y=9-y y +y=y+999-+-y y =y+99-y +1=(y-9)+99-y +10. ∵y>9,∴y -9>0. ∴999-+-y y ≥299)9(-•-y y =6. 当且仅当y-9=99-y ,即y=12时,取得等号,此时x=4.∴当x=4,y=12时,x+y 取得最小值16.解法三:由x 1+y 9=1,得y+9x=xy,∴(x -1)(y-9)=9. ∴x+y=10+(x -1)+(y-9)≥10+2)9)(1(--y x =16,当且仅当x-1=y-9时取得等号.又x 1+y 9=1, ∴x=4,y=12.∴当x=4,y=12时,x+y 取得最小值16.绿色通道:本题给出了三种解法,都用到了基本不等式,且都对式子进行了变形,配凑出基本不等式满足的条件,这是经常需要使用的方法,要学会观察,学会变形,另外解法二,通过消元,化二元问题为一元问题,要注意根据被代换的变量的X 围对另外一个变量的X 围的影响.黑色陷阱:本题容易犯这样的错误:x 1+y 9≥2xy 9①,即xy 6≤1,∴xy ≥6. ∴x+y≥2xy ≥2×6=12②.∴x+y 的最小值是12. 产生不同结果的原因是不等式①等号成立的条件是x 1=y 9,不等式②等号成立的条件是x=y.在同一个题目中连续运用了两次基本不等式,但是两个基本不等式等号成立的条件不同,会导致错误结论.变式训练已知正数a,b,x,y 满足a+b=10,y b x a +=1,x+y 的最小值为18,求a,b 的值. 思路分析:本题属于“1”的代换问题.解:x+y=(x+y)(yb x a +)=a+x ay y bx ++b=10+x ay y bx +. ∵x,y>0,a,b >0, ∴x+y≥10+2ab =18,即ab =4. 又a+b=10,∴⎩⎨⎧==8,2b a 或⎩⎨⎧==.2,8b a 例3求f(x)=3+lgx+x lg 4的最小值(0<x <1). 思路分析:∵0<x <1,∴lgx<0,xlg 4<0不满足各项必须是正数这一条件,不能直接应用基本不等式,正确的处理方法是加上负号变正数. 解:∵0<x <1,∴lgx<0,x lg 4<0.∴-x lg 4>0. ∴(-lgx)+(-x lg 4)≥2)lg 4)(lg (xx --=4. ∴lgx+x lg 4≤-4.∴f(x)=3+lgx+xlg 4≤3-4=-1. 当且仅当lgx=x lg 4,即x=1001时取得等号. 则有f(x)=3+lgx+x lg 4 (0<x <1)的最小值为-1. 黑色陷阱:本题容易忽略0<x <1这一个条件.变式训练1已知x <45,求函数y=4x-2+541-x 的最大值. 思路分析:求和的最值,应凑积为定值.要注意条件x <45,则4x-5<0. 解:∵x<45,∴4x -5<0. y=4x-5+541-x +3=-[(5-4x)+x451-]+3 ≤-2xx 451)45(-•-+3=-2+3=1. 当且仅当5-4x=x 451-,即x=1时等号成立. 所以当x=1时,函数的最大值是1.变式训练2当x <23时,求函数y=x+328-x 的最大值. 思路分析:本题是求两个式子和的最大值,但是x·328-x 并不是定值,也不能保证是正值,所以,必须使用一些技巧对原式变形.可以变为y=21(2x-3)+328-x +23=-(xx 238223-+-)+23,再求最值. 解:y=21(2x-3)+328-x +23=-(x x 238223-+-)+23,∵当x <23时,3-2x >0, ∴x x 238223-+-≥x x 2382232-•-=4,当且仅当xx 238223-=-,即x=-21时取等号. 于是y≤-4+23=25-,故函数有最大值25-. 例4如图3-4-1,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.图3-4-1 (1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?思路分析:设每间虎笼长为x m ,宽为y m ,则(1)是在4x+6y=36的前提下求xy 的最大值;而(2)则是在xy=24的前提下来求4x+6y 的最小值.解:(1)设每间虎笼长为x m ,宽为y m ,则由条件,知4x+6y=36,即2x+3y=18.设每间虎笼的面积为S ,则S=xy.方法一:由于2x+3y≥2y x 32⨯=2xy 6, ∴2xy 6≤18,得xy≤227,即S≤227. 当且仅当2x=3y 时等号成立.由⎩⎨⎧=+=,1832,22y x y x 解得⎩⎨⎧==.3,5.4y x 故每间虎笼长为4.5 m ,宽为3 m 时,可使面积最大. 方法二:由2x+3y=18,得x=9-23y. ∵x>0,∴0<y <6.S=xy=(9-23y)y=23 (6-y)y. ∵0<y <6,∴6-y >0.∴S≤23[2)6(y y +-]2=227. 当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m 时,可使面积最大. (2)由条件知S=xy=24.设钢筋网总长为l,则l=4x+6y. 方法一:∵2x+3y≥2y x 32•=2xy 6=24,∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y 时,等号成立.由⎩⎨⎧==,24,32xy y x 解得⎩⎨⎧==.4,6y x 故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小.方法二:由xy=24,得x=y 24.∴l=4x+6y=y 96+6y=6(y 16+y)≥6×2y y⨯16=48,当且仅当y 16=y ,即y=4时,等号成立,此时x=6. 故每间虎笼长6 m,宽4 m 时,可使钢筋总长最小.绿色通道:在使用基本不等式求函数的最大值或最小值时,要注意:(1)x,y 都是正数;(2)积xy (或x+y )为定值;(3)x 与y 必须能够相等,特别情况下,还要根据条件构造满足上述三个条件的结论.变式训练某工厂拟建一座平面图为矩形且面积为200 平方米的三级污水处理池(平面图如图3-4-2所示),由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两道隔墙建造单价为每米248元,池底建造单价为每平方米80元,池壁的厚度忽略不计,试设计污水处理池的长和宽,使总造价最低,并求出最低造价.图3-4-2思路分析:在利用均值不等式求最值时,必须考虑等号成立的条件,若等号不能成立,通常要用函数的单调性进行求解.解:设污水处理池的长为x 米,则宽为x 200米(0<x≤16,0<x200≤16),∴12.5≤x≤16. 于是总造价Q(x)=400(2x+2×x 200)+248×2×x200+80×200. =800(x+x 324)+16 000≥800×2xx 324•+16 000=44 800, 当且仅当x=x 324 (x >0),即x=18时等号成立,而18∉[12.5,16],∴Q(x)>44 800. 下面研究Q(x)在[12.5,16]上的单调性.对任意12.5≤x 1<x 2≤16,则x 2-x 1>0,x 1x 2<162<324.Q(x 2)-Q(x 1)=800[(x 2-x 1)+324(1211x x -)] =800×212112)324)((x x x x x x --<0, ∴Q(x 2)>Q(x 1).∴Q(x)在[12.5,16]上是减函数.∴Q(x)≥Q(16)=45 000.答:当污水处理池的长为16米,宽为12.5米时,总造价最低,最低造价为45 000元.问题探究问题某人要买房,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高.当住第n 层楼时,上下楼造成的不满意度为n.但高处空气清新,嘈杂音较小,环境较为安静,因此随着楼层的升高,环境不满意度降低.设住第n 层楼时,环境不满意程度为n8.则此人应选第几楼,会有一个最佳满意度.导思:本问题实际是求n 为何值时,不满意度最小的问题,先要根据问题列出一个关于楼层的函数式,再根据基本不等式求解即可. 探究:设此人应选第n 层楼,此时的不满意程度为y.由题意知y=n+n8. ∵n+n8≥2248=⨯n n , 当且仅当n=n 8,即n=22时取等号. 但考虑到n∈N *,∴n≈2×1.414=2.828≈3,即此人应选3楼,不满意度最低.。
不等式易错点
易错07 不等式易错点1 分式不等式【例1】(1)(2020·江苏)不等式2302x x +≥-的解集为 。
(2)(2020·福建省永泰县城关中学)不等式2312x x +≤+的解集为 。
【答案】(1)32x x ⎧≤-⎨⎩或}2x >(2){}|21x x -<≤- 【解析】(1)分式不等式2302x x +≥-等价于230x +=或()()2320x x +->,即32x =-或32x <-或2x >, 故解集为32x x ⎧≤-⎨⎩或}2x >.(2)2312x x +≤+可得102x x +≤+,从而()()12020x x x ⎧++≤⎨+≠⎩,解得21x -<≤-, 【举一反三】易错导图易错详讲【易错总结】解分式不等式的步骤:(1)移项,把分式不等式一边化为0;(2)通分,化不等式为()0()f xg x >或()0()f x g x ≥形式,转化时应使得(),()f x g x 中最高次项系数为正, (3)转化,化为()()0f x g x >或()()0()0f xg x g x ≥⎧⎨≠⎩,(4)得解.1.(2020·利辛县阚疃金石中学)不等式13x x-≤的解集为______________. 【答案】{0x x 或1}2x ≤-【解析】不等式13x x -≤移项通分可得:120x x --≤,即120xx +≥,所以(12)00x x x +≥⎧⎨≠⎩,解得0x >或12x ≤-,故答案为:{0x x 或1}2x ≤-.2.不等式2115x x +≥--的解集为________.【答案】4{|3x x ≤或5}x > 【解析】原不等式移项得21105x x ++≥-,通分整理得3405x x -≥-, 等价于(34)(5)050x x x --≥⎧⎨-≠⎩,解得43x ≤或5x >.故答案为:4{|3x x ≤或5}x > 3.(2020·北京市昌平区前锋学校)不等式2112x x +≥-的解集为________ 【答案】(,3](2,)-∞-+∞【解析】原不等式等价于21102x x +-≥-,即302x x +≥-,即(3)(2)0,2,x x x +-≥⎧⎨≠⎩因此,原不等式的解集为(,3](2,)-∞-+∞.故答案为:(,3](2,)-∞-+∞易错点2 穿根引线【例2】(2020·吴起高级中学)不等式()()()21120x x x +-->的解集为______________.【答案】()()(),11,12,-∞--+∞【解析】不等式()()()21120x x x +-->等价于()()10120x x x +≠⎧⎨-->⎩,解得()()(),11,12,x ∈-∞--+∞.故答案为:()()(),11,12,-∞--+∞.【举一反三】1.(2020·上海普陀·曹杨二中)不等式()()()()2321120x x x x++--≤的解集为________【答案】(]{}[],211,2-∞--【解析】如下图所示:根据图象可知:当2x-≤或1x=-或12x≤≤时,()()()()2321120x x x x++--≤,所以不等式的解集为:(]{}[],211,2-∞--,故答案为:(]{}[],211,2-∞--.2.(2020·云南省保山第九中学)不等式(2)3x xx+<-的解集为()A.{|2x x<-,或03}x<<B.{|22x x-<<,或3}x>C.{|2x x<-,或0}x>D.{|0x x<,或3}x<【答案】A原不等式可转化为()()230x x x+-<,结合数轴标根法可得,2x<-或03x<<.即不等式的解集为{|2x x<-,或03}x<<.故选:A.3.(2020·江苏省响水中学)不等式2(1)0x x-<的解集为()A.{|0x x<或01}x<<B.{|1x x<-或01}x<<【易错总结】利用“穿针引线法”求解高次不等式的解集时,注意从数轴的右上方开始,每经过一个因式对应的数轴上点,要判断该因式是奇次还是偶次,如果是奇次,则穿过该点,如果是偶次,则选择穿而不过.C .{|10x x -<<或1}x >D .{|1x x <-或1}x >【答案】B【解析】2(1)0x x -<等价于(1)(1)0x x x -+<,根据穿根法可得1x <-或01x <<.故选:B.易错点3 基本不等式取“=”【例3】已知a ,b >0且a +b =1,给出下列不等式: ①ab ≤14;②1174ab ab +≥≤;④112a b+≥. 其中正确的序号是( )A .①②B .②③④C .①②③D .①③④ 【答案】C【解析】∵a ,b ∈R +,a +b =1,∴ab ≤2a b +⎛⎫⎪⎝⎭2=14,当且仅当12a b ==时,等号成立,故①正确; 令y=ab +1ab ,设t ab =由①可知104t <≤ ,则1y t t =+在104t <≤上单调递减,故当14t =时,y 有最小值117444+=,故②正确;)2=a +b +a +b +a +b =2,故③正确;112a b + ()11332222b a a b a b a b ⎛⎫=++=++≥ ⎪⎝⎭332222=⨯+=, 当且仅当b a= 时,等号成立,故④不正确.故选:C 【举一反三】1.(2020·平遥县综合职业技术学校)已知0x >,0y >,且10xy =,则下列说法正确的是( )A .当x y ==25x y+取得最小值B .当x y ==25x y+取得最大值C .当2x =,5y =时,25x y+取得最小值 D .当2x =,5y =时,25x y+取得最大值 【答案】C 【解析】0x ,0y >,且10xy =,20x∴>,50y >,101xy =,252x y ∴+≥==, 当且仅当25x y=即2x =,5y =时,等号成立, 所以当2x =,5y =时,25x y+取得最小值,最小值为2. 故选:C .2.已知27101x x y x ++=+(1x ≠-),则y 的取值范围为( )A .(,2][2,)-∞-+∞B .(,1][3,)-∞-⋃+∞C .(,1][7,)-∞-⋃+∞D .(,1][9,)-∞⋃+∞【答案】D【解析】由题意,22710(1)5(1)44(1)5111x x x x y x x x x ++++++===++++++,当10x +>即1x >-时,4(1)5591y x x =+++≥=+,当且仅当411x x +=+即1x =时,等号成立; 当10x +<即1x <-时,4(1)5511y x x ⎡⎤=--+-+≤-=⎢⎥+⎣⎦, 当且仅当()411x x -+=-+即3x =-时,等号成立; ∴y 的取值范围为(,1][9,)-∞⋃+∞. 故选:D.易错点4 分类讨论【例4】(2020·北京八中月考)解关于x 的不等式(m 为任意实数):()2220mx m x +--<【答案】答案见解析【解析】当0m =时,原不等式化为220x -<,解得1x <; 当0m ≠时,原不等式可化为()()120x mx -+<,即11x =,22x m=-. 当0m >时,20x <,则原不等式的解集为21x x m ⎧⎫-<<⎨⎬⎩⎭当0m <时,20x >,当21m-=,即2m =-时,有121x x ==,则原不等式的解集为{}1x x ≠; 当21m -<,即2m <-时,则原不等式的解集为2x x m ⎧<-⎨⎩或}1x >当21m ->,即20m -<<时,则原不等式的解集为.2x x m ⎧>-⎨⎩或}1x <【举一反三】1.(2020·云南昆明二十三中)解关于x 不等式2325()ax x ax a R -+>-∈.【答案】答案见解析【解析】不等式化为()2330ax a x +-->,即()()310ax x -+>当0a =时,不等式为330x -->,解得1x <-,当0a >时,31a >-,解得不等式为1x <-或3x a >, 当0a <时,若31a >-,即3a <-时,解得不等式为31x a-<<,若31a =-,即3a =-时,不等式无解, 若31a <-,即30a -<<时,解得不等式为31x a<<-, 综上,3a <-时,不等式的解集为31,⎛⎫- ⎪⎝⎭a ;3a =-时,不等式无解;30a -<<时,不等式的解集为3,1⎛⎫- ⎪⎝⎭a ;0a =时,不等式的解集为(),1-∞-;0a >时,不等式的解集为()3,1,⎛⎫-∞-⋃+∞ ⎪⎝⎭a .2.解不等式:2(2)10ax a x +++>. 【答案】答案见解析.【解析】①当0a =时,不等式为210x +>,解集为12x x ⎧⎫>-⎨⎬⎩⎭,②当0a ≠时,22(2)440a a a ∆=+-=+>,恒有两个实根122a x a --=,222a x a --+=,当0a ><,解集为22a x x a ⎧--⎪<⎨⎪⎩或x >⎪⎭;当0a <时,222424a a a a,解集为x ⎧⎪<<⎨⎪⎪⎩⎭,综上所述:0a =时,解集为12x x ⎧⎫>-⎨⎬⎩⎭;0a >时,解集为x x ⎧⎪<⎨⎪⎩或x >⎪⎭;0a <时,解集为22a x a ⎧--⎪<<⎨⎪⎪⎩⎭.3.(2020·安徽省亳州市第一中学)解关于x 的不等式:()21220ax a x +-->.【答案】当0a =时,解集为()2,+∞,当0a >时,解集为:()1(,)2,a -∞-⋃+∞,当102a -<<时,不等式的解集为:12,a ⎛⎫-⎪⎝⎭,当12a <-时,不等式的解集为:1,2a ⎛⎫- ⎪⎝⎭, 当12a =-时,不等式的解集为:∅. 【解析】①当0a =时,原不等式可化为:20x ->,可得不等式的解集为()2,+∞, ②当0a >时,原不等式可化为:1(2)0x x a ⎛⎫-+> ⎪⎝⎭, 不等式的解集为:()1(,)2,a-∞-⋃+∞; ③当0a <时,原不等式可化为:1(2)0x x a ⎛⎫-+< ⎪⎝⎭, 当102a -<<时,不等式的解集为:12,a ⎛⎫- ⎪⎝⎭,当12a <-时,不等式的解集为:1,2a ⎛⎫- ⎪⎝⎭,当12a =-时,不等式的解集为:∅. 易错点5 恒成立和存在问题【例5】(1)设函数()222f x ax x =-+,对任意的()1,4x ∈都有()0f x >,则实数a 的取值范围是( )A .[)1,+∞B .1,12⎛⎫⎪⎝⎭C .1,2⎡⎫+∞⎪⎢⎣⎭D .1,2⎛⎫+∞⎪⎝⎭(2)(2020·吉林汽车区第三中学)若“R x ∃∈,22390x ax -+<”,则实数a 的取值范围是( )A .(),22,⎡-∞-+∞⎣ B .(-C .((),-∞-⋃+∞D .-⎡⎣【答案】(1)D (2)C【解析】(1)∵对任意的()1,4x ∈,都有()2220f x ax x =-+>恒成立,∴()2221111242x a x x ⎡⎤-⎛⎫>=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦对任意的()1,4x ∈恒成立, ∵1114x <<,∴2111120,422x ⎡⎤⎛⎫⎛⎤--∈⎢⎥ ⎪ ⎥⎝⎭⎝⎦⎢⎥⎣⎦,∴实数a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.故选:D. (2)因为R x ∃∈,22390x ax -+<,所以()234290a ∆=--⨯⨯>,解得a >a <-.故选:C.【举一反三】1.(2020·辽源市第五中学校)若不等式210x ax ++≥对于一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则a 的最小值是( )A .0B .2-C .52-D .3-【答案】C【解析】因为不等式210x ax ++≥对于一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,所以1a x x ⎛⎫≥-+⎪⎝⎭对一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立, 所以max 110,2a x x x ⎡⎤⎛⎫⎛⎫⎛⎤≥-+∈ ⎪ ⎪⎢⎥⎥⎝⎭⎝⎦⎣⎦⎝⎭, 又因为()1f x x x =+在10,2⎛⎤ ⎥⎝⎦上单调递减,所以()min 1522f x f ⎛⎫== ⎪⎝⎭,所以52a ≥-,所以a 的最小值为52-, 故选:C. 2.(2020·浙江)已知关于x 的不等式2230ax x a -+<在(]0,2上有解,则实数a 的取值范围是( )A .⎛-∞ ⎝⎭ B .4,7⎛⎫-∞ ⎪⎝⎭ C .⎫∞⎪⎪⎝⎭ D .4,7⎛⎫+∞ ⎪⎝⎭【答案】A【解析】(]0,2x ∈时,不等式可化为32a ax x+<; 当0a =时,不等式为02<,满足题意;当0a >时,不等式化为32x x a +<,则223x a x >=,当且仅当x =所以a ,即0a <<; 当0a <时,32x x a+>恒成立;综上所述,实数a 的取值范围是(,3-∞ 答案选A 3.(2020·江苏省邗江中学)命题“2,2390x R x ax ∃∈-+<”为假命题,则实数a 的取值范围为( )A .)(⎡∞⋃-∞⎣+B .⎡⎣C .)⎡∞⎣D .(-∞ 【答案】B 【解析】“2,2390x R x ax ∃∈-+<”为假命题,等价于“2,2390x R x ax ∀∈-+≥”为真命题,所以()2=3890a ∆-⨯≤所以a ⎡∈⎣,则实数a 的取值范围为⎡⎣.故选:B. 4.(2020·江苏周市高级中学)已知函数()24x x a f x x++=,若对于任意[)1,x ∈+∞,()0f x >恒成立,则实数a 的取值范围为( )A .[)5,+∞B .()5,-+∞C .()5,5-D .[]5,5-【答案】B 【解析】因为对于任意[)1,x ∈+∞,()0f x >恒成立,所以240x x a ++>对[)1,x ∈+∞恒成立, 所以()2max 4a x x>--,[)1,x ∈+∞, 又因为24y x x =--的对称轴为2x =-,所以24y x x =--在[)1,+∞上单调递减,所以()()2max 4145x x--=--=-,所以5a >-,故选:B.1.(2020·湖南)若不等式212x mx +>在R 上恒成立,则实数m 的取值范围是() A .()(),11,-∞-⋃+∞B .(][),11,-∞-+∞C .[]1,1-D .()1,1-【答案】D【解析】由题意,一元二次不等式2210x mx -+>在R 上恒成立,所以()2240m ∆=--<,解得()1,1m ∈-.故选:D. 2.(2020·云南昆明一中)不等式111x ≥-的解集为( ) A .(-∞,1)∪[2,+∞)B .(-∞,0]∪(1,+∞)C .(1,2]D .[2,+∞) 【答案】C【解析】不等式111x -等价于(1)(2)0x x --且10x -≠,解得12x <, ∴不等式的解集为(1,2].故选:C .3.(2020·江苏省响水中学)已知函数()()2221f x m x mx =+++R ,则实数m 的取值范围是( ) A .[]22-,B .[]1,2-C .[][)2,12,--+∞ D .(][),12,-∞-⋃+∞ 【答案】B【解析】因为函数()()2221f x m x mx =+++R ,避错强化所以()22210m x mx +++≥对任意x ∈R 恒成立, 若20m +=,即2m =-时,则不等式可化为410x -+≥,解得14x ≤,不满足题意; 若20m +≠,即2m ≠-时,只需()2204420m m m +>⎧⎨∆=-+≤⎩,解得12m -≤≤. 故选:B.4.关于x 的不等式22(1)(1)10a x a x ----<的解集为R ,则实数a 的取值范围为( )A .3,15⎛⎫- ⎪⎝⎭ B .3,15⎡⎤-⎢⎥⎣⎦C .3,1{1}5⎛⎤-⋃- ⎥⎝⎦D .3,15⎛⎤- ⎥⎝⎦【答案】D 【解析】当210a -=时,1a =±,若1a =,则原不等式可化为10-<,显然恒成立;若1a =-,则原不等式可化为210x -<,不恒成立,所以1a =-舍去;当210a -≠时,因为22(1)(1)10a x a x ----<的解集为R ,所以只需210a -<且22[(1)]4(1)0a a ∆=--+-<,解得315a -<<. 综上,实数a 的取值范围为3,15⎛⎤- ⎥⎝⎦.故选:D.5.(2020·浙江温州)若关于x 的不等式220x ax +-<在区间[]1,5上有解,则实数a 的取值范围是( ) A .23,15⎛⎫- ⎪⎝⎭ B .23,5⎛⎤-∞- ⎥⎝⎦ C .(),1-∞ D .(],1-∞【答案】C【解析】因为关于x 的不等式220x ax +-<在区间[]1,5上有解, 所以222x a x x x-<=-在[1,5]上有解, 易知2=-y x x 在[1,5]上是减函数,所以[1,5]x ∈时,max2211x x ⎛⎫-=-= ⎪⎝⎭, 所以1a <.故选:C6.(2020·山西)若关于x 的不等式22840x x a --+≤在13x ≤<内有解,则实数a 的取值范围是( ) A .12a ≥B .10a ≤C .12a ≤D .10a ≥【答案】C【解析】由题意,可得2284a x x -≥--,设()()222842212f x x x x =--=--,若13x ≤<,则()1210f x -≤≤-,不等式22840x x a --+≤在13x ≤<内有解,则只需()min a f x -≥,即12a -≥-,解得12a ≤.故选:C7.(2020·北京人大附中高三月考)已知方程210x ax +-=在区间[]0,1上有解,则实数a 的取值范围是( )A .[)0,+∞B .(),0-∞C .(],2-∞D .[]2,0- 【答案】A【解析】方程210x ax +-=在区间[]0,1上有解,当0x =时,方程无解; 当01x <≤时,则有211x a x x x-==-,令1()g x x x =-, 2221(1)'()10x g x x x -+=--=<,即()g x 在01x <≤时为减函数, 由于(1)0g =,所以,当01x <≤时,()0g x ≥,所以,只要0a ≥,方程210x ax +-=在区间[]0,1上有解故选:A8.(2020·湖北高三月考)若[]1,2x ∃∈-,使得不等式220x x a -+<成立,则实数a 的取值范围为( ) A .3a <-B .0a <C .1a <D .3a >-【答案】C【解析】因为[]1,2x ∃∈-,使得不等式220x x a -+<成立,所以[]1,2x ∃∈-,使得不等式2+2a x x <-成立,令2()2f x x x =-+,[]1,2x ∈-, 因为对称轴为1x =,[]1,2x ∈-所以max ()(1)1f x f ==,所以1a <,故选:C9.(2020·福建厦门一中)(多选)使得2601x x x -->-成 立的充分非必要条件有( ) A .{}21x x -<<B .{}3x x >C .{}01x x <<D .{21x x -<<或}3x > 【答案】ABC 【解析】由2601x x x -->-可得()()()1320x x x --+>,如下图所示:所以,不等式2601x x x -->-的解集为{21x x -<<或}3x >, A 、B 、C 选项中的集合均为集合{21x x -<<或}3x >的真子集, 因此,使得2601x x x -->-成 立的充分非必要条件有A 、B 、C 选项. 故选:ABC.10.(2020·江苏省太湖高级中学)(多选)已知命题2:,10p x R x ax ∃∈++>,则命题p 成立的一个充分不必要条件可以是下列选项中的( )A .[1,1]a ∈-B .(2,2)a ∈-C .[2,2]a ∈-D .1{}2a ∈ 【答案】ABCD【解析】因为命题2:,10p x R x ax ∃∈++>,且函数21y x ax =++开口向上,所以当命题p 为真命题时,a R ∈,故命题p 的等价条件为a R ∈,故命题p 成立的一个充分不必要条件可以是a R ∈的真子集,故ABCD 均满足,故选:ABCD.11.(2020·湖南)(多选)下列结论正确的是( )A .当x >02 B .当x >3时,x +1x的最小值是2 C .当x <32时,2x -1+423x -的最小值是4 D .设x >0,y >0,且2x +y =1,则21x y+的最小值是9 【答案】AD【解析】对于选项A ,当0x >0>2≥=,当且仅当1x =时取等号,结论成立,故A 正确;对于选项B ,当3x >时,12x x +≥=,当且仅当1x =时取等号,但3x >,等号取不到,因此1x x +的最小值不是2,故B 错误;对于选项C ,因为32x <,所以320x ->,则4421322222332y x x x x ⎛⎫=-+=--++≤-=- ⎪--⎝⎭,当且仅当43232x x -=-,即12x =时取等号,故C 错误;对于选项D ,因为0x >,0y >,则()222521512y x x y x y x y x y ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当22y x x y =,即13x y ==时,等号成立,故D 正确. 故选:AD .12(2020·福建福州)(多选)若0,0m n >>,且111m n +=,则下列说法正确的是( ) A .mn 有最大值4B .2211m n +有最小值12C .0,0m n ∀>>≤D .0,0m n ∃>>,使得2m n +=【答案】BC 【解析】因为111m n +=,所以111m n =+≥4mn ≥,故A 不正确; 又2221111221()142m n m n mn +=+-≥-=,故B 正确;211()12m n =+≤=≤,故C 正确; 联立2111m n m m+=⎧⎪⎨+=⎪⎩,得22m n mn +=⎧⎨=⎩,所以,m n 是方程2220x x +=-的两根,又此方程无解,故不存在0,0m n >>使得2m n +=,故D 不正确.故选:BC13.(2020·江苏高一期中)(多选)下列函数中最小值为2的是( )A .1y x x=+ B.y = C.y = D .4(2)2y x x x =+>-+ 【答案】BD【解析】0x <时,10y x x=+<,A 错;0>,2y =≥==,即1x =时等号成立,B 正确;同理2y =≥,=等号才能成立,=故2取不到,C 错;2x >-,则20x +>,14(2)22222y x x x x =+=++-≥=++,当且仅当422x x +=+,即0x =时等号成立,D 正确. 故选:BD .14.(2020·江苏常熟中学)不等式2411x x x --≥-的解集为______.【答案】[1,1)[3,)-+∞ 【解析】不等式2411x x x --≥-化为24101x x x ---≥-,22301x x x --≥-,(1)(3)(1)010x x x x +--≥⎧⎨-≠⎩, 解得3x ≥或11x -≤<.故答案为:[1,1)[3,)-+∞.15.(2020·江苏省响水中学高一期中)设集合{}{}20215,0A x x B x x a =≤-≤=+< ,若A B =∅ ,则实数a 的取值围为_________. 【答案】14a ≥- 【解析】因为{}{}20215,0A x x B x x a =≤-≤=+<,且AB =∅, 所以{}21,302x x a ⎡⎤⋂+<=∅⎢⎥⎣⎦ ,即 当132x ≤≤时,2≥-a x 恒成立,()2max 14a x ≥-=-,所以14a ≥-. 故答案为: 14a ≥-16.关于x 的不等式240x x m --≥对任意[]1,1x ∈-恒成立,则实数m 的取值范围是_______.【答案】3m ≤-【解析】∵22()4(2)4f x x x m x m =--=---在[]1,1-上为减函数,且不等式240x x m --≥对任意[]1,1x ∈-恒成立,则只需min ()(1)30f x f m ==--≥,即3m ≤-.故答案为:3m ≤-.17.(2020·江苏镇江)已知命题“R x ∀∈,210x ax ++>”是假命题,则实数a 的取值范围为______.【答案】(,2][2,)-∞-+∞【解析】∵命题“R x ∀∈,210x ax ++> ”是假命题,∴R x ∃∈,210x ax ++≤是真命题,即R x ∃∈使不等式210x ax ++≤有解;所以240a ∆=-≥,解得:2a ≤-或2a ≥.∴实数a 的取值范围是(,2][2,)-∞-+∞.故答案为:(,2][2,)-∞-+∞.18.(2020·浙江杭州·高三期中)已知0x >,0y >,且21x y +=,则2112y x y++的最小值为________.12【解析】因为21x y +=,0x >,0y >,则210y x =->,所以01x <<, 所以2111121112111y x y x x x xx --+=+=-+++++- ()()()2112111111121211211x x x x x x x x -⎡⎤+⎛⎫=-++++-=-++++⎡⎤⎢⎥ ⎪⎣⎦+-+-⎝⎭⎣⎦ ()(2111111131313211222x x x x ⎡-⎡⎤+=-+++≥-++=-++=⎢⎢⎥+-⎢⎣⎦⎣当且仅当()21111x x x x-+=+-,即3x =-3+01x <<范围内,舍去)时,等号成立. 12. 19.(2020·江苏南京河西外国语学校)在实数范围内解下列不等式.(1)2340x x -->;(2)213x x-≤-. 【答案】(1){x 1x <-或43x >};(2)5,(3,)2⎛⎤-∞+∞ ⎥⎝⎦. 【解析】(1)不等式2340x x -->可化为(1)(34)0x x +->,解得1x <-或43x >, 所以该不等式的解集为{1x x <-或43x ⎫>⎬⎭;(2)∵213x x -≤-,∴2303x x x--+≤-, 即2503x x -≥-,所以(25)(3)0x x --≥且30x -≠ 解得:3x >或52x ≤, 故不等式的解集是5,(3,)2⎛⎤-∞+∞ ⎥⎝⎦.20.(2020·上海市崇明中学高三期中)解下列不等式:(1)212302x x -+-≤; (2)5331x x +-≤.【答案】(1)35,⎛⎡⎫+-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭;(2)[3,1)-. 【解析】(1)由212302x x -+-≤可得: 20461x x ≤-+,解得:x 或x ≥,故解集为:35,⎛⎡⎫+-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭ (2)由5331x x +-≤化简为:531x x +--3≤0, 即261x x +-≤0,等价于(26)(1)010x x x +-≤⎧⎨-≠⎩, 解得31x -≤<,故解集为[3,1)-.218.(2020·黑龙江牡丹江一中高三开学考试(理))解下列不等式. (1)(1)(2)(3)0x x x x -+->;(2)2112x x +≥-. 【答案】(1)(,2)(0,1)(3,)-∞-+∞;(2)(,3](2,)-∞-+∞. 【解析】(1)方程(1)(2)(3)0x x x x -+-=的根为:2,0,1,3-,利用数轴穿根法可得:所以不等式的解集为(,2)(0,1)(3,)-∞-+∞; (2)()()212131*********x x x x x x x x +++≥⇒-≥⇒≥⇒+-≥---且2x ≠, 解得(,3](2,)x ∈-∞-+∞. 22.(2020·湖北武汉)解关于x 的不等式(ax -1)(x +1)>0.【答案】答案不唯一,具体见解析.【解析】若a =0,则原不等式为一元一次不等式()10x -+>,解得1x <-,故解集为(-∞,-1). 当a ≠0时,方程(ax -1)(x +1)=0的两根为x 1=1a ,x 2=-1. 当a >0时,12x x >,所以解集为(-∞,-1)∪1,a ⎛⎫+∞ ⎪⎝⎭; 当-1<a <0,即1a <-1时,所以解集为1,1a ⎛⎫- ⎪⎝⎭; 当a <-1,即0>1a >-1时,所以解集为11,a ⎛⎫- ⎪⎝⎭; 当a =-1时,不等式化为()210x -+>,所以解集为∅.23(2020·辽宁沈阳二中)解关于x 的不等式2(41)40ax a x -++>.【答案】答案见解析【解析】由题意可知,2(41)40ax a x -++>可化为(1)(4)0ax x --> (1)当0a =时,不等式化为40x -<,解得4x <,(2)当10a <时,不等式化为()140x x a ⎛⎫--< ⎪⎝⎭,解得14x a <<, (3)当104a <<时,不等式化为1(4)0x x a ⎛⎫--> ⎪⎝⎭,解得1x a <或4x >, (4)当14a=时,不等式化为2(4)0x ->,解得4x ≠,(5)当14a >时,不等式化为1(4)0x x a ⎛⎫--> ⎪⎝⎭,解得4x <或1x a >, 综上所述,0a =时,不等式的解集为(,4)-∞0a <时,不等式的解集为1,4a ⎛⎫ ⎪⎝⎭; 14a >时,不等式的解集为1,(4,)a ⎛⎫-∞⋃+∞ ⎪⎝⎭; 14a =时,不等式的解集为(,4)(4,)-∞+∞; 104a <<时,不等式的解集为1(,4),a ⎛⎫-∞⋃+∞ ⎪⎝⎭.。
备战2021年高考数学一轮复习易错题08不等式含解析
易错点08 不等式-备战2021年高考数学一轮复习易错题【典例分析】(2020年普通高等学校招生全国统一考试数学)已知a >0,b 〉0,且a +b =1,则( ) A 。
2212a b +≥B 。
122a b ->C 。
22log log 2a b +≥-D.≤【答案】ABD 【解析】 【分析】根据1a b +=,结合基本不等式及二次函数知识进行求解. 【详解】对于A,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,当且仅当12a b ==时,等号成立,故A 正确;对于B,211a b a -=->-,所以11222a b -->=,故B 正确;对于C ,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭, 当且仅当12a b ==时,等号成立,故C 不正确;对于D,因为2112a b =+++=,≤,当且仅当12a b ==时,等号成立,故D 正确;故选:ABD【点睛】本题主要考查不等式的性质,综合了基本不等式,指数函数及对数函数的单调性,侧重考查数学运算的核心素养。
【易错警示】易错点1.随意消项致误 【例1】解不等式;22(1025)(43)0x x x x -+-+≥.【错解】原不等式可化为:2(5)(1)(3)0x x x ---≥,因为2(5)x -≥,所以(1)(3)0x x --≥,所以31x x ≥≤或,故原不等式的解集为:{}|31x x x ≥≤或. 【错因】错误是由于随意消项造成的,事实上,当2(5)0x -=时,原不等式亦成立.【正解】原不等式可化为:50(1)(3)0x x x -≠⎧⎨--≥⎩或50x -=,解得3x ≥或1x ≤或5x =.所以原不等式的解集为:{}315x x x ≥≤=x|或或易错点2.认为分式不等式与二次不等式等价致误 【例2】解不等式;102x x -≤+. 【错解】原不等式可化为:(1)(2)0x x -+≤,解得21x -≤≤,所以原不等式的解集为[2,1]-.【错因】没有考虑分母不能为0【正解】原不等式可化为:(1)(2)02x x x -+≤⎧⎨≠-⎩,解得21x -<≤, 所以原不等式的解集为(2,1]-.易错点3.不等式两边同乘一个符号不确定的数致误 【例3】解不等式;122x x -≤+. 【错解】不等式两边同乘以2x +得:12(2)x x -≤+,解得5x ≥-, 所以原不等式的解集为[5,)-+∞. 【错因】两边同乘以2x +,导致错误【正解】原不等式可化为:1520022x x x x -+-≤⇒≥++,解得5x ≤-或2x >-,所以原不等式的解集为(,5](2,)-∞--+∞.易错点4.漏端点致误 【例4】集合{}{}2|20,|3A x x x B x a x a =--≤=<<+,且A B φ=,则实数的取值范围是______ 【错解】{}{}2|20|12A x xx x x =--≤=-≤≤ ,若使AB φ=,需满足231a a >+<-或.解得24a a ><-或,所以实数a 的取值范围是24a a ><-或.【错因】忽视了集合{}|12A x x =-≤≤的两个端点值-1和2,其实当2a =时{}|25B x x =<<,满足A B φ=;当31a +=-时,即4a =-时也满足AB φ=.【正解】{}{}2|20|12A x xx x x =--≤=-≤≤若使A B φ=,需满足231a a ≥+≤-或,解得24a a ≥≤-或,所以实数a 的取值范围是24a a ≥≤-或. 易错点5.忽视基本不等式成立的前提“正数” 【例5】求函数1y x x=+的值域.【错解】因为12y x x=+≥=,所以函数 1y x x=+的值域为[2,)+∞. 【错因】没有考虑为负数的情形.【正解】由题意,函数1y x x=+的定义域为{|0}x x ≠.当0x >时,12y x x=+≥=,当1x =时取得等号;当0x <时,11()2y x x x x=+=--+≤-=--,当1x =-时取得等号. 综上,求函数1y x x=+的值域是(,2][2,)-∞-+∞. 易错点6.忽视基本不等式取等的条件 【例6】求函数2y =的最小值.【错解】函数222y ===≥,所以函数的最小值为2.【错因】使用基本不等式求函数的最值时,一定验证等号成立的条件即a b a b+≥=才能取等号.上述解法在等号成立时,在实数范围内是不成立的. 【正解】22y ===令2t ≥,1y t t =+在2t ≥时是单调递增的,115222y t t ∴=+≥+=. 故函数的最小值是52.易错点7.多次使用基本不等式,忽视等号是否同时成立【例7】已知两个正实数,x y ,满足4x y +=,求14x y+的最小值.【错解】由已知得44x y xy =+≥≤,142x y +≥=≥,所以14x y +最小值是2.【错因】两次使用基本不等式,其中4xy ≤等号成立必须满足x y =,而14x y+≥的等号成立时,必须有4x y =,因为均为正数,所以两个等号不会同时成立,所以上述解法是错误的. 【正解】141444()()()59x y x y x y x y y x +=++=++≥,当且仅当14x y=且4x y +=,即48,33x y ==时取等号,1494x y ∴+≥,即14x y +最小值为94.【变式练习】一、单选题1.(2020·贵州铜仁伟才学校高一期中)已知0a b <<,则下列不等式正确的是( ) A .22a b <B .11a b <C .22ab < D .2ab b<【答案】C 【解析】试题分析:取a =-2,b =—1,代入到各个选项中得到正确答案为C .2.(2020·河北省高二开学考试)若正数a ,b 满足31a b +=,则13a b+的最小值为( ) A .12 B .14C .16D .18【答案】C【解析】因为31a b +=,所以()131333310b a a b a b a b a b ⎛⎫+=++=++ ⎪⎝⎭,因为a ,b 为正数,所以33b a a b +≥,当且仅当33b a a b =,即14a b ==时取等号, 故13a b +的最小值为16,故选:C 。
中考数学 一元一次不等式易错压轴解答题(含答案)100
中考数学一元一次不等式易错压轴解答题(含答案)100一、一元一次不等式易错压轴解答题1.某电器商城销售、两种型号的电风扇,进价分别为元、元,下表是近两周的销售情况:销售时段销售型号销售收入种型号种型号第一周台台元第二周台台元(1)求A、B两种型号的电风扇的销售单价;(2)若商城准备用不多于元的金额再采购这两种型号的电风扇共台,求种型号的电风扇最多能采购多少台?(3)在(2)的条件下商城销售完这台电风扇能否实现利润超过元的目标?若能,请给出相应的采购方案;若不能,请说明理由.2.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:总利润单件利润销售量商品价格A B进价元件12001000售价元件13501200B两种商品各多少件?(2)商场第2次以原进价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原售价销售,而B商品按原售价打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?3.对非负实数x“四舍五入”到个位的值记作<x>,即:当n为非负整数时,若n-≤x<n+,则<x>=n.如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…. (1)填空:①<π>=________;②如果<2x-1>=3,则实数x的取值范围为________;(2)举例说明<x+y>=<x>+<y>不恒成立;(3)求满足<x>= x的所有非负实数x的值.4.某服装厂生产一种西装和领带,西装每套定价400元,领带每条定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案①:买一套西装送一条领带;方案②:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20)(1)若该客户按方案①购买,需付款________元(用含x的代数式表示);若该客户按方案②购买,需付款________元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法并计算出此种方案的付款金额.5.(1)①如果 a-b<0,那么 a________b;②如果 a-b=0,那么 a________b;③如果 a-b>0,那么 a________b;(2)由(1)你能归纳出比较a与b大小的方法吗?请用文字语言叙述出来.(3)用(1)的方法你能否比较3x2-3x+7与4x2-3x+7的大小?如果能,请写出比较过程.6.某公园的门票每张20元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该公园除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A,B,C三类,A类年票每张240元,持票进入该园区时,无需再购买门票;B类年票每张120元,持票者进入该园区时,需再购买门票,每次4元;C类年票每张80元,持票者进入该园区时,需再购买门票,每次6元. (1)如果只能选择一种购买年票的方式,并且计划在一年中花费160元在该公园的门票上,通过计算,找出可进入该园区次数最多的方式.(2)一年中进入该公园超过多少次时,A类年票比较合算?7.在一次知识竞赛中,甲、乙两人进入了“必答题”环节.规则是:两人轮流答题,每人都要回答20个题,每个题回答正确得a分,回答错误或放弃回答扣b分.当甲、乙两人恰好都答完12个题时,甲答对了8个题,得分为64分;乙答对了9个题,得分为78分. (1)求a和b的值;(2)规定此环节得分不低于120分能晋级,甲在剩下的比赛中至少还要答对多少个题才能顺利晋级?8.某小区准备新建60 个停车位,以解决小区停车难的问题。
初一数学下册:不等式5大易错题型答案解析
初一数学下册:不等式5大易错题型答案解析一、不等式的概念,性质及解集表示1.不等式一般地,用符号'<'(或'≤')、'>'(或'≥')连接的式子叫做不等式。
能使不等式成立的未知数的值,叫做不等式的解。
2.不等式的基本性质温馨提示:不等式的性质是解不等式的重要依据,在解不等式时,应注意:在不等式的两边同时乘以(或除以)一个负数时,不等号的方向一定要改变。
3.不等式的解集及表示方法【1】不等式的解集:一般地,一个含有未知数的不等式有无数个解,其解是一个范围,这个范围就是不等式的解。
【2】不等式的解集的表示方法:①用不等式表示;②用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解。
例题解析一、今年我区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设购买甲种树苗x棵,有关甲、乙两种树苗的信息如图所示.(1)当n=500时,①根据信息填表(用含x的式子表示);树苗类型甲种树苗乙种树苗购买树苗数量(单位:棵) x购买树苗的总费用(单位:元)②如果购买甲、乙两种树苗共用去25 600元,那么甲、乙两种树苗各购买了多少棵?(2)要使这批树苗的成活率不低于92%,且使购买这两种树苗的总费用为26 000元,求n的最大值.二、某镇水库的可用水量为12 000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只够维持居民15年的用水量.w(1)年降水量为多少万立方米?每人年平均用水量为多少立方米?(2)政府号召节约用水,希望将水库的使用年限提高到25年,则该镇居民人均每年需节约多少立方米水才能实现目标?(3)某企业投入1 000万元设备,每天能淡化5 000 m3海水,淡化率为70%.每淡化1 m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本(结果精确到个位)?来源:本相关素材来源于网络,如有侵权,请联系后台删除。
不等式易错题解析精选
高中数学不等式部分错题精选一、选择题:1.设,,1x y R x y ∈+>则使成立的充分不必要条件是A 1x y +≥B 1122x y >>或 C 1x ≥ D x<-1错解:选B,对充分不必要条件的概念理解不清,“或”与“且”概念不清,正确答案为D 。
2.不等式(1)20x x -+≥的解集是A {|1}x x >B {|1}x x ≥C {|21}x x x ≥-≠且D {|21}x x x =-≥或 错解:选B ,不等式的等价转化出现错误,没考虑x=-2的情形。
正确答案为D 。
3.已知1324a b a b -<+<<-<且,则2a+3b 的取值范围是A 1317(,)22-B 711(,)22-C 713(,)22-D 913(,)22-错解:对条件“1324a b a b -<+<<-<且”不是等价转化,解出a,b 的范围,再求2a+3b 的范围,扩大了范围。
正解:用待定系数法,解出2a+3b=52(a+b)12-(a-b),求出结果为D 。
4.若不等式ax 2+x+a <0的解集为 Φ,则实数a 的取值范围( )A a ≤-21或a ≥21 B a <21 C -21≤a ≤21 D a ≥21正确答案:D 错因:学生对一元二次不等式与二次函数的图象之间的关系还不能掌握。
5.已知函数y=㏒21(3x )52+-ax 在[-1,+∞)上是减函数,则实数a 的取值范围( )A a ≤-6B -60<a <-6C -8<a ≤-6D -8≤a ≤-6正确答案:C 错因:学生忘记考虑定义域真数大于0这一隐含条件。
6.f(x)=︱2x—1|,当a <b <c 时有f(a)>f(c)>f(b)则( ) A a <0,b <0,c <0 B a <0,b >0,c >0 C 2a-<2c D 22+ac <2 正确答案:D 错因:学生不能应用数形结合的思想方法解题。
不等式性质中常见错误
不等式性质中常见错误不等式,是高中数学的重要内容,是每年高考的重点,不等式性质比较多,因而具有较强灵活性,一不小心,就很容易出错,下面把常见的错误列举下。
一、正负,小心应付例1、判断下列命题的真假:①2x x >,则1x >,②,a b c d >>,则lg()lg()a d b c ->-,③a b >分析:①不等式中有这样的性质:⑴,0a b c >>,则ac bc >,不等式两边乘上一个正数,不改变不等号的方向,⑵,0a b c ><,则ac bc <,不等式两边乘上一个负数,改变不等号的方向。
在不等式变形过程中,乘除都要注意乘除这个数的正负,它直接影响到不等号的方向。
因为不知道x 的正负,所以不能直接除。
第①题,错误。
②关于对数的不等式,在对数中,要求真数大于0,所以要求,a d b c --大于0,但条件中,没有明确a 与d 和b 与c 的大小,所以不能确定a d -,b c -是否一定大于0,第②题,错误。
③好像是正确的,因为不等式中好像有这样的公式,但原公式是0a b >>,>0a b >>,则n n a b >,如果,a b 小于0,则这两个公式不成立,题目中的,a b 并没有确定是否大于0,所以③是错误的。
因为我们对正数很熟悉,所以在不等式中,常常把不定量默认为正数,而忽略了负数,以后我们看到不定量,一定要想到它会不会是负数或0。
二、0,特殊对待例2、判断下列命题的真假:①a b >,则22ac bc >,②a b >,则11a b< 分析:①一看到这个题,很多学生肯定认为是:不等式两边乘上一个正数,不改变不等号的方向,所以是正确的。
但20c ≥,如果0c =,则0乘以任何数都是等于0的,则22ac bc =,所以①错误。
②这个倒数法则,用特殊法来验证,两个都是正数是正确的,两个都是负数也是正确的,但忽略了0,0不能做分母的,如果a 或b ,其中一个为0,则这个命题不成立。
备战2023年高考数学考试易错题-易错点 一元二次不等式及一元二次方程
专题 一元二次不等式、一元二次不等式易错知识1.解分式不等式时要注意分母不能为零;2.“大于取两边,小于取中间”使用的前提条件是二次项系数大于零; 3.解决有关一元二次不等式恒成立问题要注意给定区间的开闭; 4. 有关一元二次方程根的分布条件列不全致错;5. 解一元二次不等式时要注意相应的一元二次方程两根的大小关系;易错分析一、忽视分式不等式中的分母不能为零致错1.不等式2x +1≤1的解集是________.【错解】由2x +1≤1得2x +1-1≤0,得2-x -1x +1≤0,得x -1x +1≥0,得(x -1)(x +1)≥0,得x ≤-1或x ≥1,所以原不等式的解集为{x |xx ≤-1或x ≥1}.【错因】因为x +1为分母,所以x +1不等于零。
【正解】由2x +1≤1得2x +1-1≤0,得2-x -1x +1≤0,得x -1x +1≥0,得x -1=0或(x -1)(x +1)>0,得x =1或x <-1或x >1,得x <-1或x ≥1,所以原不等式的解集为{x |x <-1或x ≥1}.二、忽视一元二次不等式中的二次项系数不能为零致错2.若不等式mx 2+2mx -4<2x 2+4x 对任意x 都成立,则实数m 的取值范围是( )A .(-2,2)B .(2,+∞)C .(-2,2]D .[-2,2]一元二次不等式、一元二次不等式分式不等式忽视分母不为零解一元二次不等式忽视二次项系数的正负一元二次方程根的分布条件列举不全一元二次不等式恒成立忽视区间的开闭解一元二次不等式忽视两根的大小关系【错解】原不等式可整理为(2-m )x 2+(4-2m )x +4>0.若该不等式恒成立,必须满足⎩⎪⎨⎪⎧2-m >0,(4-2m )2-4×4(2-m )<0,解得-2<m <2.综上知实数m 的取值范围是(-2,2), 选A .【错因】没有对二次项系数m 讨论。
高一数学不等式知识点总结及例题
高一数学不等式知识点总结及例题一、不等式知识点总结。
(一)不等式的基本性质。
1. 对称性:如果a > b,那么b < a;如果b < a,那么a > b。
2. 传递性:如果a > b,b > c,那么a > c。
3. 加法单调性:如果a > b,那么a + c>b + c。
- 推论1:移项法则,如果a + b>c,那么a>c - b。
- 推论2:同向不等式可加性,如果a > b,c > d,那么a + c>b + d。
4. 乘法单调性:如果a > b,c>0,那么ac > bc;如果a > b,c < 0,那么ac < bc。
- 推论1:同向正数不等式可乘性,如果a > b>0,c > d>0,那么ac > bd。
- 推论2:乘方法则,如果a > b>0,那么a^n>b^n(n∈ N,n≥slant1)。
- 推论3:开方法则,如果a > b>0,那么sqrt[n]{a}>sqrt[n]{b}(n∈N,n≥slant2)。
(二)一元二次不等式及其解法。
1. 一元二次不等式的一般形式。
- ax^2+bx + c>0(a≠0)或ax^2+bx + c < 0(a≠0)。
2. 一元二次函数y = ax^2+bx + c(a≠0)的图象与一元二次不等式的解集关系。
- 当a>0时,Δ=b^2-4ac:- 若Δ>0,方程ax^2+bx + c = 0有两个不同的实根x_1,x_2(x_1,则不等式ax^2+bx + c>0的解集为{xx < x_1或x>x_2},不等式ax^2+bx + c < 0的解集为{xx_1。
- 若Δ = 0,方程ax^2+bx + c = 0有两个相同的实根x_0=-(b)/(2a),则不等式ax^2+bx + c>0的解集为{xx≠-(b)/(2a)},不等式ax^2+bx + c < 0的解集为varnothing。
高一数学不等式中的易错点(学生)
2,等式两边同时乘以大于零的数,不等号方向不变
3,等式两边同时乘以一个小于零的数,不等号的方向改变
例4,解不等式
随堂练习
1,解不等式
2,解不等式
四,基本不等式中等号的条件
基本不等式有几种形式,它们分别是:
(1)
(2) ,则
(3) ★(2)(3)(4)(5)中当且仅当a=b时取等号
学科教师辅导讲义
年级:高一辅导科目:数学课时数:
学生姓名:学科老师:
课题
集合、不等式中的易错点
教学目的
针对集合、不等式学习中的易错点,加强学习,提升学生解题能力
教学内容
一.集合关系理解不透彻
集合 ,这里即包括 ,也包括 的可能。当 时,一定要注意此时, 中的每个元素都是 中的元素。
例1,已知集合 ,集合 ,且 ,求 的取值范围。
,则
6.若正数 满足 ,则 的取值范围是___________
7.已知 , 且 ,则 的最小值是
8.已知正数 、 满足 ,则 的最小值为
9.已知x>0,y>0且x+2y=1,求xy的最大值,及xy取最大值时的x、y的值.
10.已知 ,求函数 的最小值。
(4) ,
其中常常用到的是(2),运用这个不等式可以求得最大值或者最小值。但一定要注意其条件
错误点一,忽视符号条件
例5,已知 ,求 的取值范围
小明解法如下: ,所以, 的取值范围为
小明的解法对吗?如果不对,请找出错在哪里?
随堂练习
已知 ,求 的最小值
错误点二,忽视等号条件
例6,求 的最小值
随堂练习
已知 ,求 的最大值。
易错02不等式(4个易错点+7个易错核心题型)(学生版) 2025年高考数学大一轮复习(新高考版)
易错02不等式(4个易错点错因分析与分类讲解+7个易错核心题型60题强化训练)易错点1 忽视不等式中的等号而致误1. [江苏镇江一中等三校2023质检](多选)下列命题是真命题的为( )22.,A ac bc a b <<若则 ()22.,,21B a b R a b a b Î+>--若则.C a b >>则 22.0,b aD a b a ba b>>+>+若则易错点2 忽略基本不等式成立的条件致误2. [广东广州2023阶段练习](多选)下列函数中最小值为 8 的是( )16.ln ln A y x x=+16.sin sin B y x x=+2.44xx C y -=+ .D y =3. [陕西咸阳2022二模]若0,0x y >>且2x y +=,则下列结论中正确的是()22.1A x y +的最小值是1.4B xy 的最大值是21.C x y+的最小值是.2D +易错点3 忽视对二次项系数的分类讨论致误4. [安徽六安2023第五次质检]“10k -<<”是“关于x 的不等式()2220kx kx k +-+<恒成立”的().A 充分不必要条件 .B 必要不充分条件.C 充要条件 .D 既不充分也不必要条件5. [河南中原名校2022第二次联考]已知命题2,10p x R ax ax $Î-+<:,若命题p 是假命题,则实数a 的取值范围为 。
易错点4 要注意反比例函数的定义域6.[山东2022第二次联合检测]已知非零实数,m n 满足mne e >,则下列关系式一定成立的是()11.A m n< ()()22.ln 1ln 1B m n +>+ 11.C m n m n+>+ .D m m n n>【易错核心题型强化训练】一.不等关系与不等式(共4小题)1.(2023秋•揭西县期末)b 克糖水中含a 克糖(0)b a >>,若再加入m 克糖(0)m >,则糖水变甜了.请根据此事实提炼一个不等式( )A .a a mb b m+<+B .a a mb b m+>+C .a a mb b m-<-D .a ab b m<+2.(2023秋•兴文县校级期末)设a b c ……,且1是一元二次方程20ax bx c ++=的一个实根,则ca的取值范围为( )A .[2-,0]B .1[2-,0]C .[2-,12-D .[1-,1]2-3.(2023秋•绍兴期末)已知实数x ,y ,z 满足352x y y =-,532z y y =+,且x y <,则( )A .z y>B .01y <<C .2x z y+>D .2x z y+<4.(2023秋•阜宁县期末)已知0a >,0b >,且4a b +=,则下列结论正确的是( )A .4ab …B .111a b+…C .2216a b +…D .228a b +>二.基本不等式及其应用(共12小题)5.(2024•博野县校级开学)若1x >,则函数91y x x =+-的最小值为( )A .6B .7C .8D .96.(2023秋•五华区校级期末)若两个正实数x ,y 满足142x y +=,且不等式24yx m m +<-有解,则实数m 的取值范围是( )A .(1,2)-B .(-¥,2)(1-È,)+¥C .(2,1)-D .(-¥,1)(2-È,)+¥7.(2024•汕头二模)若实数a ,b 满足0a b <<,且1a b +=.则下列四个数中最大的是( )A .12B .22a b +C .2abD .a8.(2024•扬中市校级开学)已知正数x ,y 满足4x y +=,则下列选项不正确的是( )A .11x y+的最小值是4B .xy 的最大值是4C .22x y +的最小值是8D .(1)x y +的最大值是2529.(2023秋•怀仁市期末)下列命题正确的是( )A .若0a b >>,0m >,则a a mb b m+<+B .若正数a 、b 满足1a b +=,则114113a b +++…C .若0x >,则423x x--的最大值是2-D .若(2)x x y =-,0x >,0y >,则2x y +的最小值是 910.(2024•丰城市校级开学)下列说法正确的为()A .若0x >,则(2)x x -最大值为1B .函数y 的最小值为4C .1||2x x+…D .已知3a >时,43a a +-…,当且仅当43a a =-即4a =时,43a a +-取得最小值811.(2024•岳麓区校级一模)设a ,b 为两个正数,定义a ,b 的算术平均数为(,)2a bA a b +=,几何平均数为(,)G a b =(G a ,)(b A a …,)b ,这是我们熟知的基本不等式.上个世纪五十年代,美国数学家D .H .Lehmer 提出了“Lehmer 均值”,即11(,)p pp p p a b L a b a b --+=+,其中p 为有理数.下列关系正确的是( )A .0.5(L a ,)(b A a …,)bB .0(L a ,)(b G a …,)bC .2(L a ,1)(,)b L a b …D .1(n L a +,)(,)n b L a b …12.(2023秋•灌南县校级期末)已知a ,b 为正实数,且8ab a b ++=,则( )A .ab 的最大值为4B .22(1)(1)a b +++的最小值为18C .a b +的最小值为4D .1111a b +++13.(2024•金东区校级模拟)已知a ,b R Î,若222a b ab +-=,则ab 的取值范围是 .14.(2024春•上城区校级期中)已知实数0a >,0b < .15.(2023秋•金平区期末)在4´□9+´□60=的两个□中,分别填入两自然数,使它们的倒数和最小,应分别填上 和 .16.(2023秋•濠江区校级期末)若实数a ,b ,c 满足222a b a b ++=,2222a b c a b c ++++=,则c 的最大值是 .三.其他不等式的解法(共2小题)17.(2023秋•普陀区校级期末)不等式11x<的解集为 .18.(2023秋•吉林期末)不等式2112x x ++…的解集是 .四.指、对数不等式的解法(共6小题)19.(2024•宣城模拟)若3a x <<是不等式12log 1x >-成立的一个必要不充分条件,则实数a 的取值范围是( )A .(,0)-¥B .(-¥,0]C .[0,2)D .(2,3)20.(2024•开封一模)a ,b 为实数,则“1a b >>”是“a lnb b lna +>+”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件21.(2024•良庆区校级模拟)若集合2{|280}A x Z x x =Î--…,2{|log 1}B x x =>,则(A B =I )A .{2,4}B .{1,4}C .{3,4}D .{2,3,4}22.(2023秋•青浦区期末)用函数的观点:不等式24log 1x x +<的解集为 .23.(2023秋•沙坪坝区校级期末)设集合1{|1}x A x e e -=……,若关于x 的不等式20x mx n ++…的解集为A .(1)求函数2()f x x mx n =++的解析式.(2)求关于x 的不等式2()(32)2f x x l l +>-+的解集,其中R l Î.24.(2023秋•渝中区校级期末)已知函数21()21x xf x -=+,41()log (21)2x g x x =--.(1)解不等式211212x x->-+;(2)方程44()log ()log (21)(0)x g x af x a =-->在2[log 3,2]上有解,求a 的取值范围?五.二次函数的性质与图象(共3小题)25.(2024春•化州市期中)设函数22()f x x mx n =++,22()(4)24g x x m x n m =+++++,其中x R Î,若对任意的t R Î,()f t ,()g t 至少有一个为非负值,则实数m 的最大值是( )A .1B C .2D 26.(2023秋•厦门期末)已知函数2()2(0)f x x x c c =++>,若()0f t <,则( )A .(1)0f t ->B .(1)0f t +<C .(2)0f t -<D .(2)0f t +>27.(2023秋•厦门期末)已知函数2()f x x ax b =++.(1)若()0f x <的解集为(3,1)-,求a ,b ;(2)若f (1)2=,a ,(0,)b Î+¥,求14a b+的最小值.六.一元二次不等式及其应用(共32小题)28.(2023秋•牡丹区校级期末)不等式2(3)1x +<的解集是( )A .{|2}x x >-B .{|4}x x <-C .{|42}x x -<<-D .{|42}x x --……29.(2024•南海区校级模拟)已知a ,b ,c R Î且0a ¹,则“20ax bx c ++>的解集为{|1}x x ¹”是“0a b c ++=”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件30.(2023秋•涟源市期末)已知二次函数2y x bx c =-++的零点为2-和1,则关于x 的不等式20x bx c +->的解集为( )A .(-¥,1)(2-È,)+¥B .(1,2)-C .(2,1)-D .(-¥,2)(1-È,)+¥31.(2023秋•石嘴山期末)已知一元二次不等式20ax bx c ++>的解集为(-¥,)(1m -È,)(1)m +¥<-,则4(1)b a m +-的最小值为( )A .1B .2C .3D .432.(2023秋•长乐区校级月考)若不等式220ax x c ++<的解集是11(,)(,)32-¥-+¥U ,则不等式220cx x a -+…的解集是( )A .11[,]23-B .11[,32-C .[2-,3]D .[3-,2]33.(2024•龙凤区校级开学)若关于x 的不等式240x mx +->在区间[2,4]上有解,则实数m 的取值范围为( )A .(3,)-+¥B .(0,)+¥C .(,0)-¥D .(,3)-¥-34.(2024•广丰区校级开学)不等式210(0)mx ax m -->>的解集不可能是( )A .{|1x x <-或1}4x >B .RC .13{|}32x x -<<D .{|3x x <-或5}x >35.(2023秋•梅州期末)已知不等式20ax bx c ++>的解集为(2,1)-,则下列结论正确的是( )A .0a <B .0b <C .0c >D .0a b c -+<36.(2023秋•吉林期末)下列说法正确的是( )A .命题“0x $…,使得1x e x +…”的否定是“0x ">,都有1x e x >+”B .“11a<”是“1a >”的必要不充分条件C .若不等式220ax x c ++>的解集为{|12}x x -<<,则2a c +=D .当1x >时,121x x +-的最小值为2+37.(2023秋•新化县期末)已知关于x 的不等式2(23)(3)10(0a m x b m x a +--->>,0)b >的解集为1(,1)(,)2-¥-+¥U ,则下列结论正确的是( )A .21a b +=B .ab 的最大值为18C .12a b+的最小值为4D .11a b+的最小值为3+38.(2023秋•宿州期末)已知关于x 的不等式20ax bx c ++>的解集为{|23}x x <<,则下列说法正确的是( )A .0a >B .0a b c ++<C .不等式20cx bx a -+<的解集为1{|2x x <-或1}3x >-D .24c a b++的最小值为639.(2023秋•松山区期末)已知不等式20ax bx c ++>的解集为{|}x m x n <<,其中0m >,则以下选项正确的有( )A .0a <B .0c >C .20cx bx a ++>的解集为11{|}x x n m<<D .20cx bx a ++>的解集为1{|x x n <或1}x m>40.(2024春•浦东新区校级月考)设0a >,若关于x 的不等式20x ax -<的解集是区间(0,1)的真子集,则a 的取值范围是 .41.(2023秋•清河区校级期末)已知关于x 的不等式20ax bx c ++>的解集为1(3-,2),那么关于x 的不等式20cx bx a ++<的解集为 .42.(2024•重庆模拟)若关于x 的不等式202(0)ax bx c a ++>……的解集为{|13}x x -……,则32a b c ++的取值范围是 .43.(2023秋•阜南县期末)解关于x 的不等式()(1)0()x a x a R --Î….44.(2023秋•南充期末)已知函数2()1f x x mx =-+.(1)若关于x 的不等式()10f x n +-…的解集为[1-,2],求实数m ,n 的值;(2)求关于x 的不等式()10()f x x m m R -+->Î的解集.45.(2023秋•阿勒泰地区期末)已知集合2{|340}A x x x =--<,{|131}B x a x a =+<<+.(1)当2a =时,求A B U ;(2)若A B B =I ,求a 的取值范围.46.(2023秋•金安区校级期末)已知集合{|30}A x x =-<…,集合2{|2}B x x x =->.(1)求A B I ;(2)若集合{|22}C x a x a =+……,且()C A B ÍI ,求实数a 的取值范围.47.(2023秋•沙坪坝区校级期末)若函数2()4f x ax bx =++,(1)若不等式()0f x <的解集为1(,4)2,求a ,b 的值;(2)当1a =时,求()0()f x b R >Î的解集.48.(2023秋•山西期末)已知关于x 的不等式230ax x b -+>的解集为{|1x x <或2}x >.(1)求a ,b 的值;(2)当0c >时,求关于x 的不等式2(1)10cx ac x -++<的解集(用c 表示).49.(2023秋•阳江期末)已知不等式2(2)0x a x b -++…的解集为{|12}x x …….(1)求实数a ,b 的值;(2)解关于x 的不等式:()(2)0(x c ax c -->为常数,且2)c ¹50.(2023秋•双塔区校级期末)已知关于x 的不等式2230ax bx +-<的解集为{|12}x x -<<.(1)求实数a ,b 的值;(2)解关于x 的不等式:(1)()0ax bx m +-+>,其中m 是实数.51.(2023秋•广州期末)设全集为R ,集合2{|560}A x x x =-->,{|121}B x a x a =+<<-.(1)若4a =,求A B U ,R A B I ð;(2)若()R A B =ÆI ð,求实数a 的取值范围.52.(2023秋•呼和浩特期末)(1)若关于x 的不等式2430ax ax +-<对x R "Î都成立,求a 的取值范围;(2)已知二次不等式2430ax ax +-<的解集为12{|}x x x x <<,且12||5x x -=,求a 的值.53.(2023秋•定西期末)已知集合2{|230}A x x x =--<,2{|(21)20}B x x m x m =---….(1)当1m =时,求A B U ;(2)若x A Î是x B Î的充分不必要条件,求实数m 的取值范围.54.(2023秋•西安区校级期末)已知关于x 的不等式222830ax x a --<的解集为{|1}x x b -<<.(1)求实数a ,b 的值;(2)当0x >,0y >,且满足1a b x y+=时,求32x y +的最小值.55.(2024春•湖北月考)已知函数2()(4)4f x x a x a =+-+-,()a R Î.(1)解关于x 的不等式:()1f x …;(2)命题“(1,)x "Î+¥,()0f x …”是真命题,求a 的最大值.56.(2023秋•天津期末)函数2()1(,)f x ax bx a b R =++Î.(1)若()0f x <的解集是{|2x x <-,或3}x >,求不等式2103ax bx ++>的解集;(2)当0a >时,求关于x 的不等式()(1)0f x a b x +-+>的解集.57.(2023秋•金安区校级期末)已知函数2()()f x x a b x a =-++.(1)若关于x 的不等式()0f x <的解集为(1,2),求a ,b 的值;(2)当1b =时,解关于x 的不等式()0f x >.58.(2023秋•三明期末)集合2{|340}A x ax x =--…,{|B x x b =…或1}x -…,且A B =.(1)求a ,b 的值;(2)若集合{|12}P x m x m =+<<,且“x P Δ是“R x A Îð”的充分不必要条件,求实数m 的取值范围.59.(2023秋•德庆县校级期末)已知函数2()(21)f x ax a x c =-++,且(0)2f =.(1)若()0f x <的解集为{|28}x x <<,求函数()f x y x =的值域;(2)当0a >时,解不等式()0f x <.七.一元二次方程的根的分布与系数的关系(共1小题)60.(2023秋•青羊区校级期末)方程2(2)50x m x m +-+-=的两根都大于2,则m 的取值范围是( )A .(5-,4]-B .(-¥,4]-C .(-¥,2]-D .(-¥,5)(5--È,4]-。
不等式及其基本性质易错点剖析
5
3 误得到 ax>b 的解集是 x> . 5 2a-b<0, 10 正解:由不等式(2a-b)x+a-5b>0 的解集是 x< ,得5b-a 10 解 7 = , 2a-b 7
2 5
解一元一次不等式组错解示例
一、误认为一元一次不等式组的“公共部分”就是两个数之间的部分. 例 1 解不等式组
x-1>0,① x+2<0.②
错解:由①得 x>1,由②得 x<-2,所以不等式组的解集为-2<x<1. 错解分析:解一元一次不等式组的方法是先分别求出不等式组中各个不等 式的解集,再利用数轴求出这些不等式解集的公共部分.此题错在对“公共部 分”的理解上,误认为两个数之间的部分为“公共部分” (即解集) .实际上, 这两部分没有“公共部分” ,也就是说此不等式组无解,而所谓“公共部分”的 解是指“两线重叠”的部分.此外,可能会受到解题顺序的影响,把解集表示 成 1<x<-2 或-2<x>1 等,这些都是错误的. 正解:由①得 x>1.由②得 x<-2,所以此不等式组无解.
15 11x , 11x 15 ,
x
15 . 11
错解分析:在第一步的移项中,-4x 移到不等号的右边应注意变为 4x;在第三步
2
的计算中,-11x 与 15 移项后,不等号不应改变方向. 正解: 7x 4x 5 10 ,
3x 15 ,
x 5 .
点拨:在解这类题时,同学们应牢记不等式的基本性质. 五、 去分母时,对不含分母的项处理不当 例 5.解不等式
a<0, 3 得b 3 所以 ax>b 的解集是 x< . 5 = . a 5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式的易错点以及典型例题1.同向不等式能相减,相除吗?2.不等式的解集的规书写格式是什么?(一般要写成集合的表达式)3.分式不等式()()()0≠>a a x g x f 的一般解题思路是什么?(移项通分,分子分母分解因式,x 的系数变为正值,奇穿偶回)4.解指数对数不等式应该注意什么问题?(指数函数与对数函数的单调性, 对数的真数大于零.)5.含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论)6.利用重要不等式ab b a 2≥+ 以及变式22⎪⎭⎫⎝⎛+≤b a ab 等求函数的最值时,你是否注意到a ,b +∈R (或a ,b 非负),且“等号成立”时的条件,积ab 或和a +b 其中之一应是定值?(一正二定三相等)7.) R b , (a , b a 2ab2222+∈+≥≥+≥+ab b a b a (当且仅当c b a ==时,取等号); a 、b 、c ∈R ,ca bc ab c b a ++≥++222(当且仅当c b a ==时,取等号); 8.在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底10<<a 或1>a )讨论完之后,要写出:综上所述,原不等式的解集是…….9.解含参数的不等式的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”10.对于不等式恒成立问题,常用的处理方式?(转化为最值问题)11.在解决有关线性规划应用问题时,有以下几个步骤:先找约束条件,作出可行域,明确目标函数,其中关键就是要搞清目标函数的几何意义,找可行域时要注意把直线方程中的y 的系数变为正值。
如:求2<5a-2b<4,-3<3a+b<3求a+b 的取值围,但也可以不用线性规划。
11.不等式易错典型例题 (1)未等价转化致错例题1:已知1324a b a b -<+<<-<且,则2a+3b 的取值围是 A 1317(,)22-B 711(,)22-C 713(,)22-D 913(,)22- 错解:对条件“1324a b a b -<+<<-<且”不是等价转化,解出a,b 的围,再求2a+3b 的围,扩大了围。
正解:用待定系数法,解出2a+3b=52(a+b)12-(a-b),求出结果为D 。
或用线性规划法。
(2)含参函数未讨论致错(3)是否取端点致错(4)充分必要条件概念不清致错例题4-1:设,,1x y R x y ∈+>则使成立的充分不必要条件是A 1x y +≥B 1122x y >>或 C 1x ≥ D x<-1错解:选B,对充分不必要条件的概念理解不清,“或”与“且”概念不清。
正确答案为D 。
(5)均值不等式应用不当致错:一正二定三相等 ①忽视条件正数②忽视条件定值③忽视条件取等号例7-1若实数m ,n ,x ,y 满足m 2+n 2=a ,x 2+y 2=b (a ≠b ),则mx+ny 的最大值为( )A 、2b a +B 、abC 、222b a +D 、ba ab +答案:B点评:易误选A,忽略运用基本不等式“=”成立的条件。
④多次使用忽视等号是否同时成立例题8-1:实数m,n,x,y满足m2+n2=a2, x2+y2=b , 则mx+ny的最大值是。
A、2ba+B、ab C、222ba+D、22ba+答案:B 错解:A错因:忽视基本不等式使用的条件,而用2222222ba y n x m ny mx +=+++≤+得出错解。
正解:三角函数换元法设m=a .cosA, n=a sinA; x=b .cosB, y=b sinB则mx+ny=(a .cosA )(b .cosB )+(a .cosB )(b sinB )=ab .[sin(A-B )]因此mx+ny 的最大值是ab .⑤用均值不等式时忽略实际情况例题9:数列{a n }的通项式902+=n na n ,则数列{a n }中的最大项是( ) A 、第9项 B 、第8项和第9项C 、第10项D 、第9项和第10项 答案:D点评:易误选A ,运用基本不等式,求nn a n 901+=,忽略定义域N*。
(6)综合应用中考虑不全致错例题10:如果2log 3log 2121ππ≥-x 那么x sin 的取值围是( )A 、⎥⎦⎤⎢⎣⎡-21,21B 、⎥⎦⎤⎢⎣⎡-1,21C 、⎥⎦⎤ ⎝⎛⋃⎪⎭⎫⎢⎣⎡-1,2121,21D 、⎥⎦⎤ ⎝⎛⋃⎪⎪⎭⎫⎢⎣⎡-1,2323,21 正确答案:B错因:利用真数大于零得x 不等于60度,从而正弦值就不等于23,于是就选了D.其实x 等于120度时可取得该值。
故选B 。
(7)不会应用几何意义致错例题11:x 为实数,不等式|x -3|-|x -1|>m 恒成立,则m 的取值围是( )A.m>2B.m<2C.m>-2D.m<-2正确答案:D 。
错误原因:容易忽视绝对值的几何意义,用常规解法又容易出错。
(8)数形结合应用不当致错例题12:f(x)=︱2x —1|,当a <b <c 时有f(a)>f(c)>f(b)则( ) A a <0,b <0,c <0 B a <0,b >0,c >0 C 2a -<2c D 22+a c <2正确答案:D 错因:学生不能应用数形结合的思想方法解题。
(9)换元后的取值围不对致错例13:已知1sin sin 3x y +=,求2sin cos x y -的最大值和最小值。
错解一:22111sin cos (sin )612x y x -=+-,当1sin 6x =-时,取得最小值1112-;当sin 1x =时,取得最大值1;错解二:22111sin cos (cos )212x y x -=--,当1cos 2x =时,取得最小值1112-;当cos 1x =-时,取得最大值43; 正解分析:解法二忽略了围限制,应由1sin 111sin sin 13y x y -≤≤⎧⎪⎨-≤=-≤⎪⎩得:2sin 13y -≤≤。
12.线性规划典型题型由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。
(1)求线性目标函数的取值围例1:(一次函数型)若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5]解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故选A拓展:思考二次函数型、指数函数型、对数函数型等。
(2)求可行域的面积例2:不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为 ( )A 、4B 、1C 、5D 、无穷大解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的面积即可,选B例3:在平面直角坐标系xoy 中,已知集合2(,)|00x y A x y x y ⎧-≤⎫⎧⎪⎪⎪=≥⎨⎨⎬⎪⎪⎪≤⎩⎩⎭,则集合 {}(2,2)|(,)B x y x y x y A =+-∈表示的平面区域的面积为 10例4:在平面直角坐标系中,不等式组02030y x y x y ≥⎧⎪-≥⎨⎪+-≤⎩表示的区域为M ,1t x t ≤≤+表示的区域为N ,若12t <<,则M 与N 公共部分面积的最大值为解:因为先根据题意中的条件画出约束条件所表示的图形,再结合图形求公共部分的面积为f (t )即可,注意将公共部分的面积分解成两个图形面积之差,那么可知公共部分的面积为2AOE BOC FOE 111S S S S EO 1t (2(t 1))222∆∆∆=--=⨯---+,借助于二次函数得到最大值56 (3)求可行域中整点个数例5:满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( )A 、9个B 、10个C 、13个D 、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0)x y x y x y x y x y x y x y x y +≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形部(包括边界),容易得到整点个数为13个,选D(4)求线性目标函数中参数的取值围例6:已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a 的值为 ( )A 、-3B 、3C 、-1D 、1解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选D例7:如图,目标函数z =ax -y 的可行域为四边形OACB (含边界),若)54,32(是该目标函数z =ax -y 的最优解,则a 的取值围是( A )A . )103,512(--B .)125,310(-- C .)512,103(D .)103,512(- (5)距离平方型目标函数的最值例8:已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是( )A 、13,1B 、13,2C 、13,45D 、13,255解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选C (6)求约束条件中参数的取值围例9:已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值围是 ( )A 、(-3,6)B 、(0,6)C 、(0,3)D 、(-3,3)解:|2x -y +m|<3等价于230230x y m x y m -++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩ ,故0<m <3,选C (7)比值问题(斜率型) 当目标函数形如y a z x b -=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。
例10: 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≤0,x ≥1,x +y -7≤0,则 y x 的取值围是( ). (A )[95,6] (B )(-∞,95]∪[6,+∞) (C )(-∞,3]∪[6,+∞) (D )[3,6]解析 yx是可行域的点M (x ,y )与原点O (0,0)连线的斜率,当直线OM 过点(52,92)时,y x取得 最小值95;当直线OM 过点(1,6)时,y x取得最大值6. 答案A 例11:已知函数f(x)的定义域为[-3,+∞),且f(6)=2。