河北省高二数学下册 第一单元《算法初步》全套教案
算法初步单元教学设计优秀5篇
算法初步单元教学设计优秀5篇《分数初步认识》教学设计篇一通过两周的课程设计,完成了预定的目标,其中有很多的随想。
老师的题目发下来的很早,大概提前了3周,当时就着手搜索有关线索二叉树的思想,思路,借了一本《数据结构-c语言描述》,在大体上就有了一个轮廓,先是输入二叉树,在对二叉树进行线索化,依次往下,但在具体实现时,遇到了很多问题:首先是思想的确定,其非常重要,以前有了这个想法,现在愈加清晰起来,因此,花了大量的时间在插入删除的具体操作设计上,大概三个晚上的时间,对其中什么不清晰明确之处均加以推敲,效果是显著的,在上机上相应的节约了时间。
通过具体的实验编码,思路是对的,但是在小问题上摔了一次又一次,大部分时间都是花在这方面,这个节点没传过来啊之类的,以后应该搞一个小册子,记录一些错误的集合,以避免再犯,思想与C语言联系起来,才是我们所需要的,即常说的理论与实践的关系。
数据结构是基础的一门课,对于有过编程经验的人,结合自己的编程体会去悟它的思想;而且我觉得随着编程经历的丰富对它的体会越深入,较初接触是对一些思想可能只是生硬的记忆,随着学习的深入逐渐领悟了很多。
看了这次课程设计的题目,虽然具体要求没有看清,但是总结一下,可以看出,其需要我们能把一个具体案例或一件事情反映为程序来表达,数据结构就是桥梁,通过自己的设计,使应用能力得以融汇,对与问题,具有了初步的分析,继而解决之的能力,感觉对以后的学习会有很大的帮助,学习无非是用于实践。
认识到自己的不足,希望能有进一步的发展。
影子系统激活算法初步篇二教学内容:教科书第55页的例1、例2,练习十二的第7—12题。
教学目的:1.使学生理解并掌握从一个数里连续减去两个数,改为从这个数里减去这两个减数的和的简便算法。
2.通过求加、减法算式中的未知数,使学生进一步理解加、减法各部分间的关系,为学习简易方程和列方程解应用题做较好的准备。
教学重点:求加、减法算式中的未知数教学难点:理解加、减法各部分间的关系教具准备:小黑板教学过程:一、教学例1出示例1:育名小学图书室新买来一叁0本图书。
高中数学 第一章 算法初步 1.1.2 程序框图与算法的基本逻辑结构 第3课时 循环结构、程序框图
1河北省承德市高中数学第一章算法初步1.1.2 程序框图与算法的基本逻辑结构第3课时循环结构、程序框图的画法学案新人教A版必修3234编辑整理:56789尊敬的读者朋友们:10这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省承德市高中数学第一章算法初步1.1.2 程序框图与算法的基本逻辑结构第3课时循环结构、程序框图的画法学案新人教A版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
11本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省承德市高中数学第一章算法初步1.1.2 程序框图与算法的基本逻辑结构第3课时循环结构、程序框图的画法学案新人教A版必修3的全部内容。
1212.1.2程序框图与算法的基本逻辑结构第3课时循环结构、程序框图的画法学习目标1。
学习程序框图的画法2.理解程序框图的三种基本逻辑结构的循环结构1重点难点:学习程序框图的画法2.教学难点:理解程序框图的三种基本逻辑结构循环结构的初步体会算法思想方法:自主学习合作探究师生互动一\自主学习1。
知识链接1.判断给出的整数n是否是偶数,设计程序框图时所含有的基本逻辑结构是( )A.顺序结构B.条件结构C.顺序结构、条件结构D.以上都不正确2.根据下边的流程图,使得当成绩不低于60分时,输出“及格”,当成绩低于60分时,输出“不及格”,则( )A.框1中填“是",框2中填“否”B.框1中填“否",框2中填“是”C.框1中填“是”,框2中可填可不填D.框2中填“否”,框1中可填可不填3.如下图是某一函数的求值流程图,则满足流程图的函数解析式为________.二自主预习循环结构课堂随笔:(1)概念:在一些算法中,经常会出现从某处开始,按照一定的条件_______执行某些步骤的情况,这就是循环结构,反复执行的步骤称为_______.可以用如图①②所示的程序框图表示.(2)直到型循环结构:如图①所示,其特征是:在执行了一次循环体后,对条件进行判断,如果条件_______,就继续执行循环体,直到条件_______时终止循环.(3)当型循环结构:如图②所示,其特征是:在每次执行循环体前,对条件进行判断,当条件_______时,执行循环体,否则终止循环.预习自测1.在循环结构中,每次执行循环体前对控制循环的条件进行判断,当条件满足时执行循环体,不满足则停止,这样的循环结构是( )A.分支型循环B.直到型循环C.条件型循环D.当型循环D.当型循环2.如图所示的程序框图中,循环体是()A.①B.②C.③D.②③3.如图所示,程序框图中输出S的值为________.4.如图所示的程序框图输出结果为sum=1320,则判断框中应填( )A.i≥9?B.i≥10?C.i≤10?D.i≤9?【课堂研讨】一、含循环结构程序框图的运行例1.(2014·课标全国Ⅰ,理7)执行下面的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( )A。
高中数学《算法初步》教案新人教A版必修
高中数学《算法初步》教案新人教A版必修章节一:算法概念及程序框图1. 教学目标:a. 理解算法的概念,体会算法在数学及日常生活中的应用。
b. 熟悉程序框图的基本组成部分,能够运用程序框图描述简单的算法。
2. 教学内容:a. 算法的定义及特性。
b. 程序框图的组成部分:顺序结构、条件结构、循环结构。
3. 教学重点与难点:a. 算法的概念理解。
b. 程序框图的绘制及应用。
4. 教学方法:a. 案例分析法:通过具体案例让学生理解算法概念。
b. 实践操作法:学生动手绘制程序框图,加深对算法理解。
5. 教学过程:a. 引入:通过日常生活中的算法案例,引导学生思考算法的概念。
b. 讲解:详细讲解算法的定义、特点及程序框图的组成部分。
c. 实践:学生动手绘制程序框图,教师巡回指导。
d. 总结:强调算法在实际问题中的应用价值。
章节二:顺序结构算法1. 教学目标:b. 能够运用顺序结构算法解决实际问题。
2. 教学内容:a. 顺序结构的定义及特点。
b. 顺序结构算法在实际问题中的应用。
3. 教学重点与难点:a. 顺序结构算法的理解。
b. 顺序结构算法在实际问题中的应用。
4. 教学方法:a. 案例分析法:通过具体案例让学生理解顺序结构算法。
b. 实践操作法:学生动手编写顺序结构算法,解决问题。
5. 教学过程:a. 引入:通过日常生活中的顺序结构算法案例,引导学生思考顺序结构的特点。
b. 讲解:详细讲解顺序结构的定义、特点及应用。
c. 实践:学生动手编写顺序结构算法,解决问题,教师巡回指导。
d. 总结:强调顺序结构算法在实际问题中的应用价值。
章节三:条件结构算法1. 教学目标:a. 理解条件结构的算法特点。
b. 能够运用条件结构算法解决实际问题。
2. 教学内容:b. 条件结构算法在实际问题中的应用。
3. 教学重点与难点:a. 条件结构算法的理解。
b. 条件结构算法在实际问题中的应用。
4. 教学方法:a. 案例分析法:通过具体案例让学生理解条件结构算法。
高中数学 第一章 算法初步 1.1.1 算法的概念学案 新人教A版必修3(2021年整理)
河北省承德市高中数学第一章算法初步1.1.1 算法的概念学案新人教A版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省承德市高中数学第一章算法初步1.1.1 算法的概念学案新人教A版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省承德市高中数学第一章算法初步1.1.1 算法的概念学案新人教A版必修3的全部内容。
1.1。
1 算法的概念计一个算法就需要了解算法的特征:特征说明有限性一个算法当运行完有限个步骤后必须结束,而不能是无运行确定性算法的每一步计算,都必须有确定的结果,不能模棱两算法的每一步只有的每一步只有唯一的执行路径,对的输入只能得到相同的输出结果可行性算法中的每一步骤必须能用实现算法的工具精确表达,并能在有限步内完成有序性算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后续步骤,只有执行完前一步才能执行后一步普遍性算法一般要适用于输入值集合中不同形式的输入值,而不是局限于某些特殊的值,即算法具有一般性,一个算法总是针对某类问题设计的,所以对于求解这类问题中的任意一个问题都应该是有效的不唯一性解决一个或一类问题,可以有不同的方法和步骤,也就是说,解决这个或这类问题的算法不一定是唯一的3。
算法的设计(1)算法设计的目的设计算法的目的实际上是寻求__________的算法,它可以通过计算机来完成.设计算法的关键是把过程分解成若干个__________,然后用计算机能够接受的“语言"准确地描述出来,从而达到计算机执行的目的.(2)算法设计的要求①写出的算法必须能解决__________;②要使算法尽量____、步骤尽量___;③要保证算法____,且计算机能够_____.(3)算法的描述①展现形式:目前可使用文字语言表示.②展现方式:算法常用下列方式来表示:第一步,……第二步,……第三步,…………牛刀小试 1.下列叙述不能..称为算法的是( )A.从北京到上海先乘汽车到飞机场,再乘飞机到上海B.解方程4x+1=0的过程是先移项再把x的系数化成1C.利用公式S=πr2计算半径为2的圆的面积得π×22D.解方程x2-2x+1=02.下列对算法的理解不正确的是()后记与感悟:A.算法有一个共同特点就是对一类问题都有效(而不是个别问题)B.算法要求是一步步执行,每一步都能得到唯一的结果C.算法一般是机械的,有时要进行大量重复的计算,它的优点是一种通法D.任何问题都可以用算法来解决【课堂研讨】一、算法含义的正确理解例1.(1)下列关于算法的描述正确的是( )A.算法与求解一个问题的方法相同B.算法只能解决一个问题,不能重复使用C.算法过程要一步一步执行,每步执行的操作必须确切D.有的算法执行完后,可能无结果2)下列描述不能看作算法的是()A.做米饭需要刷锅,淘米,添水,加热这些步骤B.洗衣机的使用说明书C.解不等式2x2+x-1>0D.求过M(1,2)与N(-3,-5)两点的直线方程可以先求MN的斜率,再利用点斜式方程求得.跟踪训练(1)下列关于算法的说法正确的是()A.某个问题的解题过程就是算法B.一个算法可以有无穷多个步骤C.解决某一问题的算法可以有多个D.算法执行完后可以有多个不同的结果311。
河北省新乐市高中数学第一章算法初步1.1.1算法初步课件新人教A版必修3
练习
• 任意给定一个正实数,设计一个算法求以 这个数为半径的圆的面积。 • 任意给定一个大于1的正整数n,设计一个 算法求出n的所有的因数。
1. 1.2流程图(程序框图)
表1-2
程序框 名称
终端框(起止框)
功能
表示一个算法的起始和结束
输入、输出框
表示一个算法输入和输 出的信息。 处理框(执行框)赋值、计算
S pp 2p 3p 4
输出S
结束
返回
例4 任意给定3个正实数,设计一个算法,判断分别 以这3个数为三边边长的三角形是否存在。画出这个 算法的的程序框图。
开始
程序框图
输入a,b,c 否
a+b>c,a+c>b, b+c>a是否同时成立 是 存在这样的 三角形 结束
不存在这样的 三角形
第四步:判断 x1 x2 <0.005是否成立?若是, 则x1、 x2之间的任意取值均为满足条件的 近似 根;若否,则返回第二步。
按照以上步骤,我们将依次得到表1-1和.图1.1-1
表1-1
图1.1-1
实际上,上述步骤就是在求
2 的近似值。
计算机解决任何问题都要依赖于算法,只有将解决 问题的过程分解为若干个明确的步骤,即算法,并 用计算机能够接受的“语言”准确的描述出来,计 算机才能够解决问题。
对于一般的二元一次方程组 a1x+b1y=c1 a2x+b2y=c2 其中a1b2-a2b1≠0,也可以按照上述步骤来求解。这些步骤 就构成了解二元一次方程组的算法,我们可以根据这一算法 编制计算机程序,让计算机来解二元一次方程组。
思 考
对于一般的二元一次方程组来说, 上述步骤应该怎样进一步完善?
高中数学 第一章 算法初步 1.2.1 输入、输出语句和赋值语句教案数学教案
1.2.1输入、输出语句和赋值语句一、三维目标:1、知识与技能(1)正确理解输入语句、输出语句、赋值语句的结构。
(2)会写一些简单的程序。
(3)掌握赋值语句中的“=”的作用。
2、过程与方法(1)让学生充分地感知、体验应用计算机解决数学问题的方法;并能初步操作、模仿。
(2)通过对现实生活情境的探究,尝试设计出解决问题的程序,理解逻辑推理的数学方法。
3、情感态度与价值观通过本节内容的学习,使我们认识到计算机与人们生活密切相关,增强计算机应用意识,提高学生学习新知识的兴趣。
二、重点与难点重点:正确理解输入语句、输出语句、赋值语句的作用。
难点:准确写出输入语句、输出语句、赋值语句。
三、学法与教学用具计算机、图形计算器四、教学设计【创设情境】在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具,如:听MP3,看电影,玩游戏,打字排版,画卡通画,处理数据等等,那么,计算机是怎样工作的呢?计算机完成任何一项任务都需要算法,但是,我们用自然语言或程序框图描述的算法,计算机是无法“看得懂,听得见”的。
因此还需要将算法用计算机能够理解的程序设计语言(programming language)翻译成计算机程序。
程序设计语言有很多种。
如BASIC,Foxbase,C语言,C++,J++,VB等。
为了实现算法中的三种基本的逻辑结构:顺序结构、条件结构和循环结构,各种程序设计语言中都包含下列基本的算法语句:入、输出语句和赋值语句。
(板出课题)【探究新知】我们知道,顺序结构是任何一个算法都离不开的基本结构。
输入、输出语句和赋值语句基本上对应于算法中的顺序结构。
(如右图)计算机从上而下按照语句排列的顺序执行这些语句。
输入语句和输出语句分别用来实现算法的输入信息,输出结果的功能。
如下面的例子:用描点法作函数3232430y x x x =+-+的图象时,需要求出自变量与函数的一组对应值。
编写程序,分别计算当5,4,3,2,1,0,1,2,3,4,5x =-----时的函数值。
高二数学 第一章《算法初步》教案人教A版必修3
1.1.1算法的概念一、三维目标:1、知识与技能:(1)了解算法的含义,体会算法的思想。
(2)能够用自然语言叙述算法。
(3)掌握正确的算法应满足的要求。
(4)会写出解线性方程(组)的算法。
(5)会写出一个求有限整数序列中的最大值的算法。
(6)会应用Scilab 求解方程组。
2、过程与方法:通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法。
由于思考问题的角度不同,同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法。
3、情感态度与价值观:通过本节的学习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一各有力工具,进一步提高探索、认识世界的能力。
二、重点与难点:重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
难点:把自然语言转化为算法语言。
三、学法与教学用具:学法:1、写出的算法,必须能解决一类问题(如:判断一个整数n(n>1)是否为质数;求任意一个方程的近似解;……),并且能够重复使用。
2、要使算法尽量简单、步骤尽量少。
3、要保证算法正确,且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的,但让计算机去执行“倒一杯水”“替我理发”等则是做不到的。
教学用具:电脑,计算器,图形计算器四、教学设想:1、创设情境:算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。
但是我们却从小学就开始接触算法,熟悉许多问题的算法。
如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。
我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。
高中数学算法初步教案
高中数学算法初步教案
主题:算法基础
学科:数学
班级:高中
时间:2课时
教学目标:
1. 了解算法的基本概念和作用;
2. 掌握算法的一般求解步骤;
3. 能够运用算法解决简单问题。
教学内容:
1. 算法的定义和基本概念;
2. 算法的求解步骤;
3. 算法的应用举例。
教学准备:
1. 教案PPT;
2. 教材相关知识点讲解;
3. 班级练习题;
4. 小组讨论活动。
教学步骤:
第一课时:
1. 导入:通过多媒体展示各种算法在日常生活中的应用场景,引发学生对算法的兴趣;
2. 讲解:介绍算法的基本概念和定义,以及算法的求解步骤;
3. 实例:通过一个简单的排序算法实例,讲解算法的具体步骤和实现过程;
4. 练习:让学生在小组内讨论并解答相关练习题,加深对算法的理解;
5. 总结:总结本节课的重点内容,为下节课做铺垫。
第二课时:
1. 复习:回顾上节课学习的内容,做一定的复习和梳理;
2. 讲解:介绍更多常见的算法并举例说明,让学生了解算法的广泛应用领域;
3. 练习:让学生分组进行实际算法应用题目的解答,提高学生的动手能力;
4. 分享:让每个小组分享他们的思路和解答过程,促进学生之间的交流和学习;
5. 总结:总结算法的重要性和应用价值,激励学生深入学习更多算法知识。
教学反思:
通过这两节课的教学,学生对算法的基本概念和求解步骤有了初步的了解,并能够应用所学知识解决简单问题。
在今后的教学中,需要进一步拓展算法内容,引导学生更深入地理解和掌握算法的应用技能。
河北省承德市高中数学 第一章 算法初步 1.3.2 进位制学案 新人教A版必修3
二典例分析(一)把k进制数化为十进制数
例1.(1)把七进制数123化成十进制数为________.
(2)(2015·山西师大附中高一检测)下列各数85(9),301(5),1000(4)中最小的数是________.
跟踪练习(1)101(2)转化为十进制数是()
●预习自测
1.以下各数有可能是五进制数的是()
A.15B.106 C.731D.21340
2.将二进制数1101(2)化为十进制数为()
A.10B.11 C.12D.13
3.若一个k进制的数111(k)与十进制数21相等,那么k等于()
A.4或5B.4或-5 C.4D.-4或5
4.下列各数中最小的数为()
2.k进制数32501(k),则k不可能是()
A.5B.6 C.7D.8
3.把二进制数1001(2)化成十进制数为()
A.4B.7 C.8D.9
4.把十进制数16化为二进制数为()
A.100(2)B.1000(2)C.10000(2)D.100000(2)
5.下列结论正确 的是()
A.1010=101(2)B.101(2)=10(5)C.101<101(2)D.101(2)>10(5)
A.2B.5 C.20D.101
(2)下列最大数是()
A.110(2)B.18 C.16(8)D.20(5)
(二)把十进制数化为k进制数
例二(1)把十进制数89化为二进制数.
(2)将十进制数21化为五进制数.
跟踪训练2:(1)(2015·哈尔滨高一检测)把十进制数15化为二进制数为()
A.1011B.1001(2)C.1111(2)D.1111
高中数学《算法初步》教案新人教A版必修
高中数学《算法初步》教案新人教A版必修一、教学目标1. 理解算法的基本概念,了解算法在数学和日常生活中的应用。
2. 掌握算法的基本步骤,能够清晰地描述和分析算法的过程。
3. 学会使用循环结构编写算法,熟练掌握基本的编程技巧。
4. 通过解决实际问题,培养学生的逻辑思维能力和创新能力。
二、教学内容1. 算法的基本概念:算法、输入、输出、步骤2. 算法的基本步骤:排序、查找、乘法口诀、求解一元二次方程3. 循环结构:for循环、while循环、do-while循环4. 实际问题求解:编写算法解决生活中的实际问题,如计算器、购物清单等。
三、教学重点与难点1. 重点:算法的基本概念、基本步骤和循环结构。
2. 难点:循环结构的嵌套使用和复杂问题的算法设计。
四、教学方法与手段1. 采用问题驱动的教学方法,引导学生从实际问题中提炼出算法。
2. 使用多媒体教学手段,展示算法的过程和效果,增强学生的直观感受。
3. 引导学生通过编程实践,巩固算法知识,提高解决问题的能力。
五、教学安排1. 第一课时:介绍算法的基本概念,学习算法的输入、输出、步骤。
2. 第二课时:学习算法的基本步骤,掌握排序、查找、乘法口诀、求解一元二次方程等基本算法。
3. 第三课时:学习循环结构,掌握for循环、while循环、do-while循环的用法。
4. 第四课时:运用所学算法解决实际问题,编写算法程序。
5. 第五课时:进行课堂讨论,分享算法解决问题的经验,进行算法设计的交流和探讨。
六、教学过程1. 导入:通过引入日常生活中的算法例子,如计算购物找零、制定旅行计划等,激发学生的兴趣,引出算法的概念。
2. 新课导入:介绍算法的定义、特点和作用,引导学生了解算法在数学和科学领域中的应用。
3. 案例分析:分析排序、查找等基本算法,让学生通过具体案例理解算法的基本步骤和原理。
4. 编程实践:让学生动手编写简单的算法程序,如排序算法、查找算法等,加深对算法概念的理解。
高中数学《算法初步》教案新人教A版必修
高中数学《算法初步》教案新人教A版必修一、教学目标1. 理解算法的基本概念,了解算法的特点和作用。
2. 掌握算法的基本步骤,能够正确写出简单的算法。
3. 学会分析算法的效率,提高解决问题的能力。
4. 培养逻辑思维能力和编程能力。
二、教学内容1. 算法的基本概念:算法、输入、输出、步骤。
2. 算法的基本步骤:顺序结构、条件结构、循环结构。
3. 算法分析:时间复杂度、空间复杂度。
4. 简单的算法实例:求和、求积、排序等。
三、教学重点与难点1. 重点:算法的基本概念、基本步骤、算法分析。
2. 难点:算法分析中的时间复杂度和空间复杂度的计算。
四、教学方法1. 采用问题驱动的教学方法,引导学生从实际问题中提出算法需求。
2. 使用案例教学法,通过具体的算法实例讲解算法的实现过程。
3. 利用编程工具,让学生动手实践,加深对算法的理解。
4. 采用小组讨论法,培养学生的合作能力和解决问题的能力。
五、教学过程1. 导入:通过一个实际问题引入算法概念,激发学生的兴趣。
2. 讲解:讲解算法的基本概念、基本步骤和算法分析的方法。
3. 实例演示:给出一个简单的算法实例,演示算法的实现过程。
4. 练习:让学生动手编写简单的算法,巩固所学知识。
5. 总结:对本节课的内容进行总结,布置课后作业。
六、教学评估1. 课堂练习:在学习过程中,穿插一些练习题,以检查学生对算法基本概念和步骤的理解。
2. 小组讨论:通过小组合作完成一个算法实例,评估学生在合作中的沟通能力和解决问题的能力。
3. 课后作业:布置相关的编程作业,要求学生独立完成,以检验学生对算法的掌握程度。
4. 期中期末考试:设置有关算法初步的试题,全面评估学生的学习效果。
七、教学资源1. 教材:新人教A版必修《高中数学》。
2. 多媒体课件:制作与教学内容相关的多媒体课件,增加课堂的趣味性。
3. 编程工具:为学生提供编程环境,如Python、C++等。
4. 网络资源:为学生提供相关的在线学习资源,如视频教程、练习题库等。
高中数学《算法初步》教案新人教A版必修
高中数学《算法初步》教案新人教A版必修一、教材分析本节课所使用的教材为新人教A版高中数学必修教材,内容涉及算法初步。
算法初步是高中数学的重要组成部分,主要让学生了解算法的基本概念、特点和应用。
通过学习算法初步,学生能够理解算法的本质,提高解决问题的能力。
二、教学目标1. 了解算法的概念、特点和表示方法。
2. 掌握算法的基本逻辑结构,如顺序结构、条件结构和循环结构。
3. 能够分析实际问题,设计简单的算法解决问题。
4. 培养学生的逻辑思维能力和创新能力。
三、教学重点与难点1. 教学重点:算法的概念、特点和表示方法。
算法的基本逻辑结构。
设计简单算法解决问题的方法。
2. 教学难点:算法的设计和分析。
循环结构在实际问题中的应用。
四、教学方法1. 采用问题驱动的教学方法,引导学生从实际问题中认识算法的重要性。
2. 通过案例分析,让学生理解算法的基本逻辑结构。
3. 利用编程实践,培养学生设计算法解决问题的能力。
4. 采用小组讨论、合作学习的方式,提高学生的参与度和积极性。
五、教学过程1. 导入新课:通过生活中的实例,引导学生了解算法在日常生活中的应用。
提问:什么是算法?算法有什么特点?2. 讲解算法的基本概念:解释算法的定义,强调算法是解决问题的一系列步骤。
阐述算法的特点,如确定性、有穷性和可行性。
3. 学习算法表示方法:介绍算法的图形表示和伪代码表示。
举例说明不同表示方法在解决问题中的应用。
4. 掌握算法的基本逻辑结构:顺序结构:按照一定的顺序执行步骤。
条件结构:根据条件选择不同的执行路径。
循环结构:重复执行某些步骤直到满足条件。
5. 设计简单算法解决问题:分析实际问题,如计算Fibonacci 数列的前n项和。
引导学生设计算法,并利用编程工具实现。
6. 课堂小结:强调算法在解决问题中的重要性。
7. 课后作业:完成课后练习,巩固所学内容。
设计一个简单的算法,解决实际问题。
8. 课后反思:教师对本节课的教学效果进行反思,分析学生的掌握情况。
高二数学第一章算法初步教案
高二数学第一章算法初步教案一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。
2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。
3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。
理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。
理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句。
进一步体会算法的基本思想。
4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。
点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。
二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。
随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。
需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。
在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。
高二数学《算法的概念》教案
第一章 算法初步1.1.1 算法的概念一、【学习目标】1.了解算法的含义,体会算法的思想.2.掌握简单问题算法的表述,掌握正确的算法应满足的要求. 【重点、难点】算法的概念和算法的合理表述,写出解决一类问题的算法. 二、学习过程 【情景创设】1. 介绍算法是认识计算机工作的一个开始(介绍引言).2. 国庆节到了,计划外出自助旅游,过一个有意义的假期!我们将如何安排. 第一步:确定旅游目的地. 第二步:了解交通情况. 第三步:出发前的准备 .如.掌握旅游地的概况、根据天气预报选择服装、带一点常用内外科药,如治疗肠胃系统和心血管系统的药物,及创可贴、棉花、酒精等、带少许水果或点心、瓶装饮料水(减少旅途中高价购买开支),钱要分散放好,如有全国通用银行磁卡最好带上等等.【导入新课】1.写出解二元一次方程组2 1 (1)2 1 (2)x y x y -=-⎧⎨+=⎩的一个过程.【解析】算法步骤如下(用加减消元法): 第一步, (1)+(2)×2,得5x=1 (3)第二步,解(3),得15x =第三步,(2)-(1)×2,得5y=3 (4)第四步,解(4),得35y =第五步,得到方程组的解为1535x y ⎧=⎪⎪⎨⎪=⎪⎩【问】参照本题解法,你能完成下面问题吗?请一试。
2.对于一般的二元一次方程组⎩⎨⎧=+=+)2(,)1(,222111c y b x a c y b x a其中a 1b 2-a 2b 1≠0,可以写出类似的求解步骤:【解析】算法步骤如下: 第一步,(1)×b 2-(2)×b 1,得(a 1b 2-a 2b 1)x=b 2c 1-b 1c 2.(3)第二步,解(3),得x=12212112b a b a c b c b --.第三步,(2)×a 1-(1)×a 2,得(a 1b 2-a 2b 1)y=a 1c 2-a 2c 1.(4) 第四步,解(4),得y=12211221b a b a c a c a --.第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧--=--=.,1221122112212112b a b a c a c a y b a b a c b c b x【新课概念】1.算法的定义:算法:通常是指按照一定规则解决某一类问题的明确和有限的步骤。
河北省承德市高中数学第一章算法初步1.2.1输入语句、输出语句和赋值语句学案新人教A版必修3
1.2。
1 输入语句、输出语句和赋值语句学习目标1.了解算法输入语句、输出语句和赋值语句语句2。
掌握正确的语句格式重点难点:基本语句及其一般格式方法:自主学习合作探究师生互动一知识衔接1.算法的概念算法通常是指按照一定规则解决某一类问题的明确和有限的_______.现在,算法通常可以编写成计算机程序,让计算机执行并解决问题.2.几个基本程序框及其功能(略)3.执行如下图所示的程序框图,若输入A的值为2,则输出的P值为()二自主预习1.输入语句课堂随笔:(1)中若输入1,2,则输出的结果为________;(2)中若输入3,2,5,则输出的结果为________.例3若将两个数a=8,b=17交换,使a=17,b=8.下面语句正确的一组是( )A.a=bb=aB.c=bb=aa=cC.b=aa=bD.a=cc=bb=a跟踪训练1下列输入语句正确的是( )A.INPUT 2,3,4 B.INPUT “x=”;x,“y=”;y C.INPUT x,y,z D.INPUT x=22下面的语句执行后输出的结果为________;A=2,B=3B=A*AA=A+BB=B+APRINT A,BRND3已知程序后记与感悟:若输入a,b,c的值分别为1,2,3,则输出a,b,c的值分别为________.INPUT a,b,cx=ay=ba=cb=xc=yPRINT a,b,cEND四、当堂检测:1.下列输入语句正确的是( )A.INPUT “a;b” B.INPUT “x=”,xC.INPUT a·b D.INPUT “x=”;x2.下列给出的输入、输出语句正确的是( )①输入语句:INPUT a,b,c,d,e ②输入语句:INPUT X=1③输出语句:PRINT A=4 ④输出语句:PRINT 10,3*2,2/3A. ①②B.②③ C.③④D.①④3.下列赋值语句正确的是()4.下列所给的运算结果正确的个数为附答案例1: B 例2:(1)1,-2,-1 (2)-3尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣.导入新课大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念.算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 提出问题(1)阅读教材第3页“鸡兔同笼”问题,思考解二元一次方程组有几种方法? (2)结合教材实例⎩⎨⎧=+-=-)2(,12)1(,12y x y x 总结用加减消元法解二元一次方程组的步骤.(3)结合教材实例⎩⎨⎧=+-=-)2(,12)1(,12y x y x 总结用代入消元法解二元一次方程组的步骤.(4)请写出解一般二元一次方程组的步骤,并理解“高斯消去法”;(5)根据上述实例谈谈你对算法的理解. (6)请同学们总结算法的特征. (7)请思考我们学习算法的意义. 讨论结果:(1)代入消元法和加减消元法. (2)回顾二元一次方程组⎩⎨⎧=+-=-)2(,12)1(,12y x y x 的求解过程,我们可以归纳出以下步骤: 第一步,①+②×2,得5x=1.③ 第二步,解③,得x=51. 第三步,②-①×2,得5y=3.④ 第四步,解④,得y=53.第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧==.53,51y x(3)用代入消元法解二元一次方程组⎩⎨⎧=+-=-)2(,12)1(,12y x y x 我们可以归纳出以下步骤: 第一步,由①得x=2y -1.③第二步,把③代入②,得2(2y -1)+y=1.④ 第三步,解④得y=53.⑤ 第四步,把⑤代入③,得x=2×53-1=51. 第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧==.53,51y x(4)对于一般的二元一次方程组1112121222,(1),(2)a x a yb a x a y b +=⎧⎨+=⎩其中a 11a 22-a 21a 12≠0,可以写出类似的求解步骤: 第一步,假定a 11≠0,①×2111()a a -+②,可得方程 (a 11a 22-a 21a 12)y= a 11b 2-a 21b 1.③ 第二步,解③,得y=11221111222112a b a b a a a a --.④第三步,将④代入①得x=22112211222112a b a b a a a a --第四步,输出结果x,y (5)算法的定义理解:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤. 现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提, “后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础.例题解析例1 写出一个求有限整数序列中的最大值的算法.点评:算法一般是机械的,有时需要进行大量的重复计算,只要按部就班地去做,总能算出结果,通常把算法过程称为“数学机械化”.数学机械化的最大优点是它可以借助计算机来完成,实际上处理任何问题都需要算法.如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如申请出国有一系列的先后手续,购买物品也有相关的手续……例2 写出对任意3个数a,b,c求出最大值的算法。
知能训练设计算法判断一元二次方程ax2+bx+c=0是否有实数根.解:算法步骤如下:第一步,输入一元二次方程的系数:a,b,c.第二步,计算Δ=b2-4ac的值.第三步,判断Δ≥0是否成立.若Δ≥0成立,输出“方程有实根”;否则输出“方程无实根”,结束算法.点评:用算法解决问题的特点是:具有很好的程序性,是一种通法.并且具有确定性、逻辑性、有穷性.让我们结合例题仔细体会算法的特点.拓展提升中国网通规定:拨打市内电话时,如果不超过3分钟,则收取话费0.22元;如果通话时间超过3分钟,则超出部分按每分钟0.1元收取通话费,不足一分钟按一分钟计算.设通话时间为t(分钟),通话费用y(元),如何设计一个程序,计算通话的费用.解:算法分析:数学模型实际上为:y关于t的分段函数.关系式如下:y=⎪⎩⎪⎨⎧∉>+-+∈>-+≤<).,3(),1]3([1.022.0),,3(),3(1.022.0),30(,22.0Z t T T Z t t t t 其中[t -3]表示取不大于t -3的整数部分. 算法步骤如下:第一步,输入通话时间t.第二步,如果t≤3,那么y=0.22;否则判断t ∈Z 是否成立,若成立执行 y=0.2+0.1×(t -3);否则执行y=0.2+0.1×([t -3]+1). 第三步,输出通话费用c. 课堂小结(1) 正确理解算法这一概念. (2) 算法的表示有哪些?(3) 结合例题掌握算法的特点,能够写出简单的算法.1.熟悉各种程序框及流程线的功能和作用.2.通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程. 3.通过比较体会程序框图的直观性、准确性. 重点难点数学重点:程序框图的概念及画法. 数学难点:程序框图中的符号的意义.导入新课用自然语言表示的算法步骤有明确的顺序性,但是对于在一定条件下才会被执行的步骤,以及在一定条件下会被重复执行的步骤,自然语言的表示就显得困难,而且不直观、不准确.因此,本节有必要探究使算法表达得更加直观、准确的方法.今天开始学习程序框图. 新知探究 提出问题(1)什么是程序框图?(2)说出终端框(起止框)的图形符号与功能. (3)说出输入、输出框的图形符号与功能. (4)说出处理框(执行框)的图形符号与功能. (5)说出判断框的图形符号与功能. (6)说出流程线的图形符号与功能. (7)说出连接点的图形符号与功能.(8)总结几个基本的程序框、流程线和它们表示的功能. 讨论结果:(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.(2)椭圆形框:表示程序的开始和结束,称为终端框(起止框).表示开始时只有一个出口;表示结束时只有一个入口.(3)平行四边形框:表示一个算法输入和输出的信息,又称为输入、输出框,它有一个入口和一个出口.(4)矩形框:表示计算、赋值等处理操作,又称为处理框(执行框),它有一个入口和一个出口.(5)菱形框:是用来判断给出的条件是否成立,根据判断结果来决定程序的流向,称为判断框,它有一个入口和两个出口.(6)流程线:表示程序的流向.(7)圆圈:连接点.表示相关两框的连接处,圆圈内的数字相同的含义表示相连接在一起.(8)总结如下表.图形符号例1左图所示的是一个算法的流程图,已知a1=3,输出的b=7,求a2的值.(4)画出由直角三角形的两条直角边a, b,求斜边长的程序框图课堂小结(1)掌握程序框的画法和功能.(2)了解什么是程序框图,知道学习程序框图的意义.(3)掌握顺序结构的应用,并能解决与顺序结构有关的程序框图的画法.在具体问题的解决过程中,理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.提出问题(1)请大家再次观察上节课中所画的一些程序框图例子.(2)回答什么是顺序结构?什么是条件分支结构?什么是循环结构、循环体?(3)试用程序框图表示循环结构.(4)指出三种基本逻辑结构结构的相同点和不同点.讨论结果:很明显,顺序结构是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.三种逻辑结构可以用如下程序框图表示:顺序结构条件结构循环结构应用示例例1 阅读以下程序框图,分析其所实现的算法功能?.……+100的值.显然,这个过程中包含重复操作的步骤,可以用循环结构表示.分析上述计算过程,可以发现每一步都可以表示为第(i-1)步的结果+i=第i步的结果.为了方便、有效地表示上述过程,我们用一个累加变量S 来表示第一步的计算结果,即把S+i 的结果仍记为S ,从而把第i 步表示为S=S+i ,其中S 的初始值为0,i 依次取1,2,…,100,由于i 同时记录了循环的次数,所以也称为计数变量.解决这一问题的算法是: 第一步,令i=1,S=0.第二步,若i≤100成立,则执行第三步;否则,输出S ,结束算法. 第三步,S=S+i.第四步,i=i+1,返回第二步. 程序框图如右:(1)(2)点评:在数学计算中,i=i+1不成立,S=S+i 只有在i=0时才能成立.在计算机程序中,它们被赋予了其他的功能,不再是数学中的“相等”关系,而是赋值关系.变量i 用来作计数器,i=i+1的含义是:将变量i 的值加1,然后把计算结果再存贮到变量i 中,即计数器i 在原值的基础上又增加了1.变量S 作为累加器,来计算所求数据之和.如累加器的初值为0,当第一个数据送到变量i 中时,累加的动作为S=S+i ,即把S 的值与变量i 的值相加,结果再送到累加器S 中,如此循环,则可实现数的累加求和. 变式训练 已知有一列数1,,43,32,21 n n,设计框图实现求该列数前20项的和.练习1:设计框图实现1+3+5+7的算法.练习2:高中某班一共有40名学生,设计算法流程图,统计班级数学成绩良好(分数>80)和优秀(分数>90)的人数.课堂小结(1)熟练掌握三种基本逻辑结构的特点及功能.(2)能用循环结构画出求和等实际问题的程序框图,进一步理解学习算法的意义.1.理解学习基本算法语句的意义.2.学会输入语句、输出语句和赋值语句的基本用法.3.理解算法步骤、程序框图和算法语句的关系,学会算法语句的写法.重点难点教学重点:输入语句、输出语句和赋值语句的基本用法.教学难点:算法语句的写法.导入新课前面我们学习了程序框图的画法,为了让计算机能够理解算法步骤、程序框图,我们开始学习算法语句.提出问题(1)指出赋值语句的格式、功能、(2)要求指出输入语句的格式、功能、要求.(3)指出输出语句的格式、功能、要求.讨论结果:(1) 赋值语句的一般格式:________________.赋值语句中的“______”称作赋值号.功能:将表达式所代表的值赋给变量.要求:1°赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个常量、变量或含变量的运算式.如:2=x是错误的.2°赋值号的左右两边不能对换.赋值语句是将赋值号右边的表达式的值赋给赋值号左边的变量.如“A=B”“B=A”的含义运行结果是不同的,如x=5是对的,5=x是错的,A+B=C是错的,C=A+B是对的.3°不能利用赋值语句进行代数式的演算(如化简、因式分解、解方程等),如y=x2-1=(x -1)(x+1),这是实现不了的.在赋值号右边表达式中每一个变量的值必须事先赋给确定的值.在一个赋值语句中只能给一个变量赋值,不能出现两个或以上的“=”.但对于同一个变量可以多次赋值.(2) 输入语句的格式:_______________功能:实现算法的输入变量信息(数值或字符)的功能.要求:1°输入语句要求输入的值是具体的常量.2°提示内容提示用户输入的是什么信息,必须加双引号,提示内容“原原本本”的在计算机屏幕上显示,提示内容与变量之间要用分号隔开.3°一个输入语句可以给多个变量赋值,中间用“,”分隔.形式如:INPUT(“a=,b=,c=,”;a,b,c);(3) 输出语句的一般格式:_____________功能:实现算法输出信息(表达式)的功能.要求:1°表达式是指算法和程序要求输出的信息.2°提示内容提示用户要输出的是什么信息,提示内容必须加双引号,提示内容要用分号和表达式分开.3°如同输入语句一样,输出语句可以一次完成输出多个表达式的功能,不同的表达式之间可用“,”分隔.(4) 指出三种语句与框图的对应关系如下图.应用示例(阅读及补全)例1 给一个变量重复赋值.解:程序:A=10A=A+15PRINT AEND点评:给一个变量重复赋值,变量只保存最后一次赋值,比如此程序的输出值是25.例2 编写程序,计算一个学生数学、语文、英语三门课的平均成绩.算法分析:先写出解决本例的算法步骤:第一步,_____________________________________________________第二步,____________________________.第三步,输出__________________________.程序框图如下:这个算法可以写成下列程序.程序:例3 变换两个变量A和B的值,并输出交换前后的值.解:程序:知能训练请写出下面运算输出的结果.(1)a=5b=3c=(a+b)/2d=c*cPRINT“d=”;d(2)a=1b=2c=a+bb=a+c-bPRINT “a=,b=,c=”;a,b,c(3)a=10b=20c=30a=bb=cc=aPRINT “a=,b=,c=” ;a,b,c课堂小结(1)输入语句、输出语句和赋值语句的基本用法. (2)用输入语句、输出语句和赋值语句编写算法语句.教学目标:1.理解学习基本算法语句的意义.2.学会条件语句的基本用法.3.理解算法步骤、程序框图和算法语句的关系,学会算法语句的写法.重点难点教学重点:条件语句的基本用法.教学难点:算法语句的写法.提出问题1.回忆程序框图中的条件结构.2.指出条件语句的格式及功能.3.揭示程序中的条件语句与程序框图中的条件结构存在一一对应关系.讨论结果:1.一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.条件分支结构就是处理这种过程的结构.处理条件分支逻辑结构的的算法语句就叫条件语句2.条件语句的一般格式1°包含一个“分支”的条件语句((2)语句功能:如果表达式结果为真,则执行语句序列1;如果表达式结果为假时,则跳过语句序列12°包含两个“分支”的条件语句(1)对应的条件语句为:(2)语句功能:首先对if后的条件进行判断如果表达式结果为真,则执行语句序列1;当表达式结果为假时,则执行else后面的语句序列2小结:1.条件语句是一个语句,if,else都是语句的一部分2.条件语句必须以if语句开始,以end语句结束,一个if语句必须和一个end语句对应3.如果我们的程序只需对条件为真时作出判断,不需要条件为假的情况,则条件语句省略else分句,格式由if—else语句变为if语句3.分支嵌套:分支嵌套是指在分支结构的某一部分中又包含分支结构对应的条件语句为:elseif 条件2语句序列2;else语句序列3;end…end应用示例例1 编写一个程序,求实数x 的绝对值.点评:通过本题我们看到算法步骤可以转化为程序框图,程序框图可以转化为算法语句.本题揭示了它们之间的内在联系,只要理解了程序框图与算法语句的对应关系,把程序框图转化为算法语句就很容易了.例2 编写程序,输出两个不相等的实数a 、b 的最大值.例3 高等数学中经常用到符号函数,符号函数的定义为y=⎪⎩⎪⎨⎧<-=>,0,1,0,0,0,1x x x 试编写程序输入x 的值,输出y 的值.课堂小结条件语句的基本用法.1.理解学习基本算法语句的意义.2.学会循环语句的基本用法.3.理解算法步骤、程序框图和算法语句的关系,学会算法语句的写法.重点难点重点:循环语句的基本用法..一、问题提出两种条件语句的一般格式分别是什么?二、导入新课一位同学不小心违反了学校纪律,班主任令其写检查,他写完后交给班主任,班主任看后说:“认识不深刻,拿回去重写,直到认识深刻为止”.这位同学一想,这不是一个循环结构吗?可惜我还没学循环语句,不然可以写一个算法语句输入计算机了.同学们,今天我们开始学习循环语句.三、新课Scilab程序语言中提供了两种循环语句:for 循环和while 循环1、for循环语句for 循环语句的一般格式:例1. 实现求1+2+3+…+1000=? 的算法算法思想:可以采用重复计算,而且数字1、2、3、…、1000是有规律的一列数,逐渐循环递增,每次增幅为1.解答:在例1的程序中,如果我们将初值、步长、终值、循环体分别改变,情形又如何呢?1. 将初值改变,如改为“i=100:1:1000”则该程序描述的算法实现什么功能?2. 终值改变的情形类似.如改为“i=1:1:100”则该程序描述的算法实现什么功能?3.将步长改变,如改为“i=1:2:1000,则表示求和1+3+5+ (999)如改为“i=1:3:1000”,则表示求和________________________________________________.4.将循环体改变,如改变为“S=S+1/i”,则该程序描述的算法实现什么功能?例2.画出计算1111++++246200值的算法程序框图,并写出程序。